1
|
Hoff CA, Schmidt SS, Hackert BJ, Worley TK, Courcelle J, Courcelle CT. Events associated with DNA replication disruption are not observed in hydrogen peroxide-treated Escherichia coli. G3-GENES GENOMES GENETICS 2021; 11:6137848. [PMID: 33591320 PMCID: PMC8759817 DOI: 10.1093/g3journal/jkab044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/05/2021] [Indexed: 02/05/2023]
Abstract
UV irradiation induces pyrimidine dimers that block polymerases and disrupt the replisome. Restoring replication depends on the recF pathway proteins which process and maintain the replication fork DNA to allow the lesion to be repaired before replication resumes. Oxidative DNA lesions, such as those induced by hydrogen peroxide (H2O2), are often thought to require similar processing events, yet far less is known about how cells process oxidative damage during replication. Here we show that replication is not disrupted by H2O2-induced DNA damage in vivo. Following an initial inhibition, replication resumes in the absence of either lesion removal or RecF-processing. Restoring DNA synthesis depends on the presence of manganese in the medium, which we show is required for replication, but not repair to occur. The results demonstrate that replication is enzymatically inactivated, rather than physically disrupted by H2O2-induced DNA damage; indicate that inactivation is likely caused by oxidation of an iron-dependent replication or replication-associated protein that requires manganese to restore activity and synthesis; and address a long standing paradox as to why oxidative glycosylase mutants are defective in repair, yet not hypersensitive to H2O2. The oxygen-sensitive pausing may represent an adaptation that prevents replication from occurring under potentially lethal or mutagenic conditions.
Collapse
Affiliation(s)
- Chettar A Hoff
- Department of Biology, Portland State University, Portland, OR97201, USA
| | - Sierra S Schmidt
- Department of Biology, Portland State University, Portland, OR97201, USA
| | - Brandy J Hackert
- Department of Biology, Portland State University, Portland, OR97201, USA
| | - Travis K Worley
- Department of Biology, Portland State University, Portland, OR97201, USA
| | - Justin Courcelle
- Department of Biology, Portland State University, Portland, OR97201, USA
| | | |
Collapse
|
2
|
A Comprehensive View of Translesion Synthesis in Escherichia coli. Microbiol Mol Biol Rev 2020; 84:84/3/e00002-20. [PMID: 32554755 DOI: 10.1128/mmbr.00002-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The lesion bypass pathway, translesion synthesis (TLS), exists in essentially all organisms and is considered a pathway for postreplicative gap repair and, at the same time, for lesion tolerance. As with the saying "a trip is not over until you get back home," studying TLS only at the site of the lesion is not enough to understand the whole process of TLS. Recently, a genetic study uncovered that polymerase V (Pol V), a poorly expressed Escherichia coli TLS polymerase, is not only involved in the TLS step per se but also participates in the gap-filling reaction over several hundred nucleotides. The same study revealed that in contrast, Pol IV, another highly expressed TLS polymerase, essentially stays away from the gap-filling reaction. These observations imply fundamentally different ways these polymerases are recruited to DNA in cells. While access of Pol IV appears to be governed by mass action, efficient recruitment of Pol V involves a chaperone-like action of the RecA filament. We present a model of Pol V activation: the 3' tip of the RecA filament initially stabilizes Pol V to allow stable complex formation with a sliding β-clamp, followed by the capture of the terminal RecA monomer by Pol V, thus forming a functional Pol V complex. This activation process likely determines higher accessibility of Pol V than of Pol IV to normal DNA. Finally, we discuss the biological significance of TLS polymerases during gap-filling reactions: error-prone gap-filling synthesis may contribute as a driving force for genetic diversity, adaptive mutation, and evolution.
