1
|
Gu X, Hu X, Zhang S, Zhang X, Wang Y, Li L. The diagnostic and prognostic significance of HOXC13-AS and its molecular regulatory mechanism in human cancer. Front Mol Biosci 2025; 12:1540048. [PMID: 39981436 PMCID: PMC11839424 DOI: 10.3389/fmolb.2025.1540048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025] Open
Abstract
HOXC13 antisense RNA (HOXC13-AS, also known as HOXC-AS5) is a long non-coding RNA that is expressed abnormally in various types of tumors and is closely related to clinical staging, clinical pathological features, and patient survival. HOXC13-AS is involved in the occurrence and development of tumors, affecting cell proliferation, migration, invasion, epithelial-mesenchymal transition, and tumor growth. This review summarizes the clinical significance of HOXC13-AS as a biomarker for human tumor diagnosis and prognosis and outlines the function and molecular regulation mechanism of HOXC13-AS in various types of cancer, including nasopharyngeal carcinoma, breast cancer, oral squamous cell carcinoma, glioma, and cervical cancer. Overall, this review emphasizes the potential of HOXC13-AS as a human tumor predictive biomarker and therapeutic target, paving the way for its clinical application.
Collapse
Affiliation(s)
- Xiaosi Gu
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Xin Hu
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Sijia Zhang
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoyu Zhang
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Yong Wang
- Shandong Provincial Engineering Research Center for Bacterial Oncolysis and Cell Treatment, Jinan, Shandong, China
| | - Lianlian Li
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
- Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
2
|
Khoshandam M, Sideris N, Ahmadieh-Yazdi A, Sheykhhasan M, Manoochehri H, Tanzadehpanah H, Mahaki H, Ghadam M, Lak S, Kalhor N, Rabiei M, Al-Musawi S, Dama P. The functional role of LncRNA HOXA-AS2 in multiple human cancers. Pathol Res Pract 2024; 266:155795. [PMID: 39756105 DOI: 10.1016/j.prp.2024.155795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Humans have more than 270,000 lncRNAs. Among these, lncRNA HOXA-AS2 is considered a transformative gene involved in various cellular processes, including cell proliferation, apoptosis, migration, and invasion. Thus, it can be regarded as a potential tumor marker for both diagnosis and prognosis. Aberrant expression of lncRNAs is associated with many cancers, including hepatocellular carcinoma (HCC), gallbladder carcinoma (GBC), acute promyelocytic leukemia (APL), lung cancer (LC), prostate cancer (PC), osteosarcoma (OS), colorectal cancer (CRC), cervical cancer (CC), and acute myeloid leukemia (AML). Targeting lncRNAs could be a promising strategy to complement or replace current cancer treatments. As a non-coding oncogene, lncRNA HOXA-AS2 is implicated in multiple cancers and could serve as a potential biomarker for various malignancies. The tumor size and disease stage of several cancers are correlated with HOXA-AS2 expression. Silencing HOXA-AS2 effectively suppresses tumor cell proliferation and promotes apoptosis, thereby inhibiting the progression of multiple cancer types. The regulatory mechanisms of HOXA-AS2 include inducing epithelial-mesenchymal transition (EMT), overexpressing B-cell lymphoma-2 (Bcl-2) and MYC proto-oncogene (c-Myc), gene silencing, activating AKT-MMP signaling pathways, EZH2 and LSD1, and functioning within a competing endogenous RNA (ceRNA) regulatory network by competitively binding miRNAs. This review surveys recent research on the structure, biological functions, abnormal expression, regulatory mechanisms, and diagnostic and therapeutic potential of HOXA-AS2 in various cancers.
Collapse
Affiliation(s)
- Mohadeseh Khoshandam
- Department of Reproductive Biology, Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran
| | - Nikolaos Sideris
- Research Fellow School of Life Sciences, University of Sussex, Brighton, UK.
