1
|
Xia G, Xu Y, Zhang C, Li M, Li H, Chen C. High levels of serum hypersensitive C-reactive protein are associated with non-alcoholic fatty liver disease in non-obese people: a cross-sectional study. Eur J Med Res 2024; 29:496. [PMID: 39402650 PMCID: PMC11476594 DOI: 10.1186/s40001-024-02065-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) and obesity have become one of the most common chronic diseases, and the global prevalence is increasing year by year. Both are accompanied by hypersensitive C-reactive protein (hs-CRP). At present, there are many predictors of NAFLD. Exploring the relationship between hs-CRP and nonalcoholic fatty liver disease in non-obese people will be helpful for risk prediction and clinical screening in high-risk populations. OBJECTIVE To explore the relationship between levels of serum hs-CRP and the presence of NAFLD in non-obese people. METHODS A total of 6558 participants who underwent physical examination from March 2017 to November 2017. Multivariate logistic regression was utilized to analyze the risk factors associated with NAFLD. RESULTS This study including 4240 males and 2318 females ranging from 20 to 94 years. In 1396 patients with NAFLD, the prevalence rate was 21.3%, among which 1056 (24.9%) males and 340 (14.7%) females had NAFLD. The prevalence of NAFLD was much higher in males compared to females (χ2 = 93.748, P < 0.001). In the nonalcoholic fatty liver group, various factors including hs-CRP, age, WC, BMI, systolic blood pressure and blood pressure diastolic blood pressure were significantly higher than those in the control group. Logistic regression analysis confirmed that hs-CRP was an independent risk factor for NAFLD, even after adjusting for relevant variables. CONCLUSIONS The prevalence of NAFLD increases with the level of hs-CRP in both men and women who are non-obese. Hs-CRP levels are an important risk factor for nonalcoholic fatty liver disease in non-obese individuals.
Collapse
Affiliation(s)
- Guitao Xia
- Affiliated People's Hospital of Ningbo University, Ningbo, 315040, Zhejiang Province, China
| | - Yuemei Xu
- Affiliated People's Hospital of Ningbo University, Ningbo, 315040, Zhejiang Province, China
| | - Cheng Zhang
- Affiliated People's Hospital of Ningbo University, Ningbo, 315040, Zhejiang Province, China
| | - Mengting Li
- Affiliated People's Hospital of Ningbo University, Ningbo, 315040, Zhejiang Province, China
| | - Hongliang Li
- Affiliated People's Hospital of Ningbo University, Ningbo, 315040, Zhejiang Province, China.
| | - Changxi Chen
- Affiliated People's Hospital of Ningbo University, Ningbo, 315040, Zhejiang Province, China.
| |
Collapse
|
2
|
Wang Y, Li X, Gao Y, Zhang X, Liu Y, Wu Q. Risk Factors for Non-Alcoholic Fatty Liver Disease in Patients with Bipolar Disorder: A Cross-Sectional Retrospective Study. Diabetes Metab Syndr Obes 2024; 17:3053-3061. [PMID: 39170901 PMCID: PMC11338168 DOI: 10.2147/dmso.s463335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
Purpose The co-morbidity of non-alcoholic fatty liver disease (NAFLD) in patients with bipolar disorder (BD) has a negative impact on patient treatment and prognosis. This study aimed to identify the prevalence of NAFLD in patients with BD and investigate the risk factors of NAFLD. Patients and Methods A total of 678 patients with BD were included in the study. Clinical data were obtained from the hospital's electronic health record system. Data included fasting blood glucose, alanine aminotransferase, triglycerides, aspartate aminotransferase, high-density lipoprotein cholesterol (HDL), alkaline phosphatase, total cholesterol, glutamine transpeptidase, uric acid, apolipoprotein A1, apolipoprotein B, and liver ultrasound findings. Results The prevalence of NAFLD was 43.66% in patients with BD. Significant differences in body mass