1
|
Allen J, Ermine CM, Lin R, Cloud GC, Shultz SR, Casillas-Espinosa PM. Proteinopathies and the Neurodegenerative Aftermath of Stroke: Potential Biomarkers and Treatment Targets. Stroke 2025; 56:1600-1611. [PMID: 40145137 DOI: 10.1161/strokeaha.124.049279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Stroke remains a predominant cause of death and long-term disability among adults worldwide. Emerging evidence suggests that proteinopathies, characterized by the aggregation and accumulation of misfolded proteins, may play a significant role in the aftermath of stroke and the progression of neurodegenerative disorders. In this review, we explore preclinical and clinical research on key proteinopathies associated with stroke, including tau, Aβ (amyloid-β), TDP-43 (TAR DNA-binding protein 43), α-synuclein, and UCH-L1 (ubiquitin C-terminal hydrolase-L1). We focus on their potential as biomarkers for recovery management and as novel treatment targets that may enhance neuronal repair and mitigate secondary neurodegeneration. The involvement of these proteinopathies in various aspects of stroke, including neuroinflammation, oxidative stress, neuronal damage, and vascular dysfunction, underscores their potential. However, further investigations are essential to validate the clinical utility of these biomarkers, elucidate the mechanisms connecting proteinopathies to poststroke neurodegeneration, and develop targeted interventions. Identifying specific protein signatures associated with stroke outcomes could facilitate the advancement of precision medicine tailored to individual patient needs, significantly enhancing the quality of life for stroke survivors.
Collapse
Affiliation(s)
- Josh Allen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia (J.A., R.L., G.C.C., S.R.S., P.M.C.-E.)
| | - Charlotte M Ermine
- The Florey Institute of Neuroscience and Mental Health (C.M.E.), The University of Melbourne, Parkville, Australia
| | - Runxuan Lin
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia (J.A., R.L., G.C.C., S.R.S., P.M.C.-E.)
| | - Geoffrey C Cloud
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia (J.A., R.L., G.C.C., S.R.S., P.M.C.-E.)
- Department of Neurology, The Alfred Hospital, Melbourne, Victoria, Australia (G.C.C., S.R.S., P.M.C.-E.)
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia (J.A., R.L., G.C.C., S.R.S., P.M.C.-E.)
- Department of Medicine, The Royal Melbourne Hospital (S.R.S., P.M.C.-E.), The University of Melbourne, Parkville, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Victoria, Australia (G.C.C., S.R.S., P.M.C.-E.)
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia (J.A., R.L., G.C.C., S.R.S., P.M.C.-E.)
- Department of Medicine, The Royal Melbourne Hospital (S.R.S., P.M.C.-E.), The University of Melbourne, Parkville, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Victoria, Australia (G.C.C., S.R.S., P.M.C.-E.)
| |
Collapse
|
2
|
Ramalingam M, Jang S, Jeong HS. Therapeutic Effects of Conditioned Medium of Neural Differentiated Human Bone Marrow-Derived Stem Cells on Rotenone-Induced Alpha-Synuclein Aggregation and Apoptosis. Stem Cells Int 2021; 2021:6658271. [PMID: 33552161 PMCID: PMC7847328 DOI: 10.1155/2021/6658271] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been used against several diseases. Their potential mainly appears from its secreted biomolecules. Human bone marrow-derived stem cells (hBMSC) displayed neuronal functional characteristics after differentiation by basic fibroblast growth factor (bFGF) and forskolin. PD is a chronic age-related neurodegenerative disease (NDD) characterized by loss of dopaminergic neurons in the substantia nigra (SN) and abnormal accumulation of α-synuclein (α-syn) aggregations. In this present study, we evaluated the therapeutic effects of neural differentiated hBMSC (NI-hBMSC) conditioned medium (NI-hBMSC-CM) to a rotenone- (ROT-) induced Parkinson's disease (PD) model in SH-SY5Y cells. NI-hBMSC-CM treatment (50% diluted) in the last 24 h of 48 h ROT (0.5 μM) toxicity showed a significant increase in cell survival. The decreased tyrosine hydroxylase (TH) expression as a hallmark of PD was increased by NI-hBMSC-CM. The Triton X-100-soluble and Triton X-100-insoluble cell lysate fractions were used in Western blotting. The oligomeric, dimeric, and monomeric phosphorylated serine129 (p-S129) α-syn and total monomeric α-syn were decreased during ROT toxicity in the Triton X-100-soluble fraction. The Triton X-100-insoluble fraction revealed that ROT toxicity significantly increased the oligomeric but decreased the dimeric and monomeric p-S129 α-syn expressions while all forms of total α-syn were increased in SH-SY5Y cells. NI-hBMSC-CM stabilized the physiological α-syn monomers and reduced aggregated insoluble p-S129 α-syn against ROT. The cytoskeletal proteins, neurofilament-H (NF-H), β3-tubulin (Tuj1), neuronal nuclei (NeuN), and synaptophysin (SYP) were significantly decreased during ROT toxicity. In addition, proapoptotic Bax was increased by ROT with decreased antiapoptotic Bcl-2 and Mcl-1 as well as proforms of caspase-9, caspase-3, caspase-7, and PARP-1. NI-hBMSC-CM ameliorated the neurotrophic protein expressions, controlled the Bax/Bcl-2 ratio, upregulated procaspases, and inactivated PARP-1. From our results, we conclude that NI-hBMSC-CM containing released biomolecules during neural differentiation employs regenerative effects on the ROT model of PD in SH-SY5Y cells.
