1
|
Rangel-Sandoval DK, Guerrero-Becerra L, Lomas-Soria C, Rico-Chávez AK, Cervantes-Chávez JA, Reyes-Castro LA, Morales-Miranda A, Feregrino-Pérez AA. Timbe ( Acaciella angustissima) as an Alternative Source of Compounds with Biological Activity: Antidiabetic. Pharmaceuticals (Basel) 2025; 18:593. [PMID: 40284028 PMCID: PMC12030449 DOI: 10.3390/ph18040593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Timbe (Acaciella angustissima) is a legume recognized for its environmental benefits, such as soil restoration, wildlife nutrition, and the presence of biologically active compounds. This study investigates the antioxidant, pharmacological, and antimicrobial properties of Timbe. Methods: The total phenolic content, flavonoids, and condensed tannins from Timbe flowers, seeds, and pods were quantified, and their antioxidant activity was evaluated using the DPPH and ABTS assays. Enzymatic activities were assessed through α-amylase, α-glucosidase, and ACE-I inhibition, and antimicrobial properties were tested against various bacterial strains. Results: The pods and flowers exhibited higher antioxidant capacities compared to seeds, effectively neutralizing free radicals. Flavonoids and condensed tannins showed positive correlations with antioxidant activity and the inhibition of α-amylase and α-glucosidase, suggesting the potential benefits of these metabolites in blood glucose control. Timbe also demonstrated ACE-I inhibition, particularly the flowers. Regarding antimicrobial activity, the pods displayed moderate inhibition against E. coli, K. pneumoniae, and S. aureus. Conclusions: The results indicate that different parts of Timbe (flowers, seeds, and pods) possess significant therapeutic potential for preventing and treating metabolic disorders and bacterial infections.
Collapse
Affiliation(s)
- Diana Karina Rangel-Sandoval
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Campus Aeropuerto, Carretera a Chichimequillas s/n, Anillo Vial Fray Junípero Serra, Km 8, Querétaro 76000, Mexico; (D.K.R.-S.); (J.A.C.-C.)
| | - Lucia Guerrero-Becerra
- Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Amazcala, Carretera a Chichimequillas Km 1 s/n, Amazcala, El Marqués 76265, Mexico;
| | - Consuelo Lomas-Soria
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (C.L.-S.); (L.A.R.-C.); (A.M.-M.)
| | - Amanda Kim Rico-Chávez
- Facultad de Química, Universidad Autónoma de Querétaro, Campus Centro Universitario, Cerro de las Campanas s/n, Querétaro 76010, Mexico
| | - José Antonio Cervantes-Chávez
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Campus Aeropuerto, Carretera a Chichimequillas s/n, Anillo Vial Fray Junípero Serra, Km 8, Querétaro 76000, Mexico; (D.K.R.-S.); (J.A.C.-C.)
| | - Luis Antonio Reyes-Castro
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (C.L.-S.); (L.A.R.-C.); (A.M.-M.)
| | - Angélica Morales-Miranda
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (C.L.-S.); (L.A.R.-C.); (A.M.-M.)
| | - Ana Angélica Feregrino-Pérez
- Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Amazcala, Carretera a Chichimequillas Km 1 s/n, Amazcala, El Marqués 76265, Mexico;
| |
Collapse
|
2
|
Yuan S, Liu W, Shen Z, Ren M, Hao S. Pregnant women's knowledge, attitude, and practice toward food preservatives: a cross-sectional study. BMC Pregnancy Childbirth 2025; 25:314. [PMID: 40108504 PMCID: PMC11921639 DOI: 10.1186/s12884-025-07436-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Sodium benzoate, a common food preservative, may harm fetuses, which could increase the safety concern for pregnant women, but the knowledge, attitude, and practice (KAP) of food preservatives' impact on health among pregnant women is limited. This study explored the KAP of pregnant women regarding food preservatives. METHODS This cross-sectional study was conducted in Henan Province between March and April 2023 among pregnant women. An investigated-designed questionnaire was administered to collect the demographic characteristics and KAP scores. Scores of < 60%, 60-79%, and ≥ 80% were considered poor, moderate, and good, respectively. RESULTS The study collected 515 valid questionnaires [303 (58.83%) < 30-years-old participants] for analysis. The knowledge, attitude, and practice scores were 10.21 ± 2.90 (/17; 60.06%), 29.59 ± 2.73 (/40; 73.98%), and 22.86 ± 3.56 (/30; 76.20%), respectively. The structural equation model (SEM) showed that the knowledge of food preservatives directly affected attitudes (β = 0.168, P = 0.005) and practice (β = 0.250, P = 0.021) and indirectly affected practice (β = 0.047, P = 0.004). The attitudes toward food preservatives directly affected practice (β = 0.280, P = 0.021). CONCLUSION Pregnant women in Henan Province have moderate knowledge, attitudes, and practices toward food preservatives. Education interventions are needed to improve the knowledge gaps identified in this study, which could also be encountered in other regions. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Pathology, School of Medicine, Henan Polytechnic University, Jiaozuo, 454000, Henan, China
| | - Weimei Liu
- Department of Pathology, The Second People's Hospital of Jiaozuo City, The First Affiliated Hospital of Henan Polytechnic University, 454000, Jiaozuo, Henan, China
| | - Zhixin Shen
- Department of Healthcare, Hospital of Henan Polytechnic University, Henan Polytechnic University, Jiaozuo, 454000, Henan, China
| | - Meitian Ren
- Department of Surgery of Thyroid and Breast, The Second People's Hospital of Jiaozuo City, The First Affiliated Hospital of Henan Polytechnic University, 454000, Jiaozuo, Henan, China
| | - Shuangying Hao
- Department of Immunology, School of Medicine, Henan Polytechnic University, No.42, Jiefang Road, Jiefang District, Jiaozuo, 454000, Henan, China.
| |
Collapse
|
3
|
Jiang L, Yang D, Zhang Z, Xu L, Jiang Q, Tong Y, Zheng L. Elucidating the role of Rhodiola rosea L. in sepsis-induced acute lung injury via network pharmacology: emphasis on inflammatory response, oxidative stress, and the PI3K-AKT pathway. PHARMACEUTICAL BIOLOGY 2024; 62:272-284. [PMID: 38445620 PMCID: PMC10919309 DOI: 10.1080/13880209.2024.2319117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/07/2024] [Indexed: 03/07/2024]
Abstract
CONTEXT Sepsis-induced acute lung injury (ALI) is associated with high morbidity and mortality. Rhodiola rosea L. (Crassulaceae) (RR) and its extracts have shown anti-inflammatory, antioxidant, immunomodulatory, and lung-protective effects. OBJECTIVE This study elucidates the molecular mechanisms of RR against sepsis-induced ALI. MATERIALS AND METHODS The pivotal targets of RR against sepsis-induced ALI and underlying mechanisms were revealed by network pharmacology and molecular docking. Human umbilical vein endothelial cells (HUVECs) were stimulated by 1 μg/mL lipopolysaccharide for 0.5 h and treated with 6.3, 12.5, 25, 50, 100, and 200 μg/mL RR for 24 h. Then, the lipopolysaccharide-stimulated HUVECs were subjected to cell counting kit-8 (CCK-8), enzyme-linked immunosorbent, apoptosis, and Western blot analyses. C57BL/6 mice were divided into sham, model, low-dose (40 mg/kg), mid-dose (80 mg/kg), and high-dose (160 mg/kg) RR groups. The mouse model was constructed through caecal ligation and puncture, and histological, apoptosis, and Western blot analyses were performed for further validation. RESULTS We identified six hub targets (MPO, HRAS, PPARG, FGF2, JUN, and IL6), and the PI3K-AKT pathway was the core pathway. CCK-8 assays showed that RR promoted the viability of the lipopolysaccharide-stimulated HUVECs [median effective dose (ED50) = 18.98 μg/mL]. Furthermore, RR inhibited inflammation, oxidative stress, cell apoptosis, and PI3K-AKT activation in lipopolysaccharide-stimulated HUVECs and ALI mice, which was consistent with the network pharmacology results. DISCUSSION AND CONCLUSION This study provides foundational knowledge of the effective components, potential targets, and molecular mechanisms of RR against ALI, which could be critical for developing targeted therapeutic strategies for sepsis-induced ALI.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Dongdong Yang
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Zhuoyi Zhang
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Liying Xu
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Qingyu Jiang
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Yixin Tong
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Lanzhi Zheng
- Department of Medical Administration, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Chatepa LEC, Mwamatope B, Chikowe I, Masamba KG. Effects of solvent extraction on the phytoconstituents and in vitro antioxidant activity properties of leaf extracts of the two selected medicinal plants from Malawi. BMC Complement Med Ther 2024; 24:317. [PMID: 39192223 PMCID: PMC11348721 DOI: 10.1186/s12906-024-04619-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
This study evaluated and compared the phytochemical and antioxidant properties of the solvent extracts of Azadirachta indica A. Juss and Vernonia amygdalina Del leaves. Methanolic and aqueous extracts showed high (P ≤ 0.05) extract yields (in %), compared to chloroform and ethyl acetate extracts from both V. amygdalina and A. indica leaves. The study exhibited high phytochemical content in methanol and aqueous extracts compared to chloroform and ethyl acetate extracts, confirming the potential for medicinal use. V. amygdalina methanol and aqueous extracts had higher (P ≤ 0.05) total phenolic content (TPC), in mg GAE/gDW, (158.810±0.846 and 217.883±0.265, respectively) than chloroform (37.574±0.118) and ethyl acetate (104.758±0.236) but higher ethyl acetate content in A. indica extracts. Low polar solvents extracted high (P ≤ 0.05) total flavonoids, in mgQE/gDW, (367.051±0.858 and 149.808±0.009) compared to high polar solvents (14.863±0.071 and 54.226±0.014 ) in V. amygdalina while as in A. indica leaf extracts, low polar solvents showed high TFC ( 658.469±3.451 and 275.288±10.490) compared to high polar solvents (26.312±0.063 and 48.858±0.063) respectively. In vitro total antioxidant capacity, in mg/g, was higher in polar solvents than in low-polar solvents, ranging from 34.300±1.784 to 121.015±6.839 for A. indica ethyl acetate and methanolic extracts. A strong correlation between TPC and tannic acid content was observed, except in A. indica methanolic extracts of A. indica. Ferric reducing power was high, except for V. amygdalina chloroform and methanol leaf extracts, which were lower (P≤ 0.05) than that of the standard ascorbic acid. The study revealed that high polar solvents, such as methanol and water, are more efficient in the extraction of antioxidants from A. indica but lower in V. amygdalina extracts. High phytochemical content and antioxidative capacity could be significant in treating various diseases in humans.
Collapse
Affiliation(s)
- Lesten Eliez Chisomo Chatepa
- Basic Science Department, Faculty of Agriculture, Lilongwe University of Agriculture and Natural Resources, Bunda Campus, P.O. Box 219, Lilongwe, Malawi.
| | - Bonface Mwamatope
- Basic Science Department, Faculty of Agriculture, Lilongwe University of Agriculture and Natural Resources, Bunda Campus, P.O. Box 219, Lilongwe, Malawi
| | - Ibrahim Chikowe
- Pharmacy Department, Kamuzu University of Health Sciences (KUHeS), P.O. Box 360, Chichiri, Blantyre 3, Malawi
| | - Kingsley George Masamba
- Food Science and Technology Department, Faculty of Food and Human Sciences, Lilongwe University of Agriculture and Natural Resources, Bunda Campus, P.O. Box 219, Lilongwe, Malawi
| |
Collapse
|
5
|
Sun K, Chen Y, Zheng S, Wan W, Hu K. Genipin ameliorates diabetic retinopathy via the HIF-1α and AGEs-RAGE pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155596. [PMID: 38626646 DOI: 10.1016/j.phymed.2024.155596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/05/2024] [Accepted: 04/05/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND Traditional Chinese medicine (TCM) is useful in disease treatment and prevention. Genipin is an active TCM compound used to treat diabetic retinopathy (DR). In this study, a network pharmacology (NP)-based approach was employed to investigate the therapeutic mechanisms underlying genipin administration in DR. METHODS The potential targets of DR were identified using the gene expression omnibus (GEO) database. TCM database screening and NP were used to predict the potential active targets and pathways of genipin in DR. Cell viability was tested in vitro to determine the effects of different doses of glucose and genipin on Human Retinal Microvascular Endothelial Cells (hRMECs). CCK-8, CCK-F, colony formation, CellTiter-Lum, Annexin V-FITC, wound healing, Transwell, tube-forming, reactive oxygen species (ROS), and other assay kits were used to detect the effects of genipin on hRMECs during high levels of glucose. In vivo, a streptozotocin (STZ)-mouse intraocular genipin injection (IOI.) model was used to explore the effects of genipin on diabetes-induced retinal dysfunction. Western blotting was performed to identify the cytokines involved in proliferation, apoptosis, angiogenesis, ROS, and inflammation. The protein expression of the AKT/ PI3K/ HIF-1α and AGEs/ RAGE pathways was also examined. RESULTS Approximately 14 types of TCM, and nearly 300 active ingredients, including genipin, were identified. The NP approach successfully identified the HIF-1α and AGEs-RAGE pathways, with the EGR1 and UCP2 genes, as key targets of genipin in DR. In the in vitro and in vivo models, we discovered that high glucose increased cell proliferation, apoptosis, angiogenesis, ROS, and inflammation. However, genipin application regulated cell proliferation and apoptosis, inhibited angiogenesis, and reduced ROS and inflammation in the HRMECs exposed to high glucose. Furthermore, the retinal thickness in the genipin-treated group was lower than that in the untreated group. AKT/ PI3K/ HIF-1α and AGEs/ RAGE signaling was increased by high glucose levels; however, genipin treatment decreased AKT/ PI3K and AGEs/ RAGE pathway expressions. Genipin also increased HIF-1α phosphorylation, oxidative phosphorylation of ATP synthesis, lipid peroxidation, and the upregulation of oxidoreductase. Genipin was found to protect HG-induced hRMECs and the retina of STZ-mice, based on; 1 the inhibition of UCP2 and Glut1 decreased intracellular glucose, and glycosylation; 2 the increased presence of HIF-1α, which increased oxidative phosphorylation and decreased substrate phosphorylation; 3 the increase in oxidative phosphorylation from ATP synthesis increased lipid peroxidation and oxidoreductase activity, and; 4 the parallel effect of phosphorylation and glycosylation on vascular endothelial growth factor (VEGF), MMP9, and Scg3. CONCLUSION Based on NP, we demonstrated the potential targets and pathways of genipin in the treatment of DR and confirmed its effective molecular mechanism in vitro and in vivo. Genipin protects cells and tissues from high glucose levels by regulating phosphorylation and glycosylation. The activation of the HIF-1α pathway can also be used to treat DR. Our study provides new insights into the key genes and pathways associated with the prognosis and pathogenesis of DR.
