1
|
Rossi S, Tudino V, Carullo G, Butini S, Campiani G, Gemma S. Metalloenzyme Inhibitors against Zoonotic Infections: Focus on Leishmania and Schistosoma. ACS Infect Dis 2024; 10:1520-1535. [PMID: 38669567 DOI: 10.1021/acsinfecdis.4c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The term "zoonosis" denotes diseases transmissible among vertebrate animals and humans. These diseases constitute a significant public health challenge, comprising 61% of human pathogens and causing an estimated 2.7 million deaths annually. Zoonoses not only affect human health but also impact animal welfare and economic stability, particularly in low- and middle-income nations. Leishmaniasis and schistosomiasis are two important neglected tropical diseases with a high prevalence in tropical and subtropical areas, imposing significant burdens on affected regions. Schistosomiasis, particularly rampant in sub-Saharan Africa, lacks alternative treatments to praziquantel, prompting concerns regarding parasite resistance. Similarly, leishmaniasis poses challenges with unsatisfactory treatments, urging the development of novel therapeutic strategies. Effective prevention demands a One Health approach, integrating diverse disciplines to enhance diagnostics and develop safer drugs. Metalloenzymes, involved in parasite biology and critical in different biological pathways, emerged in the last few years as useful drug targets for the treatment of human diseases. Herein we have reviewed recent reports on the discovery of inhibitors of metalloenzymes associated with zoonotic diseases like histone deacetylases (HDACs), carbonic anhydrase (CA), arginase, and heme-dependent enzymes.
Collapse
Affiliation(s)
- Sara Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Valeria Tudino
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-7346, Iran
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| |
Collapse
|
2
|
Simoben CV, Babiaka SB, Moumbock AFA, Namba-Nzanguim CT, Eni DB, Medina-Franco JL, Günther S, Ntie-Kang F, Sippl W. Challenges in natural product-based drug discovery assisted with in silico-based methods. RSC Adv 2023; 13:31578-31594. [PMID: 37908659 PMCID: PMC10613855 DOI: 10.1039/d3ra06831e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
The application of traditional medicine by humans for the treatment of ailments as well as improving the quality of life far outdates recorded history. To date, a significant percentage of humans, especially those living in developing/underprivileged communities still rely on traditional medicine for primary healthcare needs. In silico-based methods have been shown to play a pivotal role in modern pharmaceutical drug discovery processes. The application of these methods in identifying natural product (NP)-based hits has been successful. This is very much observed in many research set-ups that use rationally in silico-based methods in combination with experimental validation techniques. The combination has rendered the use of in silico-based approaches even more popular and successful in the investigation of NPs. However, identifying and proposing novel NP-based hits for experimental validation comes with several challenges such as the availability of compounds by suppliers, the huge task of separating pure compounds from complex mixtures, the quantity of samples available from the natural source to be tested, not to mention the potential ecological impact if the natural source is exhausted. Because most peer-reviewed publications are biased towards "positive results", these challenges are generally not discussed in publications. In this review, we highlight and discuss these challenges. The idea is to give interested scientists in this field of research an idea of what they can come across or should be expecting as well as prompting them on how to avoid or fix these issues.
Collapse
Affiliation(s)
- Conrad V Simoben
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Structural Genomics Consortium, University of Toronto Toronto Ontario M5G 1L7 Canada
- Department of Pharmacology & Toxicology, University of Toronto Toronto Ontario M5S 1A8 Canada
| | - Smith B Babiaka
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Department of Chemistry, University of Buea Buea Cameroon
- Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen 72076 Tübingen Germany
| | - Aurélien F A Moumbock
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg Freiburg Germany
| | - Cyril T Namba-Nzanguim
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Department of Chemistry, University of Buea Buea Cameroon
| | - Donatus Bekindaka Eni
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Department of Chemistry, University of Buea Buea Cameroon
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000 Mexico City 04510 Mexico
| | - Stefan Günther
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg Freiburg Germany
| | - Fidele Ntie-Kang
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Department of Chemistry, University of Buea Buea Cameroon
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg Halle (Saale) Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg Halle (Saale) Germany
| |
Collapse
|
3
|
Abbotto E, Scarano N, Piacente F, Millo E, Cichero E, Bruzzone S. Virtual Screening in the Identification of Sirtuins’ Activity Modulators. Molecules 2022; 27:molecules27175641. [PMID: 36080416 PMCID: PMC9457788 DOI: 10.3390/molecules27175641] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Sirtuins are NAD+-dependent deac(et)ylases with different subcellular localization. The sirtuins’ family is composed of seven members, named SIRT-1 to SIRT-7. Their substrates include histones and also an increasing number of different proteins. Sirtuins regulate a wide range of different processes, ranging from transcription to metabolism to genome stability. Thus, their dysregulation has been related to the pathogenesis of different diseases. In this review, we discussed the pharmacological approaches based on sirtuins’ modulators (both inhibitors and activators) that have been attempted in in vitro and/or in in vivo experimental settings, to highlight the therapeutic potential of targeting one/more specific sirtuin isoform(s) in cancer, neurodegenerative disorders and type 2 diabetes. Extensive research has already been performed to identify SIRT-1 and -2 modulators, while compounds targeting the other sirtuins have been less studied so far. Beside sections dedicated to each sirtuin, in the present review we also included sections dedicated to pan-sirtuins’ and to parasitic sirtuins’ modulators. A special focus is dedicated to the sirtuins’ modulators identified by the use of virtual screening.