Collapse
Affiliation(s)
- Mahesh Ramalingam
- Department of Physiology, Chonnam National University Medical School, Hwasun, Jeollanam-do 58128, Republic of Korea
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun, Jeollanam-do 58128, Republic of Korea
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun, Jeollanam-do 58128, Republic of Korea
| |
Collapse
|
3
|
Datta A, Sarmah D, Kalia K, Borah A, Wang X, Dave KR, Yavagal DR, Bhattacharya P. Advances in Studies on Stroke-Induced Secondary Neurodegeneration (SND) and Its Treatment. Curr Top Med Chem 2020; 20:1154-1168. [DOI: 10.2174/1568026620666200416090820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/23/2022]
Abstract
Background:
The occurrence of secondary neurodegeneration has exclusively been observed
after the first incidence of stroke. In humans and rodents, post-stroke secondary neurodegeneration
(SND) is an inevitable event that can lead to progressive neuronal loss at a region distant to initial infarct.
SND can lead to cognitive and motor function impairment, finally causing dementia. The exact
pathophysiology of the event is yet to be explored. It is seen that the thalami, in particular, are susceptible
to cause SND. The reason behind this is because the thalamus functioning as the relay center and is
positioned as an interlocked structure with direct synaptic signaling connection with the cortex. As SND
proceeds, accumulation of misfolded proteins and microglial activation are seen in the thalamus. This
leads to increased neuronal loss and worsening of functional and cognitive impairment.
Objective:
There is a necessity of specific interventions to prevent post-stroke SND, which are not properly
investigated to date owing to sparsely reproducible pre-clinical and clinical data. The basis of this
review is to investigate about post-stroke SND and its updated treatment approaches carefully.
Methods:
Our article presents a detailed survey of advances in studies on stroke-induced secondary neurodegeneration
(SND) and its treatment.
Results:
This article aims to put forward the pathophysiology of SND. We have also tabulated the latest
treatment approaches along with different neuroimaging systems that will be helpful for future reference
to explore.
Conclusion:
In this article, we have reviewed the available reports on SND pathophysiology, detection
techniques, and possible treatment modalities that have not been attempted to date.
Collapse
Affiliation(s)
- Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kunjan R. Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Dileep R. Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
4
|
Kobayashi J, Hasegawa T, Sugeno N, Yoshida S, Akiyama T, Fujimori K, Hatakeyama H, Miki Y, Tomiyama A, Kawata Y, Fukuda M, Kawahata I, Yamakuni T, Ezura M, Kikuchi A, Baba T, Takeda A, Kanzaki M, Wakabayashi K, Okano H, Aoki M. Extracellular α-synuclein enters dopaminergic cells by modulating flotillin-1-assisted dopamine transporter endocytosis. FASEB J 2019; 33:10240-10256. [PMID: 31211923 DOI: 10.1096/fj.201802051r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The neuropathological hallmarks of Parkinson's disease (PD) include the appearance of α-synuclein (α-SYN)-positive Lewy bodies (LBs) and the loss of catecholaminergic neurons. Thus, a potential mechanism promoting the uptake of extracellular α-SYN may exist in susceptible neurons. Of the various differentially expressed proteins, we are interested in flotillin (FLOT)-1 because this protein is highly expressed in the brainstem catecholaminergic neurons and is strikingly up-regulated in PD brains. In this study, we found that extracellular monomeric and fibrillar α-SYN can potentiate FLOT1-dopamine transporter (DAT) binding and pre-endocytic clustering of DAT on the cell surface, thereby facilitating DAT endocytosis and down-regulating its transporter activity. Moreover, we demonstrated that α-SYN itself exploited the DAT endocytic process to enter dopaminergic neuron-like cells, and both FLOT1 and DAT were found to be the components of LBs. Altogether, these findings revealed a novel role of extracellular α-SYN on cellular trafficking of DAT and may provide a rationale for the cell type-specific, functional, and pathologic alterations in PD.-Kobayashi, J., Hasegawa, T., Sugeno, N., Yoshida, S., Akiyama, T., Fujimori, K., Hatakeyama, H., Miki, Y., Tomiyama, A., Kawata, Y., Fukuda, M., Kawahata, I., Yamakuni, T., Ezura, M., Kikuchi, A., Baba, T., Takeda, A., Kanzaki, M., Wakabayashi, K., Okano, H., Aoki, M. Extracellular α-synuclein enters dopaminergic cells by modulating flotillin-1-assisted dopamine transporter endocytosis.
Collapse
Affiliation(s)
- Junpei Kobayashi
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Neurology, National Hospital Organization Yonezawa Hospital, Yonezawa, Japan
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoto Sugeno
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shun Yoshida
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Akiyama
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Koki Fujimori
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroyasu Hatakeyama
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan.,Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Yasuo Miki
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Arata Tomiyama
- Department of Neurosurgery, National Defense Medical College, Saitama, Japan
| | - Yasushi Kawata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan.,Department of Biomedical Sciences, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Ichiro Kawahata
- Department of Pharmacotherapy, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tohru Yamakuni
- Department of Pharmacotherapy, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Michinori Ezura
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akio Kikuchi
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Baba
- Department of Neurology, National Hospital Organization Sendai-Nishitaga Hospital, Sendai, Japan
| | - Atsushi Takeda
- Department of Neurology, National Hospital Organization Sendai-Nishitaga Hospital, Sendai, Japan
| | - Makoto Kanzaki
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Masashi Aoki
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
5
|
Marvian AT, Koss DJ, Aliakbari F, Morshedi D, Outeiro TF. In vitro models of synucleinopathies: informing on molecular mechanisms and protective strategies. J Neurochem 2019; 150:535-565. [PMID: 31004503 DOI: 10.1111/jnc.14707] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/05/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023]
Abstract
Alpha-synuclein (α-Syn) is a central player in Parkinson's disease (PD) and in a spectrum of neurodegenerative diseases collectively known as synucleinopathies. The protein was first associated with PD just over 20 years ago, when it was found to (i) be a major component of Lewy bodies and (ii) to be also associated with familial forms of PD. The characterization of α-Syn pathology has been achieved through postmortem studies of human brains. However, the identification of toxic mechanisms associated with α-Syn was only achieved through the use of experimental models. In vitro models are highly accessible, enable relatively rapid studies, and have been extensively employed to address α-Syn-associated neurodegeneration. Given the diversity of models used and the outcomes of the studies, a cumulative and comprehensive perspective emerges as indispensable to pave the way for further investigations. Here, we subdivided in vitro models of α-Syn pathology into three major types: (i) models simulating α-Syn fibrillization and the formation of different aggregated structures in vitro, (ii) models based on the intracellular expression of α-Syn, reporting on pathogenic conditions and cellular dysfunctions induced, and (iii) models using extracellular treatment with α-Syn aggregated species, reporting on sites of interaction and their downstream consequences. In summary, we review the underlying molecular mechanisms discovered and categorize protective strategies, in order to pave the way for future studies and the identification of effective therapeutic strategies. This article is part of the Special Issue "Synuclein".
