1
|
Iczkowski KA, Parikh M. Divergences in neuroendocrine prostate cancer frequency as recognized by anatomic pathologists, clinicians, and basic scientists. Asian J Androl 2025; 27:1-3. [PMID: 39162145 PMCID: PMC11784960 DOI: 10.4103/aja202467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/27/2024] [Indexed: 08/21/2024] Open
Affiliation(s)
- Kenneth A Iczkowski
- Department of Pathology, University of California-Davis, Sacramento, CA 95817, USA
| | - Mamta Parikh
- Department of Oncology, University of California-Davis, Sacramento, CA 95817, USA
| |
Collapse
|
2
|
Santo G, Di Santo G, Sviridenko A, Bayerschmidt S, Wirth L, Scherbauer F, Lehmann P, von Guggenberg E, Decristoforo C, Heidegger-Pircher I, Bektic J, Virgolini I. Efficacy and safety of rechallenge with [ 177Lu]Lu-PSMA-I&T radioligand therapy in metastatic castration resistant prostate cancer. Eur J Nucl Med Mol Imaging 2024; 52:354-365. [PMID: 39225826 PMCID: PMC11599357 DOI: 10.1007/s00259-024-06905-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The purpose of this study was to evaluate the safety and outcome of rechallenge [177Lu]Lu-PSMA-I&T in newly progressed mCRPC patients after response to initial [177Lu]Lu-PSMA radioligand therapy (PRLT). METHODS We retrospectively included 18 patients who underwent rechallenge with [177Lu]Lu-PSMA-I&T. All patients presented with (i) newly progressed disease after response to initial PRLT; (ii) a [68Ga]Ga-PSMA-11 PET/CT confirming the presence of PSMA-positive metastases; iii) ECOG performance status 0-1. Adverse events were graded according to CTCAE v5.0. Response was assessed by PSA and classified according to PCWG3 recommendations. For patients who underwent restaging with [68Ga]Ga-PSMA-11 PET/CT, imaging response was categorised according to adapted PERCIST v1.0. In patients with discordant [68Ga]Ga-PSMA-11 PET/CT and PSA, other available imaging modalities were evaluated to confirm disease status. Overall survival (OS) was calculated from the first cycle of initial PRLT and rechallenge PRLT, respectively, until last patient contact or death. RESULTS Patients were initially treated with a median of 5 cycles (range 4-7) and were rechallenged after a median of 9 months (range 3-13). Each patient received a median of 4 (range 2-7) rechallenge cycles (median cumulative activity 26.1 GBq). None of the patients experienced life-threatening G4 adverse events during either treatment period. Grade 3 adverse events included one case of anaemia, one case of thrombocytopenia, and one case of renal failure. In 8/18 patients long-term toxicities were evaluated. Serious toxicities (≥ Grade 3) occurred in 3/8 patients (n = 1 G4 thrombocytopenia, n = 1 G4 renal failure and n = 1 pancytopenia and G4 renal failure). Best PSA50%-response was observed in 44% of patients and PSA-disease control was confirmed in 56% of patients at the last cycle. Of the 12/18 patients restaged by imaging, 6/12 (50%) patients had disease control (partial response/stable disease), 1/12 had a mixed response, and 5/12 had progression. After a median follow-up time of 25 months (range 14-44), 10 patients had died, 7 were still alive, and one patient was lost at follow-up. The median OS was 29 months (95%CI, 14.3-43.7 months) for the initial treatment and 11 months (95%CI, 8.1-13.8 months) for the first rechallenge course. CONCLUSION More than half of patients benefit from rechallenge PRLT. Our analysis suggests that rechallenge may prolong survival in selected patients, with an acceptable safety profile.