Collapse
Affiliation(s)
- Elena Abbotto
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Francesco Piacente
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
- Correspondence:
| |
Collapse
|
4
|
Binding Free Energy (BFE) Calculations and Quantitative Structure-Activity Relationship (QSAR) Analysis of Schistosoma mansoni Histone Deacetylase 8 ( smHDAC8) Inhibitors. Molecules 2021; 26:molecules26092584. [PMID: 33925246 PMCID: PMC8125515 DOI: 10.3390/molecules26092584] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 01/02/2023] Open
Abstract
Histone-modifying proteins have been identified as promising targets to treat several diseases including cancer and parasitic ailments. In silico methods have been incorporated within a variety of drug discovery programs to facilitate the identification and development of novel lead compounds. In this study, we explore the binding modes of a series of benzhydroxamates derivatives developed as histone deacetylase inhibitors of Schistosoma mansoni histone deacetylase (smHDAC) using molecular docking and binding free energy (BFE) calculations. The developed docking protocol was able to correctly reproduce the experimentally established binding modes of resolved smHDAC8–inhibitor complexes. However, as has been reported in former studies, the obtained docking scores weakly correlate with the experimentally determined activity of the studied inhibitors. Thus, the obtained docking poses were refined and rescored using the Amber software. From the computed protein–inhibitor BFE, different quantitative structure–activity relationship (QSAR) models could be developed and validated using several cross-validation techniques. Some of the generated QSAR models with good correlation could explain up to ~73% variance in activity within the studied training set molecules. The best performing models were subsequently tested on an external test set of newly designed and synthesized analogs. In vitro testing showed a good correlation between the predicted and experimentally observed IC50 values. Thus, the generated models can be considered as interesting tools for the identification of novel smHDAC8 inhibitors.
Collapse
|
5
|
Cloning, purification, and homology modeling of Histone deacetylase in Leishmania donovani. INFECTION GENETICS AND EVOLUTION 2021; 89:104738. [PMID: 33516971 DOI: 10.1016/j.meegid.2021.104738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/04/2020] [Accepted: 01/24/2021] [Indexed: 11/20/2022]
Abstract
Neglected diseases, such as leishmaniasis, are still a major health problem in poor countries. To date, there is a severe lack of effective, safe, and affordable treatment for leishmaniasis. Currently, there are very limited chemotherapeutic options, and the development of vaccines is still underway. Hence, novel therapeutic strategies need to be developed against leishmanial parasites. Histone deacetylases (HDACs), silent regulators of many critical pathways, have been validated as potential therapeutic targets in cancer and several parasitic diseases. In the present work, we have isolated and characterized biologically active Zn2+-dependent HDAC protein from leishmania that can be studied further as a potential anti-leishmanial drug target to develop new therapies against neglected diseases. The nucleotide sequence of the HDAC gene with no intervening sequence was amplified, cloned in a pET-28a vector, and later transformed into the BL21(DE3) competent E. coli bacterial cells. After transformation, the cells were cultured and induced with 0.6 mM of IPTG to express histidine-tagged HDAC protein (LD_HDAC), which was later purified using nickel affinity chromatography. The approximate protein size confirmed with the help of 10% SDS-PAGE was ~48.0 kDa. The enzymatic assay using the purified protein confirmed it as biologically active. A three dimensional structure of LD_HDAC was modeled using the crystal structure of HDAC2 protein of Homo sapiens (PDB ID: 6G3O). This protein can be utilized for the screening of Leishmania-specific HDAC inhibitors.
Collapse
|
6
|
Influence of 6-aminonicotinamide (6AN) on Leishmania promastigotes evaluated by metabolomics: Beyond the pentose phosphate pathway. Chem Biol Interact 2018; 294:167-177. [PMID: 30170107 DOI: 10.1016/j.cbi.2018.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/31/2018] [Accepted: 08/17/2018] [Indexed: 11/23/2022]
Abstract
6-Aminonicotinamide (6AN) is an antimetabolite used to inhibit the NADPH-producing pentose phosphate pathway (PPP) in many cellular systems, making them more susceptible to oxidative stress. It is converted by a NAD(P)+ glycohydrolase to 6-aminoNAD and 6-aminoNADP, causing the accumulation of PPP intermediates, due to their inability to participate in redox reactions. Some parasites like Plasmodium falciparum and Coccidia are highly sensitive but not all cell types showed a strong responsiveness to 6AN, probably due to the different targeted pathway. For instance, in bacteria the main target is the Preiss-Handler salvage pathway for NAD+ biosynthesis. We were interested in testing 6AN on the kinetoplastid protozoan Leishmania as another model to clarify the mechanisms of action of 6AN, by using metabolomics. Leishmania promastigotes, the life-cycle stage residing in the sandfly, demonstrated a three order of magnitude higher EC50 (mM) compared to P. falciparum and mammalian cells (μM), although pre-treatment with 100 μM 6AN prior to sub-lethal oxidative challenge induced a supra-additive cell kill in L. infantum. By metabolomics, we did not detect 6ANAD/P suggesting that NAD+ glycohydrolases in Leishmania may not be highly efficient in catalysing transglycosidation as happens in other microorganisms. Contrariwise to the reported effect on 6AN-treated cancer cells, we did not detect 6-phosphogluconate (6 PG) accumulation, indicating that 6ANADP cannot bind with high affinity to the PPP enzyme 6 PG dehydrogenase. By contrast, 6AN caused a profound phosphoribosylpyrophosphate (PRPP) decrease and nucleobases accumulation confirming that PPP is somehow affected. More importantly, we found a decrease in nicotinate production, evidencing the interference with the Preiss-Handler salvage pathway for NAD+ biosynthesis, most probably by inhibiting the reaction catalysed by nicotinamidase. Therefore, our combined data from Leishmania strains, though confirming the interference with PPP, also showed that 6AN impairs the Preiss-Handler pathway, underlining the importance to develop compounds targeting this last route.
