1
|
Choppavarapu L, Fang K, Liu T, Ohihoin AG, Jin VX. Hi-C profiling in tissues reveals 3D chromatin-regulated breast tumor heterogeneity informing a looping-mediated therapeutic avenue. Cell Rep 2025; 44:115450. [PMID: 40112000 PMCID: PMC12103084 DOI: 10.1016/j.celrep.2025.115450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/12/2025] [Accepted: 02/28/2025] [Indexed: 03/22/2025] Open
Abstract
The limitations of Hi-C (high-throughput chromosome conformation capture) profiling in in vitro cell culture include failing to recapitulate disease-specific physiological properties and lacking a clinically relevant disease microenvironment. In this study, we conduct Hi-C profiling in a pilot cohort of 12 breast tissues comprising two normal tissues, five ER+ breast primary tumors, and five tamoxifen-treated recurrent tumors. We demonstrate 3D chromatin-regulated breast tumor heterogeneity and identify a looping-mediated target gene, CA2, which might play a role in driving tamoxifen resistance. The inhibition of CA2 impedes tumor growth both in vitro and in vivo and reverses chromatin looping. The disruption of CA2 looping reduces tamoxifen-resistant cancer cell proliferation, decreases CA2 mRNA and protein expression, and weakens the looping interaction. Our study thus provides mechanistic and functional insights into the role of 3D chromatin architecture in regulating breast tumor heterogeneity and informs a new looping-mediated therapeutic avenue for treating breast cancer.
Collapse
Affiliation(s)
- Lavanya Choppavarapu
- Divison of Biostatistics, Data Science Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kun Fang
- Divison of Biostatistics, Data Science Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Tianxiang Liu
- Divison of Biostatistics, Data Science Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Aigbe G Ohihoin
- Cell and Developmental Biology PhD program, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Victor X Jin
- Divison of Biostatistics, Data Science Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
2
|
Abatti LE, Gillespie ZE, Lado-Fernández P, Collado M, Mitchell JA. A role for NFIB in SOX2 downregulation and epigenome accessibility changes due to long-term estrogen treatment of breast cancer epithelial cells. Biochem Cell Biol 2025; 103:1-14. [PMID: 40009831 DOI: 10.1139/bcb-2024-0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025] Open
Abstract
Estrogen (E2) regulates the differentiation and proliferation of mammary progenitor cells by modulating the transcription of multiple genes. One of the genes that is downregulated by E2 is SOX2, a transcription factor associated with stem and progenitor cells that is overexpressed during breast tumourigenesis. To elucidate the mechanisms underlying E2-mediated SOX2 repression, we investigated epigenome and transcriptome changes following short- and long-term E2 exposure in breast cancer cells. We found that short-term E2 exposure reduces chromatin accessibility at the downstream SOX2 SRR134 enhancer, decreasing SOX2 expression. In contrast, long-term E2 exposure completely represses SOX2 transcription while maintaining accessibility at the SRR124-134 enhancer cluster, keeping it poised for reactivation. This repression was accompanied by widespread epigenome and transcriptome changes associated with commitment towards a more differentiated and less invasive luminal phenotype. Finally, we identified a role for the transcription factor NFIB in this process, suggesting it collaborates with the estrogen receptor to mediate SOX2 repression and genome-wide epigenome accessibility changes.
Collapse
Affiliation(s)
- Luis E Abatti
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Zoe E Gillespie
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Patricia Lado-Fernández
- Laboratory of Cell Senescence, Cancer and Aging, Health Research Institute of Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
- Department of Physiology and Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Collado
- Laboratory of Cell Senescence, Cancer and Aging, Health Research Institute of Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
- Department of Physiology and Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Choppavarapu L, Fang K, Liu T, Jin VX. Hi-C profiling in tissues reveals 3D chromatin-regulated breast tumor heterogeneity and tumor-specific looping-mediated biological pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584872. [PMID: 38559097 PMCID: PMC10979939 DOI: 10.1101/2024.03.13.584872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Current knowledge in three-dimensional (3D) chromatin regulation in normal and disease states was mostly accumulated through Hi-C profiling in in vitro cell culture system. The limitations include failing to recapitulate disease-specific physiological properties and often lacking clinically relevant disease microenvironment. In this study, we conduct tissue-specific Hi-C profiling in a pilot cohort of 12 breast tissues comprising of two normal tissues (NTs) and ten ER+ breast tumor tissues (TTs) including five primary tumors (PTs), and five tamoxifen-treated recurrent tumors (RTs). We find largely preserved compartments, highly heterogeneous topological associated domains (TADs) and intensively variable chromatin loops among breast tumors, demonstrating 3D chromatin-regulated breast tumor heterogeneity. Further cross-examination identifies RT-specific looping-mediated biological pathways and suggests CA2, an enhancer-promoter looping (EPL)-mediated target gene within the bicarbonate transport metabolism pathway, might play a role in driving the tamoxifen resistance. Remarkably, the inhibition of CA2 not only impedes tumor growth both in vitro and in vivo , but also reverses chromatin looping. Our study thus yields significant mechanistic insights into the role and clinical relevance of 3D chromatin architecture in breast cancer endocrine resistance.
Collapse
|
4
|
Drula R, Pardini B, Fu X, De los Santos MC, Jurj A, Pang L, El-Daly SM, Fabris L, Knutsen E, Dragomir MP, Bayraktar R, Li Y, Chen M, Del Vecchio F, Berland L, Dae J, Fan D, Shimizu M, Tran AM, Barzi M, Pioppini C, Gutierrez AM, Ivan C, Meas S, Hall CS, Alahari SK, Berindan-Neagoe I, Fabbri M, Lucci A, Arun B, Anfossi S, Calin GA. 17β-estradiol promotes extracellular vesicle release and selective miRNA loading in ERα-positive breast cancer. Proc Natl Acad Sci U S A 2023; 120:e2122053120. [PMID: 37252969 PMCID: PMC10266002 DOI: 10.1073/pnas.2122053120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/14/2023] [Indexed: 06/01/2023] Open
Abstract
The causes and consequences of abnormal biogenesis of extracellular vesicles (EVs) are not yet well understood in malignancies, including in breast cancers (BCs). Given the hormonal signaling dependence of estrogen receptor-positive (ER+) BC, we hypothesized that 17β-estradiol (estrogen) might influence EV production and microRNA (miRNA) loading. We report that physiological doses of 17β-estradiol promote EV secretion specifically from ER+ BC cells via inhibition of miR-149-5p, hindering its regulatory activity on SP1, a transcription factor that regulates the EV biogenesis factor nSMase2. Additionally, miR-149-5p downregulation promotes hnRNPA1 expression, responsible for the loading of let-7's miRNAs into EVs. In multiple patient cohorts, we observed increased levels of let-7a-5p and let-7d-5p in EVs derived from the blood of premenopausal ER+ BC patients, and elevated EV levels in patients with high BMI, both conditions associated with higher levels of 17β-estradiol. In brief, we identified a unique estrogen-driven mechanism by which ER+ BC cells eliminate tumor suppressor miRNAs in EVs, with effects on modulating tumor-associated macrophages in the microenvironment.
Collapse
Affiliation(s)
- Rares Drula
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- The Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337Cluj Napoca, Romania
| | - Barbara Pardini
- Italian Institute for Genomic Medicine, c/o FPO-IRCCS Candiolo, 10060Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060Candiolo, Italy
| | - Xiao Fu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi, China
| | - Mireia Cruz De los Santos
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, 17164Solna, Sweden
| | - Ancuta Jurj
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- The Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337Cluj Napoca, Romania
| | - Lan Pang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Sherien M. El-Daly
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo12622, Egypt
| | - Linda Fabris
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Erik Knutsen
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Department of Medical Biology, Faculty of Health Sciences, UiT, The Artic University of Norway, N-9037Tromso, Norway
- Centre for Clinical Research and Education, University Hospital of North Norway, N-9037Tromso, Norway
| | - Mihnea P. Dragomir
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10178Berlin, Germany
- German Cancer Research Center (DKFZ), Partner Site Berlin, and German Cancer Consortium (DKTK), 69120Heidelberg, Germany
- Berlin Institute of Health, 10178Berlin, Germany
| | - Recep Bayraktar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Yongfeng Li
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, 310022 Zhejiang, P.R. China
| | - Meng Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Filippo Del Vecchio
- University of Hawaii Cancer Center, Cancer Biology Program, Honolulu, HI96813
| | - Léa Berland
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Department of Research Imaging, Dana Farber Cancer Institute, Boston, MA02215
| | - Jessica Dae
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- College of Natural Sciences, The University of Texas at Austin, Austin, TX78712
| | - Daniel Fan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- College of Natural Sciences, The University of Texas at Austin, Austin, TX78712
| | - Masayoshi Shimizu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Anh M. Tran
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Department of Chemistry, Mount Holyoke College, South Hadley, MA01075
| | - Mercedes Barzi
- Department of Pediatrics, Duke University, Durham, NC27708
| | - Carlotta Pioppini
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, 10117Berlin, Germany
| | - Angelica M. Gutierrez
- Department of Breast Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Salyna Meas
- Breast Surgical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Carolyn S. Hall
- Breast Surgical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Suresh K. Alahari
- Department of Biochemistry and Molecular Biology, Stanley S Scott Cancer Center, Louisiana State University School of Medicine, New Orleans, LA70112
| | - Ioana Berindan-Neagoe
- The Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337Cluj Napoca, Romania
| | - Muller Fabbri
- University of Hawaii Cancer Center, Cancer Biology Program, Honolulu, HI96813
- Center for Cancer and Immunology Research, Children’s National Hospital, WashingtonDC20010
| | - Anthony Lucci
- Breast Surgical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Banu Arun
- Department of Breast Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Simone Anfossi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| |
Collapse
|
5
|
The Intricate Interplay between the ZNF217 Oncogene and Epigenetic Processes Shapes Tumor Progression. Cancers (Basel) 2022; 14:cancers14246043. [PMID: 36551531 PMCID: PMC9776013 DOI: 10.3390/cancers14246043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
The oncogenic transcription factor ZNF217 orchestrates several molecular signaling networks to reprogram integrated circuits governing hallmark capabilities within cancer cells. High levels of ZNF217 expression provide advantages to a specific subset of cancer cells to reprogram tumor progression, drug resistance and cancer cell plasticity. ZNF217 expression level, thus, provides a powerful biomarker of poor prognosis and a predictive biomarker for anticancer therapies. Cancer epigenetic mechanisms are well known to support the acquisition of hallmark characteristics during oncogenesis. However, the complex interactions between ZNF217 and epigenetic processes have been poorly appreciated. Deregulated DNA methylation status at ZNF217 locus or an intricate cross-talk between ZNF217 and noncoding RNA networks could explain aberrant ZNF217 expression levels in a cancer cell context. On the other hand, the ZNF217 protein controls gene expression signatures and molecular signaling for tumor progression by tuning DNA methylation status at key promoters by interfering with noncoding RNAs or by refining the epitranscriptome. Altogether, this review focuses on the recent advances in the understanding of ZNF217 collaboration with epigenetics processes to orchestrate oncogenesis. We also discuss the exciting burgeoning translational medicine and candidate therapeutic strategies emerging from those recent findings connecting ZNF217 to epigenetic deregulation in cancer.
Collapse
|
6
|
Bisphenol A replacement chemicals, BPF and BPS, induce protumorigenic changes in human mammary gland organoid morphology and proteome. Proc Natl Acad Sci U S A 2022; 119:e2115308119. [PMID: 35263230 PMCID: PMC8931256 DOI: 10.1073/pnas.2115308119] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
SignificanceBisphenol A (BPA), found in many plastic products, has weak estrogenic effects that can be harmful to human health. Thus, structurally related replacements-bisphenol S (BPS) and bisphenol F (BPF)-are coming into wider use with very few data about their biological activities. Here, we compared the effects of BPA, BPS, and BPF on human mammary organoids established from normal breast tissue. BPS disrupted organoid architecture and induced supernumerary branching. At a proteomic level, the bisphenols altered the abundance of common targets and those that were unique to each compound. The latter included proteins linked to tumor-promoting processes. These data highlighted the importance of testing the human health effects of replacements that are structurally related to chemicals of concern.