Collapse
Affiliation(s)
- Giulia Santo
- Department of Nuclear Medicine, Medical University of Innsbruck, Anichstraße 35, Innsbruck, 6020, Austria
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Gianpaolo Di Santo
- Department of Nuclear Medicine, Medical University of Innsbruck, Anichstraße 35, Innsbruck, 6020, Austria
| | - Anna Sviridenko
- Department of Nuclear Medicine, Medical University of Innsbruck, Anichstraße 35, Innsbruck, 6020, Austria
| | - Steffen Bayerschmidt
- Department of Nuclear Medicine, Medical University of Innsbruck, Anichstraße 35, Innsbruck, 6020, Austria
| | - Lukas Wirth
- Department of Nuclear Medicine, Medical University of Innsbruck, Anichstraße 35, Innsbruck, 6020, Austria
| | - Fabian Scherbauer
- Department of Nuclear Medicine, Medical University of Innsbruck, Anichstraße 35, Innsbruck, 6020, Austria
| | - Peter Lehmann
- Department of Nuclear Medicine, Medical University of Innsbruck, Anichstraße 35, Innsbruck, 6020, Austria
| | - Elisabeth von Guggenberg
- Department of Nuclear Medicine, Medical University of Innsbruck, Anichstraße 35, Innsbruck, 6020, Austria
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University of Innsbruck, Anichstraße 35, Innsbruck, 6020, Austria
| | | | - Jasmin Bektic
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Irene Virgolini
- Department of Nuclear Medicine, Medical University of Innsbruck, Anichstraße 35, Innsbruck, 6020, Austria.
| |
Collapse
|
3
|
Roy S, Malone S, Wing K, Chowdhury S, Kishan AU, Sun Y, Wallis CJD, Mohamad O, Jia AY, Swami U, Zaorsky NG, Morgan SC, Ong M, Agarwal N, Spratt DE, Small EJ, Saad F. Prior Local Therapy and First-Line Apalutamide in Patients With Nonmetastatic Castration-Resistant Prostate Cancer: A Secondary Analysis of the SPARTAN Randomized Clinical Trial. JAMA Netw Open 2024; 7:e2439434. [PMID: 39405060 PMCID: PMC11581638 DOI: 10.1001/jamanetworkopen.2024.39434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/22/2024] [Indexed: 11/24/2024] Open
Abstract
Importance Preclinical studies suggest that exposure to prostate-directed local therapy (LT) may influence the efficacy of subsequent systemic therapy including androgen receptor pathway inhibitors. However, there is insufficient clinical evidence to support this premise in patients with nonmetastatic castrate-resistant prostate cancer (nmCRPC). Objective To determine whether exposure to prior prostate-directed LT (radical prostatectomy [RP], radiation therapy [RT], or both) played any effect-modifying role in the treatment effect of apalutamide on metastasis-free survival (MFS) and overall survival (OS) in patients with nmCRPC. Design, Setting, and Participants This post hoc secondary analysis used individual patient data from SPARTAN (Study of Apalutamide [ARN-509] in Men With Non-Metastatic Castration-Resistant Prostate Cancer), a phase 3, double-blinded, placebo-controlled randomized clinical trial conducted at 332 sites in 26 countries. Between October 14, 2013, and December 15, 2016, patients with nmCRPC and a prostate-specific antigen doubling time of 10 months or less were randomly assigned to apalutamide vs placebo; all patients received androgen deprivation therapy. The final data analysis was performed on December 31, 2023. Exposure Prior prostate-directed LT. Main Outcomes and Measures Separate Cox proportional hazards regression models were constructed for OS and MFS, which included prior LT, treatment group, and an interaction term, in addition to a minimally sufficient set of confounders. Adjusted hazard ratios (HRs) with 95% CIs for MFS and OS were determined for the apalutamide groups with or without prior LT. Results Among the 1179 evaluable patients included in this analysis, 795 received prior LT and 384 did not. The median age of patients with and without prior LT was 70 (IQR, 45-90) years and 75 (IQR, 50-95) years, respectively. The median follow-up was 52.0 (IQR, 51.5-52.8) months. A differential treatment effect of apalutamide on MFS was observed between patients with and without prior LT (P for interaction = .009), with greater benefits for those with prior LT (adjusted HR, 0.22 [95% CI, 0.17-0.27]) compared with those without prior LT (adjusted HR, 0.35 [95% CI, 0.25-0.51]). However, there was insufficient evidence of a differential treatment effect on OS among subgroups stratified by exposure to prior LT (P for interaction = .23), with improved OS in the subgroup with prior LT (adjusted HR, 0.72 [95% CI, 0.57-0.92]) but no significant difference in OS in the subgroup without prior LT (adjusted HR, 0.92 [95% CI, 0.64-1.31]). Conclusions and Relevance This post hoc analysis of the SPARTAN trial provides evidence of an interaction between prior LT and apalutamide in patients with nmCRPC, with a clinically significant and more favorable treatment effect from apalutamide on MFS among patients with prior LT. Further studies are needed to validate these findings. Trial Registration ClinicalTrials.gov Identifier: NCT01946204.
