1
|
Mizani A, Taherkhani P, Lashaki EK, Hosseini SA, Basirpour B, Dodangeh S. The global prevalence of Giardia infection in horses: A systematic review and meta-analysis. J Equine Vet Sci 2025:105596. [PMID: 40334800 DOI: 10.1016/j.jevs.2025.105596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 03/23/2025] [Accepted: 05/05/2025] [Indexed: 05/09/2025]
Abstract
Giardia duodenalis as a common zoonotic parasite is a public health problem infecting humans and a wide range of animals, including horses. This systematic review and meta-analysis was conducted to estimate the global pooled prevalence of Giardia infection in horses. Literature searches were conducted using databases including Scopus, ScienceDirect, PubMed, Web of Science and ProQuest to December 2023. A random-effect model was performed to calculate the pooled prevalence and corresponding 95% confidence interval (CI) according to the degree of heterogeneity in the included studies. Of 2661 articles, approximately 27 articles were eligible for inclusion in the meta-analysis. The pooled prevalence of giardiasis in horses using the random effect method was 8.93% (95% CI = 5.98% to 12.42%). There were significant differences between the giardiasis prevalence in different continent, countries and ages of horses. The highest and lowest prevalence of giardiasis was found in Europe (12.24%) and Africa (0 %), respectively. The prevalence of Giardia was significantly higher in horses less than 3 years of ages. Based on the diagnostic method, the highest and lowest incidence of horse Giardia infection was detected by immunological assays (9.24%) and molecular methods (7.87%), respectively. The result of our study showed that assemblage B is the most common genotype in horses followed by assemblage A and E. Due to the widespread use of horses on farms or for recreational riding, data on the source of infection, prevalence, transmission mechanisms, and genotype are crucial for the establishment of control and prevention strategies.
Collapse
Affiliation(s)
- Azadeh Mizani
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Parastoo Taherkhani
- Clinical Research Development Unit, Qods Hospital, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Elham Kia Lashaki
- Department of Parasitology and Mycology, Faculty of Medical Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Seyed Abdollah Hosseini
- Department of Parasitology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Bahareh Basirpour
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Samira Dodangeh
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
2
|
Ortega S, Figueiredo AM, Moroni B, Abarca N, Dashti A, Köster PC, Bailo B, Cano-Terriza D, Gonzálvez M, Fayos M, Oleaga Á, Martínez-Carrasco C, Velarde R, Torres RT, Ferreira E, Hipólito D, Barros T, Lino A, Robetto S, Rossi L, Muñoz-de-Mier GJ, Ávalos G, Calero-Bernal R, González-Barrio D, Sánchez S, García-Bocanegra I, Carmena D. Free-Ranging Wolves (Canis lupus) are Natural Reservoirs of Intestinal Microeukaryotes of Public Health Significance in Southwestern Europe. Zoonoses Public Health 2025; 72:269-283. [PMID: 39648658 DOI: 10.1111/zph.13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/10/2024]
Abstract
INTRODUCTION Intestinal microeukaryote parasites are major contributors to the burden of diarrhoea in humans and domestic animals, but their epidemiology in wildlife is not fully understood. We investigated the frequency, genetic diversity and zoonotic potential of protists of animal and public health significance in free-ranging grey wolf (Canis lupus) populations in south-western Europe. METHODS Individually formed faecal samples collected from necropsied wolves or scat trails in Italy (n = 47), Portugal (n = 43) and Spain (n = 225) during the period 2011-2023 were retrospectively analysed using molecular (PCR and Sanger sequencing) methods. Complementary epidemiological data were gathered when available. RESULTS Giardia duodenalis was the most frequent microeukaryote found (40.3%, 127/315; 95% CI: 34.9-46.0), followed by Cryptosporidium spp. (3.5%, 11/315; 95% CI: 1.8-6.2), Enterocytozoon bieneusi and Encephalitozoon spp. (1.6%, 5/315; 95% CI: 0.5-3.7 each). Blastocystis was not identified in any of the faecal samples analysed. Sequence analyses confirmed the presence of canine-adapted assemblage D within G. duodenalis (n = 7). Three Cryptosporidium species were identified, namely canine-adapted C. canis (n = 9), zoonotic C. parvum (n = 1) and primarily anthroponotic C.hominis (n = 1). Genotyping tools enabled the identification of subtype family XXe2 within C. canis. Among microsporidia, the canine-adapted genotype PtEb IX was identified within E. bieneusi. Two samples were confirmed as Enc. intestinalis and three more as Enc. cuniculi genotype IV. This is the first record of Enc. intestinalis and Enc. cuniculi in the grey wolf globally. CONCLUSIONS Silent carriage of intestinal microeukaryotes seems common in free-ranging grey wolves in southwestern Europe. Wolves can contribute to environmental contamination through the transmission stages (cysts, oocysts, spores) of species/genotypes potentially infective to humans. Individuals in close contact with wolf carcasses or their faecal material may be at potential risk of infection by microeukaryotic pathogens.
