1
|
Leclair NK, Brugiolo M, Park S, Devoucoux M, Urbanski L, Angarola BL, Yurieva M, Anczuków O. Antisense oligonucleotide-mediated TRA2β poison exon inclusion induces the expression of a lncRNA with anti-tumor effects. Nat Commun 2025; 16:1670. [PMID: 39955311 PMCID: PMC11829967 DOI: 10.1038/s41467-025-56913-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
Upregulated expression of the oncogenic splicing factor TRA2β occurs in human tumors partly through decreased inclusion of its autoregulatory non-coding poison exon (PE). Here, we reveal that low TRA2β-PE inclusion negatively impacts patient survival across several tumor types. We demonstrate the ability of splice-switching antisense oligonucleotides (ASOs) to promote TRA2β-PE inclusion and lower TRA2β protein levels in pre-clinical cancer models. TRA2β-PE-targeting ASOs induce anti-cancer phenotypes and widespread transcriptomic alterations with functional impact on RNA processing, mTOR, and p53 signaling pathways. Surprisingly, the effect of TRA2β-PE-targeting ASOs on cell viability are not phenocopied by TRA2β knockdown. Mechanistically, we find that the ASO functions by both decreasing TRA2β protein and inducing the expression of TRA2β-PE-containing transcripts that act as long non-coding RNAs to sequester nuclear proteins. Finally, TRA2β-PE-targeting ASOs are toxic to preclinical 3D organoid and in vivo patient-derived xenograft models. Together, we demonstrate that TRA2β-PE acts both as a regulator of protein expression and a long-noncoding RNA to control cancer cell growth. Drugging oncogenic splicing factors using PE-targeting ASOs is a promising therapeutic strategy.
Collapse
Affiliation(s)
- Nathan K Leclair
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA
| | - Mattia Brugiolo
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - SungHee Park
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Maeva Devoucoux
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Laura Urbanski
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA
| | | | - Marina Yurieva
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.
- Institute for Systems Genomics, UConn Health, Farmington, CT, USA.
| |
Collapse
|
2
|
Zhao T, Zhang Z, Chen Z, Xu G, Wang Y, Wang F. Biological functions of 5-methylcytosine RNA-binding proteins and their potential mechanisms in human cancers. Front Oncol 2025; 15:1534948. [PMID: 39990690 PMCID: PMC11842269 DOI: 10.3389/fonc.2025.1534948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/21/2025] [Indexed: 02/25/2025] Open
Abstract
The 5-methylcytosine (m5C) modification is a crucial epigenetic RNA modification, which is involved in the post-transcriptional regulation of genes. It plays an important role in various biological processes, including cell metabolism, growth, apoptosis, and tumorigenesis. By affecting the proliferation, migration, invasion, and drug sensitivity of tumor cells, m5C methylation modification plays a vital part in the initiation and progression of tumors and is closely associated with the poor tumor prognosis. m5C-related proteins are categorized into three functional groups: m5C methyltransferases (m5C writers), m5C demethylases (m5C erasers), and m5C methyl-binding proteins (m5C readers). This paper introduces several common methodologies for detecting m5C methylation; and reviews the molecular structure and biological functions of m5C readers, including ALYREF, YBX1, YBX2, RAD52, YTHDF2, FMRP, and SRSF2. It further summarizes their roles and regulatory mechanisms in tumors, offering novel targets and insights for tumor treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Fang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Olazabal-Herrero A, He B, Kwon Y, Gupta AK, Dutta A, Huang Y, Boddu P, Liang Z, Liang F, Teng Y, Lan L, Chen X, Pei H, Pillai MM, Sung P, Kupfer GM. The FANCI/FANCD2 complex links DNA damage response to R-loop regulation through SRSF1-mediated mRNA export. Cell Rep 2024; 43:113610. [PMID: 38165804 PMCID: PMC10865995 DOI: 10.1016/j.celrep.2023.113610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 01/04/2024] Open
Abstract
Fanconi anemia (FA) is characterized by congenital abnormalities, bone marrow failure, and cancer susceptibility. The central FA protein complex FANCI/FANCD2 (ID2) is activated by monoubiquitination and recruits DNA repair proteins for interstrand crosslink (ICL) repair and replication fork protection. Defects in the FA pathway lead to R-loop accumulation, which contributes to genomic instability. Here, we report that the splicing factor SRSF1 and FANCD2 interact physically and act together to suppress R-loop formation via mRNA export regulation. We show that SRSF1 stimulates FANCD2 monoubiquitination in an RNA-dependent fashion. In turn, FANCD2 monoubiquitination proves crucial for the assembly of the SRSF1-NXF1 nuclear export complex and mRNA export. Importantly, several SRSF1 cancer-associated mutants fail to interact with FANCD2, leading to inefficient FANCD2 monoubiquitination, decreased mRNA export, and R-loop accumulation. We propose a model wherein SRSF1 and FANCD2 interaction links DNA damage response to the avoidance of pathogenic R-loops via regulation of mRNA export.
Collapse
Affiliation(s)
- Anne Olazabal-Herrero
- Department of Oncology and Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA; Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT 06511, USA
| | - Boxue He
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Abhishek K Gupta
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT 06511, USA
| | - Arijit Dutta
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yuxin Huang
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Prajwal Boddu
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT 06511, USA
| | - Zhuobin Liang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Fengshan Liang
- Department of Oncology and Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA; Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT 06511, USA
| | - Yaqun Teng
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02129, USA; Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02129, USA; Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Xiaoyong Chen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Huadong Pei
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Manoj M Pillai
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT 06511, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Gary M Kupfer
- Department of Oncology and Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
4
|
Fu Y, Zha J, Wu Q, Tang Y, Wang W, Zhou Q, Jiang L. Stromal micropapillary pattern and CD44s expression predict worse outcome in lung adenocarcinomas with micropapillary pattern. Pathol Res Pract 2023; 248:154595. [PMID: 37343380 DOI: 10.1016/j.prp.2023.154595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023]
Abstract
OBJECTIVES This study aims to investigate the clinicopathologic characteristics of lung adenocarcinoma with micropapillary pattern (MPP) and the expression of CD44s and CD44v6 in MPP. METHODS A total of 202 patients diagnosed with primary lung adenocarcinoma with MPP were included. We estimated the proportion of MPP in each tumor tissue and divided MPP into aerogenous micropapillary pattern (AMP) and stromal micropapillary pattern (SMP). The expression of CD44s and CD44v6 was estimated by immunohistochemical staining. Clinicopathologic data were collected from the patients' medical records. We also collected patients' follow-up data and used PFS (progression-free survival) as a survival indicator. RESULTS Lung adenocarcinoma with MPP had a high risk of pleural invasion, lymph node metastasis, in advanced TNM stage, and a high rate of EGFR mutation. The presence of SMP indicated a higher rate of pleural invasion, lymphovascular invasion, lymph node metastasis, and a worse PFS compared with pure AMP. We found high expression of CD44s in micropapillary, especially in AMP, while the absence of CD44s expression indicated shorter survival, which was an independent unfavorable factor for PFS. CONCLUSIONS Lung adenocarcinoma with micropapillary pattern indicated an unfavorable prognosis, which had two different pattens, AMP and SMP. SMP indicated a worse survival than AMP, and was an independent unfavorable factor for PFS. So, AMP/SMP subclassification is necessary to evaluate patient's prognosis. Furthermore, the absent expression of CD44s in micropapillary indicated shorter survival, especially in patients with EGFR mutation. Herein, CD44s may be a biological marker for micropapillary lung adenocarcinoma.
Collapse
Affiliation(s)
- Yiyun Fu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Junmei Zha
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Wu
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuan Tang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Weiya Wang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiao Zhou
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Lili Jiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Xue J, Ma T, Zhang X. TRA2: The dominant power of alternative splicing in tumors. Heliyon 2023; 9:e15516. [PMID: 37151663 PMCID: PMC10161706 DOI: 10.1016/j.heliyon.2023.e15516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
The dysregulation of alternative splicing (AS) is frequently found in cancer and considered as key markers for cancer progression and therapy. Transformer 2 (TRA2), a nuclear RNA binding protein, consists of transformer 2 alpha homolog (TRA2A) and transformer 2 beta homolog (TRA2B), and plays a role in the regulation of pre-mRNA splicing. Growing evidence has been provided that TRA2A and TRA2B are dysregulated in several types of tumors, and participate in the regulation of proliferation, migration, invasion, and chemotherapy resistance in cancer cells through alteration of AS of cancer-related genes. In this review, we highlight the role of TRA2 in tumorigenesis and metastasis, and discuss potential molecular mechanisms how TRA2 influences tumorigenesis and metastasis via controlling AS of pre-mRNA. We propose that TRA2Ais a novel biomarker and therapeutic target for cancer progression and therapy.
Collapse
Affiliation(s)
- Jiancheng Xue
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Shenyang, China
| | - Tie Ma
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
- Corresponding author.
| | - Xiaowen Zhang
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Shenyang, China
- Corresponding author. Medical Research Center, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
6
|
Gillespie MS, Ward CM, Davies CC. DNA Repair and Therapeutic Strategies in Cancer Stem Cells. Cancers (Basel) 2023; 15:1897. [PMID: 36980782 PMCID: PMC10047301 DOI: 10.3390/cancers15061897] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
First-line cancer treatments successfully eradicate the differentiated tumour mass but are comparatively ineffective against cancer stem cells (CSCs), a self-renewing subpopulation thought to be responsible for tumour initiation, metastasis, heterogeneity, and recurrence. CSCs are thus presented as the principal target for elimination during cancer treatment. However, CSCs are challenging to drug target because of numerous intrinsic and extrinsic mechanisms of drug resistance. One such mechanism that remains relatively understudied is the DNA damage response (DDR). CSCs are presumed to possess properties that enable enhanced DNA repair efficiency relative to their highly proliferative bulk progeny, facilitating improved repair of double-strand breaks induced by radiotherapy and most chemotherapeutics. This can occur through multiple mechanisms, including increased expression and splicing fidelity of DNA repair genes, robust activation of cell cycle checkpoints, and elevated homologous recombination-mediated DNA repair. Herein, we summarise the current knowledge concerning improved genome integrity in non-transformed stem cells and CSCs, discuss therapeutic opportunities within the DDR for re-sensitising CSCs to genotoxic stressors, and consider the challenges posed regarding unbiased identification of novel DDR-directed strategies in CSCs. A better understanding of the DDR mediating chemo/radioresistance mechanisms in CSCs could lead to novel therapeutic approaches, thereby enhancing treatment efficacy in cancer patients.
Collapse
Affiliation(s)
- Matthew S. Gillespie
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.S.G.)
- School of Cancer Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - Ciara M. Ward
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.S.G.)
| | - Clare C. Davies
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.S.G.)
| |
Collapse
|
7
|
Gahete MD, Herman-Sanchez N, Fuentes-Fayos AC, Lopez-Canovas JL, Luque RM. Dysregulation of splicing variants and spliceosome components in breast cancer. Endocr Relat Cancer 2022; 29:R123-R142. [PMID: 35728261 DOI: 10.1530/erc-22-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/16/2022] [Indexed: 12/26/2022]
Abstract
The dysregulation of the splicing process has emerged as a novel hallmark of metabolic and tumor pathologies. In breast cancer (BCa), which represents the most diagnosed cancer type among women worldwide, the generation and/or dysregulation of several oncogenic splicing variants have been described. This is the case of the splicing variants of HER2, ER, BRCA1, or the recently identified by our group, In1-ghrelin and SST5TMD4, which exhibit oncogenic roles, increasing the malignancy, poor prognosis, and resistance to treatment of BCa. This altered expression of oncogenic splicing variants has been closely linked with the dysregulation of the elements belonging to the macromolecular machinery that controls the splicing process (spliceosome components and the associated splicing factors). In this review, we compile the current knowledge demonstrating the altered expression of splicing variants and spliceosomal components in BCa, showing the existence of a growing body of evidence supporting the close implication of the alteration in the splicing process in mammary tumorigenesis.