Collapse
|
7
|
da Silva RA, Pereira LDM, Silveira MC, Jardim R, de Miranda AB. Mining of potential drug targets through the identification of essential and analogous enzymes in the genomes of pathogens of Glycine max, Zea mays and Solanum lycopersicum. PLoS One 2018; 13:e0197511. [PMID: 29799863 PMCID: PMC5969768 DOI: 10.1371/journal.pone.0197511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/03/2018] [Indexed: 01/19/2023] Open
Abstract
Pesticides are one of the most widely used pest and disease control measures in plant crops and their indiscriminate use poses a direct risk to the health of populations and environment around the world. As a result, there is a great need for the development of new, less toxic molecules to be employed against plant pathogens. In this work, we employed an in silico approach to study the genes coding for enzymes of the genomes of three commercially important plants, soybean (Glycine max), tomato (Solanum lycopersicum) and corn (Zea mays), as well as 15 plant pathogens (4 bacteria and 11 fungi), focusing on revealing a set of essential and non-homologous isofunctional enzymes (NISEs) that could be prioritized as drug targets. By combining sequence and structural data, we obtained an initial set of 568 cases of analogy, of which 97 were validated and further refined, revealing a subset of 29 essential enzymatic activities with a total of 119 different structural forms, most belonging to central metabolic routes, including the carbohydrate metabolism, the metabolism of amino acids, among others. Further, another subset of 26 enzymatic activities possess a tertiary structure specific for the pathogen, not present in plants, men and Apis mellifera, which may be of importance for the development of specific enzymatic inhibitors against plant diseases that are less harmful to humans and the environment.
Collapse
Affiliation(s)
| | | | | | - Rodrigo Jardim
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
8
|
Cheng-Sánchez I, García-Ruiz C, Guerrero-Vásquez GA, Sarabia F. An Olefin Cross-Metathesis Approach to Depudecin and Stereoisomeric Analogues. J Org Chem 2017; 82:4744-4757. [PMID: 28397496 DOI: 10.1021/acs.joc.7b00424] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A new total synthesis of the natural product (-)-depudecin, a unique and unexplored histone deacetylase (HDAC) inhibitor, is reported. A key feature of the synthesis is the utilization of an olefin cross-metathesis strategy, which provides for an efficient and improved access to natural depudecin, compared with our previous linear synthesis. Featured by its brevity and convergency, our developed synthetic strategy was applied to the preparation of the 10-epi derivative and the enantiomer of depudecin, which represent interesting stereoisomeric analogues for structure-activity relationship studies.
Collapse
Affiliation(s)
- Iván Cheng-Sánchez
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga , Campus de Teatinos s/n, 29071, Malaga, Spain
| | - Cristina García-Ruiz
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga , Campus de Teatinos s/n, 29071, Malaga, Spain
| | - Guillermo A Guerrero-Vásquez
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga , Campus de Teatinos s/n, 29071, Malaga, Spain
| | - Francisco Sarabia
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga , Campus de Teatinos s/n, 29071, Malaga, Spain
| |
Collapse
|
9
|
Heimburg T, Chakrabarti A, Lancelot J, Marek M, Melesina J, Hauser AT, Shaik TB, Duclaud S, Robaa D, Erdmann F, Schmidt M, Romier C, Pierce RJ, Jung M, Sippl W. Structure-Based Design and Synthesis of Novel Inhibitors Targeting HDAC8 from Schistosoma mansoni for the Treatment of Schistosomiasis. J Med Chem 2016; 59:2423-35. [PMID: 26937828 DOI: 10.1021/acs.jmedchem.5b01478] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Schistosomiasis is a major neglected parasitic disease that affects more than 265 million people worldwide and for which the control strategy consists of mass treatment with the only available drug, praziquantel. In this study, a series of new benzohydroxamates were prepared as potent inhibitors of Schistosoma mansoni histone deacetylase 8 (smHDAC8). Crystallographic analysis provided insights into the inhibition mode of smHDAC8 activity by these 3-amidobenzohydroxamates. The newly designed inhibitors were evaluated in screens for enzyme inhibitory activity against schistosome and human HDACs. Twenty-seven compounds were found to be active in the nanomolar range, and some of them showed selectivity toward smHDAC8 over the major human HDACs (1 and 6). The active benzohydroxamates were additionally screened for lethality against the schistosome larval stage using a fluorescence-based assay. Four of these showed significant dose-dependent killing of the schistosome larvae and markedly impaired egg laying of adult worm pairs maintained in culture.
Collapse
Affiliation(s)
- Tino Heimburg
- Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg , 06120 Halle/Saale, Germany
| | - Alokta Chakrabarti
- Institute of Pharmaceutical Sciences, University of Freiburg , 79104 Freiburg, Germany
| | - Julien Lancelot
- Université de Lille, CNRS, Inserm , CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Martin Marek
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UDS), CNRS, INSERM , 67404 Illkirch Cedex, France
| | - Jelena Melesina
- Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg , 06120 Halle/Saale, Germany
| | | | - Tajith B Shaik
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UDS), CNRS, INSERM , 67404 Illkirch Cedex, France
| | - Sylvie Duclaud
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UDS), CNRS, INSERM , 67404 Illkirch Cedex, France
| | - Dina Robaa
- Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg , 06120 Halle/Saale, Germany
| | - Frank Erdmann
- Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg , 06120 Halle/Saale, Germany
| | - Matthias Schmidt
- Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg , 06120 Halle/Saale, Germany
| | - Christophe Romier
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UDS), CNRS, INSERM , 67404 Illkirch Cedex, France
| | - Raymond J Pierce
- Université de Lille, CNRS, Inserm , CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg , 79104 Freiburg, Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg , 06120 Halle/Saale, Germany
| |
Collapse
|
10
|
Marek M, Shaik TB, Jung M, Sippl W, Pierce RJ, Romier C. Combattre les maladies négligées en ciblant sélectivement leurs enzymes épigénétiques : le cas de la désacétylase 8 (HDAC8) deSchistosoma mansoni. Biol Aujourdhui 2016; 210:311-320. [PMID: 28327287 DOI: 10.1051/jbio/2017001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Indexed: 11/14/2022]
Abstract
Chromatin structure in eukaryotes and its modulation by epigenetic mechanisms enable the regulation of the different nuclear processes. Perturbation of epigenetic mechanisms can thus affect the proper functioning of cells, and numerous diseases have been linked to the deregulation of the activity of epigenetic effectors in human. The reversibility of epigenetic mechanisms has allowed the development of "Epigenetic drugs" or "Epidrugs". In a chemical biology approach, we have made use of the importance of eukaryotic epigenetic mechanisms to find drug leads that specifically affect pathogens responsible for neglected diseases. Our work on histone deacetylase 8 from Schistosoma mansoni (smHDAC8) has enabled us to design drug leads that show stronger selectivity for the pathogen enzyme than for its human homologs. Specifically, we have used a structure-based approach to understand the structural specificities of the smHDAC8 enzyme compared to the human enzymes, notably human HDAC8. The structure of smHDAC8 in complex with various pan-HDAC drugs led to the design of inhibitors that make use of all the structural specificities of this enzyme and that can be stabilized in the smHDAC8 catalytic pocket through a pathogen-specific clamp. Collectively, our results provide the proof of concept that epigenetic enzymes from pathogens can be targeted to develop anti-pathogenic epidrugs in the fight against neglected diseases. Our results also provide information that can be used to develop epidrugs to fight human diseases, including cancer.