Collapse
Affiliation(s)
- Amir Tayaranian Marvian
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - David J Koss
- Institute of Neuroscience, The Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Farhang Aliakbari
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.,Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Dina Morshedi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Tiago Fleming Outeiro
- Institute of Neuroscience, The Medical School, Newcastle University, Newcastle Upon Tyne, UK.,Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany.,University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
6
|
Wu Z, Li X, Zeng M, Qiu H, Feng H, Xu X, Yu S, Wu J. Alpha-synuclein alterations in red blood cells of peripheral blood after acute ischemic stroke. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1757-1763. [PMID: 31933994 PMCID: PMC6947123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/22/2019] [Indexed: 06/10/2023]
Abstract
Post-stroke induction of alpha-synuclein (AS), a neuronal protein implicated in the pathogenesis of Parkinson's disease (PD), has been demonstrated to induce secondary brain damage after cerebral ischemia. Therefore, understanding the expression and pathogenic modifications of AS is clinically meaningful for evaluating the prognosis of stroke. Here, 54 patients with acute ischemic stroke (AIS) and 55 controls were enrolled. Different forms of AS in red blood cells (RBCs), including hemoglobin-bound AS (Hb-AS), oligomeric AS (O-AS), and serine 129-phosphorylated AS (pS-AS), were measured using ELISA methods. Compared with controls, significantly increased levels of Hb-AS, O-AS, and pS-AS were observed in AIS patients. The levels of O-AS and pS-AS were both positively correlated with that of Hb-AS. However, no correlation was observed between O-AS and pS-AS. The levels of all three forms of AS were associated with increased risk of AIS diagnosis. Receiver operating characteristic (ROC) curves revealed that the three forms of AS yielded a moderate discriminative power (AUC ranging from 0.67 to 0.71 in discriminating AIS patients from controls, with varying sensitivity (0.41~0.61), specificity (0.78~0.90), PPV (0.73~0.81), and NPV (0.61~0.68)). These findings suggest that RBC AS can be a potential biomarker for evaluating AS changes in the brain of AIS patients.
Collapse
Affiliation(s)
- Zimu Wu
- Department of Neurology, Peking University Shenzhen HospitalShenzhen, China
| | - Xuying Li
- Department of Neurobiology, Xuanwu Hospital of Capital Medical UniversityBeijing, China
| | - Minyan Zeng
- Department of Neurology, Peking University Shenzhen HospitalShenzhen, China
| | - Hongyan Qiu
- Department of Neurology, Peking University Shenzhen HospitalShenzhen, China
| | - Haixia Feng
- Department of Neurology, Peking University Shenzhen HospitalShenzhen, China
| | - Xiaonan Xu
- Department of Neurology, Peking University Shenzhen HospitalShenzhen, China
| | - Shun Yu
- Department of Neurobiology, Xuanwu Hospital of Capital Medical UniversityBeijing, China
| | - Jun Wu
- Department of Neurology, Peking University Shenzhen HospitalShenzhen, China
| |
Collapse
|
7
|
Kim JY, Illigens BM, McCormick MP, Wang N, Gibbons CH. Alpha-Synuclein in Skin Nerve Fibers as a Biomarker for Alpha-Synucleinopathies. J Clin Neurol 2019; 15:135-142. [PMID: 30938106 PMCID: PMC6444158 DOI: 10.3988/jcn.2019.15.2.135] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/05/2022] Open
Abstract
The common pathological features of synucleinopathies are abnormal aggregates of the synaptic protein alpha-synuclein (αSN) in the cytoplasm of neurons or glia. These abnormal aggregates appear several years before the onset of clinical manifestations, and so the early detection of αSN in body fluids or peripheral tissues (e.g., cerebrospinal fluid, colonic mucosa, salivary glands, and skin) is considered a potential tool for identifying synucleinopathies. Performing a skin biopsy is a practical option because it is a relatively noninvasive, safe, and reliable method to measure αSN deposition in the peripheral nervous system. Moreover, there is growing research interest in the use of cutaneous synuclein deposition as a biomarker for synucleinopathies. The aim of this study was to interpret the current data on cutaneous αSN deposition and present the current perspectives and future prospects.
Collapse
Affiliation(s)
- Jee Young Kim
- Department of Neurology, Myongji Hospital, Hanyang University Medical Center, Goyang, Korea.
| | - Ben Mw Illigens
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michael P McCormick
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ningshan Wang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Christopher H Gibbons
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Hasegawa T, Yoshida S, Sugeno N, Kobayashi J, Aoki M. DnaJ/Hsp40 Family and Parkinson's Disease. Front Neurosci 2018; 11:743. [PMID: 29367843 PMCID: PMC5767785 DOI: 10.3389/fnins.2017.00743] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 12/20/2017] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is the second most common devastating neurodegenerative disorder after Alzheimer's disease. The precise molecular and cellular basis underlying PD still remains uncertain; however, accumulating evidence suggests that neuronal cell death is caused by a combination of environmental and genetic factors. Over the previous two decades, more than 20 genes have been identified as the cause of and/or risk for PD. Because sporadic and familial forms of PD have many similarities in clinical and neuropathological features, common molecular pathways, such as aberrant mitochondrial and protein homeostasis, are likely to exist in both conditions. Of the various genes and proteins involved in PD, the versatile DnaJ/Hsp40 co-chaperones have attracted particular attention since several genes encoding this protein family have been successively identified as the cause of the familial forms of PD/Parkinsonism. In this review, we will introduce the current knowledge regarding the integratory and modulatory effect of DnaJ/Hsp40 in various cellular functions and argue how the failure of these proteins may initiate and/or facilitate of the disease.