Collapse
Affiliation(s)
- Manuel D Gahete
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, Spain
| | - Natalia Herman-Sanchez
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, Spain
| | - Juan L Lopez-Canovas
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, Spain
| | - Raúl M Luque
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, Spain
| |
Collapse
|
8
|
Role of CD44 isoforms in epithelial-mesenchymal plasticity and metastasis. Clin Exp Metastasis 2022; 39:391-406. [PMID: 35023031 PMCID: PMC10042269 DOI: 10.1007/s10585-022-10146-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/03/2022] [Indexed: 01/21/2023]
Abstract
Cellular plasticity lies at the core of cancer progression, metastasis, and resistance to treatment. Stemness and epithelial-mesenchymal plasticity in cancer are concepts that represent a cancer cell's ability to coopt and adapt normal developmental programs to promote survival and expansion. The cancer stem cell model states that a small subset of cancer cells with stem cell-like properties are responsible for driving tumorigenesis and metastasis while remaining especially resistant to common chemotherapeutic drugs. Epithelial-mesenchymal plasticity describes a cancer cell's ability to transition between epithelial and mesenchymal phenotypes which drives invasion and metastasis. Recent research supports the existence of stable epithelial/mesenchymal hybrid phenotypes which represent highly plastic states with cancer stem cell characteristics. The cell adhesion molecule CD44 is a widely accepted marker for cancer stem cells, and it lies at a functional intersection between signaling networks regulating both stemness and epithelial-mesenchymal plasticity. CD44 expression is complex, with alternative splicing producing many isoforms. Interestingly, not only does the pattern of isoform expression change during transitions between epithelial and mesenchymal phenotypes in cancer, but these isoforms have distinct effects on cell behavior including the promotion of metastasis and stemness. The role of CD44 both downstream and upstream of signaling pathways regulating epithelial-mesenchymal plasticity and stemness make this protein a valuable target for further research and therapeutic intervention.
Collapse
|
9
|
Holland DO, Gotea V, Fedkenheuer K, Jaiswal SK, Baugher C, Tan H, Fedkenheuer M, Elnitski L. Characterization and clustering of kinase isoform expression in metastatic melanoma. PLoS Comput Biol 2022; 18:e1010065. [PMID: 35560144 PMCID: PMC9132324 DOI: 10.1371/journal.pcbi.1010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/25/2022] [Accepted: 03/29/2022] [Indexed: 11/18/2022] Open
Abstract
Mutations to the human kinome are known to play causal roles in cancer. The kinome regulates numerous cell processes including growth, proliferation, differentiation, and apoptosis. In addition to aberrant expression, aberrant alternative splicing of cancer-driver genes is receiving increased attention as it could lead to loss or gain of functional domains, altering a kinase's downstream impact. The present study quantifies changes in gene expression and isoform ratios in the kinome of metastatic melanoma cells relative to primary tumors. We contrast 538 total kinases and 3,040 known kinase isoforms between 103 primary tumor and 367 metastatic samples from The Cancer Genome Atlas (TCGA). We find strong evidence of differential expression (DE) at the gene level in 123 kinases (23%). Additionally, of the 468 kinases with alternative isoforms, 60 (13%) had significant difference in isoform ratios (DIR). Notably, DE and DIR have little correlation; for instance, although DE highlights enrichment in receptor tyrosine kinases (RTKs), DIR identifies altered splicing in non-receptor tyrosine kinases (nRTKs). Using exon junction mapping, we identify five examples of splicing events favored in metastatic samples. We demonstrate differential apoptosis and protein localization between SLK isoforms in metastatic melanoma. We cluster isoform expression data and identify subgroups that correlate with genomic subtypes and anatomic tumor locations. Notably, distinct DE and DIR patterns separate samples with BRAF hotspot mutations and (N/K/H)RAS hotspot mutations, the latter of which lacks effective kinase inhibitor treatments. DE in RAS mutants concentrates in CMGC kinases (a group including cell cycle and splicing regulators) rather than RTKs as in BRAF mutants. Furthermore, isoforms in the RAS kinase subgroup show enrichment for cancer-related processes such as angiogenesis and cell migration. Our results reveal a new approach to therapeutic target identification and demonstrate how different mutational subtypes may respond differently to treatments highlighting possible new driver events in cancer.
Collapse
Affiliation(s)
- David O. Holland
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Valer Gotea
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kevin Fedkenheuer
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sushil K. Jaiswal
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Catherine Baugher
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hua Tan
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael Fedkenheuer
- Lymphocyte Nuclear Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Laura Elnitski
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
10
|
Abstract
BACKGROUND: Alternative splicing is a mechanism to produce different proteins with diverse functions from one gene. Many splicing factors play an important role in cancer progression. PRPF8 is a core protein component of the spliceosome complex, U4/U6-U5 tri-snRNP. OBJECTIVE: However, PRPF8 involved in mRNA alternative splicing are rarely included in the prognosis. METHODS: We found that PRPF8 was expressed in all examined cancer types. Further analyses found that PRPF8 expression was significantly different between the breast cancer and paracancerous tissues. RESULTS: Survival analyses showed that PRPF8-high patients had a poor prognosis, and the expression of PRPF8 is associated with distant metastasis-free survival (DMFS) and post progression survival (PPS). Gene Set Enrichment Analysis (GSEA) has revealed that PRPF8 expression is correlated with TGF-β, JAK-STAT, and cell cycle control pathways. Consistent with these results, upon PRPF8 silencing, the growth of MCF-7 cells was reduced, the ability of cell clone formation was weakened, and p21 expression was increased. CONCLUSIONS: These results have revealed that PRPF8 is a significant factor for splicing in breast cancer progression.
Collapse
Affiliation(s)
- Difei Cao
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, Heilongjiang, China
| | - Jiaying Xue
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, Heilongjiang, China
| | - Guoqing Huang
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, Heilongjiang, China
| | - Jing An
- Institute of Cancer Prevention and Treatment, Heilongjiang Province Academy of Medical Sciences, Harbin, Heilongjiang, China
| | - Weiwei An
- Institute of Cancer Prevention and Treatment, Heilongjiang Province Academy of Medical Sciences, Harbin, Heilongjiang, China
| |
Collapse
|
11
|
Screening Gene Expression-Related Alternative Splicing Event Signature for Colon Cancer Prognostic Prediction. JOURNAL OF ONCOLOGY 2022; 2022:9952438. [PMID: 35126520 PMCID: PMC8813276 DOI: 10.1155/2022/9952438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/24/2021] [Accepted: 12/18/2021] [Indexed: 12/09/2022]
Abstract
Colon cancer is a kind of common intestinal disease, and early diagnosis of colon cancer is crucial for patient's prognosis. RNA alternative splicing (AS) is an RNA modification that affects cancer occurrence. RNA AS detection is promising to improve the in-depth understanding of the pathological mechanisms in colon cancer. In this study, differential analysis was performed to determine colon cancer-related AS events and the corresponding parental genes. Subsequently, GO functional annotation analysis was carried out on the parental genes, which revealed that these AS events might affect cell adhesion and cell growth. Besides, protein-protein interaction (PPI) network was established with the parental genes, in which MCODE was utilized to identify major functional modules. Enrichment analysis for the major functional module was implemented again, which demonstrated that these genes were mainly concentrated in the ribosome, protein ubiquitination, cell adhesion molecule binding, and other relevant biological functions. Next, differentially expressed genes (DEGs) were screened from colon cancer and normal tissues and overlapped with the parental genes, by which 55 gene expression-associated AS and the corresponding 45 genes were obtained. Moreover, a correlation analysis between splicing factors (SFs) and AS was done to identify interactions. On this basis, an SF-AS network was constructed. The univariate Cox regression analysis was employed to screen prognostic AS signature and establish a risk model. To assess the model, K-M and ROC analyses were done for model assessment, indicating the effective prediction performance. Combined with common clinicopathological features, the multivariate Cox regression analysis was conducted to confirm whether the risk model could be considered as an independent prognostic indicator. Finally, the expression status of the parental genes for the prognostic AS was evaluated between normal and colon cancer cells using qRT-PCR. In summary, TCGA SpliceSeq data were comprehensively analyzed, and a 5-AS prognostic model was constructed for colon cancer.
Collapse
|
12
|
Parker KA, Robinson NJ, Schiemann WP. The role of RNA processing and regulation in metastatic dormancy. Semin Cancer Biol 2022; 78:23-34. [PMID: 33775829 PMCID: PMC8464634 DOI: 10.1016/j.semcancer.2021.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
Tumor dormancy is a major contributor to the lethality of metastatic disease, especially for cancer patients who develop metastases years-to-decades after initial diagnosis. Indeed, tumor cells can disseminate during early disease stages and persist in new microenvironments at distal sites for months, years, or even decades before initiating metastatic outgrowth. This delay between primary tumor remission and metastatic relapse is known as "dormancy," during which disseminated tumor cells (DTCs) acquire quiescent states in response to intrinsic (i.e., cellular) and extrinsic (i.e., microenvironmental) signals. Maintaining dormancy-associated phenotypes requires DTCs to activate transcriptional, translational, and post-translational mechanisms that engender cellular plasticity. RNA processing is emerging as an essential facet of cellular plasticity, particularly with respect to the initiation, maintenance, and reversal of dormancy-associated phenotypes. Moreover, dysregulated RNA processing, particularly that associated with alternative RNA splicing and expression of noncoding RNAs (ncRNAs), can occur in DTCs to mediate intrinsic and extrinsic metastatic dormancy. Here we review the pathophysiological impact of alternative RNA splicing and ncRNAs in promoting metastatic dormancy and disease recurrence in human cancers.
Collapse
Affiliation(s)
- Kimberly A. Parker
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nathaniel J. Robinson
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - William P. Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA,Corresponding Author: William P. Schiemann, Case Comprehensive Cancer Center, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH 44106 Phone: 216-368-5763.
| |
Collapse
|
13
|
The Estrogen Receptor α Signaling Pathway Controls Alternative Splicing in the Absence of Ligands in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13246261. [PMID: 34944881 PMCID: PMC8699117 DOI: 10.3390/cancers13246261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Background: The transcriptional activity of estrogen receptor α (ERα) in breast cancer (BC) is extensively characterized. Our group has previously shown that ERα controls the expression of a number of genes in its unliganded form (apoERα), among which a large group of RNA-binding proteins (RBPs) encode genes, suggesting its role in the control of co- and post-transcriptional events. Methods: apoERα-mediated RNA processing events were characterized by the analysis of transcript usage and alternative splicing changes in an RNA-sequencing dataset from MCF-7 cells after siRNA-induced ERα downregulation. Results: ApoERα depletion induced an expression change of 681 RBPs, including 84 splicing factors involved in translation, ribonucleoprotein complex assembly, and 3′end processing. ApoERα depletion results in 758 isoform switching events with effects on 3′end length and the splicing of alternative cassette exons. The functional enrichment of these events shows that post-transcriptional regulation is part of the mechanisms by which apoERα controls epithelial-to-mesenchymal transition and BC cell proliferation. In primary BCs, the inclusion levels of the experimentally identified alternatively spliced exons are associated with overall and disease-free survival. Conclusion: Our data supports the role of apoERα in maintaining the luminal phenotype of BC cells by extensively regulating gene expression at the alternative splicing level.