Collapse
|
3
|
Izzo L, Matrella S, Mella M, Benvenuto G, Vigliotta G. Escherichia coli as a Model for the Description of the Antimicrobial Mechanism of a Cationic Polymer Surface: Cellular Target and Bacterial Contrast Response. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15332-15343. [PMID: 30950609 DOI: 10.1021/acsami.9b02903] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, we use Escherichia coli as a model to investigate the antimicrobial mechanism of a film made of a copolymer based on monomethylether poly(ethylene glycol), methyl methacrylate, and 2-dimethyl(aminoethyl) methacrylate, whose surface is active towards Gram-negative and Gram-positive bacteria. The polymer contains not quaternized amino groups that can generate a charged surface by protonation when in contact with water. For this purpose, we adopted a dual strategy based on the analysis of cell damage caused by contact with the polymer surface and on the evaluation of the cell response to the surface toxic action. The lithic effect on the protoplasts of E. coli showed that the polymer surface can affect the structure of cytoplasmic membranes, while assays of calcein leakage from large unilamellar vesicles at different phospholipid compositions indicated that action on membranes does not need a functionally active cell. On the other hand, the significant increase in sensitivity to actinomycin D demonstrates that the polymer interferes also with the structure of the outer membrane, modifying its permeability. The study on gene expression, based on the analysis of the transcripts in a temporal window where the contact with the polymer is not lethal and the damage is reversible, showed that some key genes of the synthesis and maintenance of the outer membrane structure ( fabR, fadR, fabA, waaA, waaC, kdsA, pldA, and pagP), as well as regulators of cellular response to oxidative stress ( soxS), are more expressed when bacteria are exposed to the polymer surface. All together these results identified the outer membrane as the main cellular target of the antimicrobial surface and indicated a specific cellular response to damage, providing more information on the antimicrobial mechanism. In this perspective, data reported here could play a pivotal role in a microbial growth control strategy based not only on the structural improvements of the materials but also on the possibility of intervening on the cellular pathways involved in the contrast reaction to these and other polymers with similar mechanisms.
Collapse
Affiliation(s)
- Lorella Izzo
- Dipartimento di Biotecnologie e Scienze della Vita , Università degli Studi dell'Insubria , Via J.H. Dunant, 3 , 21100 Varese , Italy
| | - Simona Matrella
- Dipartimento di Chimica e Biologia "A. Zambelli" , Università degli Studi di Salerno , Via Giovanni Paolo II, 132 , 84084 Fisciano , Salerno , Italy
| | - Massimo Mella
- Dipartimento di Scienza ed Alta Tecnologia , Università degli Studi dell'Insubria , via Valleggio, 11 , 22100 Como , Italy
| | | | - Giovanni Vigliotta
- Dipartimento di Chimica e Biologia "A. Zambelli" , Università degli Studi di Salerno , Via Giovanni Paolo II, 132 , 84084 Fisciano , Salerno , Italy
| |
Collapse
|
4
|
Unosson E, Morgenstern M, Engqvist H, Welch K. In vitro antibacterial properties and UV induced response from Staphylococcus epidermidis on Ag/Ti oxide thin films. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:49. [PMID: 26758896 DOI: 10.1007/s10856-015-5662-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
Implanted materials are susceptible to bacterial colonization and biofilm formation, which can result in severe infection and lost implant function. UV induced photocatalytic disinfection on TiO2 and release of Ag(+) ions are two promising strategies to combat such events, and can be combined for improved efficiency. In the current study, a combinatorial physical vapor deposition technique was utilized to construct a gradient coating between Ag and Ti oxide, and the coating was evaluated for antibacterial properties in darkness and under UV light against Staphylococcus epidermidis. The findings revealed a potent antibacterial effect in darkness due to Ag(+) release, with near full elimination (97%) of viable bacteria and visible cell lysis on Ag dominated surfaces. The photocatalytic activity, however, was demonstrated poor due to low TiO2 crystallinity, and UV light irradiation of the coating did not contribute to the antibacterial effect. On the contrary, bacterial viability was in several instances higher after UV illumination, proposing a UV induced SOS response from the bacteria that limited the reduction rate during Ag(+) exposure. Such secondary effects should thus be considered in the development of multifunctional coatings that rely on UV activation.