Collapse
Affiliation(s)
- Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shun Yoshida
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoto Sugeno
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junpei Kobayashi
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masashi Aoki
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
9
|
Poststroke Induction of α-Synuclein Mediates Ischemic Brain Damage. J Neurosci 2017; 36:7055-65. [PMID: 27358461 DOI: 10.1523/jneurosci.1241-16.2016] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/23/2016] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED α-Synuclein (α-Syn), one of the most abundant proteins in the CNS, is known to be a major player in the neurodegeneration observed in Parkinson's disease. We currently report that transient focal ischemia upregulates α-Syn protein expression and nuclear translocation in neurons of the adult rodent brain. We further show that knockdown or knock-out of α-Syn significantly decreases the infarction and promotes better neurological recovery in rodents subjected to focal ischemia. Furthermore, α-Syn knockdown significantly reduced postischemic induction of phospho-Drp1, 3-nitrotyrosine, cleaved caspase-3, and LC-3 II/I, indicating its role in modulating mitochondrial fragmentation, oxidative stress, apoptosis, and autophagy, which are known to mediate poststroke neuronal death. Transient focal ischemia also significantly upregulated serine-129 (S129) phosphorylation (pα-Syn) of α-Syn and nuclear translocation of pα-Syn. Furthermore, knock-out mice that lack PLK2 (the predominant kinase that mediates S129 phosphorylation) showed better functional recovery and smaller infarcts when subjected to transient focal ischemia, indicating a detrimental role of S129 phosphorylation of α-Syn. In conclusion, our studies indicate that α-Syn is a potential therapeutic target to minimize poststroke brain damage. SIGNIFICANCE STATEMENT Abnormal aggregation of α-synuclein (α-Syn) has been known to cause Parkinson's disease and other chronic synucleinopathies. However, even though α-Syn is linked to pathophysiological mechanisms similar to those that produce acute neurodenegerative disorders, such as stroke, the role of α-Syn in such disorder is not clear. We presently studied whether α-Syn mediates poststroke brain damage and more importantly whether preventing α-Syn expression is neuroprotective and leads to better physiological and functional outcome after stroke. Our study indicates that α-Syn is a potential therapeutic target for stroke therapy.
Collapse
|
10
|
Schafferer S, Khurana R, Refolo V, Venezia S, Sturm E, Piatti P, Hechenberger C, Hackl H, Kessler R, Willi M, Gstir R, Krogsdam A, Lusser A, Poewe W, Wenning GK, Hüttenhofer A, Stefanova N. Changes in the miRNA-mRNA Regulatory Network Precede Motor Symptoms in a Mouse Model of Multiple System Atrophy: Clinical Implications. PLoS One 2016; 11:e0150705. [PMID: 26962858 PMCID: PMC4786272 DOI: 10.1371/journal.pone.0150705] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/18/2016] [Indexed: 12/31/2022] Open
Abstract
Multiple system atrophy (MSA) is a fatal rapidly progressive α-synucleinopathy, characterized by α-synuclein accumulation in oligodendrocytes. It is accepted that the pathological α-synuclein accumulation in the brain of MSA patients plays a leading role in the disease process, but little is known about the events in the early stages of the disease. In this study we aimed to define potential roles of the miRNA-mRNA regulatory network in the early pre-motor stages of the disease, i.e., downstream of α-synuclein accumulation in oligodendroglia, as assessed in a transgenic mouse model of MSA. We investigated the expression patterns of miRNAs and their mRNA targets in substantia nigra (SN) and striatum, two brain regions that undergo neurodegeneration at a later stage in the MSA model, by microarray and RNA-seq analysis, respectively. Analysis was performed at a time point when α-synuclein accumulation was already present in oligodendrocytes at neuropathological examination, but no neuronal loss nor deficits of motor function had yet occurred. Our data provide a first evidence for the leading role of gene dysregulation associated with deficits in immune and inflammatory responses in the very early, non-symptomatic disease stages of MSA. While dysfunctional homeostasis and oxidative stress were prominent in SN in the early stages of MSA, in striatum differential gene expression in the non-symptomatic phase was linked to oligodendroglial dysfunction, disturbed protein handling, lipid metabolism, transmembrane transport and altered cell death control, respectively. A large number of putative miRNA-mRNAs interaction partners were identified in relation to the control of these processes in the MSA model. Our results support the role of early changes in the miRNA-mRNA regulatory network in the pathogenesis of MSA preceding the clinical onset of the disease. The findings thus contribute to understanding the disease process and are likely to pave the way towards identifying disease biomarkers for early diagnosis of MSA.