Collapse
|
14
|
Cheng C, Liu L, Bao Y, Yi J, Quan W, Xue Y, Sun L, Zhang Y. SUVA: splicing site usage variation analysis from RNA-seq data reveals highly conserved complex splicing biomarkers in liver cancer. RNA Biol 2021; 18:157-171. [PMID: 34152934 DOI: 10.1080/15476286.2021.1940037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Most of the current alternative splicing (AS) analysis tools are powerless to analyse complex splicing. To address this, we developed SUVA (Splice sites Usage Variation Analysis) that decomposes complex splicing events into five types of splice junction pairs. By analysing real and simulated data, SUVA showed higher sensitivity and accuracy in detecting AS events than the compared methods. Notably, SUVA detected extensive complex AS events and screened out 69 highly conserved and dominant AS events associated with cancer. The cancer-associated complex AS events in FN1 and the co-regulated RNA-binding proteins were significantly correlated with patient survival.
Collapse
Affiliation(s)
- Chao Cheng
- ABLife BioBigData Institute, Wuhan, Hubei China.,Center for Genome Analysis, ABLife Inc., Wuhan, Hubei China
| | - Lei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun China
| | - Yongli Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun China
| | - Jingwen Yi
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun China
| | - Weili Quan
- ABLife BioBigData Institute, Wuhan, Hubei China
| | - Yaqiang Xue
- ABLife BioBigData Institute, Wuhan, Hubei China
| | - Luguo Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun China
| | - Yi Zhang
- ABLife BioBigData Institute, Wuhan, Hubei China.,Center for Genome Analysis, ABLife Inc., Wuhan, Hubei China
| |
Collapse
|
15
|
Batsché E, Yi J, Mauger O, Kornobis E, Hopkins B, Hanmer-Lloyd C, Muchardt C. CD44 alternative splicing senses intragenic DNA methylation in tumors via direct and indirect mechanisms. Nucleic Acids Res 2021; 49:6213-6237. [PMID: 34086943 PMCID: PMC8216461 DOI: 10.1093/nar/gkab437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
DNA methylation (meDNA) is a modulator of alternative splicing, and splicing perturbations are involved in tumorigenesis nearly as frequently as DNA mutations. However, the impact of meDNA on tumorigenesis via splicing-mediated mechanisms has not been thoroughly explored. Here, we found that HCT116 colon carcinoma cells inactivated for the DNA methylases DNMT1/3b undergo a partial epithelial to mesenchymal transition associated with increased CD44 variant exon skipping. These skipping events are directly mediated by the loss of intragenic meDNA and the chromatin factors MBD1/2/3 and HP1γ and are also linked to phosphorylation changes in elongating RNA polymerase II. The role of meDNA in alternative splicing was confirmed by using the dCas9/DNMT3b tool. We further tested whether the meDNA level could have predictive value in the MCF10A model for breast cancer progression and in patients with acute lymphoblastic leukemia (B ALL). We found that a small number of differentially spliced genes, mostly involved in splicing and signal transduction, are correlated with the local modulation of meDNA. Our observations suggest that, although DNA methylation has multiple avenues to affect alternative splicing, its indirect effect may also be mediated through alternative splicing isoforms of these meDNA sensors.
Collapse
Affiliation(s)
- Eric Batsché
- Epigenetics and RNA metabolism in human diseases. CNRS UMR8256 - Biological Adaptation and Ageing. Institut de Biologie Paris-Seine. Sciences Sorbonne Université. 7–9 Quai Saint Bernard, 75005 Paris, France
- Unité de Régulation Epigénétique, Institut Pasteur, Paris, France
- UMR3738, CNRS, Paris, France
| | - Jia Yi
- Unité de Régulation Epigénétique, Institut Pasteur, Paris, France
- UMR3738, CNRS, Paris, France
- Ecole Doctorale Complexite du Vivant (ED515), Sorbonne Université, Paris, France
| | - Oriane Mauger
- Unité de Régulation Epigénétique, Institut Pasteur, Paris, France
- UMR3738, CNRS, Paris, France
- Ecole Doctorale Complexite du Vivant (ED515), Sorbonne Université, Paris, France
| | - Etienne Kornobis
- Unité de Régulation Epigénétique, Institut Pasteur, Paris, France
- UMR3738, CNRS, Paris, France
| | - Benjamin Hopkins
- Unité de Régulation Epigénétique, Institut Pasteur, Paris, France
- UMR3738, CNRS, Paris, France
- Keele University, Keele, Staffordshire ST5 5BG UK
| | - Charlotte Hanmer-Lloyd
- Unité de Régulation Epigénétique, Institut Pasteur, Paris, France
- UMR3738, CNRS, Paris, France
- Keele University, Keele, Staffordshire ST5 5BG UK
| | - Christian Muchardt
- Epigenetics and RNA metabolism in human diseases. CNRS UMR8256 - Biological Adaptation and Ageing. Institut de Biologie Paris-Seine. Sciences Sorbonne Université. 7–9 Quai Saint Bernard, 75005 Paris, France
- Unité de Régulation Epigénétique, Institut Pasteur, Paris, France
- UMR3738, CNRS, Paris, France
| |
Collapse
|
16
|
Zhang J, Goel A, Zhu L. Identification of Novel Alternative Splicing Events Associated With Tumorigenesis, Protein Modification, and Immune Microenvironment in Early-Onset Gastric Cancer. Front Oncol 2021; 11:640272. [PMID: 34168979 PMCID: PMC8217769 DOI: 10.3389/fonc.2021.640272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/10/2021] [Indexed: 01/22/2023] Open
Abstract
Background Alternative splicing (AS), e.g. the tandem alternative polyadenylation (TAPA), has emerged as major post-transcriptional modification events in human disease. However, the roles of the AS and TAPA in early-onset gastric cancer (EOGC) have not been revealed. Methods The global AS profiles of 80 EOGC patients were analyzed. The EOGC-specific AS events (ESASs) were identified in both the EOGC and adjacent non-tumor tissues. The functional enrichment analysis, Splicing network, Alternative Polyadenylation (APA) core factor network, and cell abundancy analysis were performed. Furthermore, the landscapes of the AS events in the varied subtypes of the EOGC patients were evaluated. Results Overall, 66,075 AS events and 267 ESASs were identified in the EOGC. Furthermore, 4809 genes and 6152 gene isoforms were found to be aberrantly expressed in the EOGC. The Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analyses showed that the significant pathway alterations might exist in these AS events, genes, and gene isoforms. Moreover, the Protein-protein interaction (PPI) network analysis revealed that the UBC, NEK2, EPHB2, and DCTN1 genes were the hub genes in the AS events in the EOGC. The immune cell infiltration analysis indicated a correlation between the AS events and the cancer immune microenvironment. The distribution of the AS events in varied EOGC subtypes, protein phosphorylation and glycosylation was uneven. Conclusion The study highlighted the vital roles of the AS in the EOGC, including modulating the specific protein modification and reshaping the cancer immune microenvironment, and yielded new insights into the diagnosis of the EOGC as well as cancer treatment.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX, United States
| | - Ajay Goel
- Beckman Research Institute, City of Hope Comprehensive Cancer Center, Biomedical Research Center, Monrovia, CA, United States
| | - Lin Zhu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX, United States
| |
Collapse
|
17
|
Overexpression of the transcribed ultraconserved region Uc.138 accelerates colon cancer progression. Sci Rep 2021; 11:8667. [PMID: 33883665 PMCID: PMC8060298 DOI: 10.1038/s41598-021-88123-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/07/2021] [Indexed: 12/31/2022] Open
Abstract
Ultraconserved regions (UCRs) are 481 genomic sequences with 100% identity across humans, rats, and mice. Increasing evidence suggests that non-coding RNAs transcribed from UCRs are involved in various diseases, especially cancers. The human transformer 2β gene (TRA2B) encodes a UCR (uc.138) that spans exon 2 and its neighboring introns. TRA2B4 RNA is the only transcript that contains the whole exon 2 among five spliced TRA2B RNA variants (TRA2B1-5). TRA2B4 is upregulated in colon cancer cell lines, although it is not translated to Tra2β protein because of its nuclear retention. Nevertheless, the clinical significance and biological functions of uc.138 in colon cancer cells remain unclear. In this study, RNA in situ hybridization showed that TRA2B4 was predominantly overexpressed in the nucleus of colon adenocarcinoma and adenoma. Overexpression of TRA2B4 in colon cancer HCT116 cells promoted cell proliferation by changing the expression of G2/M-related cell cycle regulators. Moreover, TRA2B4 increased migration and cell viability in a uc.138 sequence-dependent manner. TRA2B4 significantly enhanced tumorigenesis in vivo. Taken together, uc.138 encoded in TRA2B4 plays an oncogenic role in tumor progression and may become a potential biomarker and therapeutic target in colon cancer.
Collapse
|
18
|
Song, BA Y, Wang, MA F, Wei, MA Y, Chen, BA D, Deng, BA G. ATP5A1 Participates in Transcriptional and Posttranscriptional Regulation of Cancer-Associated Genes by Modulating Their Expression and Alternative Splicing Profiles in HeLa Cells. Technol Cancer Res Treat 2021; 20:15330338211039126. [PMID: 34520292 PMCID: PMC8445539 DOI: 10.1177/15330338211039126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Aberrant expression and alternative splicing of oncogenes are the driving events in tumor initiation and development. But how these events are regulated in cancer cells is largely unknown. Functions of ATP5A1, an important mitochondrial ATP synthase gene, in transcriptional and posttranscriptional regulation were explored in this study. Methods: ATP5A1 was overexpressed using plasmid-transformed HeLa cells, and its influence on cell apoptosis and proliferation is evaluated. Transcriptome sequencing was then performed using RNA-seq to study the changes in gene expression and regulation of alternative splicing events. Validation of the implicated genes was achieved using RT-qPCR analysis. Results: It was found that ATP5A1 could significantly promote cellular apoptosis, but it had no influence on cell proliferation. ATP5A1 overexpression significantly increased the expression levels of genes associated with the innate immune response, angiogenesis, and collagen catabolic processes. This included enrichment of MMP2 and MMP19. It was also found that ATP5A1 could interfere with the alternative splicing of hundreds of genes associated with glucose homeostasis, HIF-1 signaling activation, and several pathways associated with cancers. Eight ATP5A1-regulated differentially expressed genes and 3 genes altered by splicing were selected and validated using RT-qPCR analysis. Conclusions: In summary, we illustrate the regulatory functions of ATP5A1 on the transcriptome of HeLa cells by exploring its influence on gene expression and alternative splicing. The results suggest that ATP5A1 may play an important regulatory role in cervical cancer cells by regulating expression and alternative splicing of cancer-associated genes. This study provides novel insights into the current understanding of the mechanisms of ATP5A1 on carcinogenesis and cancer progression.