Collapse
Affiliation(s)
- Erik Unosson
- Division of Applied Materials Science, Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, Box 534, 751 21, Uppsala, Sweden.
| | - Matthias Morgenstern
- Division of Applied Materials Science, Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, Box 534, 751 21, Uppsala, Sweden
| | - Håkan Engqvist
- Division of Applied Materials Science, Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, Box 534, 751 21, Uppsala, Sweden
| | - Ken Welch
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, Box 534, 751 21, Uppsala, Sweden
| |
Collapse
|
5
|
The SOS Response Master Regulator LexA Regulates the Gene Transfer Agent of Rhodobacter capsulatus and Represses Transcription of the Signal Transduction Protein CckA. J Bacteriol 2016; 198:1137-48. [PMID: 26833411 DOI: 10.1128/jb.00839-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/24/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The gene transfer agent of Rhodobacter capsulatus (RcGTA) is a genetic exchange element that combines central aspects of bacteriophage-mediated transduction and natural transformation. RcGTA particles resemble a small double-stranded DNA bacteriophage, package random ∼4-kb fragments of the producing cell genome, and are released from a subpopulation (<1%) of cells in a stationary-phase culture. RcGTA particles deliver this DNA to surrounding R. capsulatus cells, and the DNA is integrated into the recipient genome though a process that requires homologs of natural transformation genes and RecA-mediated homologous recombination. Here, we report the identification of the LexA repressor, the master regulator of the SOS response in many bacteria, as a regulator of RcGTA activity. Deletion of the lexA gene resulted in the abolition of detectable RcGTA production and an ∼10-fold reduction in recipient capability. A search for SOS box sequences in the R. capsulatus genome sequence identified a number of putative binding sites located 5' of typical SOS response coding sequences and also 5' of the RcGTA regulatory gene cckA, which encodes a hybrid histidine kinase homolog. Expression of cckA was increased >5-fold in the lexA mutant, and a lexA cckA double mutant was found to have the same phenotype as a ΔcckA single mutant in terms of RcGTA production. The data indicate that LexA is required for RcGTA production and maximal recipient capability and that the RcGTA-deficient phenotype of the lexA mutant is largely due to the overexpression of cckA. IMPORTANCE This work describes an unusual phenotype of a lexA mutant of the alphaproteobacterium Rhodobacter capsulatus in respect to the phage transduction-like genetic exchange carried out by the R. capsulatus gene transfer agent (RcGTA). Instead of the expected SOS response characteristic of prophage induction, this lexA mutation not only abolishes the production of RcGTA particles but also impairs the ability of cells to receive RcGTA-borne genes. The data show that, despite an apparent evolutionary relationship to lambdoid phages, the regulation of RcGTA gene expression differs radically.
Collapse
|
6
|
Sanchez-Alberola N, Campoy S, Barbé J, Erill I. Analysis of the SOS response of Vibrio and other bacteria with multiple chromosomes. BMC Genomics 2012; 13:58. [PMID: 22305460 PMCID: PMC3323433 DOI: 10.1186/1471-2164-13-58] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 02/03/2012] [Indexed: 12/18/2022] Open
Abstract
Background The SOS response is a well-known regulatory network present in most bacteria and aimed at addressing DNA damage. It has also been linked extensively to stress-induced mutagenesis, virulence and the emergence and dissemination of antibiotic resistance determinants. Recently, the SOS response has been shown to regulate the activity of integrases in the chromosomal superintegrons of the Vibrionaceae, which encompasses a wide range of pathogenic species harboring multiple chromosomes. Here we combine in silico and in vitro techniques to perform a comparative genomics analysis of the SOS regulon in the Vibrionaceae, and we extend the methodology to map this transcriptional network in other bacterial species harboring multiple chromosomes. Results Our analysis provides the first comprehensive description of the SOS response in a family (Vibrionaceae) that includes major human pathogens. It also identifies several previously unreported members of the SOS transcriptional network, including two proteins of unknown function. The analysis of the SOS response in other bacterial species with multiple chromosomes uncovers additional regulon members and reveals that there is a conserved core of SOS genes, and that specialized additions to this basic network take place in different phylogenetic groups. Our results also indicate that across all groups the main elements of the SOS response are always found in the large chromosome, whereas specialized additions are found in the smaller chromosomes and plasmids. Conclusions Our findings confirm that the SOS response of the Vibrionaceae is strongly linked with pathogenicity and dissemination of antibiotic resistance, and suggest that the characterization of the newly identified members of this regulon could provide key insights into the pathogenesis of Vibrio. The persistent location of key SOS genes in the large chromosome across several bacterial groups confirms that the SOS response plays an essential role in these organisms and sheds light into the mechanisms of evolution of global transcriptional networks involved in adaptability and rapid response to environmental changes, suggesting that small chromosomes may act as evolutionary test beds for the rewiring of transcriptional networks.