Collapse
Affiliation(s)
- Simon Schafferer
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, Innrain 80–82, 6020 Innsbruck, Austria
| | - Rimpi Khurana
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, Innrain 80–82, 6020 Innsbruck, Austria
| | - Violetta Refolo
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innrain 66/G2, 6020 Innsbruck, Austria
| | - Serena Venezia
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innrain 66/G2, 6020 Innsbruck, Austria
| | - Edith Sturm
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innrain 66/G2, 6020 Innsbruck, Austria
| | - Paolo Piatti
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80–82, 6020 Innsbruck, Austria
| | - Clara Hechenberger
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80–82, 6020 Innsbruck, Austria
| | - Hubert Hackl
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innrain 80–82, 6020 Innsbruck, Austria
| | - Roman Kessler
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, Innrain 80–82, 6020 Innsbruck, Austria
| | - Michaela Willi
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innrain 80–82, 6020 Innsbruck, Austria
| | - Ronald Gstir
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, Innrain 80–82, 6020 Innsbruck, Austria
| | - Anne Krogsdam
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innrain 80–82, 6020 Innsbruck, Austria
| | - Alexandra Lusser
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80–82, 6020 Innsbruck, Austria
| | - Werner Poewe
- Department of Neurology, Medical University of Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria
| | - Gregor K. Wenning
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innrain 66/G2, 6020 Innsbruck, Austria
| | - Alexander Hüttenhofer
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, Innrain 80–82, 6020 Innsbruck, Austria
- * E-mail: (NS); (AH)
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innrain 66/G2, 6020 Innsbruck, Austria
- * E-mail: (NS); (AH)
| |
Collapse
|
11
|
Hasegawa T, Kikuchi A, Takeda A. Pathogenesis of multiple system atrophy. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/ncn3.57] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takafumi Hasegawa
- Division of Neurology; Department of Neuroscience & Sensory Organs; Tohoku University Graduate School of Medicine; Sendai Miyagi Japan
| | - Akio Kikuchi
- Division of Neurology; Department of Neuroscience & Sensory Organs; Tohoku University Graduate School of Medicine; Sendai Miyagi Japan
| | - Atsushi Takeda
- Division of Neurology; Department of Neuroscience & Sensory Organs; Tohoku University Graduate School of Medicine; Sendai Miyagi Japan
| |
Collapse
|
12
|
Konno M, Hasegawa T, Baba T, Miura E, Sugeno N, Kikuchi A, Fiesel FC, Sasaki T, Aoki M, Itoyama Y, Takeda A. Suppression of dynamin GTPase decreases α-synuclein uptake by neuronal and oligodendroglial cells: a potent therapeutic target for synucleinopathy. Mol Neurodegener 2012; 7:38. [PMID: 22892036 PMCID: PMC3479026 DOI: 10.1186/1750-1326-7-38] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 08/06/2012] [Indexed: 12/25/2022] Open
Abstract
Background The intracellular deposition of misfolded proteins is a common neuropathological hallmark of most neurodegenerative disorders. Increasing evidence suggests that these pathogenic proteins may spread to neighboring cells and induce the propagation of neurodegeneration. Results In this study, we have demonstrated that α-synuclein (αSYN), a major constituent of intracellular inclusions in synucleinopathies, was taken up by neuronal and oligodendroglial cells in both a time- and concentration-dependent manner. Once incorporated, the extracellular αSYN was immediately assembled into high-molecular-weight oligomers and subsequently formed cytoplasmic inclusion bodies. Furthermore, αSYN uptake by neurons and cells of the oligodendroglial lineage was markedly decreased by the genetic suppression and pharmacological inhibition of the dynamin GTPases, suggesting the involvement of the endocytic pathway in this process. Conclusions Our findings shed light on the mode of αSYN uptake by neuronal and oligodendroglial cells and identify therapeutic strategies aimed at reducing the propagation of protein misfolding.
Collapse
Affiliation(s)
- Masatoshi Konno
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yet another role for SIRT1: reduction of α-synuclein aggregation in stressed neurons. J Neurosci 2012; 32:6413-4. [PMID: 22573663 DOI: 10.1523/jneurosci.0959-12.2012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Donmez G, Arun A, Chung CY, McLean PJ, Lindquist S, Guarente L. SIRT1 protects against α-synuclein aggregation by activating molecular chaperones. J Neurosci 2012; 32:124-32. [PMID: 22219275 PMCID: PMC3263206 DOI: 10.1523/jneurosci.3442-11.2012] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 10/24/2011] [Accepted: 10/28/2011] [Indexed: 11/21/2022] Open
Abstract
α-Synuclein is a key molecule in the pathogenesis of synucleinopathy including dementia with Lewy bodies, Parkinson's disease, and multiple system atrophy. Sirtuins are NAD(+)-dependent protein deacetylases that are highly conserved and counter aging in lower organisms. We show that the life span of a mouse model with A53T α-synuclein mutation is increased by overexpressing SIRT1 and decreased by knocking out SIRT1 in brain. Furthermore, α-synuclein aggregates are reduced in the brains of mice with SIRT1 overexpression and increased by SIRT1 deletion. We show that SIRT1 deacetylates HSF1 (heat shock factor 1) and increases HSP70 RNA and protein levels, but only in the brains of mice with A53T and SIRT1 expression. Thus, SIRT1 responds to α-synuclein aggregation-induced stress by activating molecular chaperones to protect against disease.
Collapse
Affiliation(s)
- Gizem Donmez
- Paul F. Glenn Laboratory and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Anirudh Arun
- Paul F. Glenn Laboratory and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Chee-Yeun Chung
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - Pamela J. McLean
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, and
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - Leonard Guarente
- Paul F. Glenn Laboratory and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
15
|
Hasegawa T, Konno M, Baba T, Sugeno N, Kikuchi A, Kobayashi M, Miura E, Tanaka N, Tamai K, Furukawa K, Arai H, Mori F, Wakabayashi K, Aoki M, Itoyama Y, Takeda A. The AAA-ATPase VPS4 regulates extracellular secretion and lysosomal targeting of α-synuclein. PLoS One 2011; 6:e29460. [PMID: 22216284 PMCID: PMC3245276 DOI: 10.1371/journal.pone.0029460] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 11/29/2011] [Indexed: 11/18/2022] Open
Abstract
Many neurodegenerative diseases share a common pathological feature: the deposition of amyloid-like fibrils composed of misfolded proteins. Emerging evidence suggests that these proteins may spread from cell-to-cell and encourage the propagation of neurodegeneration in a prion-like manner. Here, we demonstrated that α-synuclein (αSYN), a principal culprit for Lewy pathology in Parkinson's disease (PD), was present in endosomal compartments and detectably secreted into the extracellular milieu. Unlike prion protein, extracellular αSYN was mainly recovered in the supernatant fraction rather than in exosome-containing pellets from the neuronal culture medium and cerebrospinal fluid. Surprisingly, impaired biogenesis of multivesicular body (MVB), an organelle from which exosomes are derived, by dominant-negative mutant vacuolar protein sorting 4 (VPS4) not only interfered with lysosomal targeting of αSYN but facilitated αSYN secretion. The hypersecretion of αSYN in VPS4-defective cells was efficiently restored by the functional disruption of recycling endosome regulator Rab11a. Furthermore, both brainstem and cortical Lewy bodies in PD were found to be immunoreactive for VPS4. Thus, VPS4, a master regulator of MVB sorting, may serve as a determinant of lysosomal targeting or extracellular secretion of αSYN and thereby contribute to the intercellular propagation of Lewy pathology in PD.