Collapse
Affiliation(s)
- Yisa Song, BA
- Qinghai People's Hospital Xining, Xining, Qinghai, P.R. China
| | - Fei Wang, MA
- Qinghai People's Hospital Xining, Xining, Qinghai, P.R. China
| | | | - Dong Chen, BA
- ABLife Inc., Wuhan, P.R. China
- ABLife BioBigData Institute, Wuhan, P.R. China
| | - Gang Deng, BA
- Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, Hubei, P.R. China
| |
Collapse
|
19
|
Du JX, Zhu GQ, Cai JL, Wang B, Luo YH, Chen C, Cai CZ, Zhang SJ, Zhou J, Fan J, Zhu W, Dai Z. Splicing factors: Insights into their regulatory network in alternative splicing in cancer. Cancer Lett 2020; 501:83-104. [PMID: 33309781 DOI: 10.1016/j.canlet.2020.11.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022]
Abstract
More than 95% of all human genes are alternatively spliced after transcription, which enriches the diversity of proteins and regulates transcript and/or protein levels. The splicing isoforms produced from the same gene can manifest distinctly, even exerting opposite effects. Mounting evidence indicates that the alternative splicing (AS) mechanism is ubiquitous in various cancers and drives the generation and maintenance of various hallmarks of cancer, such as enhanced proliferation, inhibited apoptosis, invasion and metastasis, and angiogenesis. Splicing factors (SFs) play pivotal roles in the recognition of splice sites and the assembly of spliceosomes during AS. In this review, we mainly discuss the similarities and differences of SF domains, the details of SF function in AS, the effect of SF-driven pathological AS on different hallmarks of cancer, and the main drivers of SF expression level and subcellular localization. In addition, we briefly introduce the application prospects of targeted therapeutic strategies, including small-molecule inhibitors, siRNAs and splice-switching oligonucleotides (SSOs), from three perspectives (drivers, SFs and pathological AS). Finally, we share our insights into the potential direction of research on SF-centric AS-related regulatory networks.
Collapse
Affiliation(s)
- Jun-Xian Du
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Gui-Qi Zhu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Jia-Liang Cai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Biao Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Yi-Hong Luo
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Cong Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Cheng-Zhe Cai
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Si-Jia Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Wei Zhu
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| | - Zhi Dai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China.
| |
Collapse
|
20
|
Králíčková M, Vetvicka V, Laganà AS. Endometrial cancer-is our knowledge changing? Transl Cancer Res 2020; 9:7734-7745. [PMID: 35117376 PMCID: PMC8798081 DOI: 10.21037/tcr-20-1720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/29/2020] [Indexed: 11/27/2022]
Abstract
In developed countries, endometrial cancer (EC) is the most frequent gynecologic malignancy in postmenopausal women. At the same time, EC has become one of the most common cancers in numerous developing countries, probably influenced by global epidemic of obesity. The majority of patients have low-grade endometrioid cancer with a high 5-year survival rate, but with high-risk EC, the survival rates are still rather low. However, despite intensive research in last decades, our knowledge of the mechanisms, risk factors, diagnosis and treatment have not significantly improved. The standard treatment of all types of EC is still a traditional combination of surgery, irradiation and/or chemotherapy, despite the fact that each of these options is not without having some negative side effects. Despite the fact that on the molecular level, EC is relatively well-studied, but the efforts to transform these findings into either diagnosis or therapies of EC remain elusive. In addition, some research into risk factors involved in the development or progression of EC seems to be more a fishing expedition than a well thought-out approach. The purpose of this review is to summarize the most recent developments in the search for biomarkers and prognostic markers and to discuss the progress in EC treatment.
Collapse
Affiliation(s)
- Milena Králíčková
- Department of Histology and Embryology, Faculty of Medicine, Charles University, Karlovarska 48, Plzen, Czech Republic.,Department of Obstetrics and Gynecology, University Hospital, Faculty of Medicine, Charles University, Alej Svobody 80, Plzen, Czech Republic.,Biomedical Centre, Faculty of Medicine in Plzen, Charles University, Plzen, Czech Republic
| | - Vaclav Vetvicka
- Department of Pathology, University of Louisville, Louisville, KY, USA
| | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, "Filippo Del Ponte" Hospital, University of Insubria, Piazza Biroldi 1, Varese, Italy
| |
Collapse
|
21
|
RNA binding proteins: Linking mechanotransduction and tumor metastasis. Cancer Lett 2020; 496:30-40. [PMID: 33007411 DOI: 10.1016/j.canlet.2020.09.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 02/07/2023]
Abstract
Mechanotransduction is the leading cellular process that mammalian cells adopted to receive and respond to various mechanical cues from their local microenvironment. Increasing evidence suggests that mechano-transduction is involved in many physiological and disease conditions, ranging from early embryonic development, organogenesis, to a variety of human diseases including cancer. Mechanotransduction is mediated through several classes of senor proteins on the cell surface, intracellular signaling mediators, and core transcriptional regulation networks. Dissecting the molecular mechanisms regulating mechanotransduction and their association with cancer metastasis has received much attention in recent years. RNA binding proteins (RBPs) are a special group of nucleic acid interacting factors that participate in many important cellular processes. In this review, we would like to summarize recent research progresses in understanding the role of RBPs-mediated regulation in mechanotransduction and cancer metastasis. Those intriguing findings will provide novel insights for the disease and guide the potential development of new therapeutic approaches.
Collapse
|
22
|
Bentata M, Morgenstern G, Nevo Y, Kay G, Granit Mizrahi A, Temper M, Maimon O, Monas L, Basheer R, Ben-Hur A, Peretz T, Salton M. Splicing Factor Transcript Abundance in Saliva as a Diagnostic Tool for Breast Cancer. Genes (Basel) 2020; 11:genes11080880. [PMID: 32756364 PMCID: PMC7463790 DOI: 10.3390/genes11080880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the second leading cause of death in women above 60 years in the US. Screening mammography is recommended for women above 50 years; however, 22% of breast cancer cases are diagnosed in women below this age. We set out to develop a test based on the detection of cell-free RNA from saliva. To this end, we sequenced RNA from a pool of ten women. The 1254 transcripts identified were enriched for genes with an annotation of alternative pre-mRNA splicing. Pre-mRNA splicing is a tightly regulated process and its misregulation in cancer cells promotes the formation of cancer-driving isoforms. For these reasons, we chose to focus on splicing factors as biomarkers for the early detection of breast cancer. We found that the level of the splicing factors is unique to each woman and consistent in the same woman at different time points. Next, we extracted RNA from 36 healthy subjects and 31 breast cancer patients. Recording the mRNA level of seven splicing factors in these samples demonstrated that the combination of all these factors is different in the two groups (p value = 0.005). Our results demonstrate a differential abundance of splicing factor mRNA in the saliva of breast cancer patients.
Collapse
Affiliation(s)
- Mercedes Bentata
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel–Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (M.B.); (G.M.); (G.K.)
| | - Guy Morgenstern
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel–Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (M.B.); (G.M.); (G.K.)
| | - Yuval Nevo
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem 9112102, Israel;
| | - Gillian Kay
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel–Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (M.B.); (G.M.); (G.K.)
| | - Avital Granit Mizrahi
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Hebrew University Medical School, Jerusalem 9112102, Israel; (A.G.M.); (M.T.); (O.M.); (L.M.); (R.B.); (T.P.)
| | - Mark Temper
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Hebrew University Medical School, Jerusalem 9112102, Israel; (A.G.M.); (M.T.); (O.M.); (L.M.); (R.B.); (T.P.)
| | - Ofra Maimon
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Hebrew University Medical School, Jerusalem 9112102, Israel; (A.G.M.); (M.T.); (O.M.); (L.M.); (R.B.); (T.P.)
| | - Liza Monas
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Hebrew University Medical School, Jerusalem 9112102, Israel; (A.G.M.); (M.T.); (O.M.); (L.M.); (R.B.); (T.P.)
| | - Reham Basheer
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Hebrew University Medical School, Jerusalem 9112102, Israel; (A.G.M.); (M.T.); (O.M.); (L.M.); (R.B.); (T.P.)
| | - Asa Ben-Hur
- Department of Computer Science, Colorado State University, Fort Collins, CO 80523, USA;
| | - Tamar Peretz
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Hebrew University Medical School, Jerusalem 9112102, Israel; (A.G.M.); (M.T.); (O.M.); (L.M.); (R.B.); (T.P.)
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel–Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (M.B.); (G.M.); (G.K.)
- Correspondence:
| |
Collapse
|
23
|
Cherry S, Lynch KW. Alternative splicing and cancer: insights, opportunities, and challenges from an expanding view of the transcriptome. Genes Dev 2020; 34:1005-1016. [PMID: 32747477 PMCID: PMC7397854 DOI: 10.1101/gad.338962.120] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Over the past decade there has been increased awareness of the potential role of alternative splicing in the etiology of cancer. In particular, advances in RNA-Sequencing technology and analysis has led to a wave of discoveries in the last few years regarding the causes and functional relevance of alternative splicing in cancer. Here we discuss the current understanding of the connections between splicing and cancer, with a focus on the most recent findings. We also discuss remaining questions and challenges that must be addressed in order to use our knowledge of splicing to guide the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Sara Cherry
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
24
|
Rahman MA, Nasrin F, Bhattacharjee S, Nandi S. Hallmarks of Splicing Defects in Cancer: Clinical Applications in the Era of Personalized Medicine. Cancers (Basel) 2020; 12:cancers12061381. [PMID: 32481522 PMCID: PMC7352608 DOI: 10.3390/cancers12061381] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing promotes proteome diversity by using limited number of genes, a key control point of gene expression. Splicing is carried out by large macromolecular machineries, called spliceosome, composed of small RNAs and proteins. Alternative splicing is regulated by splicing regulatory cis-elements in RNA and trans-acting splicing factors that are often tightly regulated in a tissue-specific and developmental stage-specific manner. The biogenesis of ribonucleoprotein (RNP) complexes is strictly regulated to ensure that correct complements of RNA and proteins are coordinated in the right cell at the right time to support physiological functions. Any perturbations that impair formation of functional spliceosomes by disrupting the cis-elements, or by compromising RNA-binding or function of trans-factors can be deleterious to cells and result in pathological consequences. The recent discovery of oncogenic mutations in splicing factors, and growing evidence of the perturbed splicing in multiple types of cancer, underscores RNA processing defects as a critical driver of oncogenesis. These findings have resulted in a growing interest in targeting RNA splicing as a therapeutic approach for cancer treatment. This review summarizes our current understanding of splicing alterations in cancer, recent therapeutic efforts targeting splicing defects in cancer, and future potentials to develop novel cancer therapies.
Collapse
|
25
|
Cheng Y, Zhu H, Gao W. MicroRNA-330-3p represses the proliferation and invasion of laryngeal squamous cell carcinoma through downregulation of Tra2β-mediated Akt signaling. Mol Cell Probes 2020; 52:101574. [PMID: 32289378 DOI: 10.1016/j.mcp.2020.101574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs), a type of post-transcriptional regulators, exert a crucial role in the malignant progression of laryngeal squamous cell carcinoma (LSCC). MicroRNA-330-3p (miR-330-3p), a recently identified tumor-associated miRNA, is implicated in multiple cancers. Yet, the relevance of miR-330-3p in LSCC remains unexplored. The findings of our study demonstrated a lower expression of miR-330-3p in LSCC. Functional assays revealed that upregulation of miR-330-3p marked restricted the proliferation, colony formation and invasion of LSCC cells. Transformer-2 protein homolog beta (Tra2β) was identified as a target gene of miR-330-3p. An inverse correlation between miR-330-3p and Tra2β mRNA expression was evidenced in LSCC specimens. The upregulation of miR-330-3p significantly repressed Tra2β expression and the phosphorylation of the Akt protein. In addition, Tra2β overexpression markedly abrogated the tumor suppressive role of miR-330-3p in LSCC cells. Overall, our results uncovered that miR-330-3p exerted a tumor-inhibition function in LSCC through targeting Tra2β to inhibit Akt activation.