Collapse
Affiliation(s)
- Sheila Ortega
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Madrid, Spain
| | - Ana M Figueiredo
- CESAM and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Barbara Moroni
- Istituto Zooprofilattico di Piemonte, Liguria e Valle d'Aosta (IZSPLV), Torino, Italy
| | - Nadia Abarca
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Madrid, Spain
- Department of Veterinary Sciences, Biomedical Sciences Institute, Autonomous University of Ciudad Juárez, Chihuahua, Mexico
| | - Alejandro Dashti
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Madrid, Spain
| | - Pamela C Köster
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Madrid, Spain
- Faculty of Health Sciences, Alfonso X El Sabio University (UAX), Villanueva de la Cañada, Madrid, Spain
- Women for Africa Foundation, Madrid, Spain
| | - Begoña Bailo
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Madrid, Spain
| | - David Cano-Terriza
- Department of Animal Health, Animal Health and Zoonoses Research Group (GISAZ), UIC Zoonoses and Emerging Diseases (ENZOEM), University of Córdoba, Córdoba, Spain
- CIBER Infectious Diseases (CIBERINFEC), Health Institute Carlos III, Madrid, Spain
| | - Moisés Gonzálvez
- Department of Animal Health, Animal Health and Zoonoses Research Group (GISAZ), UIC Zoonoses and Emerging Diseases (ENZOEM), University of Córdoba, Córdoba, Spain
- Department of Animal Health, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Manena Fayos
- Centro de Recuperación de Fauna Silvestre de Cantabria, Tragsatec, Dirección General de Montes y Biodiversidad Cantabria, Gobierno de Cantabria, Santander, Spain
| | - Álvaro Oleaga
- Sociedad de Servicios del Principado de Asturias S.A. (SERPA), Gijón, Spain
| | - Carlos Martínez-Carrasco
- Department of Animal Health, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Roser Velarde
- Wildlife Ecology & Health Group (WEH) and Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirugia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Rita T Torres
- CESAM and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Eduardo Ferreira
- CESAM and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Dário Hipólito
- CESAM and Department of Biology, University of Aveiro, Aveiro, Portugal
- Veterinary Biology Unit, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Tânia Barros
- CESAM and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Ana Lino
- CESAM and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Serena Robetto
- Istituto Zooprofilattico di Piemonte, Liguria e Valle d'Aosta (IZSPLV), Torino, Italy
- Centro di Referenza Nazionale per le Malattie Degli Animali Selvatici (CeRMAS), Quart, Aosta, Italy
| | - Luca Rossi
- Department of Veterinary Sciences, University of Torino, Torino, Italy
| | - Gemma J Muñoz-de-Mier
- Faculty of Health Sciences, Alfonso X El Sabio University (UAX), Villanueva de la Cañada, Madrid, Spain
| | - Gabriel Ávalos
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Madrid, Spain
| | - Rafael Calero-Bernal
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - David González-Barrio
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Madrid, Spain
| | - Sergio Sánchez
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Madrid, Spain
| | - Ignacio García-Bocanegra