Collapse
Affiliation(s)
- Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Parelkar SS, Cadena JG, Kim C, Wang Z, Sugal R, Bentley B, Moral L, Ardley HC, Schwartz LM. The Parkin-Like Human Homolog of Drosophila Ariadne-1 (HHARI) Can Induce Aggresome Formation in Mammalian Cells and Is Immunologically Detectable in Lewy Bodies. J Mol Neurosci 2011; 46:109-21. [DOI: 10.1007/s12031-011-9535-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 04/28/2011] [Indexed: 01/03/2023]
|
17
|
Hasegawa T, Baba T, Kobayashi M, Konno M, Sugeno N, Kikuchi A, Itoyama Y, Takeda A. Role of TPPP/p25 on α-synuclein-mediated oligodendroglial degeneration and the protective effect of SIRT2 inhibition in a cellular model of multiple system atrophy. Neurochem Int 2010; 57:857-66. [PMID: 20849899 DOI: 10.1016/j.neuint.2010.09.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 08/31/2010] [Accepted: 09/02/2010] [Indexed: 10/19/2022]
Abstract
Multiple system atrophy (MSA) is a progressive neurodegenerative disorder presenting variable combinations of parkinsonism, cerebellar ataxia, corticospinal and autonomic dysfunction. Alpha-synuclein (α-SYN)-immunopositive glial cytoplasmic inclusions (GCIs) represent the neuropathological hallmark of MSA, and tubulin polymerization promoting protein (TPPP)/p25 in oligodendroglia has been known as a potent stimulator of α-SYN aggregation. To gain insight into the molecular pathomechanisms of GCI formation and subsequent oligodendroglial degeneration, we ectopically expressed α-SYN and TPPP in HEK293T and oligodendroglial KG1C cell lines. Here we showed that TPPP specifically accelerated α-SYN oligomer formation and co-immunoprecipitation analysis revealed the specific interaction of TPPP and α-SYN. Moreover, phosphorylation of α-SYN at Ser-129 facilitated the TPPP-mediated α-SYN oligomerization. TPPP facilitated α-SYN-positive cytoplasmic perinuclear inclusions mimicking GCI in both cell lines; however, apoptotic cell death was only observed in KG1C cells. This apoptotic cell death was partly rescued by sirtuin 2 (SIRT2) inhibition. Together, our results provide further insight into the molecular pathogenesis of MSA and potential therapeutic approaches.
Collapse
Affiliation(s)
- Takafumi Hasegawa
- Department of Neurology, Tohoku University School of Medicine, 1-1, Seiryomachi, Aobaku, Sendai, Miyagi 980-8574, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Gasperi M, Castellano AE. Growth hormone/insulin-like growth factor I axis in neurodegenerative diseases. J Endocrinol Invest 2010; 33:587-91. [PMID: 20930497 DOI: 10.1007/bf03346653] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neurodegenerative diseases (ND) are a group of heterogeneous disorders characterized by unknown etiology, subtle onset, and progressive involvement of neuronal systems leading to degeneration and dysfunction. They represent a challenge for basic science and clinical medicine because of increasing prevalence, social cost, complex biochemistry and pathology, and lack of mechanism-based treatments. Endocrine modifications may accompany the progression of ND, due to the intimate connections between central nervous and endocrine systems. Reported data on endocrine changes in different ND have often been non-conclusive or conflicting. GH/IGF-I axis is involved in the regulation of brain growth, development, and metabolism. Dysfunctions in GH/IGF-I axis in most of ND are therefore reviewed. Whether GH deficiency, when present, may act as a contributory factor in the pathogenesis of these diseases, or might represent a consequence of it is presently unknown. A thorough effort in investigating every possible involvement of GH/IGF-I axis is warranted, in the light of future possible therapeutic strategies.
Collapse
Affiliation(s)
- M Gasperi
- Department of Health Sciences, Chair of Endocrinology, University of Molise, Campobasso, Italy.
| | | |
Collapse
|
19
|
Bayersdorfer F, Voigt A, Schneuwly S, Botella JA. Dopamine-dependent neurodegeneration in Drosophila models of familial and sporadic Parkinson's disease. Neurobiol Dis 2010; 40:113-9. [PMID: 20211259 DOI: 10.1016/j.nbd.2010.02.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 02/23/2010] [Accepted: 02/27/2010] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease has been found to be caused by both, genetic and environmental factors. Despite the diversity of causes involved, a convergent pathogenic mechanism might underlie the special vulnerability of dopaminergic neurons in different forms of Parkinsonism. In recent years, a number of reports have proposed dopamine as a common player responsible in the loss of dopaminergic neurons independent of its etiology. Using RNAi lines we were able to generate flies with drastically reduced dopamine levels in the dopaminergic neurons. Combining these flies with a chemically induced Parkinson model (rotenone) and a familial form of Parkinson (mutant alpha-synuclein) we were able to show a strong reduction of neurotoxicity and a protection of the dopaminergic neurons when cellular dopamine levels were reduced. These results show that dopamine homeostasis plays a central role for the susceptibility of dopaminergic neurons to environmental and genetic factors in in vivo models of Parkinson disease.