Collapse
Affiliation(s)
- Neus Sanchez-Alberola
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | |
Collapse
|
7
|
Gallardo-Moreno AM, Pacha-Olivenza MA, Fernández-Calderón MC, Pérez-Giraldo C, Bruque JM, González-Martín ML. Bactericidal behaviour of Ti6Al4V surfaces after exposure to UV-C light. Biomaterials 2010; 31:5159-68. [PMID: 20362330 DOI: 10.1016/j.biomaterials.2010.03.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 03/03/2010] [Indexed: 11/28/2022]
Abstract
TiO(2)-coated biomaterials that have been excited with UV irradiation have demonstrated biocidal properties in environmental applications, including drinking water decontamination. However, this procedure has not been successfully applied towards the killing of pathogens on medical titanium-based implants, mainly because of practical concerns related to irradiating the inserted biomaterial in situ. Previous researchers assumed that the photocatalysis on the TiO(2) surface during UV application causes the bactericidal effects. However, we show that a residual post-irradiation bactericidal effect exists on the surface of Ti6Al4V, not related with photocatalysis. Using a combination of staining, serial dilutions, and a biofilm assay, we show a significant and time-dependent loss in viability of different bacterial strains of Staphylococcus epidermidis and Staphylococcus aureus on the post-irradiated surface. Although the duration of this antimicrobial effect depends on the strains selected, our experiments suggest that the effect lasts at least 60 min after surface irradiation. The origin of such phenomena is discussed in terms of the physical properties of the irradiated surfaces, which include the emission of energy and changes in surfaces charge occurring during electron-hole recombination processes. The method here proposed for the preparation of antimicrobial titanium surfaces could become especially useful in total implant surgery for which the antimicrobial challenge is mainly during or shortly after surgery.
Collapse
Affiliation(s)
- Amparo M Gallardo-Moreno
- Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Extremadura, Avda de Elvas s/n, 06071 Badajoz, Spain
| | | | | | | | | | | |
Collapse
|
8
|
Al-Hadid Q, Ona K, Courcelle CT, Courcelle J. RecA433 cells are defective in recF-mediated processing of disrupted replication forks but retain recBCD-mediated functions. Mutat Res 2008; 645:19-26. [PMID: 18782580 DOI: 10.1016/j.mrfmmm.2008.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 07/14/2008] [Accepted: 08/01/2008] [Indexed: 05/26/2023]
Abstract
RecA is required for recombinational processes and cell survival following UV-induced DNA damage. recA433 is a historically important mutant allele that contains a single amino acid substitution (R243H). This mutation separates the recombination and survival functions of RecA. recA433 mutants remain proficient in recombination as measured by conjugation or transduction, but are hypersensitive to UV-induced DNA damage. The cellular functions carried out by RecA require either recF pathway proteins or recBC pathway proteins to initiate RecA-loading onto the appropriate DNA substrates. In this study, we characterized the ability of recA433 to carry out functions associated with either the recF pathway or recBC pathway. We show that several phenotypic deficiencies exhibited by recA433 mutants are similar to recF mutants but distinct from recBC mutants. In contrast to recBC mutants, recA433 and recF mutants fail to process or resume replication following disruption by UV-induced DNA damage. However, recA433 and recF mutants remain proficient in conjugational recombination and are resistant to formaldehyde-induced protein-DNA crosslinks, functions that are impaired in recBC mutants. The results are consistent with a model in which the recA433 mutation selectively impairs RecA functions associated with the RecF pathway, while retaining the ability to carry out RecBCD pathway-mediated functions. These results are discussed in the context of the recF and recBC pathways and the potential substrates utilized in each case.