index (BMI), mean age, diabetes prevalence, course of BD, fasting blood glucose, alanine aminotransferase, HDL, alkaline phosphatase, triglycerides, aspartate aminotransferase, uric acid, glutamine transpeptidase, apolipoprotein B, total cholesterol, and apolipoprotein A1 were seen between the groups (all P<0.01). Male sex, age, BMI, course of BD, alanine aminotransferase, fasting blood glucose, aspartate aminotransferase, diabetes, glutamine transpeptidase, total cholesterol, alkaline phosphatase, triglycerides, uric acid, apolipoprotein B, HDL, and apolipoprotein A1 levels were correlated with NAFLD (all P<0.05). In patients with BD, diabetes (OR=6.412, 95% CI=1.049-39.21), BMI (OR=1.398, 95% CI=1.306-1.497), triglycerides (OR=1.456, 95% CI=1.036-2.045), and apolipoprotein A1 (OR=0.272, 95% CI=0.110-0.672) were risk factors for NAFLD (all P<0.05). Conclusion Risk factors for NAFLD in patients with BD include diabetes, BMI, course of BD, and a low level of apolipoprotein A1. A proactive approach to disease management, such as appropriate physical activity and adoption of a healthy diet, and regular monitoring of changes in patient markers should be adopted to reduce the prevalence of NAFLD.
Collapse
Affiliation(s)
- Ying Wang
- Department of Psychiatry, Affiliated Psychological Hospital of Anhui Medical University, Anhui Mental Health Center, Hefei Fourth People’s Hospital, Hefei, Anhui, People’s Republic of China
| | - Xuelong Li
- Qingdao Mental Health Center, Qingdao, Shandong, People’s Republic of China
| | - Yakun Gao
- Qingdao Mental Health Center, Qingdao, Shandong, People’s Republic of China
| | - Xun Zhang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Yiyi Liu
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Qing Wu
- Department of Psychiatry, Affiliated Psychological Hospital of Anhui Medical University, Anhui Mental Health Center, Hefei Fourth People’s Hospital, Hefei, Anhui, People’s Republic of China
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| |
Collapse
|
3
|
Xu T, Gao W, Zhu L, Chen W, Niu C, Yin W, Ma L, Zhu X, Ling Y, Gao S, Liu L, Jiao N, Chen W, Zhang G, Zhu R, Wu D. NAFLDkb: A Knowledge Base and Platform for Drug Development against Nonalcoholic Fatty Liver Disease. J Chem Inf Model 2024; 64:2817-2828. [PMID: 37167092 DOI: 10.1021/acs.jcim.3c00395] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease with a broad spectrum of histologic manifestations. The rapidly growing prevalence and the complex pathologic mechanisms of NAFLD pose great challenges for treatment development. Despite tremendous efforts devoted to drug development, there are no FDA-approved medicines yet. Here, we present NAFLDkb, a specialized knowledge base and platform for computer-aided drug design against NAFLD. With multiperspective information curated from diverse source materials and public databases, NAFLDkb presents the associations of drug-related entities as individual knowledge graphs. Practical drug discovery tools that facilitate the utilization and expansion of NAFLDkb have also been implemented in the web interface, including chemical structure search, drug-likeness screening, knowledge-based repositioning, and research article annotation. Moreover, case studies of a knowledge graph repositioning model and a generative neural network model are presented herein, where three repositioning drug candidates and 137 novel lead-like compounds were newly established as NAFLD pharmacotherapy options reusing data records and machine learning tools in NAFLDkb, suggesting its clinical reliability and great potential in identifying novel drug-disease associations of NAFLD and generating new insights to accelerate NAFLD drug development. NAFLDkb is freely accessible at https://www.biosino.org/nafldkb and will be updated periodically with the latest findings.