Collapse
|
7
|
Sinha P, Rani A, Kumar A, Riva A, Brant JO, Foster TC. Examination of CA1 Hippocampal DNA Methylation as a Mechanism for Closing of Estrogen's Critical Window. Front Aging Neurosci 2021; 13:717032. [PMID: 34421577 PMCID: PMC8371553 DOI: 10.3389/fnagi.2021.717032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/15/2021] [Indexed: 02/01/2023] Open
Abstract
There is a critical window for estrogen replacement therapy, beyond which estradiol (E2) fails to enhance cognition and N-methyl-D-aspartate (NMDA) receptor function, and E2-responsive transcription decreases. Much less attention has been given to the mechanism for closing of the critical window, which is thought to involve the decline in estrogen signaling cascades, possibly involving epigenetic mechanisms, including DNA methylation. This study investigated changes in DNA methylation in region CA1 of the hippocampus of ovariectomized female rats over the course of brain aging and in response to E2-treatment, using whole genome bisulfite sequencing. Differential methylation of CpG and non-CpG (CHG and CHH) sites and associated genes were characterized in aged controls (AC), middle-age controls (MC), and young controls (YC) and differential methylation in response to E2-treatment (T) was examined in each age group (AT-AC, MT-MC, and YT-YC). Possible candidate genes for the closing of the critical window were defined as those that were hypomethylated by E2-treatment in younger animals, but were unresponsive in aged animals. Gene ontology categories for possible critical window genes were linked to response to hormones (Adcyap1, Agtr2, Apob, Ahr, Andpro, Calm2, Cyp4a2, Htr1b, Nr3c2, Pitx2, Pth, Pdk4, Slc2a2, Tnc, and Wnt5a), including G-protein receptor signaling (Gpr22 and Rgs4). Other possible critical window genes were linked to glutamate synapses (Nedd4, Grm1, Grm7, and Grin3a). These results suggest that decreased E2 signaling with advanced age, and/or prolonged E2 deprivation, results in methylation of E2-responsive genes, including those involved in rapid E2 signaling, which may limit subsequent transcription.
Collapse
Affiliation(s)
- Puja Sinha
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Asha Rani
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Alberto Riva
- Bioinformatics Core, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Jason Orr Brant
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Genetics and Genomics Program, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Bellanger A, Le DT, Vendrell J, Wierinckx A, Pongor LS, Solassol J, Lachuer J, Clezardin P, Győrffy B, Cohen PA. Exploring the Significance of the Exon 4-Skipping Isoform of the ZNF217 Oncogene in Breast Cancer. Front Oncol 2021; 11:647269. [PMID: 34277402 PMCID: PMC8283766 DOI: 10.3389/fonc.2021.647269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/31/2021] [Indexed: 12/30/2022] Open
Abstract
Oncogene alternative splicing events can create distinct functional transcripts that offer new candidate prognostic biomarkers for breast cancer. ZNF217 is a well-established oncogene but its exon 4-skipping isoform (ZNF217-ΔE4) has never been investigated in terms of clinical or biological relevance. Using in silico RNA-seq and RT-qPCR analyses, we demonstrated for the first time the existence of ZNF217-ΔE4 transcripts in primary breast tumors, and a positive correlation between ZNF217-ΔE4 mRNA levels and those of the wild-type oncogene (ZNF217-WT). A pilot retrospective analysis revealed that, in the Luminal subclass, the combination of the two ZNF217 variants (the ZNF217-ΔE4-WT gene-expression signature) provided more information than the mRNA expression levels of each isoform alone. Ectopic overexpression of ZNF217-ΔE4 in breast cancer cells promoted an aggressive phenotype and an increase in ZNF217-WT expression levels that was inversely correlated with DNA methylation of the ZNF217 gene. This study provides new insights into the possible role of the ZNF217-ΔE4 splice variant in breast cancer and suggests a close interplay between the ZNF217-WT and ZNF217-ΔE4 isoforms. Our data suggest that a dual signature combining the expression levels of these two isoforms may serve as a novel prognostic biomarker allowing better stratification of breast cancers with good prognosis and aiding clinicians in therapeutic decisions.
Collapse
Affiliation(s)
- Aurélie Bellanger
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France
| | - Diep T Le
- Université Lyon 1, Lyon, France.,INSERM, UMR1033 LYOS, Lyon, France
| | - Julie Vendrell
- Département de Pathologie et Oncobiologie, Laboratoire de Biologie des Tumeurs Solides, CHU Montpellier, Univ. Montpellier, Montpellier, France
| | - Anne Wierinckx
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France.,ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, Lyon, France
| | - Lőrinc S Pongor
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary.,TTK "TermészetTudományi Kutatóközpont" Momentum Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary
| | - Jérôme Solassol
- Département de Pathologie et Oncobiologie, Laboratoire de Biologie des Tumeurs Solides, CHU Montpellier, Univ. Montpellier, Montpellier, France.,Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Montpellier, France
| | - Joël Lachuer
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France.,ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, Lyon, France
| | | | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary.,TTK "TermészetTudományi Kutatóközpont" Momentum Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary
| | - Pascale A Cohen
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France.,INSERM, UMR1033 LYOS, Lyon, France.,ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, Lyon, France
| |
Collapse
|
9
|
Zattarin E, Leporati R, Ligorio F, Lobefaro R, Vingiani A, Pruneri G, Vernieri C. Hormone Receptor Loss in Breast Cancer: Molecular Mechanisms, Clinical Settings, and Therapeutic Implications. Cells 2020; 9:cells9122644. [PMID: 33316954 PMCID: PMC7764472 DOI: 10.3390/cells9122644] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/02/2020] [Accepted: 12/05/2020] [Indexed: 12/14/2022] Open
Abstract
Hormone receptor-positive breast cancer (HR+ BC) accounts for approximately 75% of new BC diagnoses. Despite the undisputable progresses obtained in the treatment of HR+ BC in recent years, primary or acquired resistance to endocrine therapies still represents a clinically relevant issue, and is largely responsible for disease recurrence after curative surgery, as well as for disease progression in the metastatic setting. Among the mechanisms causing primary or acquired resistance to endocrine therapies is the loss of estrogen/progesterone receptor expression, which could make BC cells independent of estrogen stimulation and, consequently, resistant to estrogen deprivation or the pharmacological inhibition of estrogen receptors. This review aims at discussing the molecular mechanisms and the clinical implications of HR loss as a result of the therapies used in the neoadjuvant setting or for the treatment of advanced disease in HR+ BC patients.
Collapse
Affiliation(s)
- Emma Zattarin
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133 Milan, Italy; (E.Z.); (R.L.); (F.L.); (R.L.); (A.V.); (G.P.)
| | - Rita Leporati
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133 Milan, Italy; (E.Z.); (R.L.); (F.L.); (R.L.); (A.V.); (G.P.)
| | - Francesca Ligorio
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133 Milan, Italy; (E.Z.); (R.L.); (F.L.); (R.L.); (A.V.); (G.P.)
| | - Riccardo Lobefaro
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133 Milan, Italy; (E.Z.); (R.L.); (F.L.); (R.L.); (A.V.); (G.P.)
| | - Andrea Vingiani
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133 Milan, Italy; (E.Z.); (R.L.); (F.L.); (R.L.); (A.V.); (G.P.)
| | - Giancarlo Pruneri
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133 Milan, Italy; (E.Z.); (R.L.); (F.L.); (R.L.); (A.V.); (G.P.)
- Department of Oncology and Haematology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Claudio Vernieri
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133 Milan, Italy; (E.Z.); (R.L.); (F.L.); (R.L.); (A.V.); (G.P.)
- IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
- Correspondence: ; Tel.: +39-02-2390-3650
| |
Collapse
|
10
|
Cai Q, Kang J, Yu T. Bayesian Network Marker Selection via the Thresholded Graph Laplacian Gaussian Prior. BAYESIAN ANALYSIS 2020; 15:79-102. [PMID: 32802246 PMCID: PMC7428197 DOI: 10.1214/18-ba1142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Selecting informative nodes over large-scale networks becomes increasingly important in many research areas. Most existing methods focus on the local network structure and incur heavy computational costs for the large-scale problem. In this work, we propose a novel prior model for Bayesian network marker selection in the generalized linear model (GLM) framework: the Thresholded Graph Laplacian Gaussian (TGLG) prior, which adopts the graph Laplacian matrix to characterize the conditional dependence between neighboring markers accounting for the global network structure. Under mild conditions, we show the proposed model enjoys the posterior consistency with a diverging number of edges and nodes in the network. We also develop a Metropolis-adjusted Langevin algorithm (MALA) for efficient posterior computation, which is scalable to large-scale networks. We illustrate the superiorities of the proposed method compared with existing alternatives via extensive simulation studies and an analysis of the breast cancer gene expression dataset in the Cancer Genome Atlas (TCGA).
Collapse
Affiliation(s)
- Qingpo Cai
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| | - Jian Kang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tianwei Yu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
11
|
Kong S, Zhou C, Bao H, Ni Z, Liu M, He B, Huang L, Sun Y, Wang H, Lu J. Epigenetic control of embryo-uterine crosstalk at peri-implantation. Cell Mol Life Sci 2019; 76:4813-4828. [PMID: 31352535 PMCID: PMC11105790 DOI: 10.1007/s00018-019-03245-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/28/2019] [Accepted: 07/23/2019] [Indexed: 01/05/2023]
Abstract
Embryo implantation is one of the pivotal steps during mammalian pregnancy, since the quality of embryo implantation determines the outcome of ongoing pregnancy and fetal development. A large number of factors, including transcription factors, signalling transduction components, and lipids, have been shown to be indispensable for embryo implantation. Increasing evidence also suggests the important roles of epigenetic factors in this critical event. This review focuses on recent findings about the involvement of epigenetic regulators during embryo implantation.
Collapse
Affiliation(s)
- Shuangbo Kong
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Chan Zhou
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Haili Bao
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Zhangli Ni
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Mengying Liu
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Bo He
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Lin Huang
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Yang Sun
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Haibin Wang
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China.
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China.
| | - Jinhua Lu
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China.
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China.
| |
Collapse
|
12
|
The potential influence of breast cancer estrogen receptors' distribution on active DNA demethylation. Contemp Oncol (Pozn) 2019; 23:74-80. [PMID: 31316288 PMCID: PMC6630393 DOI: 10.5114/wo.2019.85200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/15/2019] [Indexed: 12/21/2022] Open
Abstract
Alterations in DNA methylation may cause disturbances in regulation of gene expression, including drug metabolism and distribution. Moreover, many cancers, including breast cancer, are characterized by DNA hypomethylation and a decreased 5-hydroxymethylcytosine level. The abnormal cell growth found in breast carcinoma might be the result of impaired up-regulation of breast cancer receptors. Receptors’ expression in breast cancer determines clinical outcome, and it is possible that they lead to different DNA methylation patterns. Excessive steroid exposure can affect DNA methylation by promoting demethylation of CpG islands in promoter regions of genes, and hence may have an impact on promotion and progression of breast cancer cells. Tamoxifen, as a leading drug in breast cancer hormone therapy, has an ability to act like estrogen or antiestrogen depending on the type and localization of the breast cancer receptor. Further studies are needed to determine whether tamoxifen, similarly to steroids, may evoke changes in methylation pattern.
Collapse
|
13
|
Pineda B, Diaz-Lagares A, Pérez-Fidalgo JA, Burgués O, González-Barrallo I, Crujeiras AB, Sandoval J, Esteller M, Lluch A, Eroles P. A two-gene epigenetic signature for the prediction of response to neoadjuvant chemotherapy in triple-negative breast cancer patients. Clin Epigenetics 2019; 11:33. [PMID: 30786922 PMCID: PMC6381754 DOI: 10.1186/s13148-019-0626-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/31/2019] [Indexed: 01/14/2023] Open
Abstract
Background Pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) in triple-negative breast cancer (TNBC) varies between 30 and 40% approximately. To provide further insight into the prediction of pCR, we evaluated the role of an epigenetic methylation-based signature. Methods Epigenetic assessment of DNA extracted from biopsy archived samples previous to NAC from TNBC patients was performed. Patients included were categorized according to previous response to NAC in responder (pCR or residual cancer burden, RCB = 0) or non-responder (non-pCR or RCB > 0) patients. A methyloma study was performed in a discovery cohort by the Infinium HumanMethylation450 BeadChip (450K array) from Illumina. The epigenetic silencing of those methylated genes in the discovery cohort were validated by bisulfite pyrosequencing (PyroMark Q96 System version 2.0.6, Qiagen) and qRT-PCR in an independent cohort of TN patients and in TN cell lines. Results Twenty-four and 30 patients were included in the discovery and validation cohorts, respectively. In the discovery cohort, nine genes were differentially methylated: six presented higher methylation in non-responder patients (LOC641519, LEF1, HOXA5, EVC2, TLX3, CDKL2) and three greater methylation in responder patients (FERD3L, CHL1, and TRIP10). After validation, a two-gene (FER3L and TRIP10) epigenetic score predicted RCB = 0 with an area under the ROC curve (AUC) = 0.905 (95% CI = 0.805–1.000). Patients with a positive epigenetic two-gene score showed 78.6% RCB = 0 versus only 10.7% RCB = 0 if signature were negative. Conclusions These results suggest that pCR in TNBC could be accurately predicted with an epigenetic signature of FERD3L and TRIP10 genes. Further prospective validation of these findings is warranted. Electronic supplementary material The online version of this article (10.1186/s13148-019-0626-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Begoña Pineda
- Biomedical Research Institute (INCLIVA), Valencia, Spain.,Department of Physiology, Faculty of Medicine, University of Valencia, Valencia, Spain.,Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Angel Diaz-Lagares
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.,Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Present Address: Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), CIBERONC, Santiago de Compostela, Spain
| | - José Alejandro Pérez-Fidalgo
- Biomedical Research Institute (INCLIVA), Valencia, Spain.,Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.,Oncology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Octavio Burgués
- Biomedical Research Institute (INCLIVA), Valencia, Spain.,Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.,Pathology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | | | - Ana B Crujeiras
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Present Address: Laboratory of Epigenomics in Endocrinology and Nutrition, Instituto de Investigacion Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Santiago de Compostela University (USC) and CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
| | - Juan Sandoval
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Biomarkers and Precision Medicne Unit (UByMP), Instituto de Investigación Sanitaria La Fe (IISLaFeValencia), Valencia, Spain
| | - Manel Esteller
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.,Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Badalona, Barcelona, Catalonia, Spain
| | - Ana Lluch
- Biomedical Research Institute (INCLIVA), Valencia, Spain.,Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.,Oncology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Pilar Eroles
- Biomedical Research Institute (INCLIVA), Valencia, Spain. .,Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain. .,COST action, CA15204, Brussels, Belgium.