Collapse
Affiliation(s)
- Qais Al-Hadid
- Department of Biology, Portland State University, Portland, OR 97207, USA.
| | | | | | | |
Collapse
|
9
|
Erill I, Campoy S, Barbé J. Aeons of distress: an evolutionary perspective on the bacterial SOS response. FEMS Microbiol Rev 2007; 31:637-56. [PMID: 17883408 DOI: 10.1111/j.1574-6976.2007.00082.x] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The SOS response of bacteria is a global regulatory network targeted at addressing DNA damage. Governed by the products of the lexA and recA genes, it co-ordinates a comprehensive response against DNA lesions and its description in Escherichia coli has stood for years as a textbook paradigm of stress-response systems in bacteria. In this paper we review the current state of research on the SOS response outside E. coli. By retracing research on the identification of multiple diverging LexA-binding motifs across the Bacteria Domain, we show how this work has led to the description of a minimum regulon core, but also of a heterogeneous collection of SOS regulatory networks that challenges many tenets of the E. coli model. We also review recent attempts at reconstructing the evolutionary history of the SOS network that have cast new light on the SOS response. Exploiting the newly gained knowledge on LexA-binding motifs and the tight association of LexA with a recently described mutagenesis cassette, these works put forward likely evolutionary scenarios for the SOS response, and we discuss their relevance on the ultimate nature of this stress-response system and the evolutionary pressures driving its evolution.
Collapse
Affiliation(s)
- Ivan Erill
- Biomedical Applications Group, Centro Nacional de Microelectrónica, Barcelona, Spain
| | | | | |
Collapse
|
10
|
Ni M, Wang SY, Li JK, Ouyang Q. Simulating the temporal modulation of inducible DNA damage response in Escherichia coli. Biophys J 2007; 93:62-73. [PMID: 17434938 PMCID: PMC1914449 DOI: 10.1529/biophysj.106.090712] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Living organisms make great efforts to maintain their genetic information integrity. However, DNA is vulnerable to many chemical or physical agents. To rescue the cell timely and effectively, the DNA damage response system must be well controlled. Recently, single cell experiments showing that after DNA damage, expression of the key DNA damage response regulatory protein oscillates with time. This phenomenon is observed both in eukaryotic and bacterial cells. We establish a model to simulate the DNA damage response (SOS response) in bacterial cell Escherichia coli. The simulation results are compared to the experimental data. Our simulation results suggest that the modulation observed in the experiment is due to the fluctuation of inducing signal, which is coupled with DNA replication. The inducing signal increases when replication is blocked by DNA damage and decreases when replication resumes.
Collapse
Affiliation(s)
- Ming Ni
- Center for Theoretical Biology and Department of Physics, Peking University, Beijing, China
| | | | | | | |
Collapse
|
11
|
Smith D, Zhong J, Matsuura M, Lambowitz AM, Belfort M. Recruitment of host functions suggests a repair pathway for late steps in group II intron retrohoming. Genes Dev 2005; 19:2477-87. [PMID: 16230535 PMCID: PMC1257402 DOI: 10.1101/gad.1345105] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Retrohoming of group II introns occurs by a mechanism in which the intron RNA reverse splices directly into one strand of a DNA target site and is then reverse transcribed by the associated intron-encoded protein. Host repair enzymes are predicted to complete this process. Here, we screened a battery of Escherichia coli mutants defective in host functions that are potentially involved in retrohoming of the Lactococcus lactis Ll.LtrB intron. We found strong (greater than threefold) effects for several enzymes, including nucleases directed against RNA and DNA, replicative and repair polymerases, and DNA ligase. A model including the presumptive roles of these enzymes in resection of DNA, degradation of the intron RNA template, traversion of RNA-DNA junctions, and second-strand DNA synthesis is described. The completion of retrohoming is viewed as a DNA repair process, with features that may be shared by other non-LTR retroelements.