Collapse
Affiliation(s)
- Martin Marek
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UDS), CNRS, INSERM, 67404 Illkirch Cedex, France
| | - Tajith B Shaik
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UDS), CNRS, INSERM, 67404 Illkirch Cedex, France
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg, Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Raymond J Pierce
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Christophe Romier
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UDS), CNRS, INSERM, 67404 Illkirch Cedex, France
| |
Collapse
|
11
|
Carrillo AK, Guiguemde WA, Guy RK. Evaluation of histone deacetylase inhibitors (HDACi) as therapeutic leads for human African trypanosomiasis (HAT). Bioorg Med Chem 2015; 23:5151-5. [DOI: 10.1016/j.bmc.2014.12.066] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/19/2014] [Accepted: 12/28/2014] [Indexed: 01/31/2023]
|
12
|
Recombinant NAD-dependent SIR-2 protein of Leishmania donovani: immunobiochemical characterization as a potential vaccine against visceral leishmaniasis. PLoS Negl Trop Dis 2015; 9:e0003557. [PMID: 25745863 PMCID: PMC4351947 DOI: 10.1371/journal.pntd.0003557] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 01/21/2015] [Indexed: 12/02/2022] Open
Abstract
Background The development of a vaccine conferring long-lasting immunity remains a challenge against visceral leishmaniasis (VL). Immunoproteomic characterization of Leishmania donovani proteins led to the identification of a novel protein NAD+-dependent Silent Information regulatory-2 (SIR2 family or sirtuin) protein (LdSir2RP) as one of the potent immunostimulatory proteins. Proteins of the SIR2 family are characterized by a conserved catalytic domain that exerts unique NAD-dependent deacetylase activity. In the present study, an immunobiochemical characterization of LdSir2RP and further evaluation of its immunogenicity and prophylactic potential was done to assess for its possible involvement as a vaccine candidate against leishmaniasis. Methodology/Principal Findings LdSir2RP was successfully cloned, expressed and purified. The gene was present as a monomeric protein of ~45 kDa and further established by the crosslinking experiment. rLdSir2RP shown cytosolic localization in L. donovani and demonstrating NAD+-dependent deacetylase activity. Bioinformatic analysis also confirmed that LdSir2RP protein has NAD binding domain. The rLdSir2RP was further assessed for its cellular response by lymphoproliferative assay and cytokine ELISA in cured Leishmania patients and hamsters (Mesocricetus auratus) in comparison to soluble Leishmania antigen and it was observed to stimulate the production of IFN-γ, IL-12 and TNF-α significantly but not the IL-4 and IL-10. The naïve hamsters when vaccinated with rLdSir2RP alongwith BCG resisted the L. donovani challenge to the tune of ~75% and generated strong IL-12 and IFN-γ mediated Th1 type immune response thereof. The efficacy was further supported by remarkable increase in IgG2 antibody level which is indicative of Th1 type of protective response. Further, with a possible implication in vaccine design against VL, identification of potential T-cell epitopes of rLdSir2RP was done using computational approach. Conclusion/Significance The immunobiochemical characterization strongly suggest the potential of rLdSir2RP as vaccine candidate against VL and supports the concept of its being effective T-cell stimulatory antigen. Visceral Leishmaniasis (VL) is the most fatal form of leishmaniasis disease in Indian subcontinent. Through proteomic approaches, NAD-dependent Silent information regulator-2 was identified as one of the potent immunostimulatory proteins. Herein, it was first reported the cloning, expression, purification and immunobiochemical characterization of a NAD+-dependent protein from Leishmania donovani. The gene encodes a monomeric protein (LdSir2RP) of approximately 45 kDa and showed NAD+-dependent deacetylase activity. LdSir2RP was immunodetected in whole cell lysate of L. donovani and further it immunolocalized in cytoplasm of the Leishmania parasite. Recombinant protein rLdSir2RP shown immunogenicity in PBMCs of cured Leishmania patients and hamsters (Mesocricetus auratus). rLdSir2RP stimulated the production of IFN-γ, IL-12 and TNF-α but not IL-4 and IL-10. This was further supported by remarkable increase in IgG2 antibody level. It was further demonstrated that rLdSir2RP was able to provide considerable protection to hamsters against L. donovani challenge. These results supported by the increased iNOS mRNA transcript and the specific Th1-type cytokines—IFN-γ, IL-12 and TNF-α and down-regulation of IL-4, IL-10 and TGF-β. Hence, it is inferred that rLdSir2RP confer significant protection against experimental VL and considered as potential vaccine targets against visceral leishmaniasis.