| |
Collapse
|
14
|
Deng W, Lu YF. Methylation of tumor suppressor genes and risk factors of colorectal cancer. Shijie Huaren Xiaohua Zazhi 2018; 26:2088-2095. [DOI: 10.11569/wcjd.v26.i36.2088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although the diagnostic methods and treatment options are continuously optimized, the incidence and mortality of colorectal cancer (CRC) are still rising. Therefore, "preventive treatment of disease" is the key to solving this problem. In recent years, hypermethylation of promoter CpG islands (CGIs) in tumor suppressor genes has been a hot research topic because it is reversible and early events in the development of CRC, and affects drug resistance, disease treatment, and patient prognosis. CRC risk factors such as poor dietary choice, lack of physical activity, excessive drinking, and unhealthy weight can regulate promoter CGI hypermethylation, which will help develop new methylation-related cancer prevention strategies. This article mainly introduces the significance and regulatory mechanism of methylation of tumor suppressor genes and its relationship with risk factors in CRC.
Collapse
Affiliation(s)
- Wei Deng
- Department of Gastroenterology, the Affiliated Hospital of Qinghai University, Xining 810000, Qinghai Province, China
| | - Yong-Fu Lu
- Department of Gastroenterology, the Affiliated Hospital of Qinghai University, Xining 810000, Qinghai Province, China
| |
Collapse
|
15
|
HIC1 and RassF1A Methylation Attenuates Tubulin Expression and Cell Stiffness in Cancer. Int J Mol Sci 2018; 19:ijms19102884. [PMID: 30249017 PMCID: PMC6212922 DOI: 10.3390/ijms19102884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/19/2018] [Indexed: 12/12/2022] Open
Abstract
Cell stiffness is a potential biomarker for monitoring cellular transformation, metastasis, and drug resistance development. Environmental factors relayed into the cell may result in formation of inheritable markers (e.g., DNA methylation), which provide selectable advantages (e.g., tumor development-favoring changes in cell stiffness). We previously demonstrated that targeted methylation of two tumor suppressor genes, hypermethylated in cancer 1 (HIC1) and Ras-association domain family member 1A (RassF1A), transformed mesenchymal stem cells (MSCs). Here, transformation-associated cytoskeleton and cell stiffness changes were evaluated. Atomic force microscopy (AFM) was used to detect cell stiffness, and immunostaining was used to measure cytoskeleton expression and distribution in cultured cells as well as in vivo. HIC1 and RassF1A methylation (me_HR)-transformed MSCs developed into tumors that clonally expanded in vivo. In me_HR-transformed MSCs, cell stiffness was lost, tubulin expression decreased, and F-actin was disorganized; DNA methylation inhibitor treatment suppressed their tumor progression, but did not fully restore their F-actin organization and stiffness. Thus, me_HR-induced cell transformation was accompanied by the loss of cellular stiffness, suggesting that somatic epigenetic changes provide inheritable selection markers during tumor propagation, but inhibition of oncogenic aberrant DNA methylation cannot restore cellular stiffness fully. Therefore, cell stiffness is a candidate biomarker for cells' physiological status.
Collapse
|
16
|
Yuan X, Zhang Z, Jiang K, Wang X, Li Y. Preliminary Study of the Role F-Box Protein 32 (FBXO32) in Colorectal Neoplasms Through the Transforming Growth Factor beta (TGF-β)/Smad4 Signalling Pathway. Med Sci Monit 2018; 24:1080-1088. [PMID: 29465067 PMCID: PMC5829536 DOI: 10.12659/msm.908030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background F-box protein 32 (FBXO32) (also known as atrogin-1), a member of the F-box protein family, was recently shown to be a transforming growth factor beta (TGF-β)/Smad4 target gene involved in regulating cell survival. It can be transcriptionally silenced by epigenetic mechanisms in some cancers, but its role in colorectal carcinoma (CRC) is unclear. We investigated the role of FBXO32 in CRC and determined its prognostic significance. Material/Methods We used real-time quantitative PCR, Western blot, and immunohistochemistry to elucidate the role of FBXO32 in clinical specimens and primary CRC cell lines. Differences in patient survival were determined by the Kaplan-Meier method and log-rank test. Results We found that the FBXO32 and SMAD4 levels were higher in normal tissues than in CRC tissues, but PAI-1 and VEGF levels showed the opposite pattern. The expressions of FBXO32 and SMAD4 were related to clinicopathological parameters in CRC. Kaplan-Meier analyses showed that the 5-year overall survival of the low-FBXO32 expression group was significantly shorter than that of the high-FBXO32 expression group (p=0.010). Conclusions The fbxo32 gene is a novel tumor suppressor that inhibits CRC progression by inducing differentiation. Elevated expression of FBXO32 predicts longer survival in CRC patients.
Collapse
Affiliation(s)
- Xuemin Yuan
- Department of Gastroenterology, Laboratory of Translational Gastroentrology, Shandong University, Qilu Hospital, Jinan, Shandong, China (mainland).,Department of Gastroenterology, The People's Hospital of Linyi, Linyi, Shandong, China (mainland)
| | - Zhen Zhang
- Department of Surgery, The People's Hospital of Linyi, Linyi, Shandong, China (mainland)
| | - Kaitong Jiang
- Department of Gastroenterology, The People's Hospital of Linyi, Linyi, Shandong, China (mainland)
| | - Xinguo Wang
- Kingmed Diagnostics, Jinan, Shandong, China (mainland)
| | - Yanqing Li
- Department of Gastroenterology, Laboratory of Translational Gastroenterology, Shandong University, Qilu Hospital, Jinan, Shandong, China (mainland)
| |
Collapse
|
17
|
Pirouzpanah S, Taleban FA, Mehdipour P, Sabour S, Atri M. Hypermethylation pattern of ESR and PgR genes and lacking estrogen and progesterone receptors in human breast cancer tumors: ER/PR subtypes. Cancer Biomark 2018; 21:621-638. [PMID: 29278880 DOI: 10.3233/cbm-170697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The option of endocrine therapy in breast cancer remains conventionally promising. OBJECTIVE We aimed to investigate how accurately the pattern of hypermethylation at estrogen receptor (ESR) and progesterone receptor (PgR) genes may associate with relative expression and protein status of ER, PR and the combinative phenotype of ER/PR. METHODS In this consecutive case-series, we enrolled 139 primary diagnosed breast cancer. Methylation specific PCR was used to assess the methylation status (individual test). Tumor mRNA expression levels were evaluated using real-time RT-PCR. Immunohistochemistry data was used to present hormonal receptor status of a tumor (as test reference). RESULTS Methylation at ESR1 was comparably frequent in ER-breast tumors (83.0%, P< 0.001; sensitivity = 83.0%, specificity = 65.2% and diagnostic odds ratio, DOR = 12.0) and strongly correlated with ER-/PR- conditions (Cramer's V= 0.44, P< 0.001). Methylated PgRb promoter frequently was observed in tumors recognised as ER- or negative ER/PR (77.1%, P< 0.01). Assessment of DNA methylation of ESR1 harbouring methylation at PgRb was a case significantly suggested to be able to detect the lack of ER/PR expressions (55.6%, P< 0.01; sensitivity = 80.6%, specificity = 68.7% and DOR = 8.7). However, methylated PgRb was quite acceptable determinant to contribute with methylated ESR1 to rank tumors as ER-/PR- (64.4%, P< 0.01; sensitivity = 78.0%, specificity = 62.5% and DOR = 6.0). CONCLUSIONS Despite the methylation status of ESR1 showed preponderant contribution to tumoral phenotypes of ER- and ER-/PR-, the hypermethylation of PgRb seem another epigenetic signalling variable actively associate with methylated ESR1 to show lack of ER+/PR+ tumors in breast cancer.
Collapse
Affiliation(s)
- Saeed Pirouzpanah
- Department of Biochemistry and Dietetics, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Forough-Azam Taleban
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mehdipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Siamak Sabour
- Safety Promotion and Injury Prevention Research Centre, Department of Clinical Epidemiology, Faculty of Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Atri
- Cancer Institute, Tehran University of Medical Sciences/Day General Hospital, Tehran, Iran
| |
Collapse
|
18
|
Chen CC, Chiu CC, Lee KD, Hsu CC, Chen HC, Huang THM, Hsiao SH, Leu YW. JAK2V617F influences epigenomic changes in myeloproliferative neoplasms. Biochem Biophys Res Commun 2017; 494:470-476. [PMID: 29066347 DOI: 10.1016/j.bbrc.2017.10.108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 12/11/2022]
Abstract
Negative valine (V) to phenylalanine (F) switch at the Janus kinase (JAK2) 617 codon (V617F) is the dominant driver mutation in patients with myeloproliferative neoplasms (MPNs). JAK2V617F was proved to be sufficient for cell transformation; however, independent mutations might influence the following epigenomic modifications. To assess the JAK2V617F-induced downstream epigenomic changes without interferences, we profiled the epigenomic changes in ectopically expressed JAK2V617F in Ba/F3 cells. Antibodies against phosphorylated signal transducer and activator of transcription 3 (pSTAT3) and enhancer of zeste homolog 2 (EZH2) were used for chromatin-immunoprecipitation sequencing (ChIP-seq) to detect the downstream epigenomic targets in the JAK2-STAT3 signaling pathway. To confirm the JAK2V617F-induced epigenetic changes in vivo, DNA methylation changes in the target loci in patients with MPNs were detected through methylation-specific polymerase chain reaction and were clustered against the changes within controls. We found that ectopically expressed JAK2V617F in Ba/F3 cells reduced the binding specificity; it was associated with cis-regulatory elements and recognized DNA motifs in both pSTAT3-downstream and EZH2-associated targets. Overlapping target loci between the control and JAK2V617F were <3% and 0.4%, respectively, as identified through pSTAT3 and EZH2 ChIP-seq. Furthermore, the methylation changes in the direct target loci (FOXH1, HOXC9, and SRF) were clustered independently from the control locus (L1TD1) and other mutation genes (HMGA2 and Lin28A) in the analyzed MPN samples. Therefore, JAK2V617F influences target binding in both pSTAT3 and EZH2. Without mutations in epigenetic regulators, JAK2V617F can induce downstream epigenomic modifications. Thus, epigenetic changes in JAK2 downstream targets might be trackable in vivo.