Collapse
Affiliation(s)
- Dorie Smith
- Molecular Genetics Program, Wadsworth Center, New York State Department of Health and School of Public Health, State University of New York at Albany, Albany, New York 12201, USA
| | | | | | | | | |
Collapse
|
12
|
Friedman N, Vardi S, Ronen M, Alon U, Stavans J. Precise temporal modulation in the response of the SOS DNA repair network in individual bacteria. PLoS Biol 2005; 3:e238. [PMID: 15954802 PMCID: PMC1151601 DOI: 10.1371/journal.pbio.0030238] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Accepted: 05/03/2005] [Indexed: 11/18/2022] Open
Abstract
The SOS genetic network is responsible for the repair/bypass of DNA damage in bacterial cells. While the initial stages of the response have been well characterized, less is known about the dynamics of the response after induction and its shutoff. To address this, we followed the response of the SOS network in living individual Escherichia coli cells. The promoter activity (PA) of SOS genes was monitored using fluorescent protein-promoter fusions, with high temporal resolution, after ultraviolet irradiation activation. We find a temporal pattern of discrete activity peaks masked in studies of cell populations. The number of peaks increases, while their amplitude reaches saturation, as the damage level is increased. Peak timing is highly precise from cell to cell and is independent of the stage in the cell cycle at the time of damage. Evidence is presented for the involvement of the umuDC operon in maintaining the pattern of PA and its temporal precision, providing further evidence for the role UmuD cleavage plays in effecting a timed pause during the SOS response, as previously proposed. The modulations in PA we observe share many features in common with the oscillatory behavior recently observed in a mammalian DNA damage response. Our results, which reveal a hitherto unknown modulation of the SOS response, underscore the importance of carrying out dynamic measurements at the level of individual living cells in order to unravel how a natural genetic network operates at the systems level.
Collapse
Affiliation(s)
- Nir Friedman
- 1 Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot, Israel
| | - Shuki Vardi
- 1 Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot, Israel
| | - Michal Ronen
- 2 Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Uri Alon
- 1 Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot, Israel
- 2 Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Joel Stavans
- 1 Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
13
|
Nowosielska A, Wrzesiński M, Nieminuszczy J, Janion C, Grzesiuk E. Mutator activity and specificity of Escherichia coli dnaQ49 allele--effect of umuDC products. Mutat Res 2005; 572:113-22. [PMID: 15790494 DOI: 10.1016/j.mrfmmm.2004.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 12/28/2004] [Accepted: 12/30/2004] [Indexed: 10/25/2022]
Abstract
The high fidelity of DNA replication in Escherichia coli is ensured by the alpha (DnaE) and epsilon (DnaQ) subunits of DNA polymerase providing insertion fidelity, 3'-->5' exonuclease proofreading activity, and by the dam-directed mismatch repair system. dnaQ49 is a recessive allele that confers a temperature-sensitive proofreading phenotype resulting in a high rate of spontaneous mutations and chronic induction of the SOS response. The aim of this study was to analyse the mutational specificity of dnaQ49 in umuDC and DeltaumuDC backgrounds at 28 and 37 degrees C in a system developed by J.H. Miller. We confirmed that the mutator activity of dnaQ49 was negligible at 28 degrees C and fully expressed at 37 degrees C. Of the six possible base pair substitutions, only GC-->AT transitions and GC-->TA and AT-->TA transversions were appreciably increased. However, the most numerous mutations were frameshifts, -1G deletions and +1A insertions. All mutations which increased in response to dnaQ49 damage were to a various extent umuDC-dependent, especially -1G deletions. This type of mutations decreased in CC108dnaQ49DeltaumuDC to 10% of the value found in CC108dnaQ49umuDC+ and increased in the presence of plasmids producing UmuD'C or UmuDC proteins. In the recovery of dnaQ49 mutator activity the plasmid harbouring umuD'C genes was more effective than the one harbouring umuDC. Analysis of mutational specificity of pol III with defective epsilon subunit indicates that continuation of DNA replication is allowed past G:T, C:T, T:T (or C:A, G:A, A:A) mismatches but does not allow for acceptance of T:C, C:C, A:C (or A:G, G:G, T:G) (the underlined base is in the template strand).