Collapse
Affiliation(s)
- Soumyajit Roy
- Department of Radiation Oncology, Rush University Medical Center, Chicago, Illinois
- Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Shawn Malone
- Ottawa Hospital Cancer Centre, University of Ottawa, Ottawa, Ontario, Canada
| | - Kevin Wing
- Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
- Public Health, School of Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom
| | - Simon Chowdhury
- Guy’s and St Thomas’ NHS Foundation Trust and Sarah Cannon Research Institute, London, United Kingdom
| | | | - Yilun Sun
- University Hospitals–Seidman Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Christopher J. D. Wallis
- Mount Sinai Hospital, University Hospital Network, University of Toronto, Toronto, Ontario, Canada
| | | | - Angela Y. Jia
- University Hospitals–Seidman Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Umang Swami
- Huntsman Cancer Institute, University of Utah, Salt Lake City
| | - Nicholas G. Zaorsky
- University Hospitals–Seidman Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Scott C. Morgan
- Ottawa Hospital Cancer Centre, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael Ong
- Ottawa Hospital Cancer Centre, University of Ottawa, Ottawa, Ontario, Canada
| | - Neeraj Agarwal
- Huntsman Cancer Institute, University of Utah, Salt Lake City
| | - Daniel E. Spratt
- University Hospitals–Seidman Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Eric J. Small
- Department of Medical Oncology, University of California, San Francisco
| | - Fred Saad
- Department of Surgery, Centre Hospitalier de l’Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
4
|
Zheng D, Zhang Y, Yang S, Su N, Bakhoum M, Zhang G, Naderinezhad S, Mao Z, Wang Z, Zhou T, Li W. Androgen deprivation induces neuroendocrine phenotypes in prostate cancer cells through CREB1/EZH2-mediated downregulation of REST. Cell Death Discov 2024; 10:246. [PMID: 38777812 PMCID: PMC11111810 DOI: 10.1038/s41420-024-02031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Although effective initially, prolonged androgen deprivation therapy (ADT) promotes neuroendocrine differentiation (NED) and prostate cancer (PCa) progression. It is incompletely understood how ADT transcriptionally induces NE genes in PCa cells. CREB1 and REST are known to positively and negatively regulate neuronal gene expression in the brain, respectively. No direct link between these two master neuronal regulators has been elucidated in the NED of PCa. We show that REST mRNA is downregulated in NEPC cell and mouse models, as well as in patient samples. Phenotypically, REST overexpression increases ADT sensitivity, represses NE genes, inhibits colony formation in culture, and xenograft tumor growth of PCa cells. As expected, ADT downregulates REST in PCa cells in culture and in mouse xenografts. Interestingly, CREB1 signaling represses REST expression. In studying the largely unclear mechanism underlying transcriptional repression of REST by ADT, we found that REST is a direct target of EZH2 epigenetic repression. Finally, genetic rescue experiments demonstrated that ADT induces NED through EZH2's repression of REST, which is enhanced by ADT-activated CREB1 signaling. In summary, our study has revealed a key pathway underlying NE gene upregulation by ADT, as well as established novel relationships between CREB1 and REST, and between EZH2 and REST, which may also have implications in other cancer types and in neurobiology.