Collapse
Affiliation(s)
- Chih-Cheng Chen
- Department of Hematology and Oncology, Chang Gung Memorial Hospital, Chiayi, Chang Gung University College of Medicine, Taoyuan, Taiwan; Chang Gung Institute of Technology, Taoyuan, Taiwan
| | - Chia-Chen Chiu
- Department of Hematology and Oncology, Chang Gung Memorial Hospital, Chiayi, Chang Gung University College of Medicine, Taoyuan, Taiwan; Chang Gung Institute of Technology, Taoyuan, Taiwan; Human Epigenomics Center, Department of Life Science, Institute of Molecular Biology and Institute of Biomedical Science, National Chung Cheng University, Chia-Yi, Taiwan
| | - Kuan-Der Lee
- Division of Hematology and Oncology, Department of Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chia-Chen Hsu
- Department of Hematology and Oncology, Chang Gung Memorial Hospital, Chiayi, Chang Gung University College of Medicine, Taoyuan, Taiwan; Chang Gung Institute of Technology, Taoyuan, Taiwan
| | - Hong-Chi Chen
- Department of Life Science and Gene Therapy Division, Tzu-Chi University and Hospital, Hualien, Taiwan
| | - Tim H-M Huang
- Cancer Therapy and Research Center, Department of Molecular Medicine and Institute of Biotechnology, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Shu-Huei Hsiao
- Human Epigenomics Center, Department of Life Science, Institute of Molecular Biology and Institute of Biomedical Science, National Chung Cheng University, Chia-Yi, Taiwan.
| | - Yu-Wei Leu
- Human Epigenomics Center, Department of Life Science, Institute of Molecular Biology and Institute of Biomedical Science, National Chung Cheng University, Chia-Yi, Taiwan.
| |
Collapse
|
19
|
Ronnekleiv-Kelly SM, Sharma A, Ahuja N. Epigenetic therapy and chemosensitization in solid malignancy. Cancer Treat Rev 2017; 55:200-208. [DOI: 10.1016/j.ctrv.2017.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 10/19/2022]
|
20
|
Ariazi EA, Taylor JC, Black MA, Nicolas E, Slifker MJ, Azzam DJ, Boyd J. A New Role for ERα: Silencing via DNA Methylation of Basal, Stem Cell, and EMT Genes. Mol Cancer Res 2016; 15:152-164. [PMID: 28108626 DOI: 10.1158/1541-7786.mcr-16-0283] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/10/2016] [Accepted: 10/18/2016] [Indexed: 12/30/2022]
Abstract
Resistance to hormonal therapies is a major clinical problem in the treatment of estrogen receptor α-positive (ERα+) breast cancers. Epigenetic marks, namely DNA methylation of cytosine at specific CpG sites (5mCpG), are frequently associated with ERα+ status in human breast cancers. Therefore, ERα may regulate gene expression in part via DNA methylation. This hypothesis was evaluated using a panel of breast cancer cell line models of antiestrogen resistance. Microarray gene expression profiling was used to identify genes normally silenced in ERα+ cells but derepressed upon exposure to the demethylating agent decitabine, derepressed upon long-term loss of ERα expression, and resuppressed by gain of ERα activity/expression. ERα-dependent DNA methylation targets (n = 39) were enriched for ERα-binding sites, basal-up/luminal-down markers, cancer stem cell, epithelial-mesenchymal transition, and inflammatory and tumor suppressor genes. Kaplan-Meier survival curve and Cox proportional hazards regression analyses indicated that these targets predicted poor distant metastasis-free survival among a large cohort of breast cancer patients. The basal breast cancer subtype markers LCN2 and IFI27 showed the greatest inverse relationship with ERα expression/activity and contain ERα-binding sites. Thus, genes that are methylated in an ERα-dependent manner may serve as predictive biomarkers in breast cancer. IMPLICATIONS ERα directs DNA methylation-mediated silencing of specific genes that have biomarker potential in breast cancer subtypes. Mol Cancer Res; 15(2); 152-64. ©2016 AACR.
Collapse
Affiliation(s)
- Eric A Ariazi
- Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania.
| | - John C Taylor
- Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Michael A Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Emmanuelle Nicolas
- Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Michael J Slifker
- Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Diana J Azzam
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Jeff Boyd
- Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania.
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| |
Collapse
|
21
|
Cohen PA, Donini CF, Nguyen NT, Lincet H, Vendrell JA. The dark side of ZNF217, a key regulator of tumorigenesis with powerful biomarker value. Oncotarget 2016; 6:41566-81. [PMID: 26431164 PMCID: PMC4747174 DOI: 10.18632/oncotarget.5893] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/18/2015] [Indexed: 12/31/2022] Open
Abstract
The recently described oncogene ZNF217 belongs to a chromosomal region that is frequently amplified in human cancers. Recent findings have revealed that alternative mechanisms such as epigenetic regulation also govern the expression of the encoded ZNF217 protein. Newly discovered molecular functions of ZNF217 indicate that it orchestrates complex intracellular circuits as a new key regulator of tumorigenesis. In this review, we focus on recent research on ZNF217-driven molecular functions in human cancers, revisiting major hallmarks of cancer and highlighting the downstream molecular targets and signaling pathways of ZNF217. We also discuss the exciting translational medicine investigating ZNF217 expression levels as a new powerful biomarker, and ZNF217 as a candidate target for future anti-cancer therapies.
Collapse
Affiliation(s)
- Pascale A Cohen
- ISPB, Faculté de Pharmacie, Lyon, France.,Université Lyon 1, Lyon, France.,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Caterina F Donini
- ISPB, Faculté de Pharmacie, Lyon, France.,Université Lyon 1, Lyon, France.,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Nhan T Nguyen
- ISPB, Faculté de Pharmacie, Lyon, France.,Université Lyon 1, Lyon, France.,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Hubert Lincet
- ISPB, Faculté de Pharmacie, Lyon, France.,Université Lyon 1, Lyon, France.,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Julie A Vendrell
- ISPB, Faculté de Pharmacie, Lyon, France.,Université Lyon 1, Lyon, France.,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| |
Collapse
|
22
|
Vázquez-Martínez ER, Camacho-Arroyo I, Zarain-Herzberg A, Rodríguez MC, Mendoza-Garcés L, Ostrosky-Wegman P, Cerbón M. Estradiol differentially induces progesterone receptor isoforms expression through alternative promoter regulation in a mouse embryonic hypothalamic cell line. Endocrine 2016; 52:618-31. [PMID: 26676302 DOI: 10.1007/s12020-015-0825-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/29/2015] [Indexed: 10/22/2022]
Abstract
Progesterone receptor (PR) presents two main isoforms (PR-A and PR-B) that are regulated by two specific promoters and transcribed from alternative transcriptional start sites. The molecular regulation of PR isoforms expression in embryonic hypothalamus is poorly understood. The aim of the present study was to assess estradiol regulation of PR isoforms in a mouse embryonic hypothalamic cell line (mHypoE-N42), as well as the transcriptional status of their promoters. MHypoE-N42 cells were treated with estradiol for 6 and 12 h. Then, Western blot, real-time quantitative reverse transcription polymerase chain reaction, and chromatin and DNA immunoprecipitation experiments were performed. PR-B expression was transiently induced by estradiol after 6 h of treatment in an estrogen receptor alpha (ERα)-dependent manner. This induction was associated with an increase in ERα phosphorylation (serine 118) and its recruitment to PR-B promoter. After 12 h of estradiol exposure, a downregulation of this PR isoform was associated with a decrease of specific protein 1, histone 3 lysine 4 trimethylation, and RNA polymerase II occupancy on PR-B promoter, without changes in DNA methylation and hydroxymethylation. In contrast, there were no estradiol-dependent changes in PR-A expression that could be related with the epigenetic marks or the transcription factors evaluated. We demonstrate that PR isoforms are differentially regulated by estradiol and that the induction of PR-B expression is associated to specific transcription factors interactions and epigenetic changes in its promoter in embryonic hypothalamic cells.
Collapse
Affiliation(s)
- Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Av. Universidad 3000, Coyoacán, 04510, Mexico, DF, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Av. Universidad 3000, Coyoacán, 04510, Mexico, DF, Mexico
| | | | | | | | - Patricia Ostrosky-Wegman
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Mexico, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Av. Universidad 3000, Coyoacán, 04510, Mexico, DF, Mexico.
| |
Collapse
|
23
|
Liu F, Wang L, Perna F, Nimer SD. Beyond transcription factors: how oncogenic signalling reshapes the epigenetic landscape. Nat Rev Cancer 2016; 16:359-72. [PMID: 27220480 PMCID: PMC5548460 DOI: 10.1038/nrc.2016.41] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer, once thought to be caused largely by genetic alterations, is now considered to be a mixed genetic and epigenetic disease. The epigenetic landscape, which is dictated by covalent DNA and histone modifications, is profoundly altered in transformed cells. These abnormalities may arise from mutations in, or altered expression of, chromatin modifiers. Recent reports on the interplay between cellular signalling pathways and chromatin modifications add another layer of complexity to the already complex regulation of the epigenome. In this Review, we discuss these new studies and how the insights they provide can contribute to a better understanding of the molecular pathogenesis of neoplasia.
Collapse
Affiliation(s)
- Fan Liu
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136
| | - Lan Wang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fabiana Perna
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Stephen D. Nimer
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136
- Department of Internal Medicine, University of Miami, Miller School of Miami, FL33136
- Corresponding Author:
| |
Collapse
|
24
|
Zhang C, Wang L, Wang L, Cui S. A Retrospective Study on the Efficacy of Trastuzumab in HER2-Positive and Tamoxifen-Refractory Breast Cancer with Brain Metastasis. BioDrugs 2016; 30:33-40. [PMID: 26792291 DOI: 10.1007/s40259-015-0156-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND OBJECTIVE The role of trastuzumab in breast cancer with brain metastasis is still in discussion. This study was conducted to investigate the efficacy of trastuzumab in the management of human epidermal growth factor receptor 2 (HER2)-positive, tamoxifen-refractory breast cancer with brain metastasis. METHODS This retrospective study was conducted between January 2008 and December 2012. A total of 33 patients receiving trastuzumab treatment for HER2-positive, tamoxifen-refractory breast cancer with brain metastasis were assigned to the experimental group, while a matched group of 35 patients who received systemic therapy without trastuzumab were assigned to the control group. Data on the patient characteristics and clinical outcomes were collected and evaluated. RESULTS Patients in the trastuzumab group showed a significantly better response to treatment than those in the control group (p = 0.025). Univariate and multivariate Cox proportional regression analyses indicated that progression-free survival was significantly longer in patients receiving trastuzumab therapy than in the control group (hazard ratio [HR] 2.213 [p = 0.003] and HR 3.056 [p < 0.001], respectively) and significantly shorter in patients with two or more extracranial metastases (HR 0.417 [p = 0.002] and HR 0.317 [p < 0.001], respectively). Furthermore, patients on trastuzumab treatment experienced longer overall survival than patients in the control group (HR 2.844 [p < 0.001] and HR 4.017 [p < 0.001], respectively), while shorter overall survival was seen in patients with two or more extracranial metastases (HR 0.524 [p = 0.021] and HR 0.430 [p = 0.005], respectively) and in those receiving capecitabine-based therapy as compared with anthracycline-based therapy (HR 0.558 [p = 0.030] and HR 0.449 [p = 0.011], respectively). CONCLUSION Trastuzumab was found to benefit patients with HER2-positive, tamoxifen-refractory breast cancer with brain metastasis by improving progression-free and overall survival.
Collapse
Affiliation(s)
- Chongjian Zhang
- Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University, No. 127 Dongming Road, Zhengzhou, 450008, China
| | - Lu Wang
- Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University, No. 127 Dongming Road, Zhengzhou, 450008, China
| | - Lina Wang
- Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University, No. 127 Dongming Road, Zhengzhou, 450008, China
| | - Shude Cui
- Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University, No. 127 Dongming Road, Zhengzhou, 450008, China.
| |
Collapse
|
25
|
Ben-Hamo R, Efroni S. MicroRNA regulation of molecular pathways as a generic mechanism and as a core disease phenotype. Oncotarget 2015; 6:1594-604. [PMID: 25593195 PMCID: PMC4359317 DOI: 10.18632/oncotarget.2734] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/12/2014] [Indexed: 12/21/2022] Open
Abstract
The role of microRNAs as key regulators of a wide variety of fundamental cellular processes, such as apoptosis, differentiation, proliferation and cell cycle is increasingly recognized in most aspects of biology and biomedicine. Accretion of results from multiple microRNA studies over multiple pathway networks, led us to hypothesize that microRNAs target molecular pathways. As we show here, this is a network-wide phenomenon. The work presented, uses statistical tools that show how single microRNAs target molecular pathways. We demonstrate that this targeting could not be the result of random associations and cannot be the result of the sheer numeracy of microRNA targets. Furthermore, the strongest evidence for the association microRNA-pathway, is in a demonstration of the way by which these associations are disease-relevant. In our analyses we study ten different types of cancer involving thousands of samples, and show that the identified microRNA–pathway associations demonstrate a clinical affiliation and an ability to stratify patients. The work presented here shows the first evidence for a mechanism of microRNAs-pathway generic regulation. This regulation is tightly associated with clinical phenotype. The presented approach may catalyze targeted treatment through exposure of hidden regulatory mechanisms and a systems-medicine view of clinical observation.
