1
|
Yao Z, Chen Z, He X, Wei Y, Qian J, Zong Q, He S, Song L, Ma L, Lin S, Li L, Xue L, Fu SN, Zhang J, Li Y, Wang D. Bioactive MgO/MgCO3/Polycaprolactone Multi-gradient Fibers Facilitate Peripheral Nerve Regeneration by Regulating Schwann Cell Function and Activating Wingless/Integrase-1 Signaling. ADVANCED FIBER MATERIALS 2025; 7:315-337. [DOI: 10.1007/s42765-024-00489-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/29/2024] [Indexed: 01/12/2025]
Abstract
Abstract
Peripheral nerve defects present complex orthopedic challenges with limited efficacy of clinical interventions. The inadequate proliferation and dysfunction of Schwann cells within the nerve scaffold impede the effectiveness of nerve repair. Our previous studies suggested the effectiveness of a magnesium-encapsulated bioactive hydrogel in repairing nerve defects. However, its rapid release of magnesium ions limited its efficacy to long-term nerve regeneration, and its molecular mechanism remains unclear. This study utilized electrospinning technology to fabricate a MgO/MgCO3/polycaprolactone (PCL) multi-gradient nanofiber membrane for peripheral nerve regeneration. Our findings indicated that by carefully adjusting the concentration or proportion of rapidly degradable MgO and slowly degradable MgCO3, as well as the number of electrospun layers, the multi-gradient scaffold effectively sustained the release of Mg2+ over a period of 6 weeks. Additionally, this study provided insight into the mechanism of Mg2+-induced nerve regeneration and confirmed that Mg2+ effectively promoted Schwann cell proliferation, migration, and transition to a repair phenotype. By employing transcriptome sequencing technology, the study identified the Wingless/integrase-1 (Wnt) signaling pathway as a crucial mechanism influencing Schwann cell function during nerve regeneration. After implantation in 10 mm critically sized nerve defects in rats, the MgO/MgCO3/PCL multi-gradient nanofiber combined with a 3D-engineered PCL nerve conduit showed enhanced axonal regeneration, remyelination, and reinnervation of muscle tissue 12 weeks post-surgery. In conclusion, this study successfully developed an innovative multi-gradient long-acting MgO/MgCO3/PCL nanofiber with a tunable Mg2+ release property, which underscored the molecular mechanism of magnesium-encapsulated biomaterials in treating nervous system diseases and established a robust theoretical foundation for future clinical translation.
Graphical abstract
Collapse
|
2
|
Qiu T, Yang R, Chen L, Liu G, Han J, Guo C. Duplex Fluorinated and Atomic Layer Deposition-Derived ZrO 2 Coatings Improve the Corrosion Resistance and Mechanical Properties of Mg-2Zn-0.46Y-0.5Nd (wt.%) Alloy Plates and Screws. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3485. [PMID: 39063780 PMCID: PMC11278270 DOI: 10.3390/ma17143485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/30/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
This study investigated the corrosion resistance and mechanical properties of Mg-2Zn-0.46Y-0.5Nd (wt.%) alloy plates and screws with fluorinated coatings and atomic layer deposition (ALD)-derived zirconia (ZrO2) coatings in vitro under physiological stress conditions. Synthetic polyurethane hemimandible replicas were split and fixed as the following three groups of magnesium alloy plates and screws: no additional surface coating treatment (Group A), with fluorinated coatings (Group B), and with duplex fluorinated and ALD-derived 100 nm ZrO2 coatings (Group C). A circulating stress of 1-10 N was applied to the distal bone segment, and a 4-week simulated body fluid immersion test was employed to study the remaining material volume and the mechanical properties of the different groups. Compared with Group A and Group B, the degradation rate of magnesium alloy plates and screws' head regions was significantly slowed down under the protection of duplex MgF2/ZrO2 coatings (p < 0.01). There was no significant difference in the degradation rate of the screw shaft region between groups (p = 0.077). In contrast to fluoride coatings, duplex MgF2/ZrO2 coatings maintained the mechanical strength of magnesium alloy plates and screws after a 14 day in vitro SBF immersion test. We conclude that duplex MgF2/ZrO2 coatings exhibited a certain protective effect on the Mg alloy plates and screws under physiological stress conditions.