Collapse
Affiliation(s)
- Dayong Zheng
- Texas Therapeutics Institute; Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Oncology, Shunde Hospital, Southern Medical University, Foshan, China
- The First People's Hospital of Shunde, Foshan, China
| | - Yan Zhang
- Texas Therapeutics Institute; Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sukjin Yang
- Texas Therapeutics Institute; Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ning Su
- Texas Therapeutics Institute; Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael Bakhoum
- Texas Therapeutics Institute; Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Guoliang Zhang
- Texas Therapeutics Institute; Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Samira Naderinezhad
- Texas Therapeutics Institute; Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Zhengmei Mao
- Texas Therapeutics Institute; Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zheng Wang
- Texas Therapeutics Institute; Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ting Zhou
- Texas Therapeutics Institute; Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wenliang Li
- Texas Therapeutics Institute; Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
5
|
Roy S, Sun Y, Morgan S, Malone S. Reply to Xiao Li, Zicheng Xu, and Feng Qi's Letter to the Editor re: Soumyajit Roy, Yilun Sun, Scott C. Morgan, et al. Effect of Prior Local Therapy on Response to First-line Androgen Receptor Axis Targeted Therapy in Metastatic Castrate-resistant Prostate Cancer: A Secondary Analysis of the COU-AA-302 Trial. Eur Urol 2023;83:571-9. Eur Urol 2024; 85:e12-e13. [PMID: 37596192 DOI: 10.1016/j.eururo.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023]
Affiliation(s)
- Soumyajit Roy
- Department of Radiation Oncology, Rush University Medical Center, Chicago, IL, USA.
| | - Yilun Sun
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Scott Morgan
- Department of Radiation Oncology and Medical Physics, The Ottawa Hospital Cancer Centre, University of Ottawa, Ottawa, Canada
| | - Shawn Malone
- Department of Radiation Oncology and Medical Physics, The Ottawa Hospital Cancer Centre, University of Ottawa, Ottawa, Canada
| |
Collapse
|
6
|
Le TK, Duong QH, Baylot V, Fargette C, Baboudjian M, Colleaux L, Taïeb D, Rocchi P. Castration-Resistant Prostate Cancer: From Uncovered Resistance Mechanisms to Current Treatments. Cancers (Basel) 2023; 15:5047. [PMID: 37894414 PMCID: PMC10605314 DOI: 10.3390/cancers15205047] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/26/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Prostate cancer (PC) is the second most common cancer in men worldwide. Despite recent advances in diagnosis and treatment, castration-resistant prostate cancer (CRPC) remains a significant medical challenge. Prostate cancer cells can develop mechanisms to resist androgen deprivation therapy, such as AR overexpression, AR mutations, alterations in AR coregulators, increased steroidogenic signaling pathways, outlaw pathways, and bypass pathways. Various treatment options for CRPC exist, including androgen deprivation therapy, chemotherapy, immunotherapy, localized or systemic therapeutic radiation, and PARP inhibitors. However, more research is needed to combat CRPC effectively. Further investigation into the underlying mechanisms of the disease and the development of new therapeutic strategies will be crucial in improving patient outcomes. The present work summarizes the current knowledge regarding the underlying mechanisms that promote CRPC, including both AR-dependent and independent pathways. Additionally, we provide an overview of the currently approved therapeutic options for CRPC, with special emphasis on chemotherapy, radiation therapy, immunotherapy, PARP inhibitors, and potential combination strategies.
Collapse
Affiliation(s)
- Thi Khanh Le
- Centre de Recherche en Cancérologie de Marseille—CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, 13009 Marseille, France; (T.K.L.); (Q.H.D.); (V.B.); (M.B.); (D.T.)