Collapse
Affiliation(s)
- Rotem Ben-Hamo
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat-Gan, 52900, Israel
| | - Sol Efroni
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat-Gan, 52900, Israel
| |
Collapse
|
26
|
Chen CC, Lee KD, Pai MY, Chu PY, Hsu CC, Chiu CC, Chen LT, Chang JY, Hsiao SH, Leu YW. Changes in DNA methylation are associated with the development of drug resistance in cervical cancer cells. Cancer Cell Int 2015; 15:98. [PMID: 26464562 PMCID: PMC4604021 DOI: 10.1186/s12935-015-0248-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/05/2015] [Indexed: 12/31/2022] Open
Abstract
Background and propose Changes in DNA methylation are associated with changes in somatic cell fate without the alteration of coding sequences. In addition to its use as a traceable biomarker, reversible DNA methylation could also serve as a therapeutic target. In particular, if the development of drug resistance is associated with changes in DNA methylation, then demethylation might reverse the resistance phenotype. The reversion of the drug-resistance might then be feasible if the association between abnormal DNA methylation and the development of drug-resistance could be identified. Methods Methylation differences between the drug-resistance cervical cancer cell, SiHa, and its derived oxaliplatin-resistant S3 cells were detected by methylation specific microarray. The drug-resistance cells were treated with demethylation agent to see if the resistance phenotype were reversed. Targeted methylation of one of the identified locus in normal cell is expected to recapitulate the development of resistance and a two-component reporter system is adopted to monitor the increase of DNA methylation in live cells. Results In this report, we identified methylation changes, both genome-wide and within individual loci, in the oxaliplatin-resistant cervical cancer cell S3 compared with its parental cell line SiHa. Treatment of S3 with a demethylation agent reversed increases in methylation and allowed the expression of methylation-silenced genes. Treatment with the demethylation agent also restored the sensitivity of S3 to cisplatin, taxol, and oxaliplatin to the same level as that of SiHa. Finally, we found that methylation of the target gene Casp8AP2 is sufficient to increase drug resistance in different cells. Conclusions These results suggest that global methylation is associated with the development of drug resistance and could serve as a biomarker and therapeutic target for drug resistance in cervical cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12935-015-0248-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chih-Cheng Chen
- Department of Hematology and Oncology, Chang Gung Memorial Hospital, Chiayi, Chang Gung University College of Medicine, Taoyuan, Taiwan ; Chang Gung Institute of Technology, Taoyuan, Taiwan
| | - Kuan-Der Lee
- Department of Hematology and Oncology, Chang Gung Memorial Hospital, Chiayi, Chang Gung University College of Medicine, Taoyuan, Taiwan ; Chang Gung Institute of Technology, Taoyuan, Taiwan
| | - Mei-Yu Pai
- Department of Life Science, Human Epigenomics Center, Institute of Molecular Biology and Institute of Biomedical Science, National Chung Cheng University, Chiayi, 621 Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua City, Taiwan
| | - Chia-Chen Hsu
- Department of Life Science, Human Epigenomics Center, Institute of Molecular Biology and Institute of Biomedical Science, National Chung Cheng University, Chiayi, 621 Taiwan
| | - Chia-Chen Chiu
- Department of Hematology and Oncology, Chang Gung Memorial Hospital, Chiayi, Chang Gung University College of Medicine, Taoyuan, Taiwan ; Chang Gung Institute of Technology, Taoyuan, Taiwan ; Department of Life Science, Human Epigenomics Center, Institute of Molecular Biology and Institute of Biomedical Science, National Chung Cheng University, Chiayi, 621 Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County 350 Taiwan
| | - Jang-Yang Chang
- Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704 Taiwan
| | - Shu-Huei Hsiao
- Department of Life Science, Human Epigenomics Center, Institute of Molecular Biology and Institute of Biomedical Science, National Chung Cheng University, Chiayi, 621 Taiwan
| | - Yu-Wei Leu
- Department of Life Science, Human Epigenomics Center, Institute of Molecular Biology and Institute of Biomedical Science, National Chung Cheng University, Chiayi, 621 Taiwan
| |
Collapse
|
27
|
Yao-Borengasser A, Monzavi-Karbassi B, Hedges RA, Rogers LJ, Kadlubar SA, Kieber-Emmons T. Adipocyte hypoxia promotes epithelial-mesenchymal transition-related gene expression and estrogen receptor-negative phenotype in breast cancer cells. Oncol Rep 2015; 33:2689-94. [PMID: 25823469 PMCID: PMC4431437 DOI: 10.3892/or.2015.3880] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/11/2015] [Indexed: 01/22/2023] Open
Abstract
The development of breast cancer is linked to the loss of estrogen receptor (ER) during the course of tumor progression, resulting in loss of responsiveness to hormonal treatment. The mechanisms underlying dynamic ERα gene expression change in breast cancer remain unclear. A range of physiological and biological changes, including increased adipose tissue hypoxia, accompanies obesity. Hypoxia in adipocytes can establish a pro-malignancy environment in breast tissues. Epidemiological studies have linked obesity with basal-like breast cancer risk and poor disease outcome, suggesting that obesity may affect the tumor phenotype by skewing the microenvironment toward support of more aggressive tumor phenotypes. In the present study, human SGBS adipocytes were co-cultured with ER-positive MCF7 cells for 24 h. After co-culture, HIF1α, TGF-β, and lectin-type oxidized LDL receptor 1 (LOX1) mRNA levels in the SGBS cells were increased. Expression levels of the epithelial-mesenchymal transition (EMT)-inducing transcription factors FOXC2 and TWIST1 were increased in the co-cultured MCF7 cells. In addition, the E-cadherin mRNA level was decreased, while the N-cadherin mRNA level was increased in the co-cultured MCF7 cells. ERα mRNA levels were significantly repressed in the co-cultured MCF7 cells. ERα gene expression in the MCF7 cells was decreased due to increased HIF1α in the SGBS cells. These results suggest that adipocytes can modify breast cancer cell ER gene expression through hypoxia and also can promote EMT processes in breast cancer cells, supporting an important role of obesity in aggressive breast cancer development.
Collapse
Affiliation(s)
- Aiwei Yao-Borengasser
- Division of Medical Genetics, College of Medicine, and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Behjatolah Monzavi-Karbassi
- Department of Pathology, College of Medicine, and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Rebecca A Hedges
- Division of Medical Genetics, College of Medicine, and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Lora J Rogers
- Division of Medical Genetics, College of Medicine, and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Susan A Kadlubar
- Division of Medical Genetics, College of Medicine, and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Thomas Kieber-Emmons
- Department of Pathology, College of Medicine, and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
28
|
Ouadid-Ahidouch H, Rodat-Despoix L, Matifat F, Morin G, Ahidouch A. DNA methylation of channel-related genes in cancers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2621-8. [PMID: 25703813 DOI: 10.1016/j.bbamem.2015.02.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 02/04/2015] [Accepted: 02/12/2015] [Indexed: 12/31/2022]
Abstract
DNA methylation at CpG sites is an epigenetic mechanism that regulates cellular gene expression. In cancer cells, aberrant methylation is correlated with the abnormalities in expression of genes that are known to be involved in the particular characteristics of cancer cells such as proliferation, apoptosis, migration or invasion. During the past 30 years, accumulating data have definitely convinced the scientific community that ion channels are involved in cancerogenesis and cancer properties. As they are situated at the cell surface, they might be prime targets in the development of new therapeutic strategies besides their potential use as prognostic factors. Despite the progress in our understanding of the remodeling of ion channels in cancer cells, the molecular mechanisms underlying their over- or down-expression remained enigmatic. In this review, we aimed to summarize the available data on gene promoter methylation of ion channels and to investigate their clinical significance as novel biomarkers in cancer. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Halima Ouadid-Ahidouch
- UFR Sciences, EA 4667, Laboratory of Cell and Molecular Physiology, University of Picardie Jules Verne, SFR CAP-SANTE (FED 4231), Amiens, France.
| | - Lise Rodat-Despoix
- UFR Sciences, EA 4667, Laboratory of Cell and Molecular Physiology, University of Picardie Jules Verne, SFR CAP-SANTE (FED 4231), Amiens, France
| | - Fabrice Matifat
- UFR Sciences, EA 4667, Laboratory of Cell and Molecular Physiology, University of Picardie Jules Verne, SFR CAP-SANTE (FED 4231), Amiens, France
| | - Gilles Morin
- EA 4666 and Department of Molecular and Clinical Genetics, Amiens University Hospital, University of Picardie Jules Verne, Amiens, France
| | - Ahmed Ahidouch
- UFR Sciences, EA 4667, Laboratory of Cell and Molecular Physiology, University of Picardie Jules Verne, SFR CAP-SANTE (FED 4231), Amiens, France; Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir Morocco
| |
Collapse
|
29
|
de Cremoux P, Dalvai M, N'Doye O, Moutahir F, Rolland G, Chouchane-Mlik O, Assayag F, Lehmann-Che J, Kraus-Berthie L, Nicolas A, Lockhart BP, Marangoni E, de Thé H, Depil S, Bystricky K, Decaudin D. HDAC inhibition does not induce estrogen receptor in human triple-negative breast cancer cell lines and patient-derived xenografts. Breast Cancer Res Treat 2014; 149:81-9. [PMID: 25503779 DOI: 10.1007/s10549-014-3233-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/03/2014] [Indexed: 01/01/2023]
Abstract
Several publications have suggested that histone deacetylase inhibitors (HDACis) could reverse the repression of estrogen receptor alpha (ERα) in triple-negative breast cancer (TNBC) cell lines, leading to the induction of a functional protein. Using different HDACis, vorinostat, panobinostat, and abexinostat, we therefore investigated this hypothesis in various human TNBC cell lines and patient-derived xenografts (PDXs). We used three human TNBC cell lines and three PDXs. We analyzed the in vitro toxicity of the compounds, their effects on the hormone receptors and hormone-related genes and protein expression both in vitro and in vivo models. We then explored intra-tumor histone H3 acetylation under abexinostat in xenograft models. Despite major cytotoxicity of all tested HDAC inhibitors and repression of deactylation-dependent CCND1 gene, neither ERα nor ERβ, ESR1 or ESR2 genes respectively, were re-expressed in vitro. In vivo, after administration of abexinostat for three consecutive days, we did not observe any induction of ESR1 or ESR1-related genes and ERα protein expression by RT-qPCR and immunohistochemical methods in PDXs. This observation was concomitant to the fact that in vivo administration of abexinostat increased intra-tumor histone H3 acetylation. These observations do not allow us to confirm previous studies which suggested that HDACis are able to convert ER-negative (ER-) tumors to ER-positive (ER+) tumors, and that a combination of HDAC inhibitors and hormone therapy could be proposed in the management of TNBC patients.
Collapse
Affiliation(s)
- Patricia de Cremoux
- APHP Hôpital Saint-Louis, Molecular Oncoloy Unit and University Paris-Diderot, PRES Paris Cité, INSERM/CNRS UMR944/7212, 1, Avenue Claude Vellefaux, 75010, Paris, France,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yang S, Jia Y, Liu X, Winters C, Wang X, Zhang Y, Devor EJ, Hovey AM, Reyes HD, Xiao X, Xu Y, Dai D, Meng X, Thiel KW, Domann FE, Leslie KK. Systematic dissection of the mechanisms underlying progesterone receptor downregulation in endometrial cancer. Oncotarget 2014; 5:9783-97. [PMID: 25229191 PMCID: PMC4259437 DOI: 10.18632/oncotarget.2392] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 08/23/2014] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Progesterone, acting through its receptor, PR (progesterone receptor), is the natural inhibitor of uterine endometrial carcinogenesis by inducing differentiation. PR is downregulated in more advanced cases of endometrial cancer, thereby limiting the effectiveness of hormonal therapy. Our objective was to understand and reverse the mechanisms underlying loss of PR expression in order to improve therapeutic outcomes. Using endometrial cancer cell lines and data from The Cancer Genome Atlas, our findings demonstrate that PR expression is downregulated at four distinct levels. In well-differentiated cancers, ligand-induced receptor activation and downregulation are intact. miRNAs mediate fine tuning of PR levels. As differentiation is lost, PR silencing is primarily at the epigenetic level. Initially, recruitment of the polycomb repressor complex 2 to the PR promoter suppresses transcription. Subsequently, DNA methylation prevents PR expression. Appropriate epigenetic modulators reverse these mechanisms. These data provide a rationale for combining epigenetic modulators with progestins as a therapeutic strategy for endometrial cancer. SIGNIFICANCE Traditional hormonal therapy for women with endometrial cancer can be molecularly enhanced by combining progestins with epigenetic modulators, thereby increasing progesterone receptor expression and significantly improving treatment efficacy.