Collapse
Affiliation(s)
- Anetta Nowosielska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warszawa, Poland
| | | | | | | | | |
Collapse
|
14
|
Abstract
Whereas most prokaryotes rely on binary fission for propagation, many species use alternative mechanisms, which include multiple offspring formation and budding, to reproduce. In some bacterial species, these eccentric reproductive strategies are essential for propagation, whereas in others the programmes are used conditionally. Although there are tantalizing images and morphological descriptions of these atypical developmental processes, none of these reproductive structures are characterized at the molecular genetic level. Now, with newly available analytical techniques, model systems to study these alternative reproductive programmes are being developed.
Collapse
Affiliation(s)
- Esther R Angert
- Department of Microbiology, Cornell University, 260A Wing Hall, Ithaca, New York 14853-5701, USA.
| |
Collapse
|
15
|
Culligan K, Tissier A, Britt A. ATR regulates a G2-phase cell-cycle checkpoint in Arabidopsis thaliana. THE PLANT CELL 2004. [PMID: 15075397 DOI: 10.1105/tpc.018903tpc.018903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ataxia telangiectasia-mutated and Rad3-related (ATR) plays a central role in cell-cycle regulation, transmitting DNA damage signals to downstream effectors of cell-cycle progression. In animals, ATR is an essential gene. Here, we find that Arabidopsis (Arabidopsis thaliana) atr-/- mutants were viable, fertile, and phenotypically wild-type in the absence of exogenous DNA damaging agents but exhibit altered expression of AtRNR1 (ribonucleotide reductase large subunit) and alteration of some damage-induced cell-cycle checkpoints. atr mutants were hypersensitive to hydroxyurea (HU), aphidicolin, and UV-B light but only mildly sensitive to gamma-radiation. G2 arrest was observed in response to gamma-irradiation in both wild-type and atr plants, albeit with slightly different kinetics, suggesting that ATR plays a secondary role in response to double-strand breaks. G2 arrest also was observed in wild-type plants in response to aphidicolin but was defective in atr mutants, resulting in compaction of nuclei and subsequent cell death. By contrast, HU-treated wild-type and atr plants arrested in G1 and showed no obvious signs of cell death. We propose that, in plants, HU invokes a novel checkpoint responsive to low levels of deoxynucleotide triphosphates. These results demonstrate the important role of cell-cycle checkpoints in the ability of plant cells to sense and cope with problems associated with DNA replication.
Collapse
Affiliation(s)
- Kevin Culligan
- Section of Plant Biology, University of California, Davis, California 95616, USA.