Collapse
Affiliation(s)
- Tingjun Xu
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200060, P. R. China
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Road, Shanghai 200032, P. R. China
| | - Wenxing Gao
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200060, P. R. China
| | - Lixin Zhu
- Guangdong Institute of Gastroenterology; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases; Biomedical Innovation Center, Sun Yat-sen University, Guangzhou 510655, P. R. China
- Department of General Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, P. R. China
| | - Wanning Chen
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200060, P. R. China
| | - Chaoqun Niu
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Wenjing Yin
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200060, P. R. China
| | - Liangxiao Ma
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Xinyue Zhu
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200060, P. R. China
| | - Yunchao Ling
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Sheng Gao
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200060, P. R. China
| | - Lei Liu
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200060, P. R. China
| | - Na Jiao
- National Clinical Research Center for Child Health, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, P. R. China
| | - Weiming Chen
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Road, Shanghai 200032, P. R. China
| | - Guoqing Zhang
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Ruixin Zhu
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200060, P. R. China
| | - Dingfeng Wu
- National Clinical Research Center for Child Health, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, P. R. China
| |
Collapse
|
4
|
Tompach MC, Gridley CK, Li S, Clark JM, Park Y, Timme-Laragy AR. Comparing the effects of developmental exposure to alpha lipoic acid (ALA) and perfluorooctanesulfonic acid (PFOS) in zebrafish (Danio rerio). Food Chem Toxicol 2024; 186:114560. [PMID: 38432440 PMCID: PMC11034762 DOI: 10.1016/j.fct.2024.114560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/14/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Alpha lipoic acid (ALA) is a dietary supplement that has been used to treat a wide range of diseases, including obesity and diabetes, and have lipid-lowering effects, making it a potential candidate for mitigating dyslipidemia resulting from exposures to the per- and polyfluoroalkyl substance (PFAS) family member perfluorooctanesulfonic acid (PFOS). ALA can be considered a non-fluorinated structural analog to PFOS due to their similar 8-carbon chain and amphipathic structure, but, unlike PFOS, is rapidly metabolized. PFOS has been shown to reduce pancreatic islet area and induce β-cell lipotoxicity, indicating that changes in β-cell lipid microenvironment is a mechanism contributing to hypomorphic islets. Due to structural similarities, we hypothesized that ALA may compete with PFOS for binding to proteins and distribution throughout the body to mitigate the effects of PFOS exposure. However, ALA alone reduced islet area and fish length, with several morphological endpoints indicating additive toxicity in the co-exposures. Individually, ALA and PFOS increased fatty acid uptake from the yolk. ALA alone increased liver lipid accumulation, altered fatty acid profiling and modulated PPARɣ pathway signaling. Together, this work demonstrates that ALA and PFOS have similar effects on lipid uptake and metabolism during embryonic development in zebrafish.
Collapse
Affiliation(s)
- Madeline C Tompach
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA; Biotechnology Training Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Charlotte K Gridley
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Sida Li
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - John M Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Alicia R Timme-Laragy
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA; Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
5
|
Tarantino G, Citro V. Could Adverse Effects of Antibiotics Due to Their Use/Misuse Be Linked to Some Mechanisms Related to Nonalcoholic Fatty Liver Disease? Int J Mol Sci 2024; 25:1993. [PMID: 38396671 PMCID: PMC10888279 DOI: 10.3390/ijms25041993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Nonalcoholic fatty liver disease, recently re-named metabolic dysfunction-associated steatotic fatty liver disease, is considered the most prevalent liver disease worldwide. Its molecular initiation events are multiple and not always well-defined, comprising insulin resistance, chronic low-grade inflammation, gut dysbiosis, and mitochondrial dysfunction, all of them acting on genetic and epigenetic grounds. Nowadays, there is a growing public health threat, which is antibiotic excessive use and misuse. This widespread use of antibiotics not only in humans, but also in animals has led to the presence of residues in derived foods, such as milk and dairy products. Furthermore, antibiotics have been used for many decades to control certain bacterial diseases in high-value fruit and vegetables. Recently, it has been emphasised that antibiotic-induced changes in microbial composition reduce microbial diversity and alter the functional attributes of the microbiota. These antibiotic residues impact human gut flora, setting in motion a chain of events that leads straight to various metabolic alterations that can ultimately contribute to the onset and progression of NAFLD.