Collapse
|
13
|
Thaler F, Mercurio C. Towards selective inhibition of histone deacetylase isoforms: what has been achieved, where we are and what will be next. ChemMedChem 2014; 9:523-6. [PMID: 24730063 DOI: 10.1002/cmdc.201300413] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Histone deacetylases (HDACs) are widely studied targets for the treatment of cancer and other diseases. Up to now, over twenty HDAC inhibitors have entered clinical studies and two of them have already reached the market, namely the hydroxamic acid derivative SAHA (vorinostat, Zolinza) and the cyclic depsipeptide FK228 (romidepsin, Istodax) that have been approved for the treatment of cutaneous T-cell lymphoma (CTCL). A common aspect of the first HDAC inhibitors is the absence of any particular selectivity towards specific isozymes. Some of molecules resulted to be “pan”-HDAC inhibitors, while others are class I selective. In the meantime, the knowledge of HDAC biology has continuously progressed. Key advances in the structural biology of various isozymes, reliable molecular homology models as well as suitable biological assays have provided new tools for drug discovery activities. This Minireview aims at surveying these recent developments as well as the design, synthesis and biological characterization of isoform-selective derivatives.
Collapse
|
14
|
Kannan S, Melesina J, Hauser AT, Chakrabarti A, Heimburg T, Schmidtkunz K, Walter A, Marek M, Pierce RJ, Romier C, Jung M, Sippl W. Discovery of inhibitors of Schistosoma mansoni HDAC8 by combining homology modeling, virtual screening, and in vitro validation. J Chem Inf Model 2014; 54:3005-19. [PMID: 25243797 DOI: 10.1021/ci5004653] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Schistosomiasis, caused by S. mansoni, is a tropical disease that affects over 200 million people worldwide. A novel approach for targeting eukaryotic parasites is to tackle their dynamic epigenetic machinery that is necessary for the extensive phenotypic changes during their life cycle. We recently identified S. mansoni histone deacetylase 8 (smHDAC8) as a potential target for antiparasitic therapy. Here we present results from a virtual screening campaign on smHDAC8. Besides hydroxamates, several sulfonamide-thiazole derivatives were identified by a target-based virtual screening using a homology model of smHDAC8. In vitro testing of 75 compounds identified 8 hydroxamates as potent and lead-like inhibitors of the parasitic HDAC8. Solving of the crystal structure of smHDAC8 with two of the virtual screening hits confirmed the predicted binding mode.
Collapse
Affiliation(s)
- Srinivasaraghavan Kannan
- Department of Pharmaceutical Chemistry, University Halle-Wittenberg , 06120 Halle/Saale, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ouaïssi M, Turrini O, Hubert C, Louis G, Gigot JF, Mabrut JY. Vascular resection during radical resection of pancreatic adenocarcinomas: evolution over the past 15 years. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2014; 21:623-38. [PMID: 24890182 DOI: 10.1002/jhbp.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This literature review aimed to critically analyze oncological results of vascular resection during pancreatectomy for adenocarcinoma in the light of the concept evolution of locally advanced tumors and microscopic complete resection. The literature search was conducted in PubMed and Medline for the period June 1994 to December 2012, retaining English as the language of publication. The review of 12 publications indicated that mortality and morbidity rates were not significantly different for pancreatectomy with or without venous resection (VR). Six comparative studies showed worse long-term survival in the VR group, though one meta-analysis, albeit with a significant population heterogeneity, demonstrated that the overall survival between VR and the control group was similar (12% vs. 17%). The compilation of 13 comparative studies showed a significantly lower rate of complete microscopic resection in the VR patient group compared to controls (63% vs. 77%; P = 0.001). Concerning pancreatectomy combined to arterial resection, the literature review indicated a significantly greater mortality and morbidity rate and a lower survival rate compared to pancreatic resection alone. Conflicting results concerning the long-term outcome of VR was due to the heterogeneity of the patient population. Since the only chance to cure patients of pancreatic adenocarcinoma is to obtain free resection margins, VR is a valid therapeutic option. But combined arterial resection to pancreatic resection does not appear to be recommended.
Collapse
Affiliation(s)
- Mehdi Ouaïssi
- Department of Digestive Surgery, Timone Hospital, Marseille, France
| | | | | | | | | | | |
Collapse
|
16
|
Antiangiogenic therapy in the management of brain tumors: a clinical overview. Cancer Chemother Pharmacol 2012; 70:353-63. [DOI: 10.1007/s00280-012-1926-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 07/05/2012] [Indexed: 12/15/2022]
|
17
|
Guerrant W, Mwakwari SC, Chen PC, Khan SI, Tekwani BL, Oyelere AK. A structure-activity relationship study of the antimalarial and antileishmanial activities of nonpeptide macrocyclic histone deacetylase inhibitors. ChemMedChem 2010; 5:1232-5. [PMID: 20533500 PMCID: PMC3138184 DOI: 10.1002/cmdc.201000087] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Indexed: 11/11/2022]
Affiliation(s)
- William Guerrant
- School of Chemistry and Biochemistry Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology, Atlanta, GA 30332-0400 (USA)
| | - Sandra C. Mwakwari
- School of Chemistry and Biochemistry Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology, Atlanta, GA 30332-0400 (USA)
| | - Po C. Chen
- School of Chemistry and Biochemistry Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology, Atlanta, GA 30332-0400 (USA)
| | - Shabana I. Khan
- National Center for Natural Products Research School of Pharmacy, University of Mississippi University, MS 38677-1848 (USA)
| | - Babu L. Tekwani
- National Center for Natural Products Research School of Pharmacy, University of Mississippi University, MS 38677-1848 (USA)
- Department of Pharmacology, University of Mississippi University, MS 38677-1848 (USA)
| | - Adegboyega K. Oyelere
- School of Chemistry and Biochemistry Parker H. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology, Atlanta, GA 30332-0400 (USA)
| |
Collapse
|
18
|
Thaler F, Varasi M, Colombo A, Boggio R, Munari D, Regalia N, Rozio M, Reali V, Resconi A, Mai A, Gagliardi S, Dondio G, Minucci S, Mercurio C. Synthesis and Biological Characterization of Amidopropenyl Hydroxamates as HDAC Inhibitors. ChemMedChem 2010; 5:1359-72. [DOI: 10.1002/cmdc.201000166] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Differential histone deacetylase mRNA expression patterns in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 2010; 69:573-81. [PMID: 20467334 DOI: 10.1097/nen.0b013e3181ddd404] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Histone deacetylases (HDACs) are important regulators of gene expression and cell differentiation. The HDAC inhibitors have recently been considered as potential novel neuroprotective drugs for the treatment of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). A major limitation, however, lies in the broad spectrum of action of currently available HDAC inhibitors that may cause a variety of toxic side effects. The mRNA expression levels of the HDAC isoforms HDACs 1 to 11 have previously been characterized in rat brain but have not been studied in human tissue. Using in situ hybridization histochemistry and immunohistochemistry we assessed the distribution and expression levels of HDACs 1to 11 in postmortem ALS and control brain and spinal cord specimens (n = 6 cases each) to determine alterations in the mRNA expression pattern that could provide a basis for disease-specific therapies. We found a reduction of HDAC 11 mRNA and increased HDAC 2 levels in ALS brain and spinal cord compared with controls. A more precise knowledge of the disease-related expression pattern could lead to the development of more specific pharmacotherapeutic approaches.