Collapse
Affiliation(s)
- Shujie Yang
- Department of Obstetrics and Gynecology, University of Iowa, IA, 52242, USA
- Carver College of Medicine and Holden Comprehensive Cancer Center, University of Iowa, IA, 52242, USA
| | - Yichen Jia
- Department of Obstetrics and Gynecology, University of Iowa, IA, 52242, USA
| | - Xiaoyue Liu
- Department of Obstetrics and Gynecology, University of Iowa, IA, 52242, USA
| | | | - Xinjun Wang
- Department of Obstetrics and Gynecology, University of Iowa, IA, 52242, USA
| | - Yuping Zhang
- Department of Obstetrics and Gynecology, University of Iowa, IA, 52242, USA
| | - Eric J. Devor
- Department of Obstetrics and Gynecology, University of Iowa, IA, 52242, USA
| | - Adriann M. Hovey
- Department of Obstetrics and Gynecology, University of Iowa, IA, 52242, USA
| | - Henry D. Reyes
- Department of Obstetrics and Gynecology, University of Iowa, IA, 52242, USA
| | - Xue Xiao
- Department of Obstetrics and Gynecology, University of Iowa, IA, 52242, USA
| | - Yang Xu
- The Interdisciplinary Graduate Program in Informatics, University of Iowa, IA, 52242, USA
| | - Donghai Dai
- Department of Obstetrics and Gynecology, University of Iowa, IA, 52242, USA
| | - Xiangbing Meng
- Department of Obstetrics and Gynecology, University of Iowa, IA, 52242, USA
- Carver College of Medicine and Holden Comprehensive Cancer Center, University of Iowa, IA, 52242, USA
| | - Kristina W. Thiel
- Department of Obstetrics and Gynecology, University of Iowa, IA, 52242, USA
| | - Frederick E. Domann
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, IA, 52242, USA
- Carver College of Medicine and Holden Comprehensive Cancer Center, University of Iowa, IA, 52242, USA
| | - Kimberly K. Leslie
- Department of Obstetrics and Gynecology, University of Iowa, IA, 52242, USA
- Carver College of Medicine and Holden Comprehensive Cancer Center, University of Iowa, IA, 52242, USA
| |
Collapse
|
31
|
Vrtačnik P, Ostanek B, Mencej-Bedrač S, Marc J. The many faces of estrogen signaling. Biochem Med (Zagreb) 2014; 24:329-42. [PMID: 25351351 PMCID: PMC4210253 DOI: 10.11613/bm.2014.035] [Citation(s) in RCA: 278] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/14/2014] [Indexed: 12/21/2022] Open
Abstract
Estrogens have long been known as important regulators of the female reproductive functions; however, our understanding of the role estrogens play in the human body has changed significantly over the past years. It is now commonly accepted that estrogens and androgens have important functions in both female and male physiology and pathology. This is in part due to the local synthesis and action of estrogens that broadens the role of estrogen signaling beyond that of the endocrine system. Furthermore, there are several different mechanisms through which the three estrogen receptors (ERs), ERα, ERβ and G protein-coupled estrogen receptor 1 (GPER1) are able to regulate target gene transcription. ERα and ERβ are mostly associated with the direct and indirect genomic signaling pathways that result in target gene expression. Membrane-bound GPER1 is on the other hand responsible for the rapid non-genomic actions of estrogens that activate various protein-kinase cascades. Estrogen signaling is also tightly connected with another important regulatory entity, i.e. epigenetic mechanisms. Posttranslational histone modifications, microRNAs (miRNAs) and DNA methylation have been shown to influence gene expression of ERs as well as being regulated by estrogen signaling. Moreover, several coregulators of estrogen signaling also exhibit chromatin-modifying activities further underlining the importance of epigenetic mechanisms in estrogen signaling. This review wishes to highlight the newer aspects of estrogen signaling that exceed its classical endocrine regulatory role, especially emphasizing its tight intertwinement with epigenetic mechanisms.
Collapse
Affiliation(s)
- Peter Vrtačnik
- University of Ljubljana, Faculty of Pharmacy, Department of Clinical Biochemistry, Ljubljana, Slovenia
| | - Barbara Ostanek
- University of Ljubljana, Faculty of Pharmacy, Department of Clinical Biochemistry, Ljubljana, Slovenia
| | - Simona Mencej-Bedrač
- University of Ljubljana, Faculty of Pharmacy, Department of Clinical Biochemistry, Ljubljana, Slovenia
| | - Janja Marc
- University of Ljubljana, Faculty of Pharmacy, Department of Clinical Biochemistry, Ljubljana, Slovenia
| |
Collapse
|
32
|
Hagrass HA, Pasha HF, Ali AM. Estrogen receptor alpha (ERα) promoter methylation status in tumor and serum DNA in Egyptian breast cancer patients. Gene 2014; 552:81-6. [PMID: 25218234 DOI: 10.1016/j.gene.2014.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/30/2014] [Accepted: 09/08/2014] [Indexed: 11/25/2022]
Abstract
BACKGROUND Status of DNA methylation is one of the most common molecular alterations in human neoplasia. Because it is possible to detect these epigenetic alterations in the bloodstream of patients, we investigated the aberrant DNA methylation status of estrogen receptor alpha (ERα) in patient pretherapeutic sera and tissue. MATERIALS AND METHODS In this case control study the patient series consisted of 120 sporadic primary breast cancer cases and 100 patients with benign breast lesion. ER3, ER4, and ER5 primers were used for methylation-specific polymerase chain reaction (MSP) to analyze the CpG methylation of promoter region of ERα gene. Correlation between ER3, ER4, and ER5 methylation and clinicopathological characteristics of the patients was investigated. RESULT The methylation status of ER3, ER4 and ER5 was 65%, 26.7% and 61.7% in tissue respectively and 57.5%, 21.7% and 55.8% in serum respectively. The concordance between tumor and serum DNA methylation was 80%, 72% and 92% for ER3, ER4 and ER5 respectively. CONCLUSIONS This study demonstrated the potential utility of serum DNA methylation of ERα gene promoter as a non-invasive diagnostic and/or prognostic marker in patients with breast cancer.
Collapse
Affiliation(s)
- Hoda A Hagrass
- Clinical Pathology Department, Faculty of Medicine, Zagazig University, Egypt
| | - Heba F Pasha
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Egypt.
| | - Ahmed M Ali
- Surgery Department, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
33
|
Vázquez-Martínez ER, Mendoza-Garcés L, Vergara-Castañeda E, Cerbón M. Epigenetic regulation of Progesterone Receptor isoforms: from classical models to the sexual brain. Mol Cell Endocrinol 2014; 392:115-24. [PMID: 24859604 DOI: 10.1016/j.mce.2014.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/12/2014] [Indexed: 01/29/2023]
Abstract
Progesterone Receptor is a member of the nuclear receptor superfamily, which regulates several functions in both reproductive and non-reproductive tissues. Progesterone Receptor gene encodes for two main isoforms, A and B, and contains two specific promoters with their respective transcription start sites. The mRNA expression of both isoforms is mainly regulated by estrogens and specifically via the Estrogen Receptor Alpha, in a context specific manner. Furthermore, it has been reported in extensive physiological and pathological models that Progesterone Receptor isoforms regulation is related to the epigenetic state of their respective promoters. Epigenetic regulation of Progesterone Receptor isoforms in the brain is a recent and scarcely explored field in neurosciences. This review focuses on the epigenetic mechanisms involved in Progesterone Receptor regulation, emphasizing the implications for the sexual brain. Future directions for research about this important field are also discussed.
Collapse
Affiliation(s)
- Edgar Ricardo Vázquez-Martínez
- Departamento de Biología, Facultad de Química, Av Universidad 3000, Universidad Nacional Autónoma de México (UNAM), Coyoacán, 04510, Distrito Federal, México, Mexico
| | - Luciano Mendoza-Garcés
- Instituto Nacional de Geriatría, Periférico Sur 2767, San Jerónimo Lídice, Magdalena Contreras, 10200, Distrito Federal, México, Mexico
| | - Edgar Vergara-Castañeda
- Departamento de Biología, Facultad de Química, Av Universidad 3000, Universidad Nacional Autónoma de México (UNAM), Coyoacán, 04510, Distrito Federal, México, Mexico
| | - Marco Cerbón
- Departamento de Biología, Facultad de Química, Av Universidad 3000, Universidad Nacional Autónoma de México (UNAM), Coyoacán, 04510, Distrito Federal, México, Mexico.
| |
Collapse
|
34
|
Chattopadhyay S, Deo SVS, Shukla NK, Husain SA. Association of promoter methylation of ERα and ERβ with sporadic breast cancer—a study from North India. Tumour Biol 2014; 35:7911-9. [DOI: 10.1007/s13277-014-2052-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/05/2014] [Indexed: 01/06/2023] Open
|
35
|
Zhang X, Wang J, Cheng J, Ding S, Li M, Sun S, Zhang L, Liu S, Chen X, Zhuang H, Lu F. An integrated analysis of SOCS1 down-regulation in HBV infection-related hepatocellular carcinoma. J Viral Hepat 2014; 21:264-71. [PMID: 23941364 PMCID: PMC4229024 DOI: 10.1111/jvh.12137] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Persistent inflammation together with genetic/epigenetic aberrations is strongly associated with chronic Hepatitis B virus (HBV) infection-related hepatocarcinogenesis. Here, we investigated the alterations of the suppressor of cytokine signalling (SOCS) family genes in HBV-related hepatocellular carcinoma (HCC). A total of 116 patients with HCC were enrolled in this study. The methylation statuses of SOCS1-7 and CISH genes were quantitatively measured and clinicopathological significance of SOCS1 methylation was statistically analysed. The gene copy number variation was assayed by aCGH. Luciferase reporter assay and Western blot were used to detect the involvement of SOCS1 in p53 signalling. We found high frequencies of SOCS1 gene hypermethylation in both tumour (56.03%) and adjacent nontumour tissues (54.31%), but tumour tissues exhibited increased methylation intensity (24.01% vs 13.11%, P < 0.0001), particularly in patients with larger tumour size or cirrhosis background (P < 0.0001). In addition, the frequency and intensity of SOCS1 hypermethylation in tumour tissues were both significantly higher than those in nontumour tissues in male gender patients and in patients ≥45 years old (P = 0.0214 and P < 0.0001, P = 0.0232 and P < 0.0001, respectively). SOCS1 gene deletion was found in 8 of 25 aCGH assayed tumour specimens, which was associated with lower SOCS1 mRNA expression (P = 0.0448). Furthermore, ectopic SOCS1 overexpression could activate the p53 signalling pathway in HCC cell lines. Hypermethylation of SOCS2-7 and CISH genes was seldom found in HCC. Our results suggested that the gene loss and epigenetic silencing of SOCS1 were strongly associated with HBV-related HCC.
Collapse
Affiliation(s)
- X Zhang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science CenterBeijing, China
| | - J Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science CenterBeijing, China
| | - J Cheng
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science CenterBeijing, China
| | - S Ding
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science CenterBeijing, China
| | - M Li
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science CenterBeijing, China
| | - S Sun
- College of Pharmacy, Harbin Medical University-DaqingDaqing, China
| | - L Zhang
- Department of Hepatopancreatobiliary Surgery, Henan Tumor HospitalZhengzhou, China
| | - S Liu
- Beijing Artificial Liver Treatment & Training Center, Beijing Youan Hospital, Capital Medical UniversityBeijing, China
| | - X Chen
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science CenterBeijing, China,Correspondence: Fengmin Lu, Xiangmei Chen, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China. E-mail: ;
| | - H Zhuang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science CenterBeijing, China
| | - F Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science CenterBeijing, China,Correspondence: Fengmin Lu, Xiangmei Chen, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China. E-mail: ;
| |
Collapse
|
36
|
Chen YL, Kuo MH, Lin PY, Chuang WL, Hsu CC, Chu PY, Lee CH, Huang THM, Leu YW, Hsiao SH. ENSA expression correlates with attenuated tumor propagation in liver cancer. Biochem Biophys Res Commun 2013; 442:56-61. [DOI: 10.1016/j.bbrc.2013.10.165] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 10/31/2013] [Indexed: 01/15/2023]
|
37
|
Stone A, Cowley MJ, Valdes-Mora F, McCloy RA, Sergio CM, Gallego-Ortega D, Caldon CE, Ormandy CJ, Biankin AV, Gee JMW, Nicholson RI, Print CG, Clark SJ, Musgrove EA. BCL-2 hypermethylation is a potential biomarker of sensitivity to antimitotic chemotherapy in endocrine-resistant breast cancer. Mol Cancer Ther 2013; 12:1874-85. [PMID: 23861345 DOI: 10.1158/1535-7163.mct-13-0012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Overexpression of the antiapoptotic factor BCL-2 is a frequent feature of malignant disease and is commonly associated with poor prognosis and resistance to conventional chemotherapy. In breast cancer, however, high BCL-2 expression is associated with favorable prognosis, estrogen receptor (ER) positivity, and low tumor grade, whereas low expression is included in several molecular signatures associated with resistance to endocrine therapy. In the present study, we correlate BCL-2 expression and DNA methylation profiles in human breast cancer and in multiple cell models of acquired endocrine resistance to determine whether BCL-2 hypermethylation could provide a useful biomarker of response to cytotoxic therapy. In human disease, diminished expression of BCL-2 was associated with hypermethylation of the second exon, in a region that overlapped a CpG island and an ER-binding site. Hypermethylation of this region, which occurred in 10% of primary tumors, provided a stronger predictor of patient survival (P = 0.019) when compared with gene expression (n = 522). In multiple cell models of acquired endocrine resistance, BCL-2 expression was significantly reduced in parallel with increased DNA methylation of the exon 2 region. The reduction of BCL-2 expression in endocrine-resistant cells lowered their apoptotic threshold to antimitotic agents: nocodazole, paclitaxel, and the PLK1 inhibitor BI2536. This phenomenon could be reversed with ectopic expression of BCL-2, and rescued with the BCL-2 inhibitor ABT-737. Collectively, these data imply that BCL-2 hypermethylation provides a robust biomarker of response to current and next-generation cytotoxic agents in endocrine-resistant breast cancer, which may prove beneficial in directing therapeutic strategy for patients with nonresectable, metastatic disease.