| | - Amirhossein Ahmadieh-Yazdi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohsen Sheykhhasan
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| | - Hamed Manoochehri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanie Mahaki
- Vascular & Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Ghadam
- National Institute of genetic engineering and biotechnology (NIGEB), Tehran, Iran
| | - Shermin Lak
- National Institute of genetic engineering and biotechnology (NIGEB), Tehran, Iran
| | - Naser Kalhor
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom, Iran
| | | | | | - Paola Dama
- Research Fellow School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
3
|
Xiao T, Yan A, Tan L, Zhu H, Gao W. LncRNA HOXA‑AS2 is a prognostic and clinicopathological predictor in patients with cancer: A meta‑analysis. Oncol Lett 2024; 27:226. [PMID: 38586205 PMCID: PMC10996033 DOI: 10.3892/ol.2024.14359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/23/2024] [Indexed: 04/09/2024] Open
Abstract
Elevated expression of long non-coding RNA homeobox A cluster antisense RNA 2 (lncRNA HOXA-AS2) is known to have prognostic value in various solid tumors. The present meta-analysis aimed to comprehensively quantify its prognostic significance across a wider spectrum of malignancies and to provide an updated synthesis of evidence that could refine prognostic models. To achieve this aim, multiple databases were carefully searched for lncRNA HOXA-AS2-related articles published in the past 10 years. Hazard ratios (HRs) or odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to demonstrate the prognostic value of lncRNA HOXA-AS2 using Stata 15.0 software. The function of lncRNA HOXA-AS2 was inferred from its associations with key clinical outcomes such as lymph node metastasis, distant metastasis, tumor stage and tumor size, which may reflect its role in tumor biology. In the present systematic review and meta-analysis of 454 patients across 7 studies, it was found that high lncRNA HOXA-AS2 expression was significantly associated with a shorter overall survival (OS) time in patients with cancer (HR=2.14; 95% CI, 1.40-3.27; P<0.001). High lncRNA HOXA-AS2 expression was also associated with lymph node metastasis [odds ratio (OR)=2.06; 95% CI, 1.07-3.99; P=0.032], distant metastasis (OR=2.11; 95% CI, 1.15-3.88; P=0.016), advanced tumor stage (OR=2.71; 95% CI, 1.50-4.89; P=0.001) and larger tumor size (OR=2.02; 95% CI, 0.86-4.78; P=0.006). However, no significant association was observed with age (OR=1.00; 95% CI, 0.63-1.59; P=0.991) or sex (OR=1.55; 95% CI, 0.72-3.34; P=0.258). In conclusion, elevated expression of lncRNA HOXA-AS2 was significantly related to poor clinical outcomes in various cancer types, such as osteosarcoma, non-small cell lung cancer and papillary thyroid carcinoma, a finding that was further confirmed by the present study. Specifically, the potential of lncRNAHOXA-AS2 as a biomarker in assessing tumor stage, metastasis risk and OS in patients was demonstrated. However, the results of the present study also indicated that the expression of lncRNA HOXA-AS2 was not significantly associated with age or sex, suggesting its role in cancer progression might be independent of these factors. This insight may direct future research to place more focus on the relationship between lncRNA HOXA-AS2 and specific cancer types and clinical characteristics.
Collapse
Affiliation(s)
- Tijun Xiao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - An Yan
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Lifang Tan
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Hongwei Zhu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Wenzhe Gao
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
4
|
He Z, Zhong Y, Regmi P, Lv T, Ma W, Wang J, Liu F, Yang S, Zhong Y, Zhou R, Jin Y, Cheng N, Shi Y, Hu H, Li F. Exosomal long non-coding RNA TRPM2-AS promotes angiogenesis in gallbladder cancer through interacting with PABPC1 to activate NOTCH1 signaling pathway. Mol Cancer 2024; 23:65. [PMID: 38532427 PMCID: PMC10967197 DOI: 10.1186/s12943-024-01979-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Abnormal angiogenesis is crucial for gallbladder cancer (GBC) tumor growth and invasion, highlighting the importance of elucidating the mechanisms underlying this process. LncRNA (long non-coding RNA) is widely involved in the malignancy of GBC. However, conclusive evidence confirming the correlation between lncRNAs and angiogenesis in GBC is lacking. METHODS LncRNA sequencing was performed to identify the differentially expressed lncRNAs. RT-qPCR, western blot, FISH, and immunofluorescence were used to measure TRPM2-AS and NOTCH1 signaling pathway expression in vitro. Mouse xenograft and lung metastasis models were used to evaluate the biological function of TRPM2-AS during angiogenesis in vivo. EDU, transwell, and tube formation assays were used to detect the angiogenic ability of HUVECs. RIP, RAP, RNA pull-down, dual-luciferase reporter system, and mass spectrometry were used to confirm the interaction between TRPM2-AS, IGF2BP2, NUMB, and PABPC1. RESULTS TRPM2-AS was upregulated in GBC tissues and was closely related to angiogenesis and poor prognosis in patients with GBC. The high expression level and stability of TRPM2-AS benefited from m6A modification, which is recognized by IGF2BP2. In terms of exerting pro-angiogenic effects, TRPM2-AS loaded with exosomes transported from GBC cells to HUVECs enhanced PABPC1-mediated NUMB expression inhibition, ultimately promoting the activation of the NOTCH1 signaling pathway. PABPC1 inhibited NUMB mRNA expression through interacting with AGO2 and promoted miR-31-5p and miR-146a-5p-mediated the degradation of NUMB mRNA. The NOTCH signaling pathway inhibitor DAPT inhibited GBC tumor angiogenesis, and TRPM2-AS knockdown enhanced this effect. CONCLUSIONS TRPM2-AS is a novel and promising biomarker for GBC angiogenesis that promotes angiogenesis by facilitating the activation of the NOTCH1 signaling pathway. Targeting TRPM2-AS opens further opportunities for future GBC treatments.
Collapse
Affiliation(s)
- Zhiqiang He
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Yuhan Zhong
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Parbatraj Regmi
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Tianrun Lv
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Wenjie Ma
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Junke Wang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Fei Liu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Siqi Yang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Yanjie Zhong
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Rongxing Zhou
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Yanwen Jin
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Nansheng Cheng
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Yujun Shi
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haijie Hu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China.
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China.
| | - Fuyu Li
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China.
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China.
| |
Collapse
|