Collapse
|
20
|
Jagannath S, Dimopoulos MA, Lonial S. Combined proteasome and histone deacetylase inhibition: A promising synergy for patients with relapsed/refractory multiple myeloma. Leuk Res 2010; 34:1111-8. [PMID: 20472288 DOI: 10.1016/j.leukres.2010.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 04/01/2010] [Accepted: 04/04/2010] [Indexed: 11/27/2022]
Abstract
Multiple myeloma (MM) is an incurable disease characterized by the accumulation of malignant plasma cells in the bone marrow. Recently, an improved understanding of the biology of the disease has led to the development of targeted agents such as the proteasome inhibitor bortezomib and the immunomodulatory agents thalidomide and lenalidomide; however, MM remains incurable. The combination of bortezomib and an HDAC inhibitor synergistically induces MM cell apoptosis and may be of value in the treatment of patients with relapsed/refractory MM. This review examines the potential of combined proteasome and HDAC inhibition in the treatment of relapsed/refractory MM.
Collapse
Affiliation(s)
- Sundar Jagannath
- St Vincent's Catholic Medical Center, 325 W. 15th Street, New York, NY 10011-8202, USA.
| | | | | |
Collapse
|
21
|
Hymes KB. The Role of Histone Deacetylase Inhibitors in the Treatment of Patients With Cutaneous T-Cell Lymphoma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2010; 10:98-109. [DOI: 10.3816/clml.2010.n.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
He R, Chen Y, Chen Y, Ougolkov AV, Zhang JS, Savoy DN, Billadeau DD, Kozikowski AP. Synthesis and biological evaluation of triazol-4-ylphenyl-bearing histone deacetylase inhibitors as anticancer agents. J Med Chem 2010; 53:1347-56. [PMID: 20055418 PMCID: PMC2919064 DOI: 10.1021/jm901667k] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Our triazole-based histone deacetylase inhibitor (HDACI), octanedioic acid hydroxyamide[3-(1-phenyl-1H-[1,2,3]triazol-4-yl)phenyl]amide (4a), suppresses pancreatic cancer cell growth in vitro with the lowest IC(50) value of 20 nM against MiaPaca-2 cell. In this study, we continued our efforts to develop triazol-4-ylphenyl bearing hydroxamate analogues by embellishing the terminal phenyl ring of 4a with different substituents. The isoform inhibitory profile of these hydroxamate analogues was similar to those of 4a. All of these triazol-4-ylphenyl bearing hydroxamates are pan-HDACIs like SAHA. Moreover, compounds 4h and 11a were found to be very effective inhibitors of cancer cell growth in the HupT3 (IC(50) = 50 nM) and MiaPaca-2 (IC(50) = 40 nM) cancer cell lines, respectively. Compound 4a was found to reactivate the expression of CDK inhibitor proteins and to suppress pancreatic cancer cell growth in vivo. Taken together, these data further support the value of the triazol-4-ylphenyl bearing hydroxamates in identifying potential pancreatic cancer therapies.