| | | | | |
Collapse
|
16
|
Culligan K, Tissier A, Britt A. ATR regulates a G2-phase cell-cycle checkpoint in Arabidopsis thaliana. THE PLANT CELL 2004; 16:1091-104. [PMID: 15075397 PMCID: PMC423202 DOI: 10.1105/tpc.018903] [Citation(s) in RCA: 225] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Accepted: 02/13/2004] [Indexed: 05/17/2023]
Abstract
Ataxia telangiectasia-mutated and Rad3-related (ATR) plays a central role in cell-cycle regulation, transmitting DNA damage signals to downstream effectors of cell-cycle progression. In animals, ATR is an essential gene. Here, we find that Arabidopsis (Arabidopsis thaliana) atr-/- mutants were viable, fertile, and phenotypically wild-type in the absence of exogenous DNA damaging agents but exhibit altered expression of AtRNR1 (ribonucleotide reductase large subunit) and alteration of some damage-induced cell-cycle checkpoints. atr mutants were hypersensitive to hydroxyurea (HU), aphidicolin, and UV-B light but only mildly sensitive to gamma-radiation. G2 arrest was observed in response to gamma-irradiation in both wild-type and atr plants, albeit with slightly different kinetics, suggesting that ATR plays a secondary role in response to double-strand breaks. G2 arrest also was observed in wild-type plants in response to aphidicolin but was defective in atr mutants, resulting in compaction of nuclei and subsequent cell death. By contrast, HU-treated wild-type and atr plants arrested in G1 and showed no obvious signs of cell death. We propose that, in plants, HU invokes a novel checkpoint responsive to low levels of deoxynucleotide triphosphates. These results demonstrate the important role of cell-cycle checkpoints in the ability of plant cells to sense and cope with problems associated with DNA replication.
Collapse
Affiliation(s)
- Kevin Culligan
- Section of Plant Biology, University of California, Davis, California 95616, USA.
| | | | | |
Collapse
|
17
|
Nowosielska A, Janion C, Grzesiuk E. Effect of deletion of SOS-induced polymerases, pol II, IV, and V, on spontaneous mutagenesis in Escherichia coli mutD5. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2004; 43:226-234. [PMID: 15141361 DOI: 10.1002/em.20019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The E. coli dnaQ gene encodes the epsilon subunit of DNA polymerase III (pol III) responsible for the proofreading activity of this polymerase. The mutD5 mutant of dnaQ chronically expresses the SOS response and exhibits a mutator phenotype. In this study we have constructed a set of E. coli AB1157 mutD5 derivatives deleted in genes encoding SOS-induced DNA polymerases, pol II, pol IV, and pol V, and estimated the frequency and specificity of spontaneous argE3-->Arg(+) reversion in exponentially growing and stationary-phase cells of these strains. We found that pol II exerts a profound effect on the specificity of spontaneous mutation in exponentially growing cells. Analysis of growth-dependent Arg(+) revertants in mutD5 polB(+) strains revealed that Arg(+) revertants were due to tRNA suppressor formation, whereas those in mutD5 DeltapolB strains arose by back mutation at the argE3 ochre site. In stationary-phase bacteria, Arg(+)revertants arose mainly by back mutation, regardless of whether they were proficient or deficient in pol II. Our results also indicate that in a mutD5 background, the absence of pol II led to increased frequency of Arg(+) growth-dependent revertants, whereas the lack of pol V caused its dramatic decrease, especially in mutD5 DeltaumuDC and mutD5 DeltaumuDC DeltapolB strains. In contrast, the rate of stationary-phase Arg(+)revertants increased in the absence of pol IV in the mutD5 DeltadinB strain. We postulate that the proofreading activity of pol II excises DNA lesions in exponentially growing cells, whereas pol V and pol IV are more active in stationary-phase cultures.
Collapse
Affiliation(s)
- Anetta Nowosielska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | |
Collapse
|
18
|
Abstract
DNA damage encountered during the cellular process of chromosomal replication can disrupt the replication machinery and result in mutagenesis or lethality. The RecA protein of Escherichia coli is essential for survival in this situation: It maintains the integrity of the arrested replication fork and signals the upregulation of over 40 gene products, of which most are required to restore the genomic template and to facilitate the resumption of processive replication. Although RecA was originally discovered as a gene product that was required to change the genetic information during sexual cell cycles, over three decades of research have revealed that it is also the key enzyme required to maintain the genetic information when DNA damage is encountered during replication in asexual cell cycles. In this review, we examine the significant experimental approaches that have led to our current understanding of the RecA-mediated processes that restore replication following encounters with DNA damage.
Collapse
Affiliation(s)
- Justin Courcelle
- Department of Biological Sciences, Box GY, Mississippi State University, Mississippi State, Mississippi 39762, USA.
| | | |
Collapse
|