Collapse
Affiliation(s)
- Ying Cheng
- The Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hui Zhu
- The Department of Computer, Xi'an University of Post and Telecommunications, Xi'an, 710121, China
| | - Wei Gao
- The Department of Chest Surgery, Shaanxi Provincial Tumor Hospital, Xi'an, 710061, China.
| |
Collapse
|
26
|
Mitobe Y, Iino K, Takayama KI, Ikeda K, Suzuki T, Aogi K, Kawabata H, Suzuki Y, Horie-Inoue K, Inoue S. PSF Promotes ER-Positive Breast Cancer Progression via Posttranscriptional Regulation of ESR1 and SCFD2. Cancer Res 2020; 80:2230-2242. [PMID: 32213542 DOI: 10.1158/0008-5472.can-19-3095] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/15/2020] [Accepted: 03/18/2020] [Indexed: 11/16/2022]
Abstract
Endocrine therapy is standard treatment for estrogen receptor (ER)-positive breast cancer, yet long-term treatment often causes acquired resistance, which results in recurrence and metastasis. Recent studies have revealed that RNA-binding proteins (RBP) are involved in tumorigenesis. Here, we demonstrate that PSF/SFPQ is an RBP that potentially predicts poor prognosis of patients with ER-positive breast cancer by posttranscriptionally regulating ERα (ESR1) mRNA expression. Strong PSF immunoreactivity correlated with shorter overall survival in patients with ER-positive breast cancer. PSF was predominantly expressed in a model of tamoxifen-resistant breast cancer cells, and depletion of PSF attenuated proliferation of cultured cells and xenografted tumors. PSF expression was significantly associated with estrogen signaling. PSF siRNA downregulated ESR1 mRNA by inhibiting nuclear export of the RNA. Integrative analyses of microarray and RNA immunoprecipitation sequencing also identified SCFD2, TRA2B, and ASPM as targets of PSF. Among the PSF targets, SCFD2 was a poor prognostic indicator of breast cancer and SCFD2 knockdown significantly suppressed breast cancer cell proliferation. Collectively, this study shows that PSF plays a pathophysiologic role in ER-positive breast cancer by posttranscriptionally regulating expression of its target genes such as ESR1 and SCFD2. Overall, PSF and SCFD2 could be potential diagnostic and therapeutic targets for primary and hormone-refractory breast cancers. SIGNIFICANCE: This study defines oncogenic roles of RNA-binding protein PSF, which exhibits posttranscriptional regulation in ER-positive breast cancer.
Collapse
Affiliation(s)
- Yuichi Mitobe
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Kaori Iino
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Ken-Ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan
| | - Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kenjiro Aogi
- Department of Surgery, National Shikoku Cancer Center, Matsuyama, Ehime, Japan
| | - Hidetaka Kawabata
- Department of Breast and Endocrine Surgery, Toranomon Hospital, Minato-ku, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Kuniko Horie-Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Satoshi Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan. .,Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan
| |
Collapse
|
27
|
Inhibition of Transcription Induces Phosphorylation of YB-1 at Ser102 and Its Accumulation in the Nucleus. Cells 2019; 9:cells9010104. [PMID: 31906126 PMCID: PMC7016903 DOI: 10.3390/cells9010104] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/26/2019] [Accepted: 12/30/2019] [Indexed: 02/04/2023] Open
Abstract
The Y-box binding protein 1 (YB-1) is an RNA/DNA-binding protein regulating gene expression in the cytoplasm and the nucleus. Although mostly cytoplasmic, YB-1 accumulates in the nucleus under stress conditions. Its nuclear localization is associated with aggressiveness and multidrug resistance of cancer cells, which makes the understanding of the regulatory mechanisms of YB-1 subcellular distribution essential. Here, we report that inhibition of RNA polymerase II (RNAPII) activity results in the nuclear accumulation of YB-1 accompanied by its phosphorylation at Ser102. The inhibition of kinase activity reduces YB-1 phosphorylation and its accumulation in the nucleus. The presence of RNA in the nucleus is shown to be required for the nuclear retention of YB-1. Thus, the subcellular localization of YB-1 depends on its post-translational modifications (PTMs) and intracellular RNA distribution.
Collapse
|
28
|
Park S, Brugiolo M, Akerman M, Das S, Urbanski L, Geier A, Kesarwani AK, Fan M, Leclair N, Lin KT, Hu L, Hua I, George J, Muthuswamy SK, Krainer AR, Anczuków O. Differential Functions of Splicing Factors in Mammary Transformation and Breast Cancer Metastasis. Cell Rep 2019; 29:2672-2688.e7. [PMID: 31775037 PMCID: PMC6936330 DOI: 10.1016/j.celrep.2019.10.110] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/09/2019] [Accepted: 10/28/2019] [Indexed: 12/28/2022] Open
Abstract
Misregulation of alternative splicing is a hallmark of human tumors, yet to what extent and how it contributes to malignancy are only beginning to be unraveled. Here, we define which members of the splicing factor SR and SR-like families contribute to breast cancer and uncover differences and redundancies in their targets and biological functions. We identify splicing factors frequently altered in human breast tumors and assay their oncogenic functions using breast organoid models. We demonstrate that not all splicing factors affect mammary tumorigenesis in MCF-10A cells. Specifically, the upregulation of SRSF4, SRSF6, or TRA2β disrupts acinar morphogenesis and promotes cell proliferation and invasion in MCF-10A cells. By characterizing the targets of these oncogenic splicing factors, we identify shared spliced isoforms associated with well-established cancer hallmarks. Finally, we demonstrate that TRA2β is regulated by the MYC oncogene, plays a role in metastasis maintenance in vivo, and its levels correlate with breast cancer patient survival.
Collapse
Affiliation(s)
- SungHee Park
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA,These authors contributed equally
| | - Mattia Brugiolo
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA,These authors contributed equally
| | - Martin Akerman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA,Envisagenics Inc., New York, NY, USA,These authors contributed equally
| | - Shipra Das
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA,These authors contributed equally
| | - Laura Urbanski
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA,Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA
| | | | | | - Martin Fan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Nathan Leclair
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA,Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA
| | - Kuan-Ting Lin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Leo Hu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Ian Hua
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA,Institute for Systems Genomics, UConn Health, Farmington, CT, USA
| | - Senthil K. Muthuswamy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA,Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Adrian R. Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA,Correspondence: (O.A.), (A.R.K.)
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Institute for Systems Genomics, UConn Health, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.
| |
Collapse
|
29
|
Splicing regulatory factors in breast cancer hallmarks and disease progression. Oncotarget 2019; 10:6021-6037. [PMID: 31666932 PMCID: PMC6800274 DOI: 10.18632/oncotarget.27215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/29/2019] [Indexed: 12/31/2022] Open
Abstract
By regulating transcript isoform expression levels, alternative splicing provides an additional layer of protein control. Recent studies show evidence that cancer cells use different splicing events to fulfill their requirements in order to develop, progress and metastasize. However, there has been less attention for the role of the complex catalyzing the complicated multistep splicing reaction: the spliceosome. The spliceosome consists of multiple sub-complexes in total comprising 244 proteins or splice factors and 5 associated RNA molecules. Here we discuss the role of splice factors in the oncogenic processes tumors cells need to fulfill their oncogenic properties (the so-called the hallmarks of cancer). Despite the fact that splice factors have been investigated only recently, they seem to play a prominent role in already five hallmarks of cancer: angiogenesis, resisting cell death, sustaining proliferation, deregulating cellular energetics and invasion and metastasis formation by affecting major signaling pathways such as epithelial-to-mesenchymal transition, the Warburg effect, DNA damage response and hormone receptor dependent proliferation. Moreover, we could relate expression of representative genes of four other hallmarks (enabling replicative mortality, genomic instability, avoiding immune destruction and evading growth suppression) to splice factor levels in human breast cancer tumors, suggesting that also these hallmarks could be regulated by splice factors. Since many splice factors are involved in multiple hallmarks of cancer, inhibiting splice factors might provide a new layer of oncogenic control and a powerful method to combat breast cancer progression.
Collapse
|
30
|
Ultra-deep sequencing reveals pre-mRNA splicing as a sequence driven high-fidelity process. PLoS One 2019; 14:e0223132. [PMID: 31581208 PMCID: PMC6776343 DOI: 10.1371/journal.pone.0223132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/13/2019] [Indexed: 11/19/2022] Open
Abstract
Alternative splicing diversifies mRNA transcripts in human cells. While the spliceosome pairs exons with a high degree of accuracy, the rates of rare aberrant and non-canonical pre-mRNA splicing have not been evaluated at the nucleotide level to determine the quantity and identity of these events across splice junctions. Using ultra-deep sequencing the frequency of aberrant and non-canonical splicing events for three splice junctions flanking exon 7 of SMN1 were determined at single nucleotide resolution. After correction for background noise introduced by PCR amplification and sequencing steps, pre-mRNA splicing was shown to maintain a low overall rate of aberrant and non-canonically spliced events. Several previously unannotated splicing events across 3 exon|intron junctions in SMN1 were identified. Mutations within SMN exon 7 were shown to affect splicing fidelity by modulating RNA secondary structures, by altering the binding site of regulatory proteins and by changing the 5’ splice site strength. Mutations also create a truncated SMN1 exon 7 through the introduction of a de novo non-canonical 5’ splice site. The results from the ultra-deep sequencing approach highlight the impressive fidelity of pre-mRNA splicing and demonstrate that the immediate sequence context around splice sites is the main driving force behind non-canonical splice site pairing.
Collapse
|
31
|
HnRNPA1 interacts with G-quadruplex in the TRA2B promoter and stimulates its transcription in human colon cancer cells. Sci Rep 2019; 9:10276. [PMID: 31311954 PMCID: PMC6635519 DOI: 10.1038/s41598-019-46659-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
The human TRA2B gene consists of 10 exons and 9 introns and produces 5 splice isoforms (TRA2β1 to TRA2β5). TRA2B exon 2 encodes multiple premature termination codons. TRA2β1 lacks exon 2 and is translated into a functional transformer 2β (Tra2β) protein, whereas TRA2β4 contains 10 exons and works as a functional RNA. Overexpressed Tra2β and ectopic expression of TRA2β4 may be oncogenic. We found that heterogeneous nuclear ribonucleoprotein (hnRNP)A1 and hnRNPU interacted with TRA2β4 exon 2. Minigene assays revealed that hnRNPA1 facilitated inclusion of exon 2, whereas hnRNPU promoted its skipping. However, knockdown of hnRNPA1 or hnRNPU reduced both TRA2β1 and TRA2β4 levels, and overexpression of these hnRNPs increased levels of both isoforms, suggesting that hnRNPA1 and hnRNPU mainly regulate the transcription of TRA2B. In fact, hnRNPA1 and hnRNPU positively regulated the promoter activity of TRA2B. Circular dichroism analyses, electrophoretic mobility shift assays and chromatin immunoprecipitation assays demonstrated the presence of G-quadruplex (G4) formation in the promoter of TRA2B. Formation of G4 suppressed TRA2B transcription, whereas hnRNPA1, but not hnRNPU, interacted with the G4 to facilitate transcription. Our results suggest that hnRNPA1 may modulate TRA2B transcription through its regulation of G4 formation in its promoter in colon cancer cells.