Collapse
Affiliation(s)
- Andrew Stone
- Corresponding Author: Andrew Stone, Garvan Institute of Medical Research, L9 TKCC, 370 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yang G, Nowsheen S, Aziz K, Georgakilas AG. Toxicity and adverse effects of Tamoxifen and other anti-estrogen drugs. Pharmacol Ther 2013; 139:392-404. [PMID: 23711794 DOI: 10.1016/j.pharmthera.2013.05.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 01/20/2023]
Abstract
Breast cancer is a heterogeneous disease affecting thousands of people every year. Multiple factors are responsible in causing breast cancer while a number of treatment options are also available for the disease. Tamoxifen is the most widely used anti-estrogen for the treatment of hormone-dependent breast cancer. The specific drug is used as a hormonal therapy for patients who exhibit estrogen receptor positive breast cancer. The pharmacological activity of Tamoxifen is dependent on its conversion to its active metabolite, endoxifen, by CYP2D6. Tamoxifen reduces the risk of recurrence and death from breast cancer when given as adjuvant therapy and provides effective palliation for patients with metastatic breast cancer. In this review we focus on the role of Tamoxifen in breast cancer treatment including mechanisms and side-effects. Finally, we discuss in detail the exciting prospects that lie ahead.
Collapse
Affiliation(s)
- Geniey Yang
- Department of Biology, Thomas Harriot College of Arts and Sciences, East Carolina University, Greenville, NC 27858, USA
| | | | | | | |
Collapse
|
39
|
Magnani L, Brunelle M, Gévry N, Lupien M. Chromatin landscape and endocrine response in breast cancer. Epigenomics 2013; 4:675-83. [PMID: 23244312 DOI: 10.2217/epi.12.64] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Over two-thirds of breast cancers rely on estrogen receptor α (ERα) for their growth. Endocrine therapies antagonize estrogen-dependent ERα activation but resistance to these treatments occurs and is associated with poor prognosis. Crosstalk between alternative survival pathways and ERα are currently held as the primary cause of resistance. However, blocking these pathways does not cure endocrine therapy resistant breast cancer suggesting the existence of additional mechanisms. While cancer is commonly considered a genetic disease, the importance of epigenetic events in promoting tumor initiation and progression is increasingly recognized. Here, we consider how epigenetic modifications and alterations to the chromatin landscape contribute to endocrine therapy resistance by modulating ERα expression or altering its genomic activity.
Collapse
Affiliation(s)
- Luca Magnani
- Ontario Cancer Institute, Princess Margaret Hospital-University Health Network & the Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
40
|
Trimarchi MP, Mouangsavanh M, Huang THM. Cancer epigenetics: a perspective on the role of DNA methylation in acquired endocrine resistance. CHINESE JOURNAL OF CANCER 2013; 30:749-56. [PMID: 22035855 PMCID: PMC3890241 DOI: 10.5732/cjc.011.10128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Epigenetic mechanisms, including DNA methylation, are responsible for determining and maintaining cell fate, stably differentiating the various tissues in our bodies. Increasing evidence shows that DNA methylation plays a significant role in cancer, from the silencing of tumor suppressors to the activation of oncogenes and the promotion of metastasis. Recent studies also suggest a role for DNA methylation in drug resistance. This perspective article discusses how DNA methylation may contribute to the development of acquired endocrine resistance, with a focus on breast cancer. In addition, we discuss DNA methylome profiling and how recent developments in this field are shedding new light on the role of epigenetics in endocrine resistance. Hormone ablation is the therapy of choice for hormone-sensitive breast tumors, yet as many as 40% of patients inevitably relapse, and these hormone refractory tumors often have a poor prognosis. Epigenetic studies could provide DNA methylation biomarkers to predict and diagnose acquired resistance in response to treatment. Elucidation of epigenetic mechanisms may also lead to the development of new treatments that specifically target epigenetic abnormalities or vulnerabilities in cancer cells. Expectations must be tempered by the fact that epigenetic mechanisms of endocrine resistance remain poorly understood, and further study is required to better understand how altering epigenetic pathways with therapeutics can promote or inhibit endocrine resistance in different contexts. Going forward, DNA methylome profiling will become increasingly central to epigenetic research, heralding a network-based approach to epigenetics that promises to advance our understanding of the etiology of cancer in ways not previously possible.
Collapse
Affiliation(s)
- Michael P Trimarchi
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
41
|
Hervouet E, Cartron PF, Jouvenot M, Delage-Mourroux R. Epigenetic regulation of estrogen signaling in breast cancer. Epigenetics 2013; 8:237-45. [PMID: 23364277 PMCID: PMC3669116 DOI: 10.4161/epi.23790] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Estrogen signaling is mediated by ERα and ERβ in hormone dependent, breast cancer (BC). Over the last decade the implication of epigenetic pathways in BC tumorigenesis has emerged: cancer-related epigenetic modifications are implicated in both gene expression regulation, and chromosomal instability. In this review, the epigenetic-mediated estrogen signaling, controlling both ER level and ER-targeted gene expression in BC, are discussed: (1) ER silencing is frequently observed in BC and is often associated with epigenetic regulations while chemical epigenetic modulators restore ER expression and increase response to treatment;(2) ER-targeted gene expression is tightly regulated by co-recruitment of ER and both coactivators/corepressors including HATs, HDACs, HMTs, Dnmts and Polycomb proteins.
Collapse
Affiliation(s)
- Eric Hervouet
- Université de Franche-Comté, Laboratoire de Biochimie, EA3922, Expression Génique et Pathologies du Système Nerveux Central, SFRIBCT FED 4234, UFR Sciences et Techniques, Besançon, France.
| | | | | | | |
Collapse
|
42
|
Leu YW, Huang THM, Hsiao SH. Epigenetic reprogramming of mesenchymal stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 754:195-211. [PMID: 22956503 DOI: 10.1007/978-1-4419-9967-2_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells of mesodermal origin that can be isolated from various sources and induced into different cell types. Although MSCs possess immune privilege and are more easily obtained than embryonic stem cells, their propensity to tumorigenesis has not been fully explored. Epigenomic changes in DNA methylation and chromatin structure have been hypothesized to be critical in the determination of lineage-specific differentiation and tumorigenesis of MSCs, but this has not been formally proven. We applied a targeted DNA methylation method to methylate a Polycomb group protein-governed gene, Trip10, in MSCs, which accelerated the cell fate determination of MSCs. In addition, targeted methylation of HIC1 and RassF1A, both tumor suppressor genes, transformed MSCs into tumor stem cell-like cells. This new method will allow better control of the differentiation of MSCs and their use in downstream applications.
Collapse
Affiliation(s)
- Yu-Wei Leu
- Department of Life Science, National Chung Cheng University, Chia-Yi 621, Taiwan.
| | | | | |
Collapse
|
43
|
Greathouse KL, Bredfeldt T, Everitt JI, Lin K, Berry T, Kannan K, Mittelstadt ML, Ho SM, Walker CL. Environmental estrogens differentially engage the histone methyltransferase EZH2 to increase risk of uterine tumorigenesis. Mol Cancer Res 2012; 10:546-57. [PMID: 22504913 DOI: 10.1158/1541-7786.mcr-11-0605] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Environmental exposures during sensitive windows of development can reprogram normal physiologic responses and alter disease susceptibility later in life in a process known as developmental reprogramming. For example, exposure to the xenoestrogen diethylstilbestrol during reproductive tract development can reprogram estrogen-responsive gene expression in the myometrium, resulting in hyperresponsiveness to hormone in the adult uterus and promotion of hormone-dependent uterine leiomyoma. We show here that the environmental estrogens genistein, a soy phytoestrogen, and the plasticizer bisphenol A, differ in their pattern of developmental reprogramming and promotion of tumorigenesis (leiomyomas) in the uterus. Whereas both genistein and bisphenol A induce genomic estrogen receptor (ER) signaling in the developing uterus, only genistein induced phosphoinositide 3-kinase (PI3K)/AKT nongenomic ER signaling to the histone methyltransferase enhancer of zeste homolog 2 (EZH2). As a result, this pregenomic signaling phosphorylates and represses EZH2 and reduces levels of H3K27me3 repressive mark in chromatin. Furthermore, only genistein caused estrogen-responsive genes in the adult myometrium to become hyperresponsive to hormone; estrogen-responsive genes were repressed in bisphenol A-exposed uteri. Importantly, this pattern of EZH2 engagement to decrease versus increase H3K27 methylation correlated with the effect of these xenoestrogens on tumorigenesis. Developmental reprogramming by genistein promoted development of uterine leiomyomas, increasing tumor incidence and multiplicity, whereas bisphenol A did not. These data show that environmental estrogens have distinct nongenomic effects in the developing uterus that determines their ability to engage the epigenetic regulator EZH2, decrease levels of the repressive epigenetic histone H3K27 methyl mark in chromatin during developmental reprogramming, and promote uterine tumorigenesis.
Collapse
Affiliation(s)
- K Leigh Greathouse
- Science Park Research Division, Department of Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Huynh KT, Chong KK, Greenberg ES, Hoon DSB. Epigenetics of estrogen receptor-negative primary breast cancer. Expert Rev Mol Diagn 2012; 12:371-82. [PMID: 22616702 DOI: 10.1586/erm.12.26] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Increasingly, breast cancer is being recognized as a heterogeneous disease comprised of molecularly and phenotypically distinct intrinsic tumor subtypes with different clinical outcomes. This biological heterogeneity has significant implications, particularly as it relates to expression profiling of estrogen receptor (ER) status, as classifying breast cancers based on hormone receptor expression impacts not only prognosis but also treatment options and long-term outcomes. Epigenetics has emerged as a promising field for the assessment of hormone receptor status. Epigenetic aberrations have been shown to regulate ER and offer reversible targets for development of new therapies. This review covers ER-negative breast tumor epigenetic aberrations and summarizes the major epigenetic mechanisms governing ER expression and how it impacts treatment of ER-negative breast cancer.
Collapse
Affiliation(s)
- Kelly T Huynh
- Department of Molecular Oncology, John Wayne Cancer Institute, 2200 Santa Monica Blvd, Santa Monica, CA 90404, USA
| | | | | | | |
Collapse
|
45
|
Putnik M, Zhao C, Gustafsson JÅ, Dahlman-Wright K. Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells. Biochem Biophys Res Commun 2012; 426:26-32. [PMID: 22902638 DOI: 10.1016/j.bbrc.2012.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 08/02/2012] [Indexed: 01/16/2023]
Abstract
Estrogen signaling and epigenetic modifications, in particular DNA methylation, are involved in regulation of gene expression in breast cancers. Here we investigated a potential regulatory cross-talk between these two pathways by identifying their common target genes and exploring underlying molecular mechanisms in human MCF-7 breast cancer cells. Gene expression profiling revealed that the expression of approximately 140 genes was influenced by both 17β-estradiol (E2) and a demethylating agent 5-aza-2'-deoxycytidine (DAC). Gene ontology (GO) analysis suggests that these genes are involved in intracellular signaling cascades, regulation of cell proliferation and apoptosis. Based on previously reported association with breast cancer, estrogen signaling and/or DNA methylation, CpG island prediction and GO analysis, we selected six genes (BTG3, FHL2, PMAIP1, BTG2, CDKN1A and TGFB2) for further analysis. Tamoxifen reverses the effect of E2 on the expression of all selected genes, suggesting that they are direct targets of estrogen receptor. Furthermore, DAC treatment reactivates the expression of all selected genes in a dose-dependent manner. Promoter CpG island methylation status analysis revealed that only the promoters of BTG3 and FHL2 genes are methylated, with DAC inducing demethylation, suggesting DNA methylation directs repression of these genes in MCF-7 cells. In a further analysis of the potential interplay between estrogen signaling and DNA methylation, E2 treatment showed no effect on the methylation status of these promoters. Additionally, we show that the ERα recruitment occurs at the FHL2 promoter in an E2- and DAC-independent fashion. In conclusion, we identified a set of genes regulated by both estrogen signaling and DNA methylation. However, our data does not support a direct molecular interplay of mediators of estrogen and epigenetic signaling at promoters of regulated genes.