- European Center for Research in Medical Imaging (CERIMED), Aix-Marseille University, 13005 Marseille, France;
| | - Quang Hieu Duong
- Centre de Recherche en Cancérologie de Marseille—CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, 13009 Marseille, France; (T.K.L.); (Q.H.D.); (V.B.); (M.B.); (D.T.)
- European Center for Research in Medical Imaging (CERIMED), Aix-Marseille University, 13005 Marseille, France;
- Vietnam Academy of Science and Technology (VAST), University of Science and Technology of Hanoi (USTH), Hanoi 10000, Vietnam
| | - Virginie Baylot
- Centre de Recherche en Cancérologie de Marseille—CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, 13009 Marseille, France; (T.K.L.); (Q.H.D.); (V.B.); (M.B.); (D.T.)
- European Center for Research in Medical Imaging (CERIMED), Aix-Marseille University, 13005 Marseille, France;
| | - Christelle Fargette
- European Center for Research in Medical Imaging (CERIMED), Aix-Marseille University, 13005 Marseille, France;
- Department of Nuclear Medicine, La Timone University Hospital, Aix-Marseille University, 13005 Marseille, France
| | - Michael Baboudjian
- Centre de Recherche en Cancérologie de Marseille—CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, 13009 Marseille, France; (T.K.L.); (Q.H.D.); (V.B.); (M.B.); (D.T.)
- European Center for Research in Medical Imaging (CERIMED), Aix-Marseille University, 13005 Marseille, France;
- Department of Urology AP-HM, Aix-Marseille University, 13005 Marseille, France
| | - Laurence Colleaux
- Faculté de Médecine Timone, INSERM, MMG, U1251, Aix-Marseille University, 13385 Marseille, France;
| | - David Taïeb
- Centre de Recherche en Cancérologie de Marseille—CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, 13009 Marseille, France; (T.K.L.); (Q.H.D.); (V.B.); (M.B.); (D.T.)
- European Center for Research in Medical Imaging (CERIMED), Aix-Marseille University, 13005 Marseille, France;
- Department of Nuclear Medicine, La Timone University Hospital, Aix-Marseille University, 13005 Marseille, France
| | - Palma Rocchi
- Centre de Recherche en Cancérologie de Marseille—CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, 13009 Marseille, France; (T.K.L.); (Q.H.D.); (V.B.); (M.B.); (D.T.)
- European Center for Research in Medical Imaging (CERIMED), Aix-Marseille University, 13005 Marseille, France;
| |
Collapse
|
7
|
Li W, Zheng D, Zhang Y, Yang S, Su N, Bakhoum M, Zhang G, Naderinezhad S, Mao Z, Wang Z, Zhou T. Androgen deprivation induces neuroendocrine phenotypes in prostate cancer cells through CREB1/EZH2-mediated downregulation of REST. RESEARCH SQUARE 2023:rs.3.rs-3270539. [PMID: 37886478 PMCID: PMC10602109 DOI: 10.21203/rs.3.rs-3270539/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Although effective initially, prolonged androgen deprivation therapy (ADT) promotes neuroendocrine differentiation (NED) and prostate cancer (PCa) progression. It is incompletely understood how ADT transcriptionally induces NE genes in PCa cells. CREB1 and REST are known to positively and negatively regulate neuronal gene expression in the brain, respectively. No direct link between these two master neuronal regulators has been elucidated in the NED of PCa. We show that REST mRNA is downregulated in NEPC cell and mouse models, as well as in patient samples. Phenotypically, REST overexpression increases ADT sensitivity, represses NE genes, inhibits colony formation in culture, and xenograft tumor growth of PCa cells. As expected, ADT downregulates REST in PCa cells in culture and in mouse xenografts. Interestingly, CREB1 signaling represses REST expression. In studying the largely unclear mechanism underlying transcriptional repression of REST by ADT, we found that REST is a direct target of EZH2 epigenetic repression. Finally, genetic rescue experiments demonstrated that ADT induces NED through EZH2's repression of REST, which is enhanced by ADT-activated CREB signaling. In summary, our study has revealed a key pathway underlying NE gene upregulation by ADT, as well as established novel relationships between CREB1 and REST, and between EZH2 and REST, which may also have implications in other cancer types and in neurobiology.