Collapse
|
32
|
Expression of TRA2B in endometrial carcinoma and its regulatory roles in endometrial carcinoma cells. Oncol Lett 2019; 18:2455-2463. [PMID: 31452736 PMCID: PMC6676653 DOI: 10.3892/ol.2019.10553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/16/2019] [Indexed: 12/24/2022] Open
Abstract
Expression levels of Transformer 2 protein homolog beta (TRA2B) in patients with endometrial carcinoma were assessed to investigate the impact of TRA2B on endometrial carcinoma cells. Furthermore, we analyzed the expression of several genes in the tissue samples from patients with endometrial cancer (EC) to identify whether cancer related genes we chose are differently expressed between the endometrial carcinoma tissues and adjacent normal tissues. The results of RT-qPCR analysis, western blot technology and immunofluorescence method consistently manifested that the expression of several genes in endometrial carcinoma tissue was significantly dysregulated between the two groups. Among the dysregulated genes, the strongly upregulated TRA2B in the tissues and serum from patients with EC was selected for further analysis. Endometrial carcinoma cells were transfected with chemically synthesized TRA2B plasmid, siRNA-TRA2B and their corresponding negative control respectively to assess the effects of TRA2B on the EC cells. Overexpression of TRA2B increased both the cell viability and proliferation potency of EC cells. Whereas, the viability and the proliferation ability of EC cells were strongly decreased by siRNA-TRA2B treatment. Furthermore, the invasion of EC cells was promoted by transfection of TRA2B and overexpression of TRA2B decreased the apoptosis of EC cells. Moreover, siRNA-TRA2B transfection inhibited the invasion but accelerated apoptosis of EC cells. Our results demonstrated that TRA2B is closely related to the development of endometrial carcinoma, and inhibition of TRA2B can decrease viability, proliferation and invasion of endometrial carcinoma, suggesting TRA2B is associated with the pathogenesis of human EC. Knockdown of TRA2B may be used for treatment of endometrial carcinoma, furthermore, these findings suggest an experimental foundation to clinical prognostic role of TRA2B in patients with endometrial carcinoma.
Collapse
|
33
|
Siam A, Baker M, Amit L, Regev G, Rabner A, Najar RA, Bentata M, Dahan S, Cohen K, Araten S, Nevo Y, Kay G, Mandel-Gutfreund Y, Salton M. Regulation of alternative splicing by p300-mediated acetylation of splicing factors. RNA (NEW YORK, N.Y.) 2019; 25:813-824. [PMID: 30988101 PMCID: PMC6573785 DOI: 10.1261/rna.069856.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/08/2019] [Indexed: 05/23/2023]
Abstract
Splicing of precursor mRNA (pre-mRNA) is an important regulatory step in gene expression. Recent evidence points to a regulatory role of chromatin-related proteins in alternative splicing regulation. Using an unbiased approach, we have identified the acetyltransferase p300 as a key chromatin-related regulator of alternative splicing. p300 promotes genome-wide exon inclusion in both a transcription-dependent and -independent manner. Using CD44 as a paradigm, we found that p300 regulates alternative splicing by modulating the binding of splicing factors to pre-mRNA. Using a tethering strategy, we found that binding of p300 to the CD44 promoter region promotes CD44v exon inclusion independently of RNAPII transcriptional elongation rate. Promoter-bound p300 regulates alternative splicing by acetylating splicing factors, leading to exclusion of hnRNP M from CD44 pre-mRNA and activation of Sam68. p300-mediated CD44 alternative splicing reduces cell motility and promotes epithelial features. Our findings reveal a chromatin-related mechanism of alternative splicing regulation and demonstrate its impact on cellular function.
Collapse
Affiliation(s)
- Ahmad Siam
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Mai Baker
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Leah Amit
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Gal Regev
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Alona Rabner
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Rauf Ahmad Najar
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Mercedes Bentata
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Sara Dahan
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Klil Cohen
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Sarah Araten
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Yuval Nevo
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Gillian Kay
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | | | - Maayan Salton
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
34
|
The d16HER2 Splice Variant: A Friend or Foe of HER2-Positive Cancers? Cancers (Basel) 2019; 11:cancers11070902. [PMID: 31261614 PMCID: PMC6678616 DOI: 10.3390/cancers11070902] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
Human epidermal growth factor receptor 2 (ERBB2 or HER2) amplification/overexpression is associated with a particularly aggressive molecular subtype of breast cancer (BC), characterized by a poor prognosis, increased metastatic potential, and disease recurrence. As only approximately 50% of HER2-positive patients respond to HER2-targeted therapies, greater knowledge of the biology of HER2 and the mechanisms that underlie drug susceptibility is needed to improve cure rates. Evidence suggests that the coexistence of full-length, wild-type HER2 (wtHER2) and altered forms of HER2—such as carboxy-terminus-truncated fragments, activating mutations, and splice variants—significantly increases the heterogeneity of HER2-positive disease, affecting its biology, clinical course, and treatment response. In particular, expression of the d16HER2 splice variant in human HER2-positive BC has a crucial pathobiological function, wherein the absence of sixteen amino acids from the extracellular domain induces the formation of stable and constitutively active HER2 homodimers on the tumor cell surface. Notably, the d16HER2 variant significantly influences the initiation and aggressiveness of tumors, cancer stem cell properties, epithelial–mesenchymal transition (EMT), and the susceptibility of HER2-positive BC cells to trastuzumab compared with its wtHER2 counterpart, thus constituting a novel and potentially clinically useful biomarker. The aims of this review are to summarize the existing evidence regarding the pathobiological functions of the d16HER2 variant and discuss its current and future value with regard to risk assessment and treatment choices in HER2-positive disease.
Collapse
|
35
|
Fu H, Ding X, Zhang W, Kang YJ. Profiling of nuclear copper-binding proteins under hypoxic condition. Biometals 2019; 32:329-341. [PMID: 30739301 DOI: 10.1007/s10534-019-00171-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 01/14/2019] [Indexed: 02/05/2023]
Abstract
Under hypoxic condition, copper (Cu) accumulates in cell nuclei, and regulates the activity of hypoxia-inducible factor-1 (HIF-1) through Cu-binding proteins (CuBPs). To understand the CuBPs in the nucleus, proteomic approach was undertaken to explore the dynamic changes of the CuBPs in response to hypoxia. Human umbilical vein endothelial cells (HUVECs) were treated with dimethyloxalylglycine in a final concentration of 100 μM for 4 h to induce hypoxia, resulting in the accumulation of HIF-1α and Cu in the nucleus. Cu immobilized metal affinity chromatography was applied to extract the CuBPs, followed by identification using nanoliter-liquid chromatograpy combined with quadrupole time of flight tandem mass spectrometry (nanoLC-Q-TOF-MS/MS). There were 278 nuclear proteins that were found as CuBPs in the induced hypoxic group in contrast to 218 CuBPs in the control group. Functional annotation of these proteins in gene ontology category revealed that proteins participating in negative regulation of transcription from RNA polymerase II promoter were dramatically enriched by induced hypoixc treatment. Label-free quantitative proteomic approach identified quantitative changes of nuclear proteome; of 17 differentially expressed proteins, 8 were downregulated and 9 were upregulated in the induced hypoxic nuclei. Four of the 17 proteins were CuBPs, including ILF2 and TRA2B, both were downregulated, and LMNA and HSPB1, both were upregulated. We confirmed the protein change of ALB, LMNA and HSPB1 (HSP27) in real hypoxia, and suggested that the identified CuBPs could be the target for further study of Cu regulation of HIF-1 activity in the nucleus.
Collapse
Affiliation(s)
- Haiying Fu
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, 610041, Sichuan, China
| | - Xueqin Ding
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, 610041, Sichuan, China
| | - Wenjing Zhang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, 610041, Sichuan, China
| | - Y James Kang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
36
|
Meerson A, Eliraz Y, Yehuda H, Knight B, Crundwell M, Ferguson D, Lee BP, Harries LW. Obesity impacts the regulation of miR-10b and its targets in primary breast tumors. BMC Cancer 2019; 19:86. [PMID: 30658617 PMCID: PMC6339293 DOI: 10.1186/s12885-019-5300-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Obesity increases breast cancer (BC) risk in post-menopausal women by mostly unknown molecular mechanisms which may partly be regulated by microRNAs (miRNAs). METHODS We isolated RNA from paired benign and malignant biopsies from 83 BC patients and determined miRNA profiles in samples from 12 women at the extremes of the BMI distribution by RNA-seq. Candidates were validated in all samples. Associations between miR-10b expression and validated target transcript levels, and effects of targeted manipulation of miR-10b levels in a primary BC cell line on proliferation and invasion potential, were explored. RESULTS Of the 148 miRNAs robustly expressed in breast tissues, the levels of miR-21, miR-10b, miR-451a, miR-30c, and miR-378d were significantly associated with presence of cancer. Of these, miR-10b showed a stronger down-regulation in the tumors of the obese subjects, as opposed to the lean. In ductal but not lobular tumors, significant inverse correlations were observed between the tumor levels of miR-10b and miR-30c and the mRNA levels of cancer-relevant target genes SRSF1, PIEZO1, MAPRE1, CDKN2A, TP-53 and TRA2B, as well as tumor grade. Suppression of miR-10b levels in BT-549 primary BC-derived cells increased cell proliferation and invasive capacity, while exogenous miR-10b mimic decreased invasion. Manipulation of miR-10b levels also inversely affected the mRNA levels of miR-10b targets BCL2L11, PIEZO1 and NCOR2. CONCLUSIONS Our findings suggest that miR-10b may be a mediator between obesity and cancer in post-menopausal women, regulating several known cancer-relevant genes. MiR-10b expression may have diagnostic and therapeutic implications for the incidence and prognosis of BC in obese women.