Collapse
Affiliation(s)
- Tiancheng Qiu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China; (T.Q.); (L.C.)
| | - Rong Yang
- Department of General Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China;
| | - Liangwei Chen
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China; (T.Q.); (L.C.)
| | - Guanqi Liu
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China;
| | - Jianmin Han
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China;
| | - Chuanbin Guo
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China; (T.Q.); (L.C.)
| |
Collapse
|
3
|
Xu J, Wu D, Ge B, Li M, Yu H, Cao F, Wang W, Zhang Q, Yi P, Wang H, Song L, Liu L, Li J, Zhao D. Selective Laser Melting of the Porous Ta Scaffold with Mg-Doped Calcium Phosphate Coating for Orthopedic Applications. ACS Biomater Sci Eng 2024; 10:1435-1447. [PMID: 38330203 DOI: 10.1021/acsbiomaterials.3c01503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Addressing the repair of large-scale bone defects has become a hot research topic within the field of orthopedics. This study assessed the feasibility and effectiveness of using porous tantalum scaffolds to treat such defects. These scaffolds, manufactured using the selective laser melting (SLM) technology, possessed biomechanical properties compatible with natural bone tissue. To enhance the osteogenesis bioactivity of these porous Ta scaffolds, we applied calcium phosphate (CaP) and magnesium-doped calcium phosphate (Mg-CaP) coatings to the surface of SLM Ta scaffolds through a hydrothermal method. These degradable coatings released calcium and magnesium ions, demonstrating osteogenic bioactivity. Experimental results indicated that the Mg-CaP group exhibited biocompatibility comparable to that of the Ta group in vivo and in vitro. In terms of osteogenesis, both the CaP group and the Mg-CaP group showed improved outcomes compared to the control group, with the Mg-CaP group demonstrating superior performance. Therefore, both CaP and magnesium-CaP coatings can significantly enhance the osseointegration of three-dimensional-printed porous Ta, thereby increasing the surface bioactivity. Overall, the present study introduces an innovative approach for the biofunctionalization of SLM porous Ta, aiming to enhance its suitability as a bone implant material.
Collapse
Affiliation(s)
- Jianfeng Xu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Di Wu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Bing Ge
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Maoyuan Li
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Haiyu Yu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Fang Cao
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Weidan Wang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Qing Zhang
- Integrative Laboratory, Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Pinqiao Yi
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Haiyao Wang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Liqun Song
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Lingpeng Liu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Junlei Li
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Dewei Zhao
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| |
Collapse
|
4
|
Wu J, Shen Y, Wang P, Guo Z, Bai J, Wang X, Chen D, Lin X, Tang C. Self-Healing Micro Arc Oxidation and Dicalcium Phosphate Dihydrate Double-Passivated Coating on Magnesium Membrane for Enhanced Bone Integration Repair. ACS Biomater Sci Eng 2024; 10:1062-1076. [PMID: 38245905 DOI: 10.1021/acsbiomaterials.3c01565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Magnesium is a revolutionary biomaterial for orthopedic implants, owing to its eminent mechanical properties and biocompatibility. However, its uncontrolled degradation rate remains a severe challenge for its potential applications. In this study, we developed a self-healing micro arc oxidation (MAO) and dicalcium phosphate dihydrate (DCPD) double-passivated coating on a magnesium membrane (Mg-MAO/DCPD) and investigated its potential for bone-defect healing. The Mg-MAO/DCPD membrane possessed a feasible self-repairing ability and good cytocompatibility. In vitro degradation experiments showed that the Mg contents on the coating surface were 0.3, 3.8, 4.1, 6.1, and 7.9% when the degradation times were 0, 1, 2, 3, and 4 weeks, respectively, exhibiting available corrosion resistance. The slow and sustained release of Mg2+ during the degradation process activated extracellular matrix proteins for bone regeneration, accelerating osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). The extract solutions of Mg-MAO/DCPD considerably promoted the activation of the Wnt and PI3K/AKT signaling pathways. Furthermore, the evaluation of the rat skull defect model manifested the outstanding bone-healing efficiency of the Mg-MAO/DCPD membrane. Taken together, the Mg-MAO/DCPD membrane demonstrates an optimized degradation rate and excellent bioactivity and is believed to have great application prospects in bone tissue engineering.
Collapse
Affiliation(s)
- Jin Wu
- Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing 210029, Jiangsu Province, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu Province, China
| | - Yue Shen
- Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing 210029, Jiangsu Province, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu Province, China
| | - Ping Wang
- Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing 210029, Jiangsu Province, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu Province, China
| | - Zixiang Guo
- Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing 210029, Jiangsu Province, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu Province, China
| | - Jing Bai
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 210029, Jiangsu Province, China
| | - Xianli Wang
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 210029, Jiangsu Province, China
| | - Dongfang Chen
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 210029, Jiangsu Province, China
| | - Xuyang Lin
- Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing 210029, Jiangsu Province, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu Province, China
| | - Chunbo Tang
- Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing 210029, Jiangsu Province, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|