Collapse
Affiliation(s)
- Giovanni Tarantino
- Department of Clinical Medicine and Surgery, Medical School of Naples, Federico II University, 80131 Naples, Italy
| | - Vincenzo Citro
- Department of General Medicine, Umberto I Hospital, Nocera Inferiore (SA), 84014 Nocera Inferiore, Italy;
| |
Collapse
|
6
|
Takeuchi F, Liang YQ, Shimizu-Furusawa H, Isono M, Ang MY, Mori K, Mori T, Kakazu E, Yoshio S, Kato N. Gene-regulation modules in nonalcoholic fatty liver disease revealed by single-nucleus ATAC-seq. Life Sci Alliance 2023; 6:e202301988. [PMID: 37491046 PMCID: PMC10368228 DOI: 10.26508/lsa.202301988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/27/2023] Open
Abstract
We investigated the progression of nonalcoholic fatty liver disease from fatty liver to steatohepatitis using single-nucleus and bulk ATAC-seq on the livers of rats fed a high-fat diet (HFD). Rats fed HFD for 4 wk developed fatty liver, and those fed HFD for 8 wk further progressed to steatohepatitis. We observed an increase in the proportion of inflammatory macrophages, consistent with the pathological progression. Utilizing machine learning, we divided global gene regulation into modules, wherein transcription factors within a module could regulate genes within the same module, reaffirming known regulatory relationships between transcription factors and biological processes. We identified core genes-central to co-expression and protein-protein interaction-for the biological processes discovered. Notably, a large part of the core genes overlapped with genes previously implicated in nonalcoholic fatty liver disease. Single-nucleus ATAC-seq, combined with data-driven statistical analysis, offers insight into in vivo global gene regulation as a combination of modules and assists in identifying core genes of relevant biological processes.
Collapse
Affiliation(s)
- Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Medical Genomics Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Systems Genomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Yi-Qiang Liang
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hana Shimizu-Furusawa
- Department of Hygiene and Public Health, School of Medicine, Teikyo University, Tokyo, Japan
| | - Masato Isono
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Mia Yang Ang
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Clinical Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kotaro Mori
- Medical Genomics Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Taizo Mori
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Eiji Kakazu
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Sachiyo Yoshio
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Medical Genomics Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Clinical Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Pérez-Luz S, Lalchandani J, Matamala N, Barrero MJ, Gil-Martín S, Saz SRD, Varona S, Monzón S, Cuesta I, Justo I, Marcacuzco A, Hierro L, Garfia C, Gomez-Mariano G, Janciauskiene S, Martínez-Delgado B. Quantitative Lipid Profiling Reveals Major Differences between Liver Organoids with Normal Pi*M and Deficient Pi*Z Variants of Alpha-1-antitrypsin. Int J Mol Sci 2023; 24:12472. [PMID: 37569847 PMCID: PMC10419530 DOI: 10.3390/ijms241512472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Different mutations in the SERPINA1 gene result in alpha-1 antitrypsin (AAT) deficiency and in an increased risk for the development of liver diseases. More than 90% of severe deficiency patients are homozygous for Z (Glu342Lys) mutation. This mutation causes Z-AAT polymerization and intrahepatic accumulation which can result in hepatic alterations leading to steatosis, fibrosis, cirrhosis, and/or hepatocarcinoma. We aimed to investigate lipid status in hepatocytes carrying Z and normal M alleles of the SERPINA1 gene. Hepatic organoids were developed to investigate lipid alterations. Lipid accumulation in HepG2 cells overexpressing Z-AAT, as well as in patient-derived hepatic organoids from Pi*MZ and Pi*ZZ individuals, was evaluated by Oil-Red staining in comparison to HepG2 cells expressing M-AAT and liver organoids from Pi*MM controls. Furthermore, mass spectrometry-based lipidomics analysis and transcriptomic profiling were assessed in Pi*MZ and Pi*ZZ organoids. HepG2 cells expressing Z-AAT and liver organoids from Pi*MZ and Pi*ZZ patients showed intracellular accumulation of AAT and high numbers of lipid droplets. These latter paralleled with augmented intrahepatic lipids, and in particular altered proportion of triglycerides, cholesterol esters, and cardiolipins. According to transcriptomic analysis, Pi*ZZ organoids possess many alterations in genes and cellular processes of lipid metabolism with a specific impact on the endoplasmic reticulum, mitochondria, and peroxisome dysfunction. Our data reveal a relationship between intrahepatic accumulation of Z-AAT and alterations in lipid homeostasis, which implies that liver organoids provide an excellent model to study liver diseases related to the mutation of the SERPINA1 gene.