Collapse
Affiliation(s)
- Rong He
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612
| | - Yufeng Chen
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612
| | - Yihua Chen
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612
| | - Andrei V. Ougolkov
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, 13-42 Guggenheim, 200 First Street SW, Rochester, Minnesota 55905
| | - Jin-San Zhang
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, 13-42 Guggenheim, 200 First Street SW, Rochester, Minnesota 55905
| | - Doris N. Savoy
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, 13-42 Guggenheim, 200 First Street SW, Rochester, Minnesota 55905
| | - Daniel D. Billadeau
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, 13-42 Guggenheim, 200 First Street SW, Rochester, Minnesota 55905
| | - Alan P. Kozikowski
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612
| |
Collapse
|
23
|
Patil V, Guerrant W, Chen PC, Gryder B, Benicewicz DB, Khan SI, Tekwani BL, Oyelere AK. Antimalarial and antileishmanial activities of histone deacetylase inhibitors with triazole-linked cap group. Bioorg Med Chem 2010; 18:415-25. [PMID: 19914074 PMCID: PMC2818366 DOI: 10.1016/j.bmc.2009.10.042] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 10/19/2009] [Accepted: 10/23/2009] [Indexed: 11/25/2022]
Abstract
Histone deacetylase inhibitors (HDACi) are endowed with plethora of biological functions including anti-proliferative, anti-inflammatory, anti-parasitic, and cognition-enhancing activities. Parsing the structure-activity relationship (SAR) for each disease condition is vital for long-term therapeutic applications of HDACi. We report in the present study specific cap group substitution patterns and spacer-group chain lengths that enhance the antimalarial and antileishmanial activity of aryltriazolylhydroxamates-based HDACi. We identified many compounds that are several folds selectively cytotoxic to the plasmodium parasites compared to standard HDACi. Also, a few of these compounds have antileishmanial activity that rivals that of miltefosine, the only currently available oral agent against visceral leishmaniasis. The anti-parasite properties of several of these compounds tracked well with their anti-HDAC activities. The results presented here provide further evidence on the suitability of HDAC inhibition as a viable therapeutic option to curb infections caused by apicomplexan protozoans and trypanosomatids.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Babu L. Tekwani
- To whom the correspondence should be addressed. . Phone: 404-894-4047; fax: 404-894-2291; . Phone: (662) 915-7882; Fax: (662) 915-7062
| | - Adegboyega K. Oyelere
- To whom the correspondence should be addressed. . Phone: 404-894-4047; fax: 404-894-2291; . Phone: (662) 915-7882; Fax: (662) 915-7062
| |
Collapse
|
24
|
The class I histone deacetylases of the platyhelminth parasite Schistosoma mansoni. Biochem Biophys Res Commun 2008; 377:1079-84. [PMID: 18977200 DOI: 10.1016/j.bbrc.2008.10.090] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 10/17/2008] [Indexed: 11/22/2022]
Abstract
Histone deacetylases (HDAC) form a conserved enzyme family that control gene expression via the removal of acetyl residues from histones and other proteins and are under increasing investigation as therapeutic targets, notably in cancer and parasitic diseases. To investigate the conservation of these enzymes in the platyhelminth parasite Schistosoma mansoni, we cloned and characterized three class I HDACs, orthologues of mammalian HDAC1, 3 and 8, and confirmed their identities by phylogenetic analysis. The identification of an HDAC8 orthologue showed that it is not vertebrate-specific as previously thought and insertions in its catalytic domain suggest specific enzymatic properties. SmHDAC1, 3, and 8 mRNAs are expressed at all schistosome life-cycle stages. SmHDAC1 repressed transcriptional activity in a mammalian cell line and this activity was dependent on its catalytic activity since transcription was partially restored by treatment with trichostatin A and a catalytic site mutant failed to repress transcription.
Collapse
|
25
|
Wu HY, Huang FY, Chang YC, Hsieh MC, Liao PC. Strategy for determination of in vitro protein acetylation sites by using isotope-labeled acetyl coenzyme A and liquid chromatography-mass spectrometry. Anal Chem 2008; 80:6178-89. [PMID: 18616279 DOI: 10.1021/ac800440r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Acetylation of proteins on specific lysine residues by acetyltransferase enzymes is a post-translational modification for biologically relevant regulation. In this study, we proposed a strategy to determine the in vitro acetylation sites of proteins by tracing isotope-labeled acetyl groups using mass spectrometry. Isotope-labeled and unlabeled acetyl groups transferred onto the substrates in vitro result in a specific "mass difference" that can be measured by MS analysis and utilized for localization of potential acetylated peptide signals. The identification of acetylation site is facilitated by conducting MS/MS experiments on those selected signals. Acetylation reactions of substrates were performed in the presence of acetyltransferase and equal molar of isotope-labeled acetyl coenzyme A ([(13)C2-2-D3]-acetyl-CoA) and unlabeled acetyl-CoA. After enzymatic digestion, the resulting peptide mixture was fractionated by off-line, reversed-phase high-pressure liquid chromatography and the accurate mass measurement of peptides was achieved by a quadrupole/time-of-flight mass spectrometer. Signals with 5-Da (or their multiples) mass differences and equal responses were selected out by program computation. Those potential acetylated peptide signals were subjected to MS/MS analyses for determination of acetylation sites. We have used histone H3 peptide (aa 1-20), histone H2B peptide (aa 1-21), histone H2A, and histone H2B proteins as the model compounds to demonstrate the applicability of this analytical scheme for the characterization of in vitro acetylation sites.
Collapse
Affiliation(s)
- Hsin-Yi Wu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
26
|
Respuela P, Ferella M, Rada-Iglesias A, Åslund L. Histone acetylation and methylation at sites initiating divergent polycistronic transcription in Trypanosoma cruzi. J Biol Chem 2008; 283:15884-92. [PMID: 18400752 PMCID: PMC3259629 DOI: 10.1074/jbc.m802081200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Indexed: 01/23/2023] Open
Abstract
Trypanosomes are ancient eukaryotic parasites in which the protein-coding genes, organized in large polycistronic clusters on both strands, are transcribed from as yet unidentified promoters. In an effort to reveal transcriptional initiation sites, we examined the Trypanosoma cruzi genome for histone modification patterns shown to be linked to active genes in various organisms. Here, we show that acetylated and methylated histones were found to be enriched at strand switch regions of divergent gene arrays, not at convergent clusters or intra- and intergenic regions within clusters. The modified region showed a bimodular profile with two peaks centered over the 5'-regions of the gene pair flanking the strand switch region. This pattern, which demarcates polycistronic transcription units originating from bidirectional initiation sites, is likely to be common in kinetoplastid parasites as well as in other organisms with polycistronic transcription. In contrast, no acetylation was found at promoters of the highly expressed rRNA and spliced leader genes or satellite DNA or at tested retrotransposonal elements. These results reveal, for the first time, the presence of specific epigenetic marks in T. cruzi with potential implications for transcriptional regulation; they indicate that both histone modifications and bidirectional transcription are evolutionarily conserved.