Collapse
Affiliation(s)
- Kexin Sun
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, PR China; Chongqing Medical University, Chongqing, PR China
| | - Yanyi Chen
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, PR China; Chongqing Medical University, Chongqing, PR China
| | - Shijie Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, PR China
| | - Wenjuan Wan
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, PR China.
| | - Ke Hu
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, PR China.
| |
Collapse
|
6
|
Asadi S, Rahimi E, Shakerian A. Anti- Helicobacter pylori Effects of Thymus caramanicus Jalas Essential Oils: A New Antimicrobial Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2024; 2024:3627074. [PMID: 38887601 PMCID: PMC11182686 DOI: 10.1155/2024/3627074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/25/2022] [Accepted: 04/30/2024] [Indexed: 06/20/2024]
Abstract
Background Helicobacter pylori are the principal causative factor in the etiological factors of chronic, active, or type B gastritis; peptic and duodenal ulcers; stomach carcinoma; and epithelial tissue lymphoid malignancies. It infects more than half of the population worldwide. To reduce H. pylori production, pharmacological therapy of H. pylori diseases typically involves using threefold treatment methods. However, as a result of such therapy, antimicrobial resistance is commonly developed. Alternative therapeutics for H. pylori diseases are thus of particular interest. Methods Thyme essential oils (EOs) obtained from T. caramanicus Jalas plants in Iran were tested for antibacterial activity against H. pylori obtained from 320 poultry specimens in this investigation. Antibacterial activity was measured using inhibition zones, minimum inhibitory concentrations (MICs), and minimum bactericidal concentrations (MBCs). The impact of T. caramanicus Jalas essential oils on H. pylori isolate cagA, vacA, and babA2 gene expression was evaluated using a quantitative real-time PCR method (p < 0.05). Results The chemical content of these EOs varied significantly according to chromatographic examination. Thymol, carvacrol, and terpinene-4-ol are the most abundant components in these EOs. H. pylori was recognized as a Helicobacter species with a 175-bp PCR product of 16S rRNA in 20/20 (100%). According to PCR results, all 20 (100%) isolates belonged to H. pylori. The EOs inhibited H. pylori in a dose-dependent manner, with T. caramanicus Jalas being the most effective, followed by pterygium EOs in decreasing order. At 8 mg/mL of T. caramanicus Jalas EOs, IZs against H. pylori were 27.4 ± 0.42 mm, and at 8 mg/mL of pterygium, IZs against H. pylori were 1 ± 0.02. T. caramanicus Jalas essential oils were used to treat all bacteria, and the findings showed that T. caramanicus Jalas had a substantial inhibitory impact on the expression of cagA, vacA, and babA2 virulence-related genes (p < 0.05). Conclusions In a dose-dependent manner, the EOs of T. caramanicus Jalas EO demonstrated a high degree of antimicrobial property against H. pylori bacteria. The most efficient EOs were those from T. caramanicus Jalas with relative concentrations of thymol and carvacrol, followed by the coumarin-dominated pterygium EO with reduced antibacterial activity.
Collapse
Affiliation(s)
- Sepehr Asadi
- Department of Food Hygiene, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Ebrahim Rahimi
- Research Center of Nutrition and Organic Products, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Amir Shakerian
- Research Center of Nutrition and Organic Products, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
7
|
Pertiwi D, Hartati R, Julianti E, Fidrianny I. Antibacterial and antioxidant activities in various parts of Artocarpus lacucha Buch. Ham. ethanolic extract. Biomed Rep 2024; 20:66. [PMID: 38476607 PMCID: PMC10928476 DOI: 10.3892/br.2024.1755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/09/2023] [Indexed: 03/14/2024] Open
Abstract
Artocarpus lacucha is an endemic plant to North Sumatera, Indonesia. This plant has pharmacological activities, including acting as an antioxidant and antibacterial. The aim of the present study was to analyze the antibacterial and antioxidant activities, and determine the flavonoid compounds from four parts of A. lachuca, namely leaves, barks, twigs and fruits. Antioxidant activity was investigated using the 2,2-diphenyl 1-picrylhydrazyl (DPPH) and cupric reducing antioxidant capacity (CUPRAC) methods. Antibacterial activity was analyzed using disk diffusion and microdilution methods. Several flavonoids, such as luteolin-7-O-glucoside, rutin, quercetin, kaempferol and apigenin, were determined using high performance liquid chromatography. Based on the antioxidant activity test results using the DPPH method, the bark ethanolic extract provided the highest antioxidant capacity, while the CUPRAC method indicated that the twig ethanolic extract had the highest antioxidant capacity. The antibacterial activity test results demonstrated that at a low concentration of 750 µg/disk the bark ethanolic extract obtained the highest inhibition zone and minimum inhibitory concentration level against six of nine pathogenic bacteria. Therefore, A. lachuca bark ethanolic extract could be potentially developed as antioxidant and antibacterial agents.
Collapse
Affiliation(s)
- Dewi Pertiwi
- Department of Pharmaceutical Biology, School of Pharmacy, Bandung Institute of Technology, Bandung, West Java 40132, Indonesia
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, North Sumatra 20155, Indonesia
| | - Rika Hartati
- Department of Pharmaceutical Biology, School of Pharmacy, Bandung Institute of Technology, Bandung, West Java 40132, Indonesia
| | - Elin Julianti
- Department of Pharmacochemistry, School of Pharmacy, Bandung Institute of Technology, Bandung, West Java 40132, Indonesia
| | - Irda Fidrianny
- Department of Pharmaceutical Biology, School of Pharmacy, Bandung Institute of Technology, Bandung, West Java 40132, Indonesia
| |
Collapse
|
8
|
Gayathiri E, Prakash P, Selvam K, Pratheep T, Chaudhari SY, Priyadharshini SD. In silico elucidation for the identification of potential phytochemical against ACE-II inhibitors. J Mol Model 2024; 30:78. [PMID: 38386097 DOI: 10.1007/s00894-024-05868-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
CONTEXT The present study aims to investigate the therapeutic potential of phytocompounds derived from Annona reticulata leaves for the treatment of hypertension, utilizing computational methodologies. Gaining a comprehensive understanding of the molecular interactions between neophytadiene and γ-sitosterol holds significant importance in the advancement of innovative therapeutic approaches. This study aims to examine the inhibitory effects of neophytadiene and γ-sitosterol using molecular docking and dynamics simulations. Additionally, we will evaluate their stability and predict their drug-like properties as well as their ADME/toxicity profiles. Neophytadiene and γ-sitosterol have a substantial binding affinity with 1O8A, as shown by the docking study. The stability of the complexes was confirmed through molecular dynamics simulations, while distinct clusters were identified using PCA. These findings suggest the presence of potential stabilizers. The drug-likeness and ADME/toxicity predictions revealed positive characteristics, such as efficient absorption rates, limited distribution volume and non-hazardous profiles. The neophytadiene and γ-sitosterol exhibit potential as hypertension medication options. Computational investigations reveal that these compounds exhibit high affinity for binding, stability and favourable pharmacokinetic properties. The results of this study lay the groundwork for additional experimental verification and highlight the promising prospects of utilizing natural compounds in the field of pharmaceutical research. METHODS Target proteins (1O8A) were used to perform molecular docking with representative molecules. Stability, conformational changes and binding energies were assessed through molecular dynamics simulations lasting 100 ns. Principal component analysis (PCA) was utilized to analyze molecular dynamics (MD) simulation data, to identify potential compounds that could stabilize the main protease. The safety and pharmacokinetic profiles of the compounds were evaluated through drug-likeness and ADME/toxicity predictions.
Collapse
Affiliation(s)
- Ekambaram Gayathiri
- Department of Plant Biology and Plant Biotechnology, Guru Nanak College (Autonomous), Chennai, 600042, Tamil Nadu, India.
| | - Palanisamy Prakash
- Department of Botany, Periyar University, TamilNadu, Periyar Palkalai Nagar, Salem, 636011, India.
| | - Kuppusamy Selvam
- Department of Botany, Periyar University, TamilNadu, Periyar Palkalai Nagar, Salem, 636011, India
| | - Thangaraj Pratheep
- Department of Biotechnology, Rathinam College of Arts and Science, Coimbatore, 641021, Tamil Nadu, India
| | - Somdatta Y Chaudhari
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Nigdi, Pune, India
| | | |
Collapse
|
9
|
Raza A, Ali T, Naeem M, Asim M, Hussain F, Li Z, Nasir A. Biochemical characterization of bioinspired nanosuspensions from Swertia chirayita extract and their therapeutic effects through nanotechnology approach. PLoS One 2024; 19:e0293116. [PMID: 38330034 PMCID: PMC10852254 DOI: 10.1371/journal.pone.0293116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/26/2023] [Indexed: 02/10/2024] Open
Abstract
Swertia chirayita is used as a traditional medicinal plant due to its pharmacological activities, including antioxidant, antidiabetic, antimicrobial, and cytotoxic. This study was aimed to evaluate the therapeutic efficacy of newly synthesized nanosuspensions from Swertia chirayita through nanotechnology for enhanced bioactivities. Biochemical characterization was carried out through spectroscopic analyses of HPLC and FTIR. Results revealed that extract contained higher TPCs (569.6 ± 7.8 mg GAE/100 g)) and TFCs (368.5 ± 9.39 mg CE/100 g) than S. chirayita nanosuspension, TPCs (500.6 ± 7.8 500.6 ± 7.8 mg GAE/100 g) and TFCs (229.5± 3.85 mg CE/100 g). Antioxidant activity was evaluated through DPPH scavenging assay, and nanosuspension exhibited a lower DPPH free radical scavenging potential (06 ±3.61) than extract (28.9± 3.85). Anti-dabetic potential was assessed throughα-amylase inhibition and anti-glycation assays. Extract showed higher (41.4%) antiglycation potential than 35.85% nanosuspension and 19.5% α-amylase inhibitory potential than 5% nanosuspension. Biofilm inhibition activity against E. coli was higher in nanosuspension (69.12%) than extract (62.08%). The extract showed high cytotoxicity potential (51.86%) than nanosuspension (33.63%). These nanosuspensions possessed enhanced bioactivities for therapeutic applications could be explored further for the development of new drugs.
Collapse
Affiliation(s)
- Ayesha Raza
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Tayyab Ali
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Muhammad Asim
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Fatma Hussain
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Zhiye Li
- Department of Pharmacy, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Abdul Nasir
- Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Saleem S, Anwar F, Khan A, Saleem U, Akhtar MF, Shahzadi I, Ismail T. Toxicity profiling of Burgmansia aurea Lagerh. Leaves using acute and sub-acute toxicity studies in rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116447. [PMID: 37015278 DOI: 10.1016/j.jep.2023.116447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Toxicity studies in appropriate animal models are an integral and very important component of pre-clinical studies in drug development. Brugmansia aurea lagerh. is used for both medicinal and non-medical purposes, including treating skin infections, different types of physical discomfort, inflammation, cough, hallucinations, and evil protection. AIM OF THE STUDY This study was designed to detect any hazardous effects of B. aurea on animals and find out its LD50. MATERIALS & METHODS An acute toxicity study was performed to find out the LD50 value and sub-acute toxicity study was performed to find out the toxicity on repeated dose administration till 28 days. Both studies were performed according to the organization of economic cooperation and development (OECD) 425 and 407 respectively. For the acute oral toxicity study, animals were divided into two groups, group I normal control (NC) and group II received a 2000mg/kg dose of B.aurea leaves extract. In the sub-acute toxicity study, male and female animals were divided into eight groups, I-IV for males and V-VIII for females received control, 100, 200 & 400mg/kg B. aurea leaves extract respectively. Hematological and biochemical markers were estimated at the end of each study. RESULTS Results revealed that no mortality and morbidity were observed in acute oral as well as sub-acute toxicity studies. Oxidative stress markers were increased significantly in all organs of the treatment groups in both studies. Animals significantly decreased their food and water intake in an acute oral toxicity study. A slight difference in renal function tests was observed in the acute oral toxicity study when compared with the normal control group. No significant change in histopathology was observed in both studies on selected organs. CONCLUSION This study concluded that B. aurea can be safely used for pharmacological purposes.
Collapse
Affiliation(s)
- Sana Saleem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan.
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan.
| | - Aslam Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan.
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan.