Collapse
Affiliation(s)
- Ari Meerson
- MIGAL - Galilee Research Institute, PO Box 831, 11016 Kiryat Shmona, Israel
- Tel Hai Academic College, Tel Hai, Israel
| | - Yaniv Eliraz
- MIGAL - Galilee Research Institute, PO Box 831, 11016 Kiryat Shmona, Israel
- Tel Hai Academic College, Tel Hai, Israel
| | - Hila Yehuda
- MIGAL - Galilee Research Institute, PO Box 831, 11016 Kiryat Shmona, Israel
- Tel Hai Academic College, Tel Hai, Israel
| | - Bridget Knight
- Royal Devon and Exeter NHS Foundation Trust, Royal Devon and Exeter Hospital, Barrack Road, Exeter, UK
| | - Malcolm Crundwell
- Royal Devon and Exeter NHS Foundation Trust, Royal Devon and Exeter Hospital, Barrack Road, Exeter, UK
- University of Exeter Medical School, Barrack Road, Exeter, UK
| | - Douglas Ferguson
- Royal Devon and Exeter NHS Foundation Trust, Royal Devon and Exeter Hospital, Barrack Road, Exeter, UK
- University of Exeter Medical School, Barrack Road, Exeter, UK
| | - Benjamin P. Lee
- University of Exeter Medical School, Barrack Road, Exeter, UK
| | | |
Collapse
|
37
|
Urbanski L, Leclair N, Anczuków O. Alternative-splicing defects in cancer: Splicing regulators and their downstream targets, guiding the way to novel cancer therapeutics. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1476. [PMID: 29693319 PMCID: PMC6002934 DOI: 10.1002/wrna.1476] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 12/14/2022]
Abstract
Defects in alternative splicing are frequently found in human tumors and result either from mutations in splicing-regulatory elements of specific cancer genes or from changes in the regulatory splicing machinery. RNA splicing regulators have emerged as a new class of oncoproteins and tumor suppressors, and contribute to disease progression by modulating RNA isoforms involved in the hallmark cancer pathways. Thus, dysregulation of alternative RNA splicing is fundamental to cancer and provides a potentially rich source of novel therapeutic targets. Here, we review the alterations in splicing regulatory factors detected in human tumors, as well as the resulting alternatively spliced isoforms that impact cancer hallmarks, and discuss how they contribute to disease pathogenesis. RNA splicing is a highly regulated process and, as such, the regulators are themselves tightly regulated. Differential transcriptional and posttranscriptional regulation of splicing factors modulates their levels and activities in tumor cells. Furthermore, the composition of the tumor microenvironment can also influence which isoforms are expressed in a given cell type and impact drug responses. Finally, we summarize current efforts in targeting alternative splicing, including global splicing inhibition using small molecules blocking the spliceosome or splicing-factor-modifying enzymes, as well as splice-switching RNA-based therapeutics to modulate cancer-specific splicing isoforms. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
|
38
|
Satake Y, Kuwano Y, Nishikawa T, Fujita K, Saijo S, Itai M, Tanaka H, Nishida K, Rokutan K. Nucleolin facilitates nuclear retention of an ultraconserved region containing TRA2β4 and accelerates colon cancer cell growth. Oncotarget 2018; 9:26817-26833. [PMID: 29928487 PMCID: PMC6003563 DOI: 10.18632/oncotarget.25510] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/12/2018] [Indexed: 01/06/2023] Open
Abstract
Transcribed-ultraconserved regions (T-UCRs), which contain conserved sequences with 100% identity across human, rat and mouse species, are a novel category of functional RNAs. The human transformer 2β gene (TRA2B) encodes a UCR that spans exon 2 (276 bp) and its neighboring introns. Among five spliced RNA variants (TRA2β1-5) transcribed from the TRA2B gene, only TRA2β4 contains the conserved exon 2. TRA2β4 is overexpressed in colon cancer cells and accelerates cell growth by blocking the transcription of CDKN1A. However, the mechanisms underlying the overexpression of TRA2β4 in colon cancer cells are unknown. Using biotinylated RNA pull-down assays followed by liquid chromatography-mass spectrometric analysis, we identified nucleolin as a TRA2β4-binding protein. Knockdown of nucleolin reduced the nuclear retention of TRA2β4 and accelerated its degradation in the cytoplasm, whereas nucleolin overexpression increased TRA2β4 levels and its mitogenic activity. Nucleolin directly bound to TRA2β4 exon 2 via the glycine/arginine-rich (GAR) domain. Overexpression of GAR-deficient nucleolin failed to increase TRA2β4 expression and growth of colon cancer cells. RNA fluorescence in situ hybridization showed that TRA2β4 co-localized with nucleolin in nuclei but not with the mutant lacking GAR. Our results suggest that specific interactions between nucleolin and UCR-containing TRA2β4 may be associated with abnormal growth of colon cancer cells.
Collapse
Affiliation(s)
- Yuzuru Satake
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Yuki Kuwano
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Tatsuya Nishikawa
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Kinuyo Fujita
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Saki Saijo
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Miki Itai
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Hiroki Tanaka
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Kensei Nishida
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Kazuhito Rokutan
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| |
Collapse
|
39
|
Rios de la Rosa JM, Tirella A, Tirelli N. Receptor-Targeted Drug Delivery and the (Many) Problems We Know of: The Case of CD44 and Hyaluronic Acid. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Julio M. Rios de la Rosa
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
| | - Annalisa Tirella
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
| | - Nicola Tirelli
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
- Laboratory of Polymers and Biomaterials; Fondazione Istituto Italiano di Tecnologia; Genova 16163 Italy
| |
Collapse
|
40
|
Diao Y, Cui L, Chen Y, Burbridge TJ, Han W, Wirth B, Sestan N, Crair MC, Zhang J. Reciprocal Connections Between Cortex and Thalamus Contribute to Retinal Axon Targeting to Dorsal Lateral Geniculate Nucleus. Cereb Cortex 2018; 28:1168-1182. [PMID: 28334242 PMCID: PMC6059179 DOI: 10.1093/cercor/bhx028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/30/2016] [Accepted: 01/19/2017] [Indexed: 12/24/2022] Open
Abstract
The dorsal Lateral Geniculate Nucleus (dLGN) is the primary image-forming target of the retina and shares a reciprocal connection with primary visual cortex (V1). Previous studies showed that corticothalamic input is essential for the development of thalamocortical projections, but less is known about the potential role of this reciprocal connection in the development of retinal projections. Here, we show a deficit of retinal innervation in the dLGN around E18.5 in Tra2β conditional knockout (cKO) "cortexless" mice, an age when apoptosis occurs along the thalamocortical tract and in some dLGN neurons. In vivo electrophysiology experiments in the dLGN further confirmed the loss of functional retinal input. Experiments with N-methyl-d-aspartic acid-induced V1 lesion as well as Fezf2 cKO mice confirmed that the disruption of connections between the dLGN and V1 lead to abnormal retinal projections to the dLGN. Interestingly, retinal projections to the ventral Lateral Geniculate Nucleus (vLGN) and Superior Colliculus (SC) were normal in all 3 mice models. Finally, we show that the cortexless mice had worse performance than control mice in a go-no go task with visual cues. Our results provide evidence that the wiring of visual circuit from the retina to the dLGN and V1 thereafter is coordinated at a surprisingly early stage of circuit development.
Collapse
Affiliation(s)
- Yupu Diao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Liyuan Cui
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yuqing Chen
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | | | - Wenqi Han
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Brunhilde Wirth
- Institute of Human Genetics, Institute for Genetics, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Michael C Crair
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Jiayi Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
41
|
Matsumoto Y, Itou J, Sato F, Toi M. SALL4 - KHDRBS3 network enhances stemness by modulating CD44 splicing in basal-like breast cancer. Cancer Med 2018; 7:454-462. [PMID: 29356399 PMCID: PMC5806117 DOI: 10.1002/cam4.1296] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/22/2017] [Accepted: 11/26/2017] [Indexed: 02/06/2023] Open
Abstract
Understanding the mechanism by which cancer cells enhance stemness facilitates cancer therapies. Here, we revealed that a stem cell transcription factor, SALL4, functions to enhance stemness in basal-like breast cancer cells. We used shRNA-mediated knockdown and gene overexpression systems to analyze gene functions. To evaluate stemness, we performed a sphere formation assay. In SALL4 knockdown cells, the sphere formation ability was reduced, indicating that SALL4 enhances stemness. CD44 is a membrane protein and is known as a stemness factor in cancer. CD44 splicing variants are involved in cancer stemness. We discovered that SALL4 modulates CD44 alternative splicing through the upregulation of KHDRBS3, a splicing factor for CD44. We cloned the KHDRBS3-regulated CD44 splicing isoform (CD44v), which lacks exons 8 and 9. CD44v overexpression prevented a reduction in the sphere formation ability by KHDRBS3 knockdown, indicating that CD44v is positively involved in cancer stemness. In addition, CD44v enhanced anoikis resistance under the control of the SALL4 - KHDRBS3 network. Basal-like breast cancer is an aggressive subtype among breast cancers, and there is no effective therapy so far. Our findings provide molecular targets for basal-like breast cancer therapy. In the future, this study may contribute to the establishment of drugs targeting cancer stemness.
Collapse
Affiliation(s)
- Yoshiaki Matsumoto
- Department of Breast SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Junji Itou
- Department of Breast SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Fumiaki Sato
- Department of Breast SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Masakazu Toi
- Department of Breast SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
42
|
Carey KT, Wickramasinghe VO. Regulatory Potential of the RNA Processing Machinery: Implications for Human Disease. Trends Genet 2018; 34:279-290. [PMID: 29329719 DOI: 10.1016/j.tig.2017.12.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/14/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022]
Abstract
Splicing and nuclear export of mRNA are critical steps in the gene expression pathway. While RNA processing factors can perform general, essential functions for intron removal and bulk export of mRNA, emerging evidence highlights that the core RNA splicing and export machineries also display regulatory potential. Here, we discuss recent insights into how this regulatory potential can selectively alter gene expression and regulate important biological processes. We also highlight the participation of RNA processing pathways in the cellular response to DNA damage at multiple levels. These findings have important implications for the contribution of selective mRNA processing and export to the development of human cancers and neurodegenerative disorders.
Collapse
Affiliation(s)
- Kirstyn T Carey
- RNA Biology and Cancer Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Vihandha O Wickramasinghe
- RNA Biology and Cancer Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
43
|
Rambout X, Dequiedt F, Maquat LE. Beyond Transcription: Roles of Transcription Factors in Pre-mRNA Splicing. Chem Rev 2017; 118:4339-4364. [PMID: 29251915 DOI: 10.1021/acs.chemrev.7b00470] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Whereas individual steps of protein-coding gene expression in eukaryotes can be studied in isolation in vitro, it has become clear that these steps are intimately connected within cells. Connections not only ensure quality control but also fine-tune the gene expression process, which must adapt to environmental changes while remaining robust. In this review, we systematically present proven and potential mechanisms by which sequence-specific DNA-binding transcription factors can alter gene expression beyond transcription initiation and regulate pre-mRNA splicing, and thereby mRNA isoform production, by (i) influencing transcription elongation rates, (ii) binding to pre-mRNA to recruit splicing factors, and/or (iii) blocking the association of splicing factors with pre-mRNA. We propose various mechanistic models throughout the review, in some cases without explicit supportive evidence, in hopes of providing fertile ground for future studies.
Collapse
|
44
|
Lee G, Bang L, Kim SY, Kim D, Sohn KA. Identifying subtype-specific associations between gene expression and DNA methylation profiles in breast cancer. BMC Med Genomics 2017; 10:28. [PMID: 28589855 PMCID: PMC5461552 DOI: 10.1186/s12920-017-0268-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Breast cancer is a complex disease in which different genomic patterns exists depending on different subtypes. Recent researches present that multiple subtypes of breast cancer occur at different rates, and play a crucial role in planning treatment. To better understand underlying biological mechanisms on breast cancer subtypes, investigating the specific gene regulatory system via different subtypes is desirable. METHODS Gene expression, as an intermediate phenotype, is estimated based on methylation profiles to identify the impact of epigenomic features on transcriptomic changes in breast cancer. We propose a kernel weighted l1-regularized regression model to incorporate tumor subtype information and further reveal gene regulations affected by different breast cancer subtypes. For the proper control of subtype-specific estimation, samples from different breast cancer subtype are learned at different rate based on target estimates. Kolmogorov Smirnov test is conducted to determine learning rate of each sample from different subtype. RESULTS It is observed that genes that might be sensitive to breast cancer subtype show prediction improvement when estimated using our proposed method. Comparing to a standard method, overall performance is also enhanced by incorporating tumor subtypes. In addition, we identified subtype-specific network structures based on the associations between gene expression and DNA methylation. CONCLUSIONS In this study, kernel weighted lasso model is proposed for identifying subtype-specific associations between gene expressions and DNA methylation profiles. Identification of subtype-specific gene expression associated with epigenomic changes might be helpful for better planning treatment and developing new therapies.