Collapse
Affiliation(s)
- Milica Putnik
- Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183, Sweden.
| | | | | | | |
Collapse
|
46
|
Chen YL, Ko CJ, Lin PY, Chuang WL, Hsu CC, Chu PY, Pai MY, Chang CC, Kuo MH, Chu YR, Tung CH, Huang THM, Leu YW, Hsiao SH. Clustered DNA methylation changes in polycomb target genes in early-stage liver cancer. Biochem Biophys Res Commun 2012; 425:290-6. [PMID: 22842566 DOI: 10.1016/j.bbrc.2012.07.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 01/09/2023]
Abstract
Polycomb-group proteins mark specific chromatin conformations in embryonic and somatic stem cells that are critical for maintenance of their "stemness". These proteins also mark altered chromatin modifications identified in various cancers. In normal differentiated cells or advanced cancerous cells, these polycomb-associated loci are frequently associated with increased DNA methylation. It has thus been hypothesized that changes in DNA methylation status within polycomb-associated loci may dictate cell fate and that abnormal methylation within these loci may be associated with tumor development. To assess this, we examined the methylation states of four polycomb target loci -Trip10, Casp8AP2, ENSA, and ZNF484 - in liver cancer. These four targets were selected because their methylation levels are increased during mesenchymal stem cell-to-liver differentiation. We found that these four loci were hypomethylated in most early-stage liver cancer specimens. For comparison, two non-polycomb tumor suppressor genes, HIC1 and RassF1A, were also examined. Whereas the methylation level of HIC1 did not differ significantly between normal and tumor samples, RassF1A was significantly hypermethylated in liver tumor samples. Unsupervised clustering analysis classified the methylation changes within polycomb and non-polycomb targets to be independent, indicating independent epigenetic evolution. Thus, pre-deposited polycomb marks within somatic stem cells may contribute to the determination of methylation changes during hepatic tumorigenesis.
Collapse
Affiliation(s)
- Yao-Li Chen
- Transplant Medicine & Surgery Research Centre, Changhua Christian Hospital, Changhua, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Stone A, Valdés-Mora F, Gee JMW, Farrow L, McClelland RA, Fiegl H, Dutkowski C, McCloy RA, Sutherland RL, Musgrove EA, Nicholson RI. Tamoxifen-induced epigenetic silencing of oestrogen-regulated genes in anti-hormone resistant breast cancer. PLoS One 2012; 7:e40466. [PMID: 22808167 PMCID: PMC3393679 DOI: 10.1371/journal.pone.0040466] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 06/07/2012] [Indexed: 02/07/2023] Open
Abstract
In the present study, we have taken the novel approach of using an in vitro model representative of tamoxifen-withdrawal subsequent to clinical relapse to achieve a greater understanding of the mechanisms that serve to maintain the resistant-cell phenotype, independent of any agonistic impact of tamoxifen, to identify potential novel therapeutic approaches for this disease state. Following tamoxifen withdrawal, tamoxifen-resistant MCF-7 cells conserved both drug resistance and an increased basal rate of proliferation in an oestrogen deprived environment, despite reduced epidermal growth-factor receptor expression and reduced sensitivity to gefitinib challenge. Although tamoxifen-withdrawn cells retained ER expression, a sub-set of ER-responsive genes, including pS2 and progesterone receptor (PgR), were down-regulated by promoter DNA methylation, as confirmed by clonal bisulphite sequencing experiments. Following promoter demethylation with 5-Azacytidine (5-Aza), the co-addition of oestradiol (E2) restored gene expression in these cells. In addition, 5-Aza/E2 co-treatment induced a significant anti-proliferative effect in the tamoxifen-withdrawn cells, in-contrast to either agent used alone. Microarray analysis was undertaken to identify genes specifically up regulated by this co-treatment. Several anti-proliferative gene candidates were identified and their promoters were confirmed as more heavily methylated in the tamoxifen resistant vs sensitive cells. One such gene candidate, growth differentiation factor 15 (GDF15), was carried forward for functional analysis. The addition of 5-Aza/E2 was sufficient to de-methylate and activate GDF15 expression in the tamoxifen resistant cell-lines, whilst in parallel, treatment with recombinant GDF15 protein decreased cell survival. These data provide evidence to support a novel concept that long-term tamoxifen exposure induces epigenetic silencing of a cohort of oestrogen-responsive genes whose function is associated with negative proliferation control. Furthermore, reactivation of such genes using epigenetic drugs could provide a potential therapeutic avenue for the management of tamoxifen-resistant breast cancer.
Collapse
Affiliation(s)
- Andrew Stone
- Welsh School of Pharmacy, Redwood Building, Cardiff University, Cardiff, Wales, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Luminal breast cancer metastasis is dependent on estrogen signaling. Clin Exp Metastasis 2012; 29:493-509. [PMID: 22427027 DOI: 10.1007/s10585-012-9466-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 01/10/2012] [Indexed: 12/29/2022]
Abstract
Luminal breast cancer is the most frequently encountered type of human breast cancer and accounts for half of all breast cancer deaths due to metastatic disease. We have developed new in vivo models of disseminated human luminal breast cancer that closely mimic the human disease. From initial lesions in the tibia, locoregional metastases develop predictably along the iliac and retroperitoneal lymph node chains. Tumors cells retain their epithelioid phenotype throughout the process of dissemination. In addition, systemically injected metastatic MCF-7 cells consistently give rise to metastases in the skeleton, floor of mouth, adrenal glands, as well as in the lungs, liver, brain and mammary fat pad. We show that growth of luminal breast cancer metastases is highly dependent on estrogen in a dose-dependent manner and that estrogen withdrawal induces rapid growth arrest of metastatic disease. On the other hand, even though micrometastases at secondary sites remain viable in the absence of estrogen, they are dormant and do not progress to macrometastases. Thus, homing to and seeding of secondary sites do not require estrogen. Moreover, in sharp contrast to basal-like breast cancer metastasis in which transforming growth factor-β signaling plays a key role, luminal breast cancer metastasis is independent of this cytokine. These findings have important implications for the development of targeted anti-metastatic therapy for luminal breast cancer.
Collapse
|
49
|
Teng M, Balch C, Liu Y, Li M, Huang THM, Wang Y, Nephew KP, Li L. The influence of cis-regulatory elements on DNA methylation fidelity. PLoS One 2012; 7:e32928. [PMID: 22412954 PMCID: PMC3295790 DOI: 10.1371/journal.pone.0032928] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 02/05/2012] [Indexed: 12/22/2022] Open
Abstract
It is now established that, as compared to normal cells, the cancer cell genome has an overall inverse distribution of DNA methylation (“methylome”), i.e., predominant hypomethylation and localized hypermethylation, within “CpG islands” (CGIs). Moreover, although cancer cells have reduced methylation “fidelity” and genomic instability, accurate maintenance of aberrant methylomes that underlie malignant phenotypes remains necessary. However, the mechanism(s) of cancer methylome maintenance remains largely unknown. Here, we assessed CGI methylation patterns propagated over 1, 3, and 5 divisions of A2780 ovarian cancer cells, concurrent with exposure to the DNA cross-linking chemotherapeutic cisplatin, and observed cell generation-successive increases in total hyper- and hypo-methylated CGIs. Empirical Bayesian modeling revealed five distinct modes of methylation propagation: (1) heritable (i.e., unchanged) high- methylation (1186 probe loci in CGI microarray); (2) heritable (i.e., unchanged) low-methylation (286 loci); (3) stochastic hypermethylation (i.e., progressively increased, 243 loci); (4) stochastic hypomethylation (i.e., progressively decreased, 247 loci); and (5) considerable “random” methylation (582 loci). These results support a “stochastic model” of DNA methylation equilibrium deriving from the efficiency of two distinct processes, methylation maintenance and de novo methylation. A role for cis-regulatory elements in methylation fidelity was also demonstrated by highly significant (p<2.2×10−5) enrichment of transcription factor binding sites in CGI probe loci showing heritably high (118 elements) and low (47 elements) methylation, and also in loci demonstrating stochastic hyper-(30 elements) and hypo-(31 elements) methylation. Notably, loci having “random” methylation heritability displayed nearly no enrichment. These results demonstrate an influence of cis-regulatory elements on the nonrandom propagation of both strictly heritable and stochastically heritable CGIs.
Collapse
Affiliation(s)
- Mingxiang Teng
- Harbin Institute of Technology, School of Computer Science and Technology, Harbin, Heilongjiang, China
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Curt Balch
- Medical Sciences Program, Indiana University, Bloomington, Indiana, United States of America
- Indiana University Melvin and Bren Simon Cancer, Indianapolis, Indiana, United States of America
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Indiana University Melvin and Bren Simon Cancer, Indianapolis, Indiana, United States of America
| | - Meng Li
- Medical Sciences Program, Indiana University, Bloomington, Indiana, United States of America
| | - Tim H. M. Huang
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Yadong Wang
- Harbin Institute of Technology, School of Computer Science and Technology, Harbin, Heilongjiang, China
- * E-mail: (YW); (KPN); (LL)
| | - Kenneth P. Nephew
- Medical Sciences Program, Indiana University, Bloomington, Indiana, United States of America
- Indiana University Melvin and Bren Simon Cancer, Indianapolis, Indiana, United States of America
- Departments of Cellular and Integrative Physiology and Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail: (YW); (KPN); (LL)
| | - Lang Li
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Indiana University Melvin and Bren Simon Cancer, Indianapolis, Indiana, United States of America
- Indiana Institute of Personalized Medicine, Departments of Cellular and Integrative Physiology and Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail: (YW); (KPN); (LL)
| |
Collapse
|
50
|
Ramos EAS, Grochoski M, Braun-Prado K, Seniski GG, Cavalli IJ, Ribeiro EMSF, Camargo AA, Costa FF, Klassen G. Epigenetic changes of CXCR4 and its ligand CXCL12 as prognostic factors for sporadic breast cancer. PLoS One 2011; 6:e29461. [PMID: 22220212 PMCID: PMC3248418 DOI: 10.1371/journal.pone.0029461] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 11/29/2011] [Indexed: 01/15/2023] Open
Abstract
Chemokines and their receptors are involved in the development and cancer progression. The chemokine CXCL12 interacts with its receptor, CXCR4, to promote cellular adhesion, survival, proliferation and migration. The CXCR4 gene is upregulated in several types of cancers, including skin, lung, pancreas, brain and breast tumors. In pancreatic cancer and melanoma, CXCR4 expression is regulated by DNA methylation within its promoter region. In this study we examined the role of cytosine methylation in the regulation of CXCR4 expression in breast cancer cell lines and also correlated the methylation pattern with the clinicopathological aspects of sixty-nine primary breast tumors from a cohort of Brazilian women. RT-PCR showed that the PMC-42, MCF7 and MDA-MB-436 breast tumor cell lines expressed high levels of CXCR4. Conversely, the MDA-MB-435 cell line only expressed CXCR4 after treatment with 5-Aza-CdR, which suggests that CXCR4 expression is regulated by DNA methylation. To confirm this hypothesis, a 184 bp fragment of the CXCR4 gene promoter region was cloned after sodium bisulfite DNA treatment. Sequencing data showed that cell lines that expressed CXCR4 had only 15% of methylated CpG dinucleotides, while the cell line that not have CXCR4 expression, had a high density of methylation (91%). Loss of DNA methylation in the CXCR4 promoter was detected in 67% of the breast cancer analyzed. The absence of CXCR4 methylation was associated with the tumor stage, size, histological grade, lymph node status, ESR1 methylation and CXCL12 methylation, metastasis and patient death. Kaplan-Meier curves demonstrated that patients with an unmethylated CXCR4 promoter had a poorer overall survival and disease-free survival. Furthermore, patients with both CXCL12 methylation and unmethylated CXCR4 had a shorter overall survival and disease-free survival. These findings suggest that the DNA methylation status of both CXCR4 and CXCL12 genes could be used as a biomarker for prognosis in breast cancer.
Collapse
Affiliation(s)
- Edneia A. S. Ramos
- Epigenetic and Molecular Biology Laboratory, Department of Basic Pathology, Federal University of Parana, Parana, Brazil
| | - Mariana Grochoski
- Epigenetic and Molecular Biology Laboratory, Department of Basic Pathology, Federal University of Parana, Parana, Brazil
| | - Karin Braun-Prado
- Epigenetic and Molecular Biology Laboratory, Department of Basic Pathology, Federal University of Parana, Parana, Brazil
| | - Gerusa G. Seniski
- Epigenetic and Molecular Biology Laboratory, Department of Basic Pathology, Federal University of Parana, Parana, Brazil
| | | | | | - Anamaria A. Camargo
- Laboratory of Molecular Biology and Genomics, Ludwig Institute for Cancer Research, São Paulo, São Paulo, Brazil
| | - Fabrício F. Costa
- Cancer Biology and Epigenomics Program, Children's Memorial Research Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinios, United States of America
- * E-mail: (FFC); (GK)
| | - Giseli Klassen
- Epigenetic and Molecular Biology Laboratory, Department of Basic Pathology, Federal University of Parana, Parana, Brazil
- * E-mail: (FFC); (GK)
| |
Collapse
|