Collapse
Affiliation(s)
- Florian Bayersdorfer
- Institute of Zoology, Universitaetsstr. 31, University of Regensburg, D-93040 Regensburg, Germany
| | | | | | | |
Collapse
|
20
|
Zhou ZD, Kerk SY, Xiong GG, Lim TM. Dopamine auto-oxidation aggravates non-apoptotic cell death induced by over-expression of human A53T mutant alpha-synuclein in dopaminergic PC12 cells. J Neurochem 2008; 108:601-10. [PMID: 19046408 DOI: 10.1111/j.1471-4159.2008.05795.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this study, we demonstrated that transient transfection and over-expression of human mutant A53T alpha-synuclein (alpha-syn) could induce expression level- and time-dependent, non-apoptotic cell death in PC12 cells, while wild-type and mutant A30P alpha-syn could not. The non-apoptotic cell death induced by over-expression of A53T alpha-syn in PC12 cells was found to be dopamine (DA) related. It could be alleviated by nerve growth factor but not by chemicals that abrogate endoplasmic reticulum stress. Furthermore, PC12 cell death could be alleviated by N-acetyl-cysteine (NAC) as well as by L-cysteine; but not by cell permeable tyrosinase inhibitors. NAC could prevent DA auto-oxidation and tyrosinase-catalyzed DA oxidation, whereas L-cysteine could potently abrogate DA auto-oxidation but could not prevent tyrosinase-catalyzed DA oxidation. Both NAC and L-cysteine could increase the reduced and total GSH levels, and concurrently decrease the oxidized GSH level in PC12 cells. On the other hand, over-expression of human mutant A53T alpha-syn could decrease the reduced and total GSH levels, and increase the oxidized GSH level in the cells. Taken together, we concluded that auto-oxidation of endogenous DA aggravates non-apoptotic cell death induced by over-expression of human mutant A53T alpha-syn in PC12 cells.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- Department of Biological Science, National University of Singapore, Singapore, Singapore
| | | | | | | |
Collapse
|
21
|
Inhibition of alpha-synuclein fibrillization by dopamine is mediated by interactions with five C-terminal residues and with E83 in the NAC region. PLoS One 2008; 3:e3394. [PMID: 18852892 PMCID: PMC2566601 DOI: 10.1371/journal.pone.0003394] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 09/16/2008] [Indexed: 11/19/2022] Open
Abstract
The interplay between dopamine and α-synuclein (AS) plays a central role in Parkinson's disease (PD). PD results primarily from a severe and selective devastation of dopaminergic neurons in substantia nigra pars compacta. The neuropathological hallmark of the disease is the presence of intraneuronal proteinaceous inclusions known as Lewy bodies within the surviving neurons, enriched in filamentous AS. In vitro, dopamine inhibits AS fibril formation, but the molecular determinants of this inhibition remain obscure. Here we use molecular dynamic (MD) simulations to investigate the binding of dopamine and several of its derivatives onto conformers representative of an NMR ensemble of AS structures in aqueous solution. Within the limitations inherent to MD simulations of unstructured proteins, our calculations suggest that the ligands bind to the 125YEMPS129 region, consistent with experimental findings. The ligands are further stabilized by long-range electrostatic interactions with glutamate 83 (E83) in the NAC region. These results suggest that by forming these interactions with AS, dopamine may affect AS aggregation and fibrillization properties. To test this hypothesis, we investigated in vitro the effects of dopamine on the aggregation of mutants designed to alter or abolish these interactions. We found that point mutations in the 125YEMPS129 region do not affect AS aggregation, which is consistent with the fact that dopamine interacts non-specifically with this region. In contrast, and consistent with our modeling studies, the replacement of glutamate by alanine at position 83 (E83A) abolishes the ability of dopamine to inhibit AS fibrillization.
Collapse
|
22
|
Une inclinaison du tronc. Rev Med Interne 2008; 29:658-9. [DOI: 10.1016/j.revmed.2007.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 12/12/2007] [Indexed: 11/18/2022]
|
23
|
Rahimi F, Shanmugam A, Bitan G. Structure-function relationships of pre-fibrillar protein assemblies in Alzheimer's disease and related disorders. Curr Alzheimer Res 2008; 5:319-41. [PMID: 18537546 DOI: 10.2174/156720508784533358] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several neurodegenerative diseases, including Alzheimer's, Parkinson's, Huntington's and prion diseases, are characterized pathognomonically by the presence of intra- and/or extracellular lesions containing proteinaceous aggregates, and by extensive neuronal loss in selective brain regions. Related non-neuropathic systemic diseases, e.g., light-chain and senile systemic amyloidoses, and other organ-specific diseases, such as dialysis-related amyloidosis and type-2 diabetes mellitus, also are characterized by deposition of aberrantly folded, insoluble proteins. It is debated whether the hallmark pathologic lesions are causative. Substantial evidence suggests that these aggregates are the end state of aberrant protein folding whereas the actual culprits likely are transient, pre-fibrillar assemblies preceding the aggregates. In the context of neurodegenerative amyloidoses, the proteinaceous aggregates may eventuate as potentially neuroprotective sinks for the neurotoxic, oligomeric protein assemblies. The pre-fibrillar, oligomeric assemblies are believed to initiate the pathogenic mechanisms that lead to synaptic dysfunction, neuronal loss, and disease-specific regional brain atrophy. The amyloid beta-protein (Abeta), which is believed to cause Alzheimer's disease (AD), is considered an archetypal amyloidogenic protein. Intense studies have led to nominal, functional, and structural descriptions of oligomeric Abeta assemblies. However, the dynamic and metastable nature of Abeta oligomers renders their study difficult. Different results generated using different methodologies under different experimental settings further complicate this complex area of research and identification of the exact pathogenic assemblies in vivo seems daunting. Here we review structural, functional, and biological experiments used to produce and study pre-fibrillar Abeta assemblies, and highlight similar studies of proteins involved in related diseases. We discuss challenges that contemporary researchers are facing and future research prospects in this demanding yet highly important field.