Collapse
Affiliation(s)
- Sara Pérez-Luz
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
| | - Jaanam Lalchandani
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
| | - Nerea Matamala
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
| | - Maria Jose Barrero
- Models and Mechanisms Unit, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain;
| | - Sara Gil-Martín
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER U758, 28029 Madrid, Spain
| | - Sheila Ramos-Del Saz
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
| | - Sarai Varona
- Bioinformatics Unit, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.V.); (S.M.); (I.C.)
| | - Sara Monzón
- Bioinformatics Unit, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.V.); (S.M.); (I.C.)
| | - Isabel Cuesta
- Bioinformatics Unit, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.V.); (S.M.); (I.C.)
| | - Iago Justo
- General and Digestive Surgery Department, Hospital 12 de Octubre, 28041 Madrid, Spain; (I.J.); (A.M.)
| | - Alberto Marcacuzco
- General and Digestive Surgery Department, Hospital 12 de Octubre, 28041 Madrid, Spain; (I.J.); (A.M.)
| | - Loreto Hierro
- Paediatric Hepatology Service, Research Institute of University Hospital La Paz, (IdiPAZ), 28046 Madrid, Spain;
| | - Cristina Garfia
- Digestive Department, Hospital 12 de Octubre, 28041 Madrid, Spain;
| | - Gema Gomez-Mariano
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover Medical School, 30625 Hannover, Germany;
| | - Beatriz Martínez-Delgado
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER U758, 28029 Madrid, Spain
| |
Collapse
|
8
|
Gao Y, Hua R, Peng K, Yin Y, Zeng C, Guo Y, Wang Y, Li L, Li X, Qiu Y, Wang Z. High-starchy carbohydrate diet aggravates NAFLD by increasing fatty acids influx mediated by NOX2. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Hajika Y, Kawaguchi Y, Hamazaki K, Kumeda Y. Beneficial effects of luseogliflozin on lipid profile and liver function in patients with type 2 diabetes mellitus (BLUE trial): a single-center, single-arm, open-label prospective study. Diabetol Metab Syndr 2023; 15:97. [PMID: 37165443 PMCID: PMC10173585 DOI: 10.1186/s13098-023-01074-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Arteriosclerosis and non-alcoholic fatty liver disease are major complications of diabetes mellitus. Hyperglycemia, insulin resistance, obesity, and metabolic syndrome are associated with the progression of these complications. Sodium-glucose transporter 2 inhibitors such as luseogliflozin are oral hypoglycemic agents that reduce glucose levels, induce loss of weight or body fat, and improve liver function. However, the effects of these agents on lipid profiles are unclear. Therefore, this study aimed to investigate these effects and their relationship with arteriosclerosis and non-alcoholic fatty liver disease. METHODS This single-center, single-arm, open-labeled prospective study enrolled 25 outpatients with type 2 diabetes mellitus who visited Minami Osaka Hospital. Laboratory tests and body measurements were performed at weeks 0 and 24. Luseogliflozin was started at 2.5 mg/day after breakfast, and data from weeks 0 and 24 were evaluated. There were no changes in the doses of other antidiabetic and dyslipidemia drugs a month prior to or during the study. RESULTS The patients showed significant reductions in the levels of triglycerides, remnant-like particle cholesterol, and triglyceride/high-density lipoprotein cholesterol ratio, along with significant increases in the levels of high-density lipoprotein cholesterol and apolipoprotein A-1. Alanine aminotransferase, γ-glutamyl transpeptidase, and the fatty liver index were significantly reduced. CONCLUSIONS Luseogliflozin-induced changes in the lipid profile were related to the suppression or improvement of arteriosclerosis and liver function, respectively. Patients who received this drug also showed improvements in the levels of liver enzymes and reductions in the fatty liver index. Earlier use of luseogliflozin might prevent diabetic complications. Trial registration This study was registered in the University Hospital Medical Information Network Clinical Trial Registry (UMIN 000043595) on April 6th, 2021.