- Department of Animal Health, Animal Health and Zoonoses Research Group (GISAZ), UIC Zoonoses and Emerging Diseases (ENZOEM), University of Córdoba, Córdoba, Spain
- CIBER Infectious Diseases (CIBERINFEC), Health Institute Carlos III, Madrid, Spain
| | - David Carmena
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Madrid, Spain
- CIBER Infectious Diseases (CIBERINFEC), Health Institute Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Hatam-Nahavandi K, Ahmadpour E, Badri M, Eslahi AV, Anvari D, Carmena D, Xiao L. Global prevalence of Giardia infection in nonhuman mammalian hosts: A systematic review and meta-analysis of five million animals. PLoS Negl Trop Dis 2025; 19:e0013021. [PMID: 40273200 PMCID: PMC12052165 DOI: 10.1371/journal.pntd.0013021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/05/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Members of the Giardia genus are zoonotic protozoan parasites that cause giardiasis, a diarrheal disease of public and veterinary health concern, in a wide range of mammal hosts, including humans. METHODOLOGY We conducted a systematic review and meta-analysis to provide evidence-based data on the worldwide prevalence of Giardia infection in nonhuman mammals that can be used as scientific foundation for further studies. We searched public databases using specific keywords to identify relevant publications from 1980 to 2023. We computed the pooled prevalence estimates utilizing a random-effects meta-analysis model. Animals were stratified according to their taxonomic hierarchy, as well as ecological and biological factors. We investigated the influence of predetermined variables on prevalence estimates and heterogeneity through subgroup and meta-regression analyses. We conducted phylogenetic analysis to examine the evolutionary relationships among different assemblages of G. duodenalis. PRINCIPAL FINDINGS The study included 861 studies (1,632 datasets) involving 4,917,663 animals from 327 species, 203 genera, 67 families, and 14 orders from 89 countries. The global pooled prevalence of Giardia infection in nonhuman mammals was estimated at 13.6% (95% CI: 13.4-13.8), with the highest rates observed in Rodentia (28.0%) and Artiodactyla (17.0%). Herbivorous (17.0%), semiaquatic (29.0%), and wild (19.0%) animals showed higher prevalence rates. A decreasing prevalence trend was observed over time (β = -0.1036477, 95% CI -0.1557359 to -0.0515595, p < 0.000). Among 16,479 G. duodenalis isolates, 15,999 mono-infections belonging to eight (A-H) assemblages were identified. Assemblage E was the predominant genotype (53.7%), followed by assemblages A (18.1%), B (14.1%), D (6.4%), C (5.6%), F (1.4%), G (0.6%), and H (0.1%). The highest G. duodenalis genetic diversity was found in cattle (n = 7,651, where six assemblages including A (13.6%), B (3.1%), C (0.2%), D (0.1%), E (81.7%), and mixed infections (1.2%) were identified. CONCLUSIONS/SIGNIFICANCE Domestic mammals are significant contributors to the environmental contamination with Giardia cysts, emphasizing the importance of implementing good management practices and appropriate control measures. The widespread presence of Giardia in wildlife suggests that free-living animals can potentially act as sources of the infection to livestock and even humans through overlapping of sylvatic and domestic transmission cycles of the parasite.