Collapse
Affiliation(s)
- Wenliang Li
- The University of Texas Health Science Center at Houston
| | - Dayong Zheng
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University
| | - Yan Zhang
- The University of Texas Health Science Center at Houston
| | - Sukjin Yang
- The University of Texas Health Science Center at Houston
| | - Ning Su
- The University of Texas Health Science Center at Houston
| | | | - Guoliang Zhang
- Shanghai Sixth People's Hospital, Shanghai Jiaotong University
| | | | - Zhengmei Mao
- The University of Texas Health Science Center at Houston
| | - Zheng Wang
- The University of Texas Health Science Center at Houston
| | - Ting Zhou
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston
| |
Collapse
|
8
|
Sigorski D, Wesołowski W, Gruszecka A, Gulczyński J, Zieliński P, Misiukiewicz S, Kitlińska J, Iżycka-Świeszewska E. Neuropeptide Y and its receptors in prostate cancer: associations with cancer invasiveness and perineural spread. J Cancer Res Clin Oncol 2023; 149:5803-5822. [PMID: 36583743 PMCID: PMC10356636 DOI: 10.1007/s00432-022-04540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022]
Abstract
PURPOSE Neuropeptide Y (NPY) is a pleiotropic peptide, which is involved in many biological mechanisms important in regulation of cell growth and survival. The aim of this study was a comprehensive analysis of the NPY system in prostate pathology. METHODS The study was based on immunohistochemical analysis of NPY and its receptors, Y1R, Y2R and Y5R, in tissue samples from benign prostate (BP), primary prostate cancer (PCa) and PCa bone metastases. Tissue microarray (TMA) technique was employed, with analysis of multiple cores from each specimen. Intensity of the immunoreactivity and expression index (EI), as well as distribution of the immunostaining in neoplastic cells and stromal elements were evaluated. Perineural invasion (PNI) and extraprostatic extension (EPE) were areas of special interests. Moreover, a transwell migration assay on the LNCaP PCa cell line was used to assess the chemotactic properties of NPY. RESULTS Morphological analysis revealed homogeneous membrane and cytoplasmic pattern of NPY staining in cancer cells and its membrane localization with apical accentuation in BP glands. All elements of the NPY system were upregulated in pre-invasive prostate intraepithelial neoplasia, PCa and metastases. EI and staining intensity of NPY receptors were significantly higher in PCa then in BP with correlation between Y2R and Y5R. The strength of expression of the NPY system was further increased in the PNI and EPE areas. In bone metastases, Y1R and Y5R presented high expression scores. CONCLUSION The results of our study suggest that the NPY system is involved in PCa, starting from early stages of its development to disseminated states of the disease, and participates in the invasion of PCa into the auto and paracrine matter.
Collapse
Affiliation(s)
- Dawid Sigorski
- Department of Oncology, Collegium Medicum, University of Warmia and Mazury, 10-228, Olsztyn, Poland
- Department of Oncology and Immuno-Oncology, Warmian-Masurian Cancer Center of the Ministry of the Interior and Administration Hospital, 10-228, Olsztyn, Poland
| | | | - Agnieszka Gruszecka
- Department of Radiology Informatics and Statistics, Medical University of Gdansk, 80-210, Gdansk, Poland
| | - Jacek Gulczyński
- Department of Pathology and Neuropathology, Medical University of Gdańsk, 80-210, Gdańsk, Poland
- Department of Pathomorphology, Copernicus Hospital, 80-803, Gdańsk, Poland
| | - Piotr Zieliński
- Division of Tropical and Parasitic Diseases, University Center of Maritime and Tropical Medicine, 81-519, Gdynia, Poland
| | - Sara Misiukiewicz
- Human Science Department, School of Nursing and Health Studies, Georgetown University Medical Center, Washington, DC, USA
| | - Joanna Kitlińska
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, 20057, USA.
| | - Ewa Iżycka-Świeszewska
- Department of Pathology and Neuropathology, Medical University of Gdańsk, 80-210, Gdańsk, Poland.