Collapse
Affiliation(s)
- Garam Lee
- Department of Software and Computer Engineering, Ajou University, Suwon, 16499, South Korea
| | - Lisa Bang
- Biomedical & Translational Informatics Institute, Geisinger Health System, Danville, PA, USA
| | - So Yeon Kim
- Department of Software and Computer Engineering, Ajou University, Suwon, 16499, South Korea
| | - Dokyoon Kim
- Biomedical & Translational Informatics Institute, Geisinger Health System, Danville, PA, USA. .,The Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| | - Kyung-Ah Sohn
- Department of Software and Computer Engineering, Ajou University, Suwon, 16499, South Korea.
| |
Collapse
|
45
|
Yoo SA, Leng L, Kim BJ, Du X, Tilstam PV, Kim KH, Kong JS, Yoon HJ, Liu A, Wang T, Song Y, Sauler M, Bernhagen J, Ritchlin CT, Lee P, Cho CS, Kim WU, Bucala R. MIF allele-dependent regulation of the MIF coreceptor CD44 and role in rheumatoid arthritis. Proc Natl Acad Sci U S A 2016; 113:E7917-E7926. [PMID: 27872288 PMCID: PMC5150393 DOI: 10.1073/pnas.1612717113] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Fibroblast-like synoviocytes mediate joint destruction in rheumatoid arthritis and exhibit sustained proinflammatory and invasive properties. CD44 is a polymorphic transmembrane protein with defined roles in matrix interaction and tumor invasion that is also a signaling coreceptor for macrophage migration inhibitory factor (MIF), which engages cell surface CD74. High-expression MIF alleles (rs5844572) are associated with rheumatoid joint erosion, but whether MIF signaling through the CD74/CD44 receptor complex promotes upstream autoimmune responses or contributes directly to synovial joint destruction is unknown. We report here the functional regulation of CD44 by an autocrine pathway in synovial fibroblasts that is driven by high-expression MIF alleles to up-regulate an inflammatory and invasive phenotype. MIF increases CD44 expression, promotes its recruitment into a functional signal transduction complex, and stimulates alternative exon splicing, leading to expression of the CD44v3-v6 isoforms associated with oncogenic invasion. CD44 recruitment into the MIF receptor complex, downstream MAPK and RhoA signaling, and invasive phenotype require MIF and CD74 and are reduced by MIF pathway antagonists. These data support a functional role for high-MIF expression alleles and the two-component CD74/CD44 MIF receptor in rheumatoid arthritis and suggest that pharmacologic inhibition of this pathway may offer a specific means to interfere with progressive joint destruction.
Collapse
Affiliation(s)
- Seung-Ah Yoo
- College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul 06591, Korea
| | - Lin Leng
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Bum-Joon Kim
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Xin Du
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Pathricia V Tilstam
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Kyung Hee Kim
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Jin-Sun Kong
- College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul 06591, Korea
| | - Hyung-Ju Yoon
- College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul 06591, Korea
| | - Aihua Liu
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Tian Wang
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Yan Song
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Maor Sauler
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Jurgen Bernhagen
- Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | | | - Patty Lee
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Chul-Soo Cho
- College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul 06591, Korea
| | - Wan-Uk Kim
- College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul 06591, Korea;
| | - Richard Bucala
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06510;
| |
Collapse
|
46
|
Abstract
Tumor-associated alterations in RNA splicing result either from mutations in splicing-regulatory elements or changes in components of the splicing machinery. This review summarizes our current understanding of the role of splicing-factor alterations in human cancers. We describe splicing-factor alterations detected in human tumors and the resulting changes in splicing, highlighting cell-type-specific similarities and differences. We review the mechanisms of splicing-factor regulation in normal and cancer cells. Finally, we summarize recent efforts to develop novel cancer therapies, based on targeting either the oncogenic splicing events or their upstream splicing regulators.
Collapse
Affiliation(s)
- Olga Anczuków
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
47
|
Gopinath G, Arunkumar KP, Mita K, Nagaraju J. Role of Bmznf-2, a Bombyx mori CCCH zinc finger gene, in masculinisation and differential splicing of Bmtra-2. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 75:32-44. [PMID: 27260399 DOI: 10.1016/j.ibmb.2016.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 06/05/2023]
Abstract
Deciphering the regulatory factors involved in Bombyx mori sex determination has been a puzzle, challenging researchers for nearly a century now. The pre-mRNA of B. mori doublesex (Bmdsx), a master regulator gene of sexual differentiation, is differentially spliced, producing Bmdsxm and Bmdsxf transcripts in males and females respectively. The putative proteins encoded by these differential transcripts orchestrate antagonistic functions, which lead to sexual differentiation. A recent study in B. mori illustrated the role of a W-derived fem piRNA in conferring femaleness. In females, the fem piRNA was shown to suppress the activity of a Z-linked CCCH type zinc finger (znf) gene, Masculiniser (masc), which indirectly promotes the Bmdsxm type of splicing. In this study, we report a novel autosomal (Chr 25) CCCH type znf motif encoding gene Bmznf-2 as one of the potential factors in the Bmdsx sex specific differential splicing, and we also provide insights into its role in the alternative splicing of Bmtra2 by using ovary derived BmN cells. Over-expression of Bmznf-2 induced Bmdsxm type of splicing (masculinisation) with a correspondingly reduced expression of Bmdsxf type isoform in BmN cells. Further, the site-directed mutational studies targeting the tandem CCCH znf motifs revealed their indispensability in the observed phenotype of masculinisation. Additionally, the dual luciferase assays in BmN cells using 5' UTR region of the Bmznf-2 strongly implied the existence of a translational repression over this gene. From these findings, we propose Bmznf-2 to be one of the potential factors of masculinisation similar to Masc. From the growing number of Bmdsx splicing regulators, we assume that the sex determination cascade of B. mori is quite intricate in nature; hence, it has to be further investigated for its comprehensive understanding.
Collapse
Affiliation(s)
- Gajula Gopinath
- Centre of Excellence for Genetics and Genomics of Silkmoths, Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500001, India.
| | - Kallare P Arunkumar
- Centre of Excellence for Genetics and Genomics of Silkmoths, Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500001, India.
| | - Kazuei Mita
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Javaregowda Nagaraju
- Centre of Excellence for Genetics and Genomics of Silkmoths, Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500001, India
| |
Collapse
|
48
|
Shen S, Wang Y, Wang C, Wu YN, Xing Y. SURVIV for survival analysis of mRNA isoform variation. Nat Commun 2016; 7:11548. [PMID: 27279334 PMCID: PMC4906168 DOI: 10.1038/ncomms11548] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 04/07/2016] [Indexed: 01/07/2023] Open
Abstract
The rapid accumulation of clinical RNA-seq data sets has provided the opportunity to associate mRNA isoform variations to clinical outcomes. Here we report a statistical method SURVIV (Survival analysis of mRNA Isoform Variation), designed for identifying mRNA isoform variation associated with patient survival time. A unique feature and major strength of SURVIV is that it models the measurement uncertainty of mRNA isoform ratio in RNA-seq data. Simulation studies suggest that SURVIV outperforms the conventional Cox regression survival analysis, especially for data sets with modest sequencing depth. We applied SURVIV to TCGA RNA-seq data of invasive ductal carcinoma as well as five additional cancer types. Alternative splicing-based survival predictors consistently outperform gene expression-based survival predictors, and the integration of clinical, gene expression and alternative splicing profiles leads to the best survival prediction. We anticipate that SURVIV will have broad utilities for analysing diverse types of mRNA isoform variation in large-scale clinical RNA-seq projects.
Collapse
Affiliation(s)
- Shihao Shen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Yuanyuan Wang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Chengyang Wang
- Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Ying Nian Wu
- Department of Statistics, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Yi Xing
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
49
|
Sebestyén E, Singh B, Miñana B, Pagès A, Mateo F, Pujana MA, Valcárcel J, Eyras E. Large-scale analysis of genome and transcriptome alterations in multiple tumors unveils novel cancer-relevant splicing networks. Genome Res 2016; 26:732-44. [PMID: 27197215 PMCID: PMC4889968 DOI: 10.1101/gr.199935.115] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 04/11/2016] [Indexed: 01/18/2023]
Abstract
Alternative splicing is regulated by multiple RNA-binding proteins and influences the expression of most eukaryotic genes. However, the role of this process in human disease, and particularly in cancer, is only starting to be unveiled. We systematically analyzed mutation, copy number, and gene expression patterns of 1348 RNA-binding protein (RBP) genes in 11 solid tumor types, together with alternative splicing changes in these tumors and the enrichment of binding motifs in the alternatively spliced sequences. Our comprehensive study reveals widespread alterations in the expression of RBP genes, as well as novel mutations and copy number variations in association with multiple alternative splicing changes in cancer drivers and oncogenic pathways. Remarkably, the altered splicing patterns in several tumor types recapitulate those of undifferentiated cells. These patterns are predicted to be mainly controlled by MBNL1 and involve multiple cancer drivers, including the mitotic gene NUMA1 We show that NUMA1 alternative splicing induces enhanced cell proliferation and centrosome amplification in nontumorigenic mammary epithelial cells. Our study uncovers novel splicing networks that potentially contribute to cancer development and progression.
Collapse
Affiliation(s)
| | - Babita Singh
- Universitat Pompeu Fabra, E08003 Barcelona, Spain
| | - Belén Miñana
- Universitat Pompeu Fabra, E08003 Barcelona, Spain; Centre for Genomic Regulation, E08003 Barcelona, Spain
| | - Amadís Pagès
- Universitat Pompeu Fabra, E08003 Barcelona, Spain
| | - Francesca Mateo
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), E08908 L'Hospitalet del Llobregat, Spain
| | - Miguel Angel Pujana
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), E08908 L'Hospitalet del Llobregat, Spain
| | - Juan Valcárcel
- Universitat Pompeu Fabra, E08003 Barcelona, Spain; Centre for Genomic Regulation, E08003 Barcelona, Spain; Catalan Institution for Research and Advanced Studies, E08010 Barcelona, Spain
| | - Eduardo Eyras
- Universitat Pompeu Fabra, E08003 Barcelona, Spain; Catalan Institution for Research and Advanced Studies, E08010 Barcelona, Spain
| |
Collapse
|
50
|
Ultraconserved region-containing Transformer 2β4 controls senescence of colon cancer cells. Oncogenesis 2016; 5:e213. [PMID: 27043659 PMCID: PMC4848834 DOI: 10.1038/oncsis.2016.18] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/08/2016] [Accepted: 01/28/2016] [Indexed: 01/23/2023] Open
Abstract
Ultraconserved regions (UCRs) are >200 bp genomic segments with perfect human-to-rodent sequence identity. Transcribed UCRs constitute a new category of noncoding RNAs whose functions remain poorly understood. The human transformer 2β (TRA2B) gene contains a 419-bp UCR spanning the 276-bp exon 2 and its neighboring introns. TRA2B exon 2 has premature stop codons, whereas an exon 2-containing splice variant (TRA2β4) was expressed preferentially in the nuclei of human colon cancer cells. TRA2β4 knockdown p53-independently stimulated CDKN1A transcription and increased p21, resulting in the appearance of senescent cells. Biotin pull-down and RNA immunoprecipitation assays revealed that TRA2β4 interacted with Sp1 through a Sp1-binding sequence (485-GGGG-488) in a stem-loop structure of exon 2. Mutation of this sequence (485-AAGG-488) disrupted the stem-loop structure, blocked the interaction with Sp1 and increased CDKN1A transcription. Overexpression of TRA2β4 significantly decreased CDKN1A mRNA levels and accelerated cell growth, but the introduction of the mutation in the Sp1-binding sequence completely canceled these effects. Taken together, TRA2β4 may sequester Sp1 from occupying promoters of target genes including CDKN1A, promoting cell growth by interrupting the senescence-related gene expression program. This novel function of TRA2β4 may uncover an oncogenic function of transcribed UCRs.
Collapse
|