Collapse
Affiliation(s)
- Kareem Hatam-Nahavandi
- Tropical and Communicable Diseases Research Center, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Ehsan Ahmadpour
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Badri
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Aida Vafae Eslahi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Davood Anvari
- Tropical and Communicable Diseases Research Center, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - David Carmena
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Spain
- CIBERINFEC, ISCIII – CIBER Infectious Diseases, Health Institute Carlos III, Madrid, Spain
| | - Lihua Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Matas-Méndez P, Ávalos G, Caballero-Gómez J, Dashti A, Castro-Scholten S, Jiménez-Martín D, González-Barrio D, Muñoz-de-Mier GJ, Bailo B, Cano-Terriza D, Mateo M, Nájera F, Xiao L, Köster PC, García-Bocanegra I, Carmena D. Detection and Molecular Diversity of Cryptosporidium spp. and Giardia duodenalis in the Endangered Iberian Lynx ( Lynx pardinus), Spain. Animals (Basel) 2024; 14:340. [PMID: 38275800 PMCID: PMC10812403 DOI: 10.3390/ani14020340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Cryptosporidium spp. and Giardia duodenalis are the main non-viral causes of diarrhoea in humans and domestic animals globally. Comparatively, much less information is currently available in free-ranging carnivore species in general and in the endangered Iberian lynx (Lynx pardinus) in particular. Cryptosporidium spp. and G. duodenalis were investigated with molecular (PCR and Sanger sequencing) methods in individual faecal DNA samples of free-ranging and captive Iberian lynxes from the main population nuclei in Spain. Overall, Cryptosporidium spp. and G. duodenalis were detected in 2.4% (6/251) and 27.9% (70/251) of the animals examined, respectively. Positive animals to at least one of them were detected in each of the analysed population nuclei. The analysis of partial ssu rRNA gene sequences revealed the presence of rodent-adapted C. alticolis (n = 1) and C. occultus (n = 1), leporid-adapted C. cuniculus (n = 2), and zoonotic C. parvum (n = 2) within Cryptosporidium, and zoonotic assemblages A (n = 5) and B (n = 3) within G. duodenalis. Subgenotyping analyses allowed for the identification of genotype VaA19 in C. cuniculus (gp60 locus) and sub-assemblages AI and BIII/BIV in G. duodenalis (gdh, bg, and tpi loci). This study represents the first molecular description of Cryptosporidium spp. and G. duodenalis in the Iberian lynx in Spain. The presence of rodent/leporid-adapted Cryptosporidium species in the surveyed animals suggests spurious infections associated to the Iberian lynx's diet. The Iberian lynx seems a suitable host for zoonotic genetic variants of Cryptosporidium (C. parvum) and G. duodenalis (assemblages A and B), although the potential risk of human transmission is regarded as limited due to light parasite burdens and suspected low excretion of infective (oo)cysts to the environment by infected animals. More research should be conducted to ascertain the true impact of these protozoan parasites in the health status of the endangered Iberian lynx.
Collapse
Affiliation(s)
- Pablo Matas-Méndez
- Faculty of Veterinary, Alfonso X El Sabio University (UAX), 28691 Villanueva de la Cañada, Spain;
| | - Gabriel Ávalos
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, 28220 Majadahonda, Spain; (G.Á.); (A.D.); (D.G.-B.); (B.B.); (D.C.)
| | - Javier Caballero-Gómez
- Department of Animal Health, Animal Health and Zoonosis Research Group (GISAZ), UIC Zoonoses and Emerging Diseases (ENZOEM), University of Córdoba, 14014 Córdoba, Spain; (S.C.-S.); (D.J.-M.); (D.C.-T.); (I.G.-B.)
- Infectious Diseases Unit, Maimonides Institute for Biomedical Research (IMIBIC), University Hospital Reina Sofía, University of Córdoba, 14004 Córdoba, Spain
- CIBERINFEC, ISCIII—CIBER Infectious Diseases, Health Institute Carlos III, 28029 Madrid, Spain
| | - Alejandro Dashti
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, 28220 Majadahonda, Spain; (G.Á.); (A.D.); (D.G.-B.); (B.B.); (D.C.)
| | - Sabrina Castro-Scholten
- Department of Animal Health, Animal Health and Zoonosis Research Group (GISAZ), UIC Zoonoses and Emerging Diseases (ENZOEM), University of Córdoba, 14014 Córdoba, Spain; (S.C.-S.); (D.J.-M.); (D.C.-T.); (I.G.-B.)
| | - Débora Jiménez-Martín
- Department of Animal Health, Animal Health and Zoonosis Research Group (GISAZ), UIC Zoonoses and Emerging Diseases (ENZOEM), University of Córdoba, 14014 Córdoba, Spain; (S.C.-S.); (D.J.-M.); (D.C.-T.); (I.G.-B.)
| | - David González-Barrio
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, 28220 Majadahonda, Spain; (G.Á.); (A.D.); (D.G.-B.); (B.B.); (D.C.)
| | - Gemma J. Muñoz-de-Mier
- Faculty of Health Sciences, Alfonso X El Sabio University (UAX), 28691 Villanueva de la Cañada, Spain;
| | - Begoña Bailo
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, 28220 Majadahonda, Spain; (G.Á.); (A.D.); (D.G.-B.); (B.B.); (D.C.)
| | - David Cano-Terriza
- Department of Animal Health, Animal Health and Zoonosis Research Group (GISAZ), UIC Zoonoses and Emerging Diseases (ENZOEM), University of Córdoba, 14014 Córdoba, Spain; (S.C.-S.); (D.J.-M.); (D.C.-T.); (I.G.-B.)