Collapse
Affiliation(s)
- F Rahimi
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-7334, USA
| | | | | |
Collapse
|
24
|
Sugeno N, Takeda A, Hasegawa T, Kobayashi M, Kikuchi A, Mori F, Wakabayashi K, Itoyama Y. Serine 129 phosphorylation of alpha-synuclein induces unfolded protein response-mediated cell death. J Biol Chem 2008; 283:23179-88. [PMID: 18562315 DOI: 10.1074/jbc.m802223200] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
alpha-Synuclein is a major protein component deposited in Lewy bodies and Lewy neurites that is extensively phosphorylated at Ser(129), although its role in neuronal degeneration is still elusive. In this study, several apoptotic pathways were examined in alpha-synuclein-overexpressing SH-SY5Y cells. Following the treatment with rotenone, a mitochondrial complex I inhibitor, wild type alpha-synuclein-overexpressing cells demonstrated intracellular aggregations, which shared a number of features with Lewy bodies, although cells overexpressing the S129A mutant, in which phosphorylation at Ser(129) was blocked, showed few aggregations. In wild typealpha-synuclein cells treated with rotenone, the proportion of phosphorylated alpha-synuclein was about 1.6 times higher than that of untreated cells. Moreover, induction of unfolded protein response (UPR) markers was evident several hours before the induction of mitochondrial disruption and caspase-3 activation. Eukaryotic initiation factor 2alpha, a member of the PERK pathway family, was remarkably activated at early phases. On the other hand, the S129A mutant failed to activate UPR. Casein kinase 2 inhibitor, which decreased alpha-synuclein phosphorylation, also reduced UPR activation. The alpha-synuclein aggregations were colocalized with a marker for the endoplasmic reticulum-Golgi intermediate compartment. Taken together, it seems plausible that alpha-synuclein toxicity is dependent on the phosphorylation at Ser(129) that induces the UPRs, possibly triggered by the disturbed endoplasmic reticulum-Golgi trafficking.
Collapse
Affiliation(s)
- Naoto Sugeno
- Department of Neurology, Tohoku University School of Medicine, 1-1 Seiryomachi, Aobaku, Sendai, Miyagi 980-8574, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Suzuki K, Iseki E, Togo T, Yamaguchi A, Katsuse O, Katsuyama K, Kanzaki S, Shiozaki K, Kawanishi C, Yamashita S, Tanaka Y, Yamanaka S, Hirayasu Y. Neuronal and glial accumulation of alpha- and beta-synucleins in human lipidoses. Acta Neuropathol 2007; 114:481-9. [PMID: 17653558 DOI: 10.1007/s00401-007-0264-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 06/28/2007] [Accepted: 06/28/2007] [Indexed: 11/28/2022]
Abstract
A number of the lysosomal storage diseases that have now been characterized are associated with intra-lysosomal accumulation of lipids, caused by defective lysosomal enzymes. We have previously reported neuronal accumulation of both alpha- and beta-synucleins in brain tissue of a GM2 gangliosidosis mouse model. Although alpha-synuclein has been implicated in several neurodegenerative disorders including Parkinson's disease, dementia with Lewy bodies and multiple system atrophy, its functions remain largely unclear. In our present study, we have examined a cohort of human lipidosis cases, including Sandhoff disease, Tay-Sachs disease, metachromatic leukodystrophy, beta-galactosialidosis and adrenoleukodystrophy, for the expression of alpha- and beta-synucleins and the associated lipid storage levels. The accumulation of alpha-synuclein was found in brain tissue in not only cases of lysosomal storage diseases, but also in instances of adrenoleukodystrophy, which is a peroxisomal disease. alpha-synuclein was detected in both neurons and glial cells of patients with these two disorders, although its distribution was found to be disease-dependent. In addition, alpha-synuclein-positive neurons were also found to be NeuN-positive, whereas NeuN-negative neurons did not show any accumulation of this protein. By comparison, the accumulation of beta-synuclein was detectable only in the pons of Sandhoff disease cases. This differential accumulation of alpha- and beta-synucleins in human lipidoses may be related to functional differences between these two proteins. In addition, the accumulation of alpha-synuclein may also be a condition that is common to lysosomal storage diseases and adrenoleukodystrophies that show an enhanced expression of this protein upon the elevation of stored lipids.
Collapse
MESH Headings
- Adult
- Antigens, Nuclear/metabolism
- Brain/metabolism
- Brain/pathology
- Brain/physiopathology
- Brain Diseases, Metabolic, Inborn/metabolism
- Brain Diseases, Metabolic, Inborn/pathology
- Brain Diseases, Metabolic, Inborn/physiopathology
- Child, Preschool
- Cohort Studies
- Humans
- Lipid Metabolism/genetics
- Lipidoses/metabolism
- Lipidoses/pathology
- Lipidoses/physiopathology
- Lysosomal Storage Diseases, Nervous System/metabolism
- Lysosomal Storage Diseases, Nervous System/pathology
- Lysosomal Storage Diseases, Nervous System/physiopathology
- Male
- Middle Aged
- Nerve Tissue Proteins/metabolism
- Neuroglia/metabolism
- Neuroglia/pathology
- Neurons/metabolism
- Neurons/pathology
- Peroxisomal Disorders/metabolism
- Peroxisomal Disorders/pathology
- Peroxisomal Disorders/physiopathology
- Sandhoff Disease/metabolism
- Sandhoff Disease/pathology
- Sandhoff Disease/physiopathology
- Synucleins/analysis
- Synucleins/metabolism
- alpha-Synuclein/metabolism
- beta-Synuclein/metabolism
Collapse
Affiliation(s)
- Kyoko Suzuki
- Department of Psychiatry, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|