Collapse
Affiliation(s)
- Patricia Respuela
- Department of Genetics and Pathology,
Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden and the
Program for Genomics and Bioinformatics,
Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77
Stockholm, Sweden
| | - Marcela Ferella
- Department of Genetics and Pathology,
Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden and the
Program for Genomics and Bioinformatics,
Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77
Stockholm, Sweden
| | - Alvaro Rada-Iglesias
- Department of Genetics and Pathology,
Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden and the
Program for Genomics and Bioinformatics,
Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77
Stockholm, Sweden
| | - Lena Åslund
- Department of Genetics and Pathology,
Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden and the
Program for Genomics and Bioinformatics,
Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77
Stockholm, Sweden
| |
Collapse
|
27
|
Ouaïssi M, Sielezneff I, Silvestre R, Sastre B, Bernard JP, Lafontaine JS, Payan MJ, Dahan L, Pirrò N, Seitz JF, Mas E, Lombardo D, Ouaissi A. High histone deacetylase 7 (HDAC7) expression is significantly associated with adenocarcinomas of the pancreas. Ann Surg Oncol 2008; 15:2318-28. [PMID: 18506539 DOI: 10.1245/s10434-008-9940-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Accepted: 04/02/2008] [Indexed: 12/23/2022]
Abstract
BACKGROUND Alterations in HDACs gene expression have been reported in a number of human cancers. No information is available concerning the status of HDACs in pancreatic cancer tumors. The aim of the present study was to evaluate the expression levels of members of class I (HDAC1, 2,, 3), class II (HDAC4, 5, 6, and 7), and class III (SIRT1, 2, 3, 4, 5, and 6) in a set of surgically resected pancreatic tissues. METHODS Total RNA was isolated from 11 pancreatic adenocarcinomas (PA): stage 0 (n = 1), IB (n = 1), IIB (n = 6), III (n = 1), IV (n = 2), one serous cystadenoma (SC), one intraductal papillary mucinous tumor of the pancreas (IMPN), one complicating chronic pancreatitis (CP), and normal pancreas (NP) obtained during donor liver transplantation. Moreover, six other control pancreatic were included. HDACs gene expression was conducted using quantitative real-time polymerase chain reaction (qPCR). Protein expression levels were analyzed by Western blot and their localization by immunohistochemistry analyses of cancer tissues sections. RESULTS Remarkably, 9 of the 11 PA (approximately 81%) showed significant increase of HDAC7 mRNA levels. In contrast to PA samples, message for HDAC7 was reduced in CP, SC, and IMPN specimens. The Western blot analysis showed increased expression of HDAC7 protein in 9 out of 11 PA samples, in agreement with the qPCR data. Most of the PA tissue sections examined showed intense labeling in the cytoplasm when reacted against antibodies to HDAC7. CONCLUSION The data showed alteration of HDACs gene expression in pancreatic cancer. Increased expression of HDAC7 discriminates PA from other pancreatic tumors.
Collapse
Affiliation(s)
- Mehdi Ouaïssi
- Service de Chirurgie Digestive et Oncologique, Pôle d'Oncologie et Spécialité Médico-Chirurgicales, Assistance Pubique-Hôpitaux de Marseille, Hôpital Timone, 264 Rue Saint Pierre, Marseille 13000, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chen J, Du C, Kang J, Wang J. Cu2+ is required for pyrrolidine dithiocarbamate to inhibit histone acetylation and induce human leukemia cell apoptosis. Chem Biol Interact 2008; 171:26-36. [DOI: 10.1016/j.cbi.2007.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 09/11/2007] [Accepted: 09/11/2007] [Indexed: 01/13/2023]
|
29
|
Histone deacetylase inhibitors: a novel class of anti-cancer agents on its way to the market. PROGRESS IN MEDICINAL CHEMISTRY 2008; 46:205-80. [PMID: 18381127 DOI: 10.1016/s0079-6468(07)00005-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Rice KL, Hormaeche I, Licht JD. Epigenetic regulation of normal and malignant hematopoiesis. Oncogene 2007; 26:6697-714. [PMID: 17934479 DOI: 10.1038/sj.onc.1210755] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The molecular processes governing hematopoiesis involve the interplay between lineage-specific transcription factors and a series of epigenetic tags, including DNA methylation and covalent histone tail modifications, such as acetylation, methylation, phosphorylation, SUMOylation and ubiquitylation. These post-translational modifications, which collectively constitute the 'histone code', are capable of affecting chromatin structure and gene transcription and are catalysed by opposing families of enzymes, allowing the developmental potential of hematopoietic stem cells to be dynamically regulated. The essential role of these enzymes in regulating normal blood development is highlighted by the finding that members from all families of chromatin regulators are targets for dysregulation in many hematological malignancies, and that patterns of histone modification are globally affected in cancer as well as the regulatory regions of specific oncogenes and tumor suppressors. The discovery that these epigenetic marks can be reversed by compounds targeting aberrant transcription factor/co-activator/co-repressor interactions and histone-modifying activities, provides the basis for an exciting field in which the epigenome of cancer cells may be manipulated with potential therapeutic benefits.
Collapse
Affiliation(s)
- K L Rice
- Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
31
|
Le Tourneau C, Faivre S, Siu LL. Molecular targeted therapy of head and neck cancer: Review and clinical development challenges. Eur J Cancer 2007; 43:2457-66. [PMID: 17904355 DOI: 10.1016/j.ejca.2007.08.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 08/17/2007] [Indexed: 11/27/2022]
Abstract
Recently, new targets have been identified in head and neck squamous cell carcinomas (HNSCC) as playing key roles in tumour proliferation and metastases. The first target that has led to the approval of a molecularly based therapy in HNSCC has been the epidermal growth factor receptor (EGFR). Indeed, cetuximab, a monoclonal antibody directed against EGFR, has recently been approved in combination with radiation therapy in patients with locally advanced HNSCC, and in patients with platinum-refractory recurrent or metastatic (R/M) HNSCC. This review discusses novel targeted anticancer agents that do not exclusively target EGFR. The initial assessments of novel agents have typically been in patients with heavily pre-treated R/M HNSCC, with response rates and times to progression that are often disappointing. Evaluation of novel agents in the pre-operative 'window' setting, or as first-line therapy for R/M disease, may offer a more optimal understanding of their molecular and clinical effects.
Collapse
|