- Department of Pathomorphology, Copernicus Hospital, 80-803, Gdańsk, Poland.
| |
Collapse
|
9
|
Roy S, Sun Y, Morgan SC, Wallis CJD, King K, Zhou YM, D'souza LA, Azem O, Cueto-Marquez AE, Camden NB, Spratt DE, Kishan AU, Saad F, Malone S. Effect of Prior Local Therapy on Response to First-line Androgen Receptor Axis Targeted Therapy in Metastatic Castrate-resistant Prostate Cancer: A Secondary Analysis of the COU-AA-302 Trial. Eur Urol 2023; 83:571-579. [PMID: 36894488 DOI: 10.1016/j.eururo.2023.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/09/2023] [Accepted: 02/16/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Men with localized prostate cancer are often treated with local therapy (LT). However, a proportion of these patients will eventually develop recurrence and progression requiring systemic therapy. Whether primary LT affects the response to this subsequent systemic treatment is unclear. OBJECTIVE We investigated whether the receipt of prior prostate-directed LT influenced the response to first-line systemic therapy and survival in docetaxel-naïve metastatic castrate-resistant prostate cancer (mCRPC) patients. DESIGN, SETTING, AND PARTICIPANTS This is an exploratory analysis of the COU-AA-302 trial, a multicentric double-blinded phase 3 randomized controlled trial in which mCRPC patients with no to mild symptoms were randomized to receive abiraterone plus prednisone or placebo plus prednisone. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS We compared the time-varying effects of first-line abiraterone in patients with and without prior LT using a Cox proportional hazard model. The cut points were chosen using grid search, and were 6 and 36 mo for radiographic progression-free survival (rPFS) and overall survival (OS), respectively. We also investigated whether there was any difference in treatment effect on score change (relative to baseline) in various patient-reported outcomes (measured by Functional Assessment of Cancer Therapy-Prostate [FACT-P]) over time depending on the receipt of prior LT. The adjusted association of prior LT with survival was determined using weighted Cox regression models. RESULTS AND LIMITATIONS Among 1053 eligible patients, 64% (n = 669) received prior LT. We did not find any statistically significant heterogeneity of time-dependent treatment effect from abiraterone on rPFS in patients with (hazard ratio [HR]: 0.36 [95% confidence interval: 0.27-0.49] at ≤6 mo; 0.64 [0.49-0.83] at >6 mo) or without (HR: 0.37 [0.26-0.55] at ≤6 mo; 0.72 [0.50-1.03] at >6 mo) prior LT. Similarly, there was no significant heterogeneity in time-dependent treatment effect on OS with (HR: 0.88 [0.71-1.10] at ≤36 mo; 0.76 [0.52-1.11] at >36 mo) or without (0.78 [0.60-1.01] at ≤36 mo; 0.55 [0.30-0.99] at >36 mo) prior LT. We did not find sufficient evidence of a difference in treatment effect from abiraterone on score change over time in prostate cancer subscale (interaction p = 0.4), trial outcome index (interaction p = 0.8), and FACT-P total score (interaction p = 0.6) depending on the receipt of prior LT. Receipt of prior LT was associated with a significant improvement in OS (average HR: 0.72 [0.59-0.89]). CONCLUSIONS This study demonstrates that the efficacy of first-line abiraterone and prednisone in docetaxel-naïve mCRPC do not vary significantly based on the receipt of prior prostate-directed LT. Further studies are needed to explore the plausible mechanisms of the association of prior LT with superior OS. PATIENT SUMMARY This secondary analysis of the COU-AA-302 trial suggests that survival benefits and temporal changes in quality of life with first-line abiraterone in docetaxel-naïve mCRPC do not differ significantly among patients who received versus those who did not receive