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan.
| | - Irum Shahzadi
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan.
| | - Tariq Ismail
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan.
| |
Collapse
|
11
|
Kumar N, Delu V, Shukla A, Singh RK, Ulasov I, Fayzullina D, Kuma S, Patel AK, Yadav L, Tiwari R, Rachana K, Mohanta SP, Kumar S, Kaushalendra K, Acharya A. Safety Assessment of a Nucleoside Analogue FNC (2'-deoxy-2'- β-fluoro-4'-azidocytidine ) in Balb/c Mice: Acute Toxicity Study. Asian Pac J Cancer Prev 2023; 24:2157-2170. [PMID: 37378948 PMCID: PMC10505880 DOI: 10.31557/apjcp.2023.24.6.2157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/21/2023] [Indexed: 06/29/2023] Open
Abstract
OBJECTIVES The present study aimed to provide an insight into the acute toxicity of a novel fluorinated nucleoside analogue (FNA), FNC (Azvudine or2'-deoxy-2'-β-fluoro-4'-azidocytidine). FNC showed potent anti-viral and anti-cancer activities and approved drug for high-load HIV patients, despite, its acute toxicity study being lacking. MATERIALS AND METHODS OECD-423 guidelines were followed during this study and the parameters were divided into four categories - behavioral parameters, physiological parameters, histopathological parameters, and supplementary tests. The behavioral parameters included feeding, body weight, belly size, organ weight and size, and mice behavior. The physiological parameters consisted of blood, liver, and kidney indicators. In histopathological parameters hematoxylin and eosin staining was performed to analyse the histological changes in the mice organs after FNC exposure. In addition, supplementary tests were conducted to assess cellular viability, DNA fragmentation and cytokine levels (IL-6 and TNF-α) in response to FNC. RESULTS In the behavioral parameters FNC induced changes in the mice-to-mice interaction and activities. Mice's body weight, belly size, organ weight, and size remained unchanged. Physiological parameters of blood showed that FNC increased the level of WBC, RBC, Hb, and neutrophils and decreased the % count of lymphocytes. Liver enzymes SGOT (AST), and ALP was increased. In the renal function test (RFT) cholesterol level was significantly decreased. Histopathological analysis of the liver, kidney, brain, heart, lungs, and spleen showed no sign of tissue damage at the highest FNC dose of 25 mg/kg b.wt. Supplementary tests for cell viability showed no change in viability footprint, through our recently developed dilution cum-trypan (DCT) assay, and Annexin/PI. No DNA damage or apoptosis was observed in DAPI or AO/EtBr studies. Pro-inflammatory cytokines IL-6 and TNF-α increased in a dose-dependent manner. CONCLUSION This study concluded that FNC is safe to use though higher concentration shows slight toxicity.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India.
| | - Vikram Delu
- Technical Expert (Zoology), Haryana State Biodiversity Board, Panchkula,Haryana, India.
| | - Alok Shukla
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India.
| | - Rishi Kant Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India.
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostic, Department of Advanced Materials, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| | - Daria Fayzullina
- Group of Experimental Biotherapy and Diagnostic, Department of Advanced Materials, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| | - Sandeep Kuma
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India.
| | - Anand Kumar Patel
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India.
| | - Lokesh Yadav
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India.
| | - Ruchi Tiwari
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India.
| | - Kumari Rachana
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India.
| | | | - Sanjay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India.
| | | | - Arbind Acharya
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India.
| |
Collapse
|
12
|
Towanou R, Konmy B, Yovo M, Dansou CC, Dougnon V, Loko FS, Akpovi CD, Baba-Moussa L. Phytochemical Screening, Antioxidant Activity, and Acute Toxicity Evaluation of Senna italica Extract Used in Traditional Medicine. J Toxicol 2023; 2023:6405415. [PMID: 36968147 PMCID: PMC10038741 DOI: 10.1155/2023/6405415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/24/2022] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
Medicinal plants such as Senna italica are increasingly used for their purgative virtues to treat stomach aches, fever, and jaundice. This study aims to screen the phytochemical compounds and to assess the antioxidant activity in vitro and the acute oral toxicity in vivo of Senna italica leaves. The plant was harvested, dried, pulverized, and preserved. Phytochemical screening was performed using different laboratory protocols. Ethanolic and aqueous extracts were, respectively, obtained by maceration and decoction technics. The assay for free radical scavenging was used to examine the antioxidant activity using DPPH. Acute oral toxicity was performed with aqueous and ethanolic extracts at 5000 mg/kg of body weight on female albinos Wistar rats, weighing 152.44 ± 3.68 g. Subjects were checked for any signs of mortality and macroscopy toxicity during the 14 days of the study. Biochemical and hematological parameters were measured to assess liver and kidney functions, and histological analysis of these organs was conducted. Phytochemical analysis highlighted the presence of total phenols, flavones, tannins, alkaloids, and quinone derivatives. Semiethanolic (78 μg/mL), ethanolic (9.7 μg/mL), and aqueous extract (9.2 μg/mL) showed an interesting antioxidant activity. Biochemical and hematological parameters were normal and not significantly different (p > 0.05). The plant extracts did not produce any toxic effect or mortality at the provided dose. Senna italica extracts induced an increase in the volume of liver and kidney tissues but no necrosis. Thus, lethal dose 50 of Senna italica leaf extract is probably higher than 5000 mg/kg.
Collapse
Affiliation(s)
- Rodrigue Towanou
- Non-Communicable Diseases and Cancer Research Unit, Laboratory of Applied Biology Research, Polytechnic School of Abomey-Calavi, Abomey-Calavi, Benin
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Godomey, Benin
- Laboratory of Biology and Molecular Typing in Microbiology, Faculty of Science and Technology, University of Abomey-Calavi, Cotonou, Benin
| | - Basile Konmy
- Laboratory of Biology and Molecular Typing in Microbiology, Faculty of Science and Technology, University of Abomey-Calavi, Cotonou, Benin
- Zootechnical Research and Livestock System Unit, Laboratory of Animal and Fisheries Science (LaSAH), National University of Agriculture, Ketou, Benin
| | - Mahudro Yovo
- Research and Training Laboratory in Applied Chemistry (LERCA), Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Cotonou, Benin
| | - Christian C. Dansou
- Zootechnical Research and Livestock System Unit, Laboratory of Animal and Fisheries Science (LaSAH), National University of Agriculture, Ketou, Benin
| | - Victorien Dougnon
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Godomey, Benin
| | - Frédéric S. Loko
- Research and Training Laboratory in Applied Chemistry (LERCA), Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Cotonou, Benin
| | - Casimir D. Akpovi
- Non-Communicable Diseases and Cancer Research Unit, Laboratory of Applied Biology Research, Polytechnic School of Abomey-Calavi, Abomey-Calavi, Benin
| | - Lamine Baba-Moussa
- Laboratory of Biology and Molecular Typing in Microbiology, Faculty of Science and Technology, University of Abomey-Calavi, Cotonou, Benin
| |
Collapse
|
13
|
Zareen S, Adnan M, Khan SN, Alotaibi A. Anti-plasmodial potential of selected medicinal plants and a compound Atropine isolated from Eucalyptus obliqua. OPEN CHEM 2023. [DOI: 10.1515/chem-2022-0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Abstract
The present research study was aimed to investigate the efficiency of selected medicinal plants against Plasmodium vivax. Crude methanolic extracts from the seeds of leaves of Datura stramonium, Parthenium hysterophorus, Calotropis procera, and Dodonaea viscosa were prepared. In addition, Atropine was also isolated from alkaloid components of Eucalyptus obliqua to evaluate their in vitro anti-plasmodial effects. It was observed that proguanil (positive control) and Atropine displayed strong anti-plasmodial activity (94.04 and 68.02%, respectively) against P. vivax at 0.1 mg/mL concentration while the leaf extracts of other medicinal plants did not exhibit any notable anti-plasmodial activity. It was concluded that alkaloids of E. obliqua plant’s extracts were rich in anti-plasmodial compound Atropine, which exhibit a remarkable anti-plasmodial activity against P. vivax. Anti-plasmodial action of medicinal plants are attributed to these phytochemicals. In vitro studies using medicinal plant’s extracts and standardized methods will help to make more powerful and cost-effective anti-plasmodial compounds.
Collapse
Affiliation(s)
- Shehzad Zareen
- Department of Zoology, Kohat University of Science and Technology , Kohat , 26000 Khyber Pakhtunkhwa , Pakistan
| | - Muhammad Adnan
- Department of Botany, Kohat University of Science and Technology , Kohat , 26000 Khyber Pakhtunkhwa , Pakistan
| | - Shahid Niaz Khan
- Department of Zoology, Kohat University of Science and Technology , Kohat , 26000 Khyber Pakhtunkhwa , Pakistan
| | - Amal Alotaibi
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University , P.O. Box 84428 , Riyadh 11671 , Saudi Arabia
| |
Collapse
|
14
|
Exploring the Anticonvulsant Activity of Aqueous Extracts of Ficus benjamina L. Figs in Experimentally Induced Convulsions. J CHEM-NY 2023. [DOI: 10.1155/2023/6298366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Background. Ficus benjamina L. is an evergreen tree, native to Southeast Asia, and often known as a weeping fig. Its latex and fruit extracts are used by indigenous cultures to cure skin conditions, inflammation, vomiting, leprosy, malaria, and nasal ailments. The aqueous extract of the figs of Ficus benjamina L. has various therapeutic values, including biological activities on the central nervous system. Materials and Methods. The extract of the dried figs of Ficus benjamina L. (FBE) was prepared by defatting with petroleum ether for 16 h followed by soxhelation with 70% methanol (1 : 10 w/v) for 24 h, and standardization of the extract was carried out using HPLC with 5-HT as a standard. Electroconvulsions were induced by the maximal electroshock model, and chemoconvulsions were induced by picrotoxin. Results. The HPLC chromatogram of the Ficus benjamina L. extract showed an absorption peak with a retention time of 1.797 min, similar to that observed with standard serotonin (5-HT) solution. In the maximal electroshock model, FBE significantly reduced the duration of the tonic hind limb extensor and extensor-to-flexor ratio (E/F ratio) in a dose-dependent manner. Moreover, in the picrotoxin-induced seizure model, FBE increased the seizure latency and decreased the duration of tonic-clonic convulsions dose-dependently. We confirmed the anticonvulsant activity of the FBE extract as it attenuated both maximal electroshock and picrotoxin-induced convulsions. Conclusion. The in vivo studies revealed that the Ficus extract was found to protect the animals in electroshock-induced and picrotoxin-induced convulsions.
Collapse
|
15
|
Phytochemical Screening, Toxic Effects, and Antimicrobial Activity Studies of Digitaria abyssinica (Hochst. ex A.Rich.) Stapf (Poaceae) Rhizome Extracts against Selected Uropathogenic Microorganisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:4552095. [PMID: 36644445 PMCID: PMC9836796 DOI: 10.1155/2023/4552095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023]
Abstract
In Kenya, the D. abyssinica rhizome's decoction is traditionally used to treat urinary tract infections (UTIs), mainly gonorrhea and candidiasis. UTIs are the most severe public health problems that affect over one hundred and fifty million people worldwide annually. They are caused by a wide range of microorganisms where Escherichia coli is known to be the main causative pathogen. Medicinal plants are used in traditional Kenya set up for treatment and most recently as an alternative source of treatment for UTIs due to the increased cost of treatment and many challenges experienced with antibiotic therapy. The current study is designed to investigate the phytochemical composition, acute oral toxicity, and antimicrobial activity of Digitaria abyssinica rhizome extracts against Staphylococcus aureus, Escherichia coli, Neisseria gonorrhea, and Candida albicans. The rhizomes of D. abyssinica were obtained, dried, ground, and extracted using water and organic solvents. The phytochemical assay was carried out using standard phytochemical screening methods. Single-dose toxicity studies were done to determine LD50 while disk diffusion and microbroth dilution techniques were used to determine antimicrobial activity. Results revealed that saponins, phenolics, alkaloids, cardiac glycosides, tannins, flavonoids, steroids, and terpenes were present in the powder, aqueous, methanol, and dichloromethane : methanol extracts. All the extracts had an LD50 of above 2,000 mg/kg of body weight and there was no observation of behavioral changes. Also, the aqueous and methanol extracts revealed antifungal activity against Candida albicans with the lowest average minimum zone of inhibition at MIC of 31.25 mg/ml. The study did not reveal antibacterial activity for any extract against the studied uropathogenic bacteria, Staphylococcus aureus, Escherichia coli, and Neisseria gonorrhoeae. The results from the current study suggested that D. abyssinica rhizome aqueous and methanol extracts have potential antifungal activity against C. albicans, thus validating the folklore of its use to treat candidiasis.
Collapse
|
16
|
Zafar S, Khan K, Hafeez A, Irfan M, Armaghan M, Rahman AU, Gürer ES, Sharifi-Rad J, Butnariu M, Bagiu IC, Bagiu RV. Ursolic acid: a natural modulator of signaling networks in different cancers. Cancer Cell Int 2022; 22:399. [PMID: 36496432 PMCID: PMC9741527 DOI: 10.1186/s12935-022-02804-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Incidence rate of cancer is estimated to increase by 40% in 2030. Furthermore, the development of resistance against currently available treatment strategies has contributed to the cancer-associated mortality. Scientists are now looking for the solutions that could help prevent the disease occurrence and could provide a pain-free treatment alternative for cancers. Therefore, efforts are now put to find a potent natural compound that could sever this purpose. Ursolic acid (UA), a triterpene acid, has potential to inhibit the tumor progression and induce sensitization to conventional treatment drugs has been documented. Though, UA is a hydrophobic compound therefore it is usually chemically modified to increase its bioavailability prior to administration. However, a thorough literature indicating its mechanism of action and limitations for its use at clinical level was not reviewed. Therefore, the current study was designed to highlight the potential mechanism of UA, its anti-cancer properties, and potential applications as therapeutic compound. This endeavour is a valuable contribution in understanding the hurdles preventing the translation of its potential at clinical level and provides foundations to design new studies that could help enhance its bioavailability and anti-cancer potential for various cancers.
Collapse
Affiliation(s)
- Sameen Zafar
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Khushbukhat Khan
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Amna Hafeez
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Muhammad Irfan
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Muhammad Armaghan
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Anees ur Rahman
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Eda Sönmez Gürer
- grid.411689.30000 0001 2259 4311Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Javad Sharifi-Rad
- grid.442126.70000 0001 1945 2902Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Monica Butnariu
- University of Life Sciences “King Mihai I” from Timisoara, 300645 Calea Aradului 119, Timis, Romania
| | - Iulia-Cristina Bagiu
- grid.22248.3e0000 0001 0504 4027Department of Microbiology, Victor Babes University of Medicine and Pharmacy of Timisoara, Timisoara, Romania ,Multidisciplinary Research Center on Antimicrobial Resistance, Timisoara, Romania
| | - Radu Vasile Bagiu
- grid.22248.3e0000 0001 0504 4027Department of Microbiology, Victor Babes University of Medicine and Pharmacy of Timisoara, Timisoara, Romania ,Preventive Medicine Study Center, Timisoara, Romania
| |
Collapse
|
17
|
El-Seedi HR, Kotb SM, Musharraf SG, Shehata AA, Guo Z, Alsharif SM, Saeed A, Hamdi OAA, Tahir HE, Alnefaie R, Verpoorte R, Khalifa SAM. Saudi Arabian Plants: A Powerful Weapon against a Plethora of Diseases. PLANTS (BASEL, SWITZERLAND) 2022; 11:3436. [PMID: 36559548 PMCID: PMC9783889 DOI: 10.3390/plants11243436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The kingdom of Saudi Arabia (SA) ranks fifth in Asia in terms of area. It features broad biodiversity, including interesting flora, and was the historical origin of Islam. It is endowed with a large variety of plants, including many herbs, shrubs, and trees. Many of these plants have a long history of use in traditional medicine. The aim of this review is to evaluate the present knowledge on the plants growing in SA regarding their pharmacological and biological activities and the identification of their bioactive compounds to determine which plants could be of interest for further studies. A systematic summary of the plants' history, distribution, various pharmacological activities, bioactive compounds, and clinical trials are presented in this paper to facilitate future exploration of their therapeutic potential. The literature was obtained from several scientific search engines, including Sci-Finder, PubMed, Web of Science, Google Scholar, Scopus, MDPI, Wiley publications, and Springer Link. Plant names and their synonyms were validated by 'The Plant List' on 1 October 2021. SA is home to approximately 2247 plant species, including native and introduced plants that belong to 142 families and 837 genera. It shares the flora of three continents, with many unique features due to its extreme climate and geographical and geological conditions. As plants remain the leading supplier of new therapeutic agents to treat various ailments, Saudi Arabian plants may play a significant role in the fight against cancer, inflammation, and antibiotic-resistant bacteria. To date, 102 active compounds have been identified in plants from different sites in SA. Plants from the western and southwestern regions have been evaluated for various biological activities, including antioxidant, anti-cancer, antimicrobial, antimalarial, anti-inflammatory, anti-glycation, and cytotoxic activities. The aerial parts of the plants, especially the leaves, have yielded most of the bioactive compounds. Most bioactivity tests involve in vitro assessments for the inhibition of the growth of tumour cell lines, and several compounds with in vitro antitumour activity have been reported. More in-depth studies to evaluate the mode of action of the compounds are necessary to pave the way for clinical trials. Ecological and taxonomical studies are needed to evaluate the flora of SA, and a plan for the conservation of wild plants should be implemented, including the management of the protection of endemic plants.
Collapse
Affiliation(s)
- Hesham R. El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, P.O. Box 591, SE 751 24 Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Safaa M. Kotb
- Department of Chemistry & Microbiology, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Syed G. Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Awad A. Shehata
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sultan M. Alsharif
- Biology Department, Faculty of Science, Taibah University, Al Madinah 887, Saudi Arabia
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Omer A. A. Hamdi
- Department of Chemistry, Faculty of Science, University of Khartoum, Khartoum 11115, Sudan
| | | | - Rasha Alnefaie
- Department of Biology, Faculity of Science, Al-Baha University, Albaha 65779, Saudi Arabia
| | - Rob Verpoorte
- Natural Products Laboratory, Institute of Biology, Leiden University, P.O. Box 9505, 2300RA Leiden, The Netherlands
| | - Shaden A. M. Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| |
Collapse
|
18
|
Haseeb A, Fozia, Ahmad I, Ullah H, Iqbal A, Ullah R, Moharram BA, Kowalczyk A. Ecotoxicological Assessment of Heavy Metal and Its Biochemical Effect in Fishes. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3787838. [PMID: 36471686 PMCID: PMC9719420 DOI: 10.1155/2022/3787838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/19/2022] [Indexed: 07/29/2023]
Abstract
Level of toxic heavy metal concentration like lead (Pb), chromium (Cr), cadmium (Cd), iron (Fe), copper (Cu), zinc (Zn), and nickel (Ni) in thirty-six soft and hard organs and their impact on lipid profile of Hypophthalmichthys molitrix and Catla catla fish species inhibiting in Tanda Dam reservoir were investigated. The heavy metal concentrations in water, sediment, and fish of the different regions in the reservoir were determined with atomic absorption spectrophotometer. Lipid profile was carried out by AOAC official methods. The results showed that Pb was dominant among all the heavy metals in six organs, and its maximum concentration of Pb (22.5 mg kg-1 and 32.9 mg kg-1) was observed in scales in Hypophthalmichthys molitrix and tail of Catla catla, respectively. The maximum concentrations of Cd were observed in the head, scales, fins, and gills of Catla catla. The bioaccumulation of heavy metals was significantly different at (p ≤ 0.01) within the organs and between the fish species. The lipid concentration was minimum in those organs where the concentrations of heavy metals were maximum. It is clear from the findings that heavy metal accumulation reduces the lipid content of fish. It is inevitable to monitor the Tanda Dam reservoir to safeguard human health.
Collapse
Affiliation(s)
- Abdul Haseeb
- Department of Zoology, Kohat University of Science & Technology, Kohat 26000, Pakistan
| | - Fozia
- Biochemistry Department, Khyber Medical University Institute of Medical Sciences, Kohat 26000, Pakistan
| | - Ijaz Ahmad
- Department of Chemistry, Kohat University of Science & Technology, Kohat 26000, Pakistan
| | - Hidayat Ullah
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Anwar Iqbal
- Department of Chemical Sciences, University of Lakki Marwat, Lakki Marwat, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Alicja Kowalczyk
- Department of Environmental Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wrocław, Poland
| |
Collapse
|
19
|
Popova V, Ivanova T, Stoyanova M, Mazova N, Dimitrova-Dyulgerova I, Stoyanova A, Ercisli S, Assouguem A, Kara M, Topcu H, Farah A, Elossaily GM, Shahat AA, Shazly GA. Phytochemical analysis of leaves and stems of Physalis alkekengi L. (Solanaceae). OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Abstract
Physalis alkekengi L. (Solanaceae) is encountered in different regions of Bulgaria as a wild growing or ornamental plant. The objective of this work was to characterize the phytochemical composition (macro and micro components) of the leaves and stems of two local phenotypes (PA-SB and PA-NB), with the view of revealing their use potential. The dry leaves contained (DW) protein (16.25 and 19.27%), cellulose (25.16 and 25.31%), and ash (18.28 and 16.16%) and the stems contained protein (6.83 and 7.35%), cellulose (39.34 and 38.25%), and ash (15.01 and 7.48%) for PA-SB and PA-NB, respectively. The dominant amino acids (by HPLC) in the leaves of both phenotypes were arginine (21.3–22.3 mg/g) and aspartic acid (8.8–18.4 mg/g), and those in the stems were proline and aspartic acid for PA-SB (8.8, 7.7 mg/g); isoleucine and tyrosine for PA-NB (12.8, 6.6 mg/g). Mineral elements, determined by AAS (K, Ca, Mg, Na, Cu, Fe, Zn, Mn, Pb, Cr), also varied between phenotypes and plant parts. The leaves alone were further processed by extraction with n-hexane, for the identification of leaf volatiles (by gas chromatography-mass spectrometry). The analysis identified 28 components (97.99%) in the leaf extract of PA-SB and 32 components (97.50%) in that of PA-NB. The volatile profile of PA-SB leaves was dominated by diterpenes (49.96%) and oxygenated sesquiterpenes (35.61%), while that of PA-NB was dominated by oxygenated aliphatics (40.01%) and diterpenes (35.19%). To the best of our knowledge, the study provides the first data about the phytochemical composition of the leaves and stems of P. alkekengi from Bulgaria, in a direct comparison of phenotypes from two distinct wild populations, which could be of further scientific interest.
Collapse
Affiliation(s)
- Venelina Popova
- Department of Tobacco, Sugar, Vegetable and Essential Oils, University of Food Technologies , 4002 Plovdiv , Bulgaria
| | - Tanya Ivanova
- Department of Tobacco, Sugar, Vegetable and Essential Oils, University of Food Technologies , 4002 Plovdiv , Bulgaria
| | - Magdalena Stoyanova
- Department of Analytical Chemistry and Physical Chemistry, University of Food Technologies , 4002 Plovdiv , Bulgaria
| | - Nadezhda Mazova
- Department of Engineering Ecology, University of Food Technologies , 4002 Plovdiv , Bulgaria
| | - Ivanka Dimitrova-Dyulgerova
- Department of Botany and Methods of Biology Teaching, Faculty of Biology, University of Plovdiv “Paisii Hilendarski” , 24 Tzar Assen Str ., 4000 Plovdiv , Bulgaria
| | - Albena Stoyanova
- Department of Tobacco, Sugar, Vegetable and Essential Oils, University of Food Technologies , 4002 Plovdiv , Bulgaria
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University , 25240 Erzurum , Turkey
| | - Amine Assouguem
- Laboratory of Functional Ecology and Environment, Department of Biology, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University , Imouzzer Street , Fez P.O. Box 2202 , Morocco
- Laboratory of Applied Organic Chemistry, Department of Chemistry, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University , Imouzzer Street , Fez P.O. Box 2202 , Morocco
| | - Mohammed Kara
- Laboratory of Biotechnology, Conservation and Valorisation of Natural Resources (LBCVNR), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdallah University , Fez 30000 , Morocco
| | - Hayat Topcu
- Agricultural Biotechnology Department, Faculty of Agriculture, Namik Kemal University , 59030 Tekirdag , Turkey
| | - Abdellah Farah
- Laboratory of Applied Organic Chemistry, Department of Chemistry, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University , Imouzzer Street , Fez P.O. Box 2202 , Morocco
| | - Gehan M. Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University , P.O. Box 71666 , Riyadh 11597 , Saudi Arabia
| | - Abdelaaty A. Shahat
- Department of Pharmacognosy (Medicinal, Aromatic and Poisonous Plants Research Center), College of Pharmacy, King Saud University , P.O. Box 2457 , Riyadh 11451 , Saudi Arabia
- Chemistry of Medicinal Plants Department, National Research Centre , 33 EI-Bohouth st , Dokki , Giza 12622 , Egypt
| | - Gamal A. Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University , P.O. Box 2457 , Riyadh 11451 , Saudi Arabia
| |
Collapse
|
20
|
Jirakitticharoen S, Wisuitiprot W, Jitareerat P, Wongs-Aree C. Phenolics, Antioxidant and Antibacterial Activities of Immature and Mature Blumea balsamifera Leaf Extracts Eluted with Different Solvents. J Trop Med 2022; 2022:7794227. [PMID: 36438181 PMCID: PMC9683983 DOI: 10.1155/2022/7794227] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/11/2022] [Indexed: 12/23/2024] Open
Abstract
Blumea balsamifera (L.) DC., belonging to the Asteraceae family, also known as "ngai camphor," is one of the traditional herbs used in Thailand for folk medicine and a component in local food and drinks. There was, however, no evidence indicating the presence of beneficial compounds at different leaf ages. Exploring various extraction solvents, we investigated the phenolics, flavonoids in particular quercetin content, antioxidant capacity, and antibacterial activity of immature and mature leaf extracts. The dried leaves were macerated in 50% ethanol, 95% ethanol, hexane, or decocted in water. Bioactive substances were analyzed by UV spectrophotometry and HPLC. Analysis of antioxidant capacity was done byDPPH, ABTS, FRAP, and NO scavenging assays. The antibacterial activity of immature leaf extract eluted with 50% ethanol was subsequentially evaluated in vitro. Extraction with 50% ethanol proved optimal, yielding 1.2-1.6-fold and 1.5-fold greater immature and mature leaf extracts than other solvents. More phenolics (1.2-fold), flavonoids (1.1-fold), quercetin content (4.8-fold), and antioxidant activity (1.3-fold) were found in the immature leaf extract. There was a significant positive correlation between antioxidant activity and bioactive compounds. The immature leaf extract eluted with 50% ethanol showed antibacterial activity against Staphylococcus aureus, with a minimum inhibitory concentration of 0.5 mg/mL. The immature leaves of B. balsamifera are a rich source of quercetin and phenolics, and 50% ethanol proved optimal for extracting bioactive components from these leaves.
Collapse
Affiliation(s)
- Sirinapha Jirakitticharoen
- Division of Postharvest Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Wudtichai Wisuitiprot
- Department of Thai Traditional Medicine, Sirindhorn College of Public Health Phitsanulok, Phitsanulok 65130, Thailand
| | - Pongphen Jitareerat
- Division of Postharvest Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
- Postharvest Technology Innovation Center, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
| | - Chalermchai Wongs-Aree
- Division of Postharvest Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
- Postharvest Technology Innovation Center, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
| |
Collapse
|
21
|
Ahmed ZR, Uddin Z, Shah SWA, Zahoor M, Alotaibi A, Shoaib M, Ghias M, Bari WU. Antioxidant, antidiabetic, and anticholinesterase potential of Chenopodium murale L. extracts using in vitro and in vivo approaches. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
In this study, Chenopodium murale Linn. extracts have been evaluated for its in vitro antioxidant, enzyme inhibition, and in vivo neuropharmacological properties in streptozotocin (STZ)-induced memory impairment in rat model. First, the plant was subjected to extraction and fractionation, then quantitative phytochemical analysis was performed to estimate the major phytochemical groups in the extract where high amounts of phenolics and saponins were detected in crude and chloroform extract. The highest total phenolic contents, total flavonoid contents, and total tannin content were also recorded in crude extract and chloroform fraction. The in vitro antioxidant potential of chloroform fraction was high with IC50 value of 41.78 and 67.33 μg/mL against DPPH and ABTS radicals, respectively, followed by ethyl acetate fraction. The chloroform fraction (ChMu-Chf) also exhibited potent activity against glucosidase with IC50 of 89.72 ± 0.88 μg/mL followed by ethyl acetate extract (ChMu-Et; IC50 of 140.20 ± 0.98 μg/mL). ChMu-Chf again exhibited potent activity against acetylcholinesterase (AChE) with IC50 of 68.91 ± 0.87 μg/mL followed by ChMu-Et with IC50 of 78.57 ± 0.95 μg/mL. In vivo memory impairment was assessed using the novel object discrimination task, Y-maze, and passive avoidance task. Ex vivo antioxidant enzyme activities and oxidative stress markers like catalase, superoxide dismutase (SOD), malondialdehyde, and glutathione were quantified, and the AChE activity was also determined in the rat brain. No significant differences were observed amongst all the groups treated with crude, chloroform, and ethyl acetate in comparison with positive control donepezil group in connection to initial latency; whereas, the STZ diabetic group displayed a significant fall in recall and retention capability. The blood glucose level was more potently lowered by chloroform extract. The crude extract also increased the SOD level significantly in the brain of the treated rat by 8.01 ± 0.51 and 8.19 ± 0.39 units/mg at 100 and 200 mg/kg body weight (P < 0.01, n = 6), whereas the chloroform extract increased the SOD level to 9.41 ± 0.40 and 9.72 ± 0.51 units/mg, respectively, at 75 and 150 mg/kg body weight as compared to STZ group. The acetylcholine level was also elevated to greater extent by chloroform fraction that might contain a potential inhibitor of acetylcholinesterase. Treatment with C. murale ameliorated cognitive dysfunction in behavioral study, and provided significant defense from neuronal oxidative stress in the brain of the STZ-induced diabetic rats. Thus C. murale Linn. could be an inspiring plant resource that needs to be further investigated for isolation of potential compounds in pure form and their evaluation as a potent neuropharmacological drug.
Collapse
Affiliation(s)
- Zubaida Rasheed Ahmed
- Department of Biochemistry, University of Malakand, Dir (Lower) , Chakdara 18800, Khyber Pakhtunkhwa , Pakistan
| | - Zaheer Uddin
- Department of Biochemistry, University of Malakand, Dir (Lower) , Chakdara 18800, Khyber Pakhtunkhwa , Pakistan
| | - Syed Wadood Ali Shah
- Department of Pharmacy, University of Malakand, Dir (Lower) , Chakdara 18800, Khyber Pakhtunkhwa , Pakistan
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Dir (Lower) , Chakdara 18800, Khyber Pakhtunkhwa , Pakistan
| | - Amal Alotaibi
- Basic Science Department, College of Medicine, Princess Nourah Bint Abdulrahman University , Riyadh 11564 , Saudi Arabia
| | - Mohammad Shoaib
- Department of Pharmacy, University of Malakand, Dir (Lower) , Chakdara 18800, Khyber Pakhtunkhwa , Pakistan
| | - Mehreen Ghias
- Department of Pharmacy, University of Malakand, Dir (Lower) , Chakdara 18800, Khyber Pakhtunkhwa , Pakistan
| | - Wasim Ul Bari
- Department of Chemistry, University of Chitral, Seenlasht 17200, Khyber Pakhtunkhwa , Pakistan
| |
Collapse
|
22
|
Al Mouslem AK, Khalil HE, Emeka PM, Alotaibi G. Investigation of the Chemical Composition, Antihyperglycemic and Antilipidemic Effects of Bassia eriophora and Its Derived Constituent, Umbelliferone on High-Fat Diet and Streptozotocin-Induced Diabetic Rats. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206941. [PMID: 36296534 PMCID: PMC9611308 DOI: 10.3390/molecules27206941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/27/2022]
Abstract
This study was designed to investigate the chemical profile, antihyperglycemic and antilipidemic effect of total methanolic extract (TME) of Bassia eriophora and isolated pure compound umbelliferone (UFN) in high-fat diet (HFD)- and streptozotocin (STZ)- induced diabetic rats. TME was subjected to various techniques of chromatography to yield UFN. Diabetes was induced after eight weeks of HFD by administration of STZ (40 mg/kg) intraperitoneally, and experimental subjects were divided into five groups. The diabetic control showed an increase in levels of blood glucose throughout the experiment. Treatments were initiated in the other four groups with glibenclamide (GLB) (6 mg/kg), TME (200 mg/kg and 400 mg/kg) and isolated UFN (50 mg/kg) orally. The effect on blood glucose, lipid profile and histology of the pancreatic and adipose tissues was assessed. Both 200 and 400 mg/kg of TME produced a comparably significant decrease in blood glucose levels and an increase in insulin levels with GLB. UFN began to show a better blood sugar-lowering effect after 14 days of treatment, comparatively. However, both 400 mg/kg TME and UFN significantly returned blood glucose levels in diabetic rats compared to normal rats. Analysis of the lipid profile showed that while HFD + STZ increased all lipid profile parameters, TME administration produced a significant decrease in their levels. Histopathological examinations showed that treatment with TME and UFN revealed an improved cellular architecture, with the healthy islets of Langerhans and compact glandular cells for pancreatic cells distinct from damaged cells in non-treated groups. Conversely, the adipose tissue displayed apparently normal polygonal fat cells. Therefore, these results suggest that TME has the potential to ameliorate hyperglycemia conditions and control lipid profiles in HFD + STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Abdulaziz K. Al Mouslem
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence:
| | - Hany Ezzat Khalil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Promise Madu Emeka
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| |
Collapse
|
23
|
Dracocephalum kotschyi Boiss. In Vitro Efficacy on Growth and Apoptosis Induction in Leishmania major Promastigotes. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8109264. [PMID: 36277896 PMCID: PMC9586815 DOI: 10.1155/2022/8109264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022]
Abstract
Dracocephalum kotschyi Boiss. is a plant generally used in modern medicine to treat many human illnesses. It is also used to prevent tumor cell proliferation throughout the world. This study's objective was to evaluate this plant's in vitro efficacy on growth and apoptosis induction in Leishmania major promastigotes. To do this, the essential oil is extracted for the test following the collection and identification of D. kotschyi. The essential oil was analyzed using a GC-MS analyzer. Promastigotes of L. major were cultured in RPMI-1640 media, and the MTT assay and a flow cytometry analysis were carried out on promastigotes that had entered the log phase. To differentiate between viable, necrotic, and apoptotic treated or untreated promastigotes, the flow cytometry method of double staining with annexin V-FLUOS and propidium iodide (PI) was used. Given the results obtained, 11 phytochemicals were identified in the essential oil of this plant. Copaene (22.15%), methyl geranate (16.31%), geranial (13.78%), and carvone (11.34%) were the main substances. The essential oil of D. kotschyi inhibits the proliferation of L. major promastigotes at 921 μg/mL, 252 μg/mL, and 416 μg/mL, respectively, after 24 h, 48 h, and 78 h. The cells were divided into four quadrates based on cell phases using the flow cytometry approach by double staining with annexin V-FLUOS and propidium iodide (PI): necrosis (Q1), late apoptosis (Q2), early apoptosis (Q3), and viable (Q4) quadrates. Overall, it is apparent that the different concentrations induced cell apoptosis in promastigotes. Observation under the light microscope at ×100 magnification showed that the different doses of D. kotschyi essential oil caused apparent alterations in the treated promastigotes. In this work, D. kotschyi essential oils induce programmed death on L. major promastigotes. This study opens many research perspectives, such as investigating the mechanisms of action and the production of a phytomedicine based on this plant.
Collapse
|
24
|
Bouyahya A, El Omari N, Bakha M, Aanniz T, El Menyiy N, El Hachlafi N, El Baaboua A, El-Shazly M, Alshahrani MM, Al Awadh AA, Lee LH, Benali T, Mubarak MS. Pharmacological Properties of Trichostatin A, Focusing on the Anticancer Potential: A Comprehensive Review. Pharmaceuticals (Basel) 2022; 15:ph15101235. [PMID: 36297347 PMCID: PMC9612318 DOI: 10.3390/ph15101235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022] Open
Abstract
Trichostatin A (TSA), a natural derivative of dienohydroxamic acid derived from a fungal metabolite, exhibits various biological activities. It exerts antidiabetic activity and reverses high glucose levels caused by the downregulation of brain-derived neurotrophic factor (BDNF) expression in Schwann cells, anti-inflammatory activity by suppressing the expression of various cytokines, and significant antioxidant activity by suppressing oxidative stress through multiple mechanisms. Most importantly, TSA exhibits potent inhibitory activity against different types of cancer through different pathways. The anticancer activity of TSA appeared in many in vitro and in vivo investigations that involved various cell lines and animal models. Indeed, TSA exhibits anticancer properties alone or in combination with other drugs used in chemotherapy. It induces sensitivity of some human cancers toward chemotherapeutical drugs. TSA also exhibits its action on epigenetic modulators involved in cell transformation, and therefore it is considered an epidrug candidate for cancer therapy. Accordingly, this work presents a comprehensive review of the most recent developments in utilizing this natural compound for the prevention, management, and treatment of various diseases, including cancer, along with the multiple mechanisms of action. In addition, this review summarizes the most recent and relevant literature that deals with the use of TSA as a therapeutic agent against various diseases, emphasizing its anticancer potential and the anticancer molecular mechanisms. Moreover, TSA has not been involved in toxicological effects on normal cells. Furthermore, this work highlights the potential utilization of TSA as a complementary or alternative medicine for preventing and treating cancer, alone or in combination with other anticancer drugs.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
- Correspondence: (A.B.); (L.-H.L.); (M.S.M.)
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Mohamed Bakha
- Unit of Plant Biotechnology and Sustainable Development of Natural Resources “B2DRN”, Polydisciplinary Faculty of Beni Mellal, Sultan Moulay Slimane University, Mghila, P.O. Box 592, Beni Mellal 23000, Morocco
| | - Tarik Aanniz
- Medical Biotechnology Laboratory, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat B.P. 6203, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Naoufal El Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohmed Ben Abdellah University, Imouzzer Road Fez, Fez 30050, Morocco
| | - Aicha El Baaboua
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan 93000, Morocco
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Correspondence: (A.B.); (L.-H.L.); (M.S.M.)
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid B.P. 4162, Morocco
| | - Mohammad S. Mubarak
- Department of Chemistry, The University of Jordan, Amma 11942, Jordan
- Correspondence: (A.B.); (L.-H.L.); (M.S.M.)
| |
Collapse
|
25
|
Therapeutic Investigation of Standardized Aqueous Methanolic Extract of Bitter Melon (Momordica charantia L.) for Its Potential against Polycystic Ovarian Syndrome in Experimental Animals’ Model: In Vitro and In Vivo Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5143653. [PMID: 36212951 PMCID: PMC9536891 DOI: 10.1155/2022/5143653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 11/30/2022]
Abstract
Polycystic ovarian syndrome (PCOS) is an heterogenous, endocrine, metabolic, and multidisciplinary disorder of reproductive-aged females that aggravates insulin resistance, hyperandrogenism, obesity, menstrual irregularities, and infertility. Bitter melon is consumed as vegetable in various parts of the world. The purpose of this study was to provide the rationale for the folkloric uses of bitter melon (Momordica charantia L.) in reproductive abnormalities. HPLC analysis of standardized aqueous methanolic extract of bitter melon revealed the presence of various phytochemicals such as quercetin, gallic acid, benzoic acid, chlorogenic acid, syringic acid, p-coumaric acid, ferulic acid, and cinnamic acid. Twenty-five Swiss albino adult female rats (120–130 g) were acquired and divided into two groups (5 + 20). Letrozole (1 mg/kg p.o.) was used for four weeks to induce PCOS in twenty rats. Disease induction was confirmed by vaginal smear cytology analysis under the microscope. Animals were further divided into four groups, with one group as PCOS group, and the remaining three are treated with standardized extract of bitter melon (500 mg/kg p.o.), bitter melon plus metformin (500 mg/kg p.o.), and metformin alone for the period of next four weeks. After four weeks, the rats were euthanized at diestrus stage. Ovaries of the experimental animals were removed and fixed in 10% buffered formalin, and blood samples were obtained from direct cardiac puncture and stored. Ovaries histopathological analysis showed cystic follicles (9–10) in PCOS group, while, in all the treatment groups, we found developing and mature follicles. Similarly, hormone analysis showed significant (p < 0.001) reduction of LH surge, insulin, and testosterone levels and improvement in FSH levels. Lipid profile and antioxidant enzymes status were also significantly (p < 0.001) improved. In conclusion, the study validates the bitter melon potential as an insulin sensitizer and ovulation enhancer and authenticates its potential in PCOS management.
Collapse
|
26
|
Witkowski M, Grajeta H, Gomułka K. Hypersensitivity Reactions to Food Additives-Preservatives, Antioxidants, Flavor Enhancers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11493. [PMID: 36141765 PMCID: PMC9517530 DOI: 10.3390/ijerph191811493] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
There have been reports of food hypersensitivity reactions to food additives (HFA) for many years. The mechanisms of HFA and their frequency are difficult to precisely define, as most of the data come from outdated studies with poor methodology. In 2020, the European Food Safety Authority completed a review of additives, examining their influence on the occurrence of HFA, but did not include all of them. The aim of this review is to systematise knowledge about selected groups of food additives (FAs) and the HFA induced by them. We also briefly discuss the issues of diagnosis and therapy in this disease. FAs are commonly used in prosscessed foods, but HFA appears to be a rare phenomenon. Identification of the FA responsible for hypersensitivity and its treatment is difficult. Diagnosis is a challenge for the clinician and for the patient. A food diary is a helpful diagnostic tool. It allows diet therapy to be monitored based on the partial or complete elimination of products containing a harmful additive. An elimination diet must not be deficient, and symptomatic pharmacotherapy may be necessary if its application is ineffective. Taking all this into account, we conclude that it is necessary to conduct randomised multicentre studies based on the double-blind placebo control protocol in this field.
Collapse
Affiliation(s)
- Mateusz Witkowski
- Department of Dietetics and Food Science, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Halina Grajeta
- Department of Dietetics and Food Science, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Krzysztof Gomułka
- Department of Internal Disease, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| |
Collapse
|
27
|
Mussarat S, Adnan M, Begum S, Alamgeer, Ullah R, Kowalczyk A. In Vivo Efficacy, Toxicity Assessment, and Elemental Analysis of Traditionally Used Polyherbal Recipe for Diarrhea. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5977795. [PMID: 36045659 PMCID: PMC9423949 DOI: 10.1155/2022/5977795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022]
Abstract
A polyherbal formulation consisting of Mentha piperita L., Camellia sinensis L. Kuntze, and Elettaria cardamomum (L.) Maton with a ratio of 10 : 5 : 2, respectively, was recommended for curing nausea, vomiting, and diarrhea. Experimental validation is crucial to affirm its therapeutic property leads toward the development of modified antidiarrheal agents. This research aimed to investigate the in vivo antidiarrheal efficacy of traditionally used polyherbal recipe in a castor oil-induced animal model. Moreover, the study also presents the elemental screening and in vivo toxicity of tested polyherbal recipe. Individual plant parts of the polyherbal recipe were mixed according to the traditional prescription ratio, and hydromethanolic extract was prepared by the cold maceration process. The antidiarrheal activity was assessed by castor oil induction method, charcoal meal test, and enteropooling procedure in Sprague-Dawley rats. Elemental analysis and in vivo subacute toxicity were carried out, followed by biochemical, hematological, and histopathological analyses. Polyherbal extract significantly delayed the diarrhea onset in a dose-dependent manner and showed marked inhibition at 200 and 400 mg/kg. Fecal weight was reduced significantly (p < 0.05) at 200 mg/kg (0.26 ± 0.25) in comparison with the control (1.63 ± 0.15). The diarrhea score was zero at a concentration of 200 and 400 mg/kg. Antienteropooling effect of the extract was greater than that of loperamide. Following subacute toxicity, all the treated rats were normal, survived, and showed no changes in behavior. There were no significant differences between values of blood parameters in both the control and extract-treated groups except a significant decrease in monocytes (control 8.4; polyherbal 2.2). Elemental analysis showed a slight increase in the amount of manganese (Mn, 8.076 ppm) as compared to the WHO recommended level (2 ppm). Traditionally used polyherbal recipe is effective and safe for combating diarrheal diseases. In vivo evidence supported the use, safety, and efficacy of the polyherbal recipe that has been used as an alternative medicine for diarrhea in the study area. Inhibition of castor oil-induced diarrhea and antisecretory effect of the studied polyherbal recipe makes it a potent antidiarrheal drug without no or limited toxic effects at the tested dose after further analysis.
Collapse
Affiliation(s)
- Sakina Mussarat
- Department of Botany, Kohat University of Science and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Adnan
- Department of Botany, Kohat University of Science and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shaheen Begum
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Alamgeer
- College of Pharmacy, University of Punjab, Lahore, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Alicja Kowalczyk
- Department of Environmental Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, Wrocław 51-630, Poland
| |
Collapse
|
28
|
GC-MS Analysis, Antibacterial and Antioxidant Potential of Ethyl Acetate Leaf Extract of Senna singueana (Delile) Grown in Kenya. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5436476. [PMID: 36034966 PMCID: PMC9410794 DOI: 10.1155/2022/5436476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022]
Abstract
Bacterial diseases are a leading cause of mortality and morbidity globally. During bacterial diseases, an elevation of host immune response occurs, which involves the production of free radicals in response to the bacterial infection. The overproduction of free radicals in excess of the antioxidants leads to oxidative stress. Conventional antibiotics are linked to side effects such as hypersensitivity reactions in addition to bacterial pathogens developing resistance against them. Artificial antioxidants are said to be carcinogenic. This study sought to confirm folklore use and validate the antibacterial and antioxidant potential of Senna singueana which has been widely used in the Mbeere community. The in vitro antibacterial potentials of the plant extract were investigated on Bacillus subtilis ATCC 21332, Escherichia coli ATCC 25922, Salmonella typhi ATCC 1408, and Staphylococcus aureus ATCC 25923. Ciprofloxacin (100 µg/ml) drug was used as a standard reference, whereas 5% DMSO was used as a negative reference. The antibacterial tests included disc diffusion and minimum inhibitory and bactericidal concentrations. S. singueana ethyl acetate extract showed broad-spectrum potential against tested bacterial microbes producing mean zones of inhibition (MZI) from 07.67 ± 0.33 to 17.67 ± 0.33 mm. The extract demonstrated a greater effect on Gram-positive than Gram-negative bacterial pathogens. Antibacterial properties of ciprofloxacin were significantly greater in comparison to plant extract in all the dilutions (
), while 5% DMSO was inactive against all the tested bacteria. MBC values were greater than MIC values. Antioxidant properties of the extract were determined through scavenging effects of DPPH and hydroxyl radicals (•OH) as well as ferric reducing antioxidant potential (FRAP) assay. S. singueana demonstrated effects against all radicals formed. Additionally, the extract exhibited ferric reducing abilities. The extract also contained various phytocompounds with known antibacterial and antioxidant properties. This study recommends the therapeutic use of S. singueana as an antibacterial as well as an antioxidant agent.
Collapse
|
29
|
Phytochemical Investigation and Antimicrobial Potential of Medicinal Plant Nepeta distans Royle ex Benth. J FOOD QUALITY 2022. [DOI: 10.1155/2022/8386326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Herbal medicines or natural products and plant extract may exhibit promising alternatives or supplements for chemotherapy and antibiotic therapy. The aim of the study is to evaluate the therapeutic value and phytoconstituents of the whole plant, Nepeta distans. The methanol extract contains four known compounds, namely, oleanolic acid, ursolic acid, β-sitosterol, and stigmasterol. The structures of these compounds were confirmed with the help of NMR and mass spectrometry and by comparison with the available literature of these known compounds. The phytochemical analysis test confirmed the presence of alkaloids, flavonoids, saponins, glycosides, fats, proteins, and phytosterols. The antimicrobial activities were carried out by the agar well diffusion method. Both methanol extract and chloroform fraction showed significant antimicrobial activities.
Collapse
|
30
|
Assessment of Antidiabetic Potential and Phytochemical Profiling of Viscum album, a Traditional Antidiabetic Plant. J FOOD QUALITY 2022. [DOI: 10.1155/2022/5691379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The traditional antidiabetic plant Viscum album (V. album) was collected from the oak plant in the wild at Maidan, Khyber District, of Pakistan, for assessment of its antidiabetic potential and phytochemical profile. Lowering of blood glucose level, antioxidant effect, lipids profile, liver function marker enzymes, and kidney function markers were evaluated in extract and glibenclamide treated groups, in normal as well as in diabetic control groups. An elevated level of blood glucose level, lipids (Cholesterol, TG, LDL), liver function marker enzymes (ALT, AST, ALP), and kidney function markers (bilirubin, creatinine, urea) were observed in alloxan-induced diabetic rats; however, a HDL level was decreased. Administration of V. album hydroalcoholic extract for 28 days renovated significantly (
) all the above biochemical parameters. The antioxidant enzymes SOD, CAT, and GPX were also considerably restored. In vitro, antioxidant assay indicated that the extract of 2,000 µg/mL scavenges free radicals of DPPH 68.4%, ABTS 69.5%, and H2O2 50.6%. The extracts revealed the presence of saponins, flavonoids, alkaloids, terpene, tannins, phenols, protein, amino acids, sterols, and glycosides. The extract has shown phenolic contents 421 ± 4.8 mg GAE/100 g d. w and flavonoids content 127 ± 1.4 mg equiv. Rut/100 g d. w. The findings of this research recommend V. album could be a potent source of natural antidiabetic constituents.
Collapse
|
31
|
El-Bahr SM, Elzoghby RR, Alfattah MA, Kandeel M, Hamouda AF. Aqueous Ginger ( Zingiber officinale) Extract Ameliorates the Harmful Effects of High-Dose Lornoxicam in Albino Male Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1546734. [PMID: 35958816 PMCID: PMC9363220 DOI: 10.1155/2022/1546734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
Lornoxicam is a potent oxicam-class nonsteroidal anti-inflammatory drug (NSAID) with analgesic, anti-inflammatory, and antipyretic effects. Its impacts on many biological functions are not fully understood. We measured various biomarkers in male albino rats provided an oral aqueous ginger extract before IM administration of therapeutic and 2× the therapeutic doses of lornoxicam. The aqueous ginger plant extract was characterized by mass spectroscopy, and its effects were determined by examining free radical scavenging activity, blood parameters, renal and hepatic function, semen quality, proinflammatory cytokines, antioxidant markers, and histopathology. Rats administered lornoxicam had significantly higher liver and kidney function biomarker values, TNF-α, interleukin-6, and sperm abnormalities than the control rats. The overall erythrocyte count, packed cell volume, prostaglandin, and sperm counts were all considerably lower in the experimental animals. Histological changes were found in the liver, spleen, and testes of rats administered lornoxicam alone. In rats, pretreatment with ginger extract reduced the majority of the negative effects of conventional and high dosages of lornoxicam.
Collapse
Affiliation(s)
- Sabry M. El-Bahr
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21523, Egypt
| | - Rabab R. Elzoghby
- Department of Pharmacology, Faculty of Veterinary Medicine, New Valley University, Egypt
| | | | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafr Elsheikh University, Egypt
| | - Ahlam F. Hamouda
- Department of Forensic Medicine and Toxicology, Teaching Hospital, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt
| |
Collapse
|
32
|
Yousafi Q, Bibi S, Saleem S, Hussain A, Hasan MM, Tufail M, Qandeel A, Khan MS, Mazhar S, Yousaf M, Moustafa M, Al-Shehri M, Khalid M, Kabra A. Identification of Novel and Safe Fungicidal Molecules against Fusarium oxysporum from Plant Essential Oils: In Vitro and Computational Approaches. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5347224. [PMID: 35928915 PMCID: PMC9345698 DOI: 10.1155/2022/5347224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022]
Abstract
Phytopathogenic fungi are serious threats in the agriculture sector especially in fruit and vegetable production. The use of plant essential oil as antifungal agents has been in practice from many years. Plant essential oils (PEOs) of Cuminum cyminum, Trachyspermum ammi, Azadirachta indica, Syzygium aromaticum, Moringa oleifera, Mentha spicata, Eucalyptus grandis, Allium sativum, and Citrus sinensis were tested against Fusarium oxysporum. Three phase trials consist of lab testing (MIC and MFC), field testing (seed treatment and foliar spray), and computer-aided fungicide design (CAFD). Two concentrations (25 and 50 μl/ml) have been used to asses MIC while MFC was assessed at four concentrations (25, 50, 75, and 100 μl/ml). C. sinensis showed the largest inhibition zone (47.5 and 46.3 m2) for both concentrations. The lowest disease incidence and disease severity were recorded in treatments with C. sinensis PEO. Citrus sinensis that qualified in laboratory and field trials was selected for CAFD. The chemical compounds of C. sinensis PEO were docked with polyketide synthase beta-ketoacyl synthase domain of F. oxysporum by AutoDock Vina. The best docked complex was formed by nootkatone with -6.0 kcal/mol binding affinity. Pharmacophore of the top seven C. sinensis PEO compounds was used for merged pharmacophore generation. The best pharmacophore model with 0.8492 score was screened against the CMNP database. Top hit compounds from screening were selected and docked with polyketide synthase beta-ketoacyl synthase domain. Four compounds with the highest binding affinity and hydrogen bonding were selected for confirmation of lead molecule by doing MD simulation. The polyketide synthase-CMNPD24498 showed the highest stability throughout 80 ns run of MD simulation. CMNPD24498 (FW054-1) from Verrucosispora was selected as the lead compound against F. oxysporum.
Collapse
Affiliation(s)
- Qudsia Yousafi
- COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091 Yunnan, China
| | - Shahzad Saleem
- COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Abrar Hussain
- COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Maria Tufail
- COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Amina Qandeel
- COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | | | | | - Maha Yousaf
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Mahmoud Moustafa
- Department of Biology, College of Science, King Khalid University, 9004 Abha, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, Egypt
| | - Mohammed Al-Shehri
- Department of Biology, College of Science, King Khalid University, 9004 Abha, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Ghruan-140413, Mohali, Punjab, India
| |
Collapse
|
33
|
Al-Robai SA, Zabin SA, Ahmed AA, Mohamed HA, Alghamdi AAA, Ahmed AAE. Phenolic contents, anticancer, antioxidant, and antimicrobial capacities of MeOH extract from the aerial parts of Trema orientalis plant. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Medicinal plants contain phytochemical components of pharmaceutical importance, and Trema orientalis MeOH extracts are believed to have potential antioxidant and cytotoxic properties. This investigation explores the phenolic, antioxidant, and anticancer property of the methanol extracts of aerial parts of T. orientalis. The total polyphenol content (TPC) and the total flavonoid contents (TFC) were determined following standard methods. In vitro antioxidant property was assessed by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. Cytotoxicity experiments were performed against eight cell lines and one fibroblast cell using the methylthiazolyldiphenyl-tetrazolium bromide assay. The antimicrobial activity assay was performed using the agar-diffusion method. Individual phenolic acids identified by GC/MS were examined in silico to estimate their drug likeness based on their structures. TPC and TFC were the highest in the leaf extract, with the strongest radical scavenging activity against ABTS (84.43%) and DPPH (79.60%) radicals. The highest cytotoxicity activity was exhibited by leaf (IC50 = 2.256 ± 0.85 μg/mL) and twig (2.704 ± 1.31 μg/mL) extracts against the HCT116 cell line, followed by bark (3.653 ± 0.05 μg/mL) and leaf (3.725 ± 0.30 μg/mL) extracts against the HT29 cell line. Clonogenicity resulted in a clear decrease of colony formation by HCT116 cells, suggesting a dose-dependent mode. In silico investigation suggested that phenolic acids detected have non-drug-like properties. Extracts showed antimicrobial inactivity.
Collapse
Affiliation(s)
- Sami Asir Al-Robai
- Department of Biology, Faculty of Science, Albaha University , Al-Baha , Saudi Arabia
| | - Sami A. Zabin
- Department of Chemistry, Faculty of Science, Albaha University , Al-Baha , Saudi Arabia
| | - Abdelazim Ali Ahmed
- Department of Biology, Faculty of Science, Albaha University , Al-Baha , Saudi Arabia
- Department of Botany, Faculty of Science, University of Khartoum , Khartoum , Sudan
| | - Haidar Abdalgadir Mohamed
- Department of Biology, Faculty of Science, Albaha University , Al-Baha , Saudi Arabia
- Medicinal and Aromatic Plants Research Institute, National Center for Research , Khartoum , Sudan
| | | | - Aimun A. E. Ahmed
- Pharmacology Department, Faculty of Medicine, Albaha University , Al-Baha , Saudi Arabia
- Pharmacology Department, Faculty of Pharmacy, Omdurman Islamic University , Khartoum , Sudan
| |
Collapse
|
34
|
Phytochemical Screening and In Vitro Antifungal Activity of Selected Medicinal Plants against Candida albicans and Aspergillus niger in West Shewa Zone, Ethiopia. Adv Pharmacol Pharm Sci 2022; 2022:3299146. [PMID: 35800399 PMCID: PMC9256430 DOI: 10.1155/2022/3299146] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 11/18/2022] Open
Abstract
Antimicrobial resistance to commercially available medications has become a global issue, yet there is still the possibility of developing new drugs from medicinal plants. As a result, the aims of the present study were to screen secondary metabolites and to evaluate in vitro antifungal activities of Brucea antidysenterica, Aloe vera, and Justicia schimperiana. After the plants were identified, their leaves were collected, washed, dried under the shade, pulverized, and extracted with methanol (99.8%) using the maceration technique. The presence of secondary metabolites in plant extracts was screened using various laboratory protocols. The antifungal activities of the plant extract against reference fungal strains of Candida albicans and Aspergillus niger at concentrations of 200, 100, and 50 mg/mL were assessed using the agar-well diffusion method. Ketoconazole (15 μg) was used as a positive control, while 5% dimethyl sulfoxide and/or 5% Tween 80 were used as negative controls. All tests were conducted in triplicate. Alkaloids, flavonoids, and phenols were secondary metabolites found in all plant extracts. The extract of leaves of B. antidysenterica and J. schimperiana formed a mean zone of inhibition of 15.5 ± 0.5 mm and 15.3 ± 0.58 mm, respectively, against Candida albicans at a concentration of 200 mg/mL, whereas extracts of A. vera leaves formed a 12.3 ± 0.58 mm inhibition zone only against Aspergillus niger at 200 mg/mL. In conclusion, the current study found that B. antidysenterica, A. vera, and J. schimperiana had antifungal activity. In addition, all these plants had a variety of secondary metabolites that possibly have antifungal activities. Studies on in vivo investigations and isolation of specific antifungal compounds from these medicinal plants are suggested.
Collapse
|
35
|
Phytochemical Analysis and Study of Antioxidant and Antimicrobial Activities of Two Parts of Cupressus arizonica Essential Oils. J FOOD QUALITY 2022. [DOI: 10.1155/2022/8629974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present work aimed to determine the difference in the chemical composition of essential oils isolated from two parts of Cupressus arizonica and to evaluate their in vitro antimicrobial and antioxidant effects. The yields of the essential oil obtained by hydrodistillation from the leaves and cones were 0.85% and 1.29%, respectively. The chemical analysis of the constituents of the two essential oils of Cupressus arizonica was carried out by using the GC and GC/MS techniques. The results of this analysis show that the leaves are dominated by cis-muurola-4 (14), 5-diene (21.27%), umbellulone (19.88%), α-pinene (9.39%), and α-muurolene (7.87%7); on the other hand, the cones are rich in α-pinene (51.07%) accompanied by other variable content constituents, myrcene (17.92%), limonene (9.66%), β-pinene (4.92%), meta-cymenene (2.6%), and α-terpineol (2.38%). The antimicrobial activity against four bacterial strains, four wood decay fungi, and three mould strains were determined using the agar-agar dispersion method. The studied essential oils exhibited moderate antimicrobial properties, which demonstrates the sensibility of all strains tested with the exception of wood rot fungi to which they do not have activity against all concentrations tested. The dosage of antioxidant activity was evaluated using DPPH scavenging and ferric ion reducing power (FRAP). The results indicate that the essential oils from cones of Cupressus arizonica possess a strong antioxidant activity (lower IC50) IC50 = 0.098 ± 0.008/EC50 = 0.646 ± 0.02) in comparison with those from the leaves (IC50 = 5.297 ± 0.09/EC50 = 2.335 ± 0.36). The results suggest that both essential oils could be used as a source of treatment for bacterial infections and also as natural antioxidant substances.
Collapse
|
36
|
Renoprotective and Cardioprotective Potential of Moricandia sinaica (Boiss.) against Carbon Tetrachloride-Induced Toxicity in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8545695. [PMID: 35815261 PMCID: PMC9259224 DOI: 10.1155/2022/8545695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022]
Abstract
The goal of the current study was to assess the nephroprotective and cardioprotective potential of Moricandia sinaica methanol extract (MOR-1), as well as its butanol (MOR-2) and aqueous (MOR-3) fractions against carbon tetrachloride (CCl4)-induced nephro and cardio-toxicity. Cardiac function was assessed using the biochemical parameters lactate dehydrogenase (LDH) and creatinine kinase (CK). Renal function was examined using the biochemical parameters creatinine and uric acid. The levels of nonprotein sulfhydryls (NPSH) and malondialdehyde (MDA) were used as markers of oxidative strain. A dose of 100 and 200 mg/kg of butanol fraction given prior to CCl4 treatment significantly (p < 0.05 − 0.001) protected against elevated LDH and CK levels. Similarly, treatment with silymarin (10 mg/kg) and butanol fraction (100 and 200 mg/kg) significantly (p < 0.05 − 0.001) boosted total protein levels compared to CCl4 treatment alone. The silymarin (10 mg/kg) and butanol fraction (100 and 200 mg/kg) also provided a significant (p < 0.05 − 0.001) protective effect for MDA levels. Methanol extract (MOR-1) and butanol (MOR-2) showed significant results and were recommended for further pharmacological and screening for active constituents.
Collapse
|
37
|
Zreen Z, Hameed A, Kiran S, Farooq T, Zaroog MS. A Comparative Study of Diospyros malabarica (Gaub) Extracts in Various Polarity-Dependent Solvents for Evaluation of Phytoconstituents and Biological Activities. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4746223. [PMID: 35789643 PMCID: PMC9250437 DOI: 10.1155/2022/4746223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 12/21/2022]
Abstract
Keeping in mind the ascribed repute of Diospyros malabarica (D. malabarica), this investigation was commenced to assess the effect of diverse solvents on extraction yields, phytochemical components and antioxidant capability, and in vitro biological activities of D. malabarica for pharmaceutically active constituents to combat various infections. To screen phytochemicals both qualitatively (flavonoids, terpenoid, saponins, tannins) and quantitatively like total phenolic and flavonoid contents, Diospyros malabarica parts include the following: root, leaves, bark, stem, ripe, and unripe fruit were sequentially extracted with organic solvents such as petroleum ether, dichloromethane, ethyl acetate, ethanol, methanol, and water in increasing order of polarity from less polar to more polar solvents. Furthermore, biological activities such as antibacterial, antifungal, anticancer, antidiabetic, and anti-inflammatory were explored. The results revealed that all the tested solvents displayed a vital role in the extraction yield, the content of phytochemicals, and the studied biological activities. Methanol was found as the best solvent followed by the ethanol for the extraction, representing the highest extraction yield (18.3%), rich diversity of phytochemicals, and the highest total phenolic contents (602 ± 0.001 μg EAG/mg of extract) and total flavonoid contents (455 ± 0.6 μg EQ/mg of extract) in bark extract. Furthermore, methanol bark extract showed high in vitro antibacterial activity (30.25 mm ± 0.9), antifungal activity (18.25 mm ± 0.2), anticancer activity (48%), antidiabetic activity (68%) and anti-inflammatory activity (62%) followed by ethanol amongst other extracts of D. malabarica. Accordingly, methanol might be as an ideal solvent to get maximum content of phytochemicals, promising antioxidants, and in vitro biological activities from bark extract amongst other extracts of D. malabarica compared to pet ether, ethyl acetate, and dichloromethane and may act as free radical rummager because phytochemical constituents exhibit antioxidant capability. Our findings suggest that phytochemical compounds (flavonoids, tannins, phenols, saponins, and terpenoids) found in the bark extract of D. malabarica may be attributed to evaluate potent anti-inflammatory, anticancer, antidiabetic, antibacterial, and antifungal activities.
Collapse
Affiliation(s)
- Zohra Zreen
- Department of Applied Chemistry, Government College University Faisalabad, Pakistan
| | - Amjad Hameed
- Nuclear Institute for Agriculture and Biology (NIAB), P.O. Box: 128, Jhang Road Faisalabad, Pakistan
| | - Shumaila Kiran
- Department of Applied Chemistry, Government College University Faisalabad, Pakistan
| | - Tahir Farooq
- Department of Applied Chemistry, Government College University Faisalabad, Pakistan
| | - Mohammed Suleiman Zaroog
- Department of Biochemistry, Faculty of Applied Medical Sciences, University of Gezira, Wad Medani, Sudan
| |
Collapse
|
38
|
Sambu S, Hemaram U, Murugan R, Alsofi AA. Toxicological and Teratogenic Effect of Various Food Additives: An Updated Review. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6829409. [PMID: 35782077 PMCID: PMC9249520 DOI: 10.1155/2022/6829409] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
Abstract
Scientific evidence is mounting that synthetic chemicals used as food additives may have harmful impacts on health. Food additives are chemicals that are added to food to keep it from spoiling, as well as to improve its colour and taste. Some are linked to negative health impacts, while others are healthy and can be ingested with little danger. According to several studies, health issues such as asthma, attention deficit hyperactivity disorder (ADHD), heart difficulties, cancer, obesity, and others are caused by harmful additives and preservatives. Some food additives may interfere with hormones and influences growth and development. It is one of the reasons why so many children are overweight. Children are more likely than adults to be exposed to these types of dietary intakes. Several food additives are used by women during pregnancy and breast feeding that are not fully safe. We must take specific precaution to avoid consuming dangerous compounds before they begin to wreak havoc on our health. This study is intended to understand how the preservatives induce different health problem in the body once it is consumed. This review focuses on some specific food additives such as sodium benzoate, aspartame, tartrazine, carrageenan, and potassium benzoate, as well as vitamin A. Long-term use of food treated with the above-mentioned food preservatives resulted in teratogenicity and other allergens, according to the study. Other health issues can be avoided in the future by using natural food additives derived from plants and other natural sources.
Collapse
Affiliation(s)
- Saseendran Sambu
- Department of Food Technology, Faculty of Life and Allied Health Sciences, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Urmila Hemaram
- Department of Food Technology, Faculty of Life and Allied Health Sciences, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Rajadurai Murugan
- Department of Food Technology, Faculty of Life and Allied Health Sciences, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Ahmed A. Alsofi
- Department of Pharmacy, Faculty of Medical Sciences, Aljanad University for Science and Technology, Taiz, Yemen
| |
Collapse
|
39
|
Profile of Medicinal Plants Traditionally Used for the Treatment of Skin Burns. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3436665. [PMID: 35707468 PMCID: PMC9192321 DOI: 10.1155/2022/3436665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/10/2022] [Indexed: 01/07/2023]
Abstract
Moroccan folk healers use medicinal plants to treat several diseases including skin burns. The traditional knowledge of wound healing is not common among the general population. Only one ethnobotanical survey was carried out in Rabat, Morocco, to track the traditional use of medicinal plants in wound healing. Therefore, our report aimed to study the medicinal plants used in Taza region to treat wound healing. In total, 218 individuals participated in this survey. More than 40 medicinal plants belonging to 30 botanical families were cited as anti-burn remedies. The most commonly used medicinal plants were Agave sisalana L., Nerium oleander L., Tetraclinis articulata Benth., Lawsonia inermis L., Artemisia herba-alba Asso., and Trigonella foenum-graecum L. Most of the used medicinal plants belong to Asteraceae family. Comparing our results with the previous survey, we noted that twelve plants were reported for the first time as wound healing agents. The ethnomedicinal use showed that plants leaves are the most commonly used parts. Pulverization was the selected method of preparation. The direct application of powder to the burns was the most common way of treatment. Our study revealed, for the first time, the importance of medicinal plants to treat skin burns in Taza region. Our results could be considered as the stepping stone for creating a database of wound healing medicinal plants to promote scientific studies on these plants revealing their constituents and side effects.
Collapse
|
40
|
Urease and α-Chymotrypsin Inhibitory Activities and Molecular Docking Studies of Alkaloids Isolated from Medicinal Plant Isatis minima Bunge. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1904874. [PMID: 35754682 PMCID: PMC9217576 DOI: 10.1155/2022/1904874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/04/2022] [Indexed: 11/17/2022]
Abstract
Phytochemical studies on the alkaloids fraction of the entire plant of Isatis minima Bunge resulted in the alkaloids 1–4 isolation, which were first time isolated from this species. The 1D and 2D NMR spectroscopic data were used to identify their structures, and there was satisfactory compatibility of the data compared to those which were previously published. In the examined compounds 1–4, Isaindigotidione (3) and Isaindigotone (4) were shown as an effective urease inhibitor in such a concentration-dependent way against Jack bean and Bacillus pasteurii urease, with IC50 values 29.03 ± 0.04, 20.04 ± 0.09 and 34.03 ± 0.07, 26.13 ± 0.08 μM, respectively. Compounds 3 and 4 were likewise shown to be an effective inhibitor against α-chymotrypsin, exhibiting IC50 values 16.09 ± 0.07 and 22.01 ± 0.06 μM, correspondingly. The program MOE-Dock was used to perform a molecular docking analysis to confirm probable binding modes of the active complexes of the isolated compounds 1–4 and the crystal structure of urease and α-chymotrypsin enzymes. Compound 3 was the most active, having the highest docking scores against Bacillus pasteurii urease, α-chymotrypsin, and Jack bean (−8.6876), (−7.6647), and (−13.1927) μM, respectively. All four alkaloids (1–4) showed significant urease and protease inhibitory potential and further these activities were confirmed with the help of molecular docking study.
Collapse
|
41
|
Chemical Composition, Antioxidant, Insecticidal Activity, and Comparative Analysis of Essential Oils of Leaves and Fruits of Schinus molle and Schinus terebinthifolius. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4288890. [PMID: 35677362 PMCID: PMC9170424 DOI: 10.1155/2022/4288890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/16/2022] [Indexed: 12/11/2022]
Abstract
Schinus terebinthifolius Raddi. and Schinus molle L. are perennial woody plants belonging to the Anacardiaceae family, widely distributed in the United States, Europe, Asia, and Africa, and they are broadly used for many applications such as in traditional medicine as an antipyretic, analgesic, depurative, and in the treatment of diseases of the urogenital system as well as culinary and ornamental species. Our work aims to study and compare the chemical composition and the antioxidant and insecticidal activity of the essential oils of the leaves and fruits of the two species of the genus Schinus. The essential oils were characterized by a very spicy aromatic odor, and by the abundance of hydrocarbon monoterpenes in the leaves and fruits of Schinus molle (49.70% and 42.65%), unlike the EOs of the fruits of Schinus terebinthifolius which have a high content in hydrocarbon sesquiterpenes (40.57%). Usually, these oils have shown relatively low antioxidant activity was expressed in IC50; especially, the essential oil of the fruits of S. terebinthifolius revealed a concentration of 3.292 ± 2.82 mg/mL. The evaluation of the insecticidal activity gave good results in the method of exposure of adults of Sitophilus oryzae to EOs by contact; thus, the fruits of Schinus molle are more active against this species of beetle than the other essential oil.
Collapse
|
42
|
Effects of Fagonia indica on Letrozole-Induced Polycystic Ovarian Syndrome (PCOS) in Young Adult Female Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1397060. [PMID: 35664938 PMCID: PMC9162856 DOI: 10.1155/2022/1397060] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022]
Abstract
Polycystic ovarian syndrome is a multidisciplinary endocrinopathy of reproductive-aged women that provokes insulin resistance, hyperandrogenism, cardiovascular problems, obesity, and menstrual complications. The present study was designed to investigate the effectiveness of ethanolic extract of Fagonia indica in letrozole-induced PCOS young adult female rats. HPLC was carried out to find the phenolic and flavonoid content of the ethanolic extract of Fagonia indica. Twenty-five female rats were taken and initially divided into two groups: group I (control group) and group II (PCOS group). PCOS was induced by letrozole given orally by gavage. Body weight was recorded weekly and vaginal cytology was analyzed daily. After induction of disease, the PCOS group is further divided into four groups (n = 5): group II (positive control with PCOS), group III (metformin 20 mg/kg treated group), group IV (ethanolic extract of Fagonia indica 500 mg/kg treated group), and group V (metformin plus Fagonia extract). At the end of experimental period, the blood sample of each rat was collected and serum was separated by centrifugation. Afterwards hormonal analysis, lipid profile and liver functioning tests were performed. Ovaries were removed and preserved for histopathological findings while the liver of each rat was stored for the determination of antioxidant potential assessment. Fagonia indica was found to possess quercetin as one of the major flavonoid phytoconstituents. The plant extract exhibited its beneficial effects by restoring hormonal balance, lipid profile, and liver functioning markers. Treatment with F. indica reduced body weight, resolved ovarian cysts, and showed positive effects on follicular growth. Treatment with plant also increased the levels of antioxidant enzymes. This study validates the potential of Fagonia indica for the amelioration of metabolic, as well as, hormonal disturbances that occurred in PCOS.
Collapse
|
43
|
Bioassay’s Directed Isolation-Structure Elucidation and Molecular Docking of Triterpenes from Persea duthiei against Biologically Important Microbial Proteins. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3839271. [PMID: 35668783 PMCID: PMC9166971 DOI: 10.1155/2022/3839271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022]
Abstract
The research work presented in this study is mainly concerned with the bioactivity-directed phytochemical and biological evaluation of Persea duthiei. Persea duthiei is a typical medicinal plant used to treat a variety of ailments such as asthma, edema, and bronchitis. Ethyl acetate, n-hexane, n-butanol, and compounds that are soluble in water were used to examine the antibacterial as well as antifungal capacities of the plant. The antibacterial activity of the soluble parts of ethyl acetate and n-hexane against Escherichia coli, Staphylococcus aureus, Salmonella typhi, and Bacillus subtilis was high, even though there was no activity against Pseudomonas aeruginosa. Likewise, the n-hexane and ethyl acetate fractions were found to have substantial efficacy against several fungal strains such as Aspergillus flavus, Aspergillus fumigates, Fusarium solani, and Aspergillus niger, but not against Candida glabrata. Among the studied fractions, the ethyl acetate soluble fraction had potent antibacterial activity against all of the tested species. This fraction was submitted to phytochemical analysis utilizing various chromatographic methods for the extraction of various pure components. As a consequence, four compounds were isolated, and their structures were elucidated using various spectroscopic methods such as IR, EIMS, HR-EIMS, 1H-NMR, 13C-NMR, NOESY, COSY, HMBC, and HMQC. Urs-12-en-3β-ol (α-amyrine) (1), Urs-12-ene-2α-3β-diol (chamaedrydiol) (2), 3β-hydroxyurs-12-en-28-aldehyde (ursolic aldehyde) (3), and 12-oleanex-3β-ol (β-amyrine) (4) were extracted. Compounds 1, 2, 3, and 4 were examined for antibacterial and antifungal activity and found to have zones of inhibition ranging from 0 to 11 mm against tested bacteria strains and percent inhibition ranging from 0 to 25 percent against fungus strains. Compounds 1 and 4 showed strong efficacy against the investigated fungal species, with a 25% inhibition rate. In the case of antibacterial activity, compounds 4 and 1 showed potent activity with zones of inhibition of 11 mm and 10 mm, respectively. Compounds 2 and 3 were observed to have nonsignificant antimicrobial activity. However, docking studies reflected the complex formation of compound 1 with beta-hydroxyacyl-ACP dehydratase HadAB and S. aureus tyrosyl-tRNA synthetase and compound 2 with topoisomerase II DNA gyrase complex, and they were reported to have antibacterial properties. Similarly, compound 4 was discovered to be well compatible with the lanosterol 14-demethylase (fungal enzyme) and is thus regarded as having antifungal capabilities. Chimera software was used to identify the binding pockets of these complexes. These results indicated that Persea duthiei is a valuable source of medicinal compounds for medication development.
Collapse
|
44
|
Ibrahim M, Nawaz S, Iqbal K, Rehman S, Ullah R, Nawaz G, Almeer R, Sayed AA, Peluso I. Plant-Derived Smoke Solution Alleviates Cellular Oxidative Stress Caused by Arsenic and Mercury by Modulating the Cellular Antioxidative Defense System in Wheat. PLANTS 2022; 11:plants11101379. [PMID: 35631804 PMCID: PMC9143333 DOI: 10.3390/plants11101379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022]
Abstract
Heavy metal stress is a significant factor in diminishing crop yield. Plant-derived smoke (PDS) has been used as a growth promoter and abiotic stress alleviator for the last two decades. Although the roles of PDS have been determined in various plants, its role in ameliorating heavy metal stress in wheat has not been reported so far. Therefore, the present work was conducted to investigate the effect of smoke solution extracted from a wild lemongrass Cymbopogon jwarancusa (C. jwarncusa) on physiological and biochemical features of wheat under arsenic (As) and mercury (Hg) stress. The results showed that higher concentrations of As and Hg pose inhibitory effects on wheat seed germination and seedling growth, including shoot/root length and shoot/root fresh weight. Photosynthetic pigments, such as chlorophyll a and b and carotenoids, were significantly decreased under As and Hg stress. Importantly, the levels of H2O2, lipid peroxidation, and TBARS were increased in wheat seedlings. The activity of antioxidant enzymes, such as CAT, was decreased by As and Hg stress, while the levels of SOD, POD, and APX antioxidant enzymes were increased in root and shoot. Interestingly, the application of PDS (2000 ppm), individually or in combination with either As or Hg stress, enhanced wheat seed germination rate, shoot/root length, and shoot/root fresh weight. However, the levels of H2O2, lipid peroxidation, and TBARS were decreased. Similarly, the levels of SOD, POD, and APX were decreased by PDS under As and Hg stress, while the level of CAT was enhanced by PDS under As and Hg stress. Interestingly, the levels of chlorophyll a and b, and total carotenoids were increased with the application of PDS under As and Hg stress. It is concluded that PDS has the capability to alleviate the phytotoxic effects of As and Hg stress in wheat by modulating the antioxidative defense system and could be an economical solution to reduce the heavy metal stress in crops.
Collapse
Affiliation(s)
- Muhammad Ibrahim
- Department of Botany, Kohat University of Science and Technology, Kohat 26000, Pakistan; (M.I.); (S.N.); (K.I.)
| | - Sadam Nawaz
- Department of Botany, Kohat University of Science and Technology, Kohat 26000, Pakistan; (M.I.); (S.N.); (K.I.)
| | - Khalid Iqbal
- Department of Botany, Kohat University of Science and Technology, Kohat 26000, Pakistan; (M.I.); (S.N.); (K.I.)
| | - Shafiq Rehman
- Department of Biology, University of Haripur, Haripur 22620, Pakistan;
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Ghazala Nawaz
- Department of Botany, Kohat University of Science and Technology, Kohat 26000, Pakistan; (M.I.); (S.N.); (K.I.)
- Correspondence:
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), 00178 Rome, Italy;
| |
Collapse
|
45
|
Medicinal Uses, Phytochemistry, Pharmacology, and Toxicology of Mentha spicata. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7990508. [PMID: 35463088 PMCID: PMC9019422 DOI: 10.1155/2022/7990508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/03/2022] [Indexed: 12/28/2022]
Abstract
Mentha spicata, also called Mentha viridis, is a medicinal plant of the Lamiaceae family characterized by its potency to synthesize and secret secondary metabolites, essentially essential oils. Different populations use the aerial parts of this plant for tea preparation, and this tisane has shown several effects, according to ethnopharmacological surveys carried out in different areas around the world. These effects are attributed to different compounds of M. spicata, in which their biological effects were recently proved experimentally. Pharmacological properties of M. spicata extracts and essential oils were investigated for different health benefits such as antioxidant, anticancer, antiparasitic, antimicrobial, and antidiabetic effects. In vitro and in vivo studies showed positives effects that could be certainly related to different bioactive compounds identified in M. spicata. Indeed, volatile compounds seem to be efficient in inhibiting different microbial agents such as bacteria, fungi, and parasites through several mechanisms. Moreover, M. spicata exhibited, according to some studies, promising antioxidant, antidiabetic, anti-inflammatory, and anticancer effects, which show its potential to be used as a source for identifying natural drugs against cellular oxidative stress and its related diseases. Importantly, toxicological investigations of M. spicata show the safety of this species at different doses and several periods of use which justify its use in traditional medicines as tisane with tea. Here, we report, explore, and highlight the data published on M. spicata concerning its botanical description and geographical distribution, its phytochemical compounds, its pharmacological properties, and its toxicological investigations of M. spicata.
Collapse
|
46
|
GC-MS Analysis, Heavy Metals, Biological, and Toxicological Evaluation of Reseda muricata and Marrubium vulgare Methanol Extracts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2284328. [PMID: 35356243 PMCID: PMC8959963 DOI: 10.1155/2022/2284328] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/08/2022] [Indexed: 01/11/2023]
Abstract
The usage of herbal remedy is growing vividly all around the world. Though, ecological contamination particularly with heavy metals carriages thoughtful problem on quality of medicinal plants and their foodstuffs. In the world, 80% of the population depend on traditional medicine, while information on the levels of heavy metal such as Zn, Mn, Cu, Cr, Pb, As, Cd, and Cr in plants utilized for making of herbal remedies is unavailable. Therefore, the purpose of this study was to assess phytochemicals, biological activities, and heavy metal analysis of Reseda muricata and Marrubium vulgare grown in different parts of Saudi Arabia. Qualitative phytochemical analysis of R. muricata and M. vulgare confirmed the presence of alkaloids, flavonoids, tannins, phenol, and saponins. Methanol extracts of both Reseda muricata and Marrubium vulgare were characterized with the help of GC-MS. Antioxidants, antimicrobial, and brine sharp lethal toxicity of the both species were also evaluated.
Collapse
|