Collapse
Affiliation(s)
- Yuriko Hajika
- Department of Internal Medicine, Minami Osaka Hospital, 1-18-18 Higashikagaya, Suminoe-Ku, Osaka, 559-0012, Japan.
| | - Yuji Kawaguchi
- Department of Internal Medicine, Minami Osaka Hospital, 1-18-18 Higashikagaya, Suminoe-Ku, Osaka, 559-0012, Japan
| | - Kenji Hamazaki
- Department of Internal Medicine, Minami Osaka Hospital, 1-18-18 Higashikagaya, Suminoe-Ku, Osaka, 559-0012, Japan
| | - Yasuro Kumeda
- Department of Internal Medicine, Minami Osaka Hospital, 1-18-18 Higashikagaya, Suminoe-Ku, Osaka, 559-0012, Japan
| |
Collapse
|
10
|
Wang Y, Zhang X, Chen Y, Zhu B, Xing Q. Identification of hub biomarkers and exploring the roles of immunity, M6A, ferroptosis, or cuproptosis in rats with diabetic erectile dysfunction. Andrology 2023; 11:316-331. [PMID: 35975587 DOI: 10.1111/andr.13265] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/02/2022] [Accepted: 08/07/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Currently, patients with diabetic erectile dysfunction (DMED) were not satisfied with the effects of first-line phosphodiesterase type 5 inhibitors (PDE5Is). Hence, this paper was designed to mine hub biomarkers in DMED and explore its potential mechanisms. METHODS Gene expression matrix of DMED was downloaded from the gene expression omnibus (GEO; GSE2457) dataset. The top 20 genes were selected based on the connectivity degrees in protein-protein interaction (PPI) network. Functional enrichment analysis was utilized to reveal DMED-related signaling pathways. We also explored the roles of immunity, m6A, ferroptosis, or cuproptosis in DMED and constructed Sprague Dawley (SD) rats DMED model to verify gene expressions by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Based on the threshold, a total of 122 differently expressed genes (DEGs) were identified in DMED, including 39 up-regulated and 83 down-regulated genes. Functional enrichment analysis implied that these DEGs were significantly enriched in peroxisome proliferator-activated receptors, ferroptosis, hypoxia-inducible factor 1 signaling pathways, and so on. SD rats DMED model was also successfully established by us and validated by intracavernous pressure/mean arterial pressure, Masson's trichrome staining, and immunohistochemical analysis. We further verified the expression of these top 20 genes from the PPI network by qRT-PCR in the SD rats DMED model and finally identified Sparc, Lox, Srebf1, and Mmp3 as hub biomarkers (all p < 0.05). As for immunity and cuproptosis, our analysis indicated that DMED had nothing to do with them (all p > 0.05). Actually, DMED was markedly associated with m6A regulators and ferroptosis. CONCLUSIONS We identified Sparc, Lox, Srebf1, and Mmp3 as potential hub biomarkers in the SD rats DMED model for future drug development and found its significant associations with m6A regulators and ferroptosis, but not with immunity or cuproptosis.
Collapse
Affiliation(s)
- Yi Wang
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Zhang
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yinhao Chen
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China
| | - Bingye Zhu
- Department of Urology, The Sixth People's Hospital of Nantong, Affiliated Nantong Hospital of Shanghai University, Nantong, China
| | - Qianwei Xing
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|