- CIBERINFEC, ISCIII—CIBER Infectious Diseases, Health Institute Carlos III, 28029 Madrid, Spain
| | - Marta Mateo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Fernando Nájera
- Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Lihua Xiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China;
| | - Pamela C. Köster
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, 28220 Majadahonda, Spain; (G.Á.); (A.D.); (D.G.-B.); (B.B.); (D.C.)
- Faculty of Health Sciences, Alfonso X El Sabio University (UAX), 28691 Villanueva de la Cañada, Spain;
- Faculty of Medicine, Alfonso X El Sabio University (UAX), 28691 Villanueva de la Cañada, Spain
| | - Ignacio García-Bocanegra
- Department of Animal Health, Animal Health and Zoonosis Research Group (GISAZ), UIC Zoonoses and Emerging Diseases (ENZOEM), University of Córdoba, 14014 Córdoba, Spain; (S.C.-S.); (D.J.-M.); (D.C.-T.); (I.G.-B.)
- CIBERINFEC, ISCIII—CIBER Infectious Diseases, Health Institute Carlos III, 28029 Madrid, Spain
| | - David Carmena
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, 28220 Majadahonda, Spain; (G.Á.); (A.D.); (D.G.-B.); (B.B.); (D.C.)
- CIBERINFEC, ISCIII—CIBER Infectious Diseases, Health Institute Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
Gomes-Gonçalves S, Santos-Silva S, Cruz AVS, Rodrigues C, Soeiro V, Barradas P, Mesquita JR. A Thorny Tale of Parasites: Screening for Enteric Protozoan Parasites in Hedgehogs from Portugal. Animals (Basel) 2024; 14:326. [PMID: 38275786 PMCID: PMC10812701 DOI: 10.3390/ani14020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Enteric protozoan parasites, such as Blastocystis sp., Balantioides coli, Cryptosporidium spp., and Giardia duodenalis, may have implications for both animal and human health.Transmitted through the fecal-oral route, these parasites cause symptoms such as diarrhea, abdominal pain, and weight loss. This study investigated the presence of these enteric protozoan parasites and genetically characterized them in hedgehogs from Portugal. A total of 110 hedgehog stool samples were collected. Molecular detection methods showed an overall occurrence of protozoa in 1.82% (2/110 95% CI: 0.22-6.41) of hedgehogs, with Blastocystis being found in one hedgehog and Cryptosporidium being found in another. No evidence for the presence of B. coli or G. duodenalis was found. This study suggests that there is a need to stay aware of hedgehogs as potential hosts of enteric protozoa. Ongoing research and surveillance efforts are recommended to explore practical prevention and control strategies. The results contribute to the limited knowledge of these parasites in Portuguese hedgehog populations and underscore their potential relevance to both veterinary and public health.
Collapse
Affiliation(s)
- Sara Gomes-Gonçalves
- Department of Biology, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Sérgio Santos-Silva
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal; (S.S.-S.); (A.V.S.C.)
| | - Andreia V. S. Cruz
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal; (S.S.-S.); (A.V.S.C.)
| | - Clarisse Rodrigues
- Centro de Recuperação e Interpretação do Ouriço—CRIDO, 4470-372 Maia, Portugal;
| | - Vanessa Soeiro
- Parque Biológico de Gaia, 4430-812 Vila Nova de Gaia, Portugal;
| | - Patrícia Barradas
- 1H-TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences, Cooperativa de Ensino Superior Politécnico e Universitário, CRL(CESPU, CRL), 4585-116 Gandra, Portugal;
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, 4050-600 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - João R. Mesquita
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal; (S.S.-S.); (A.V.S.C.)
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, 4050-600 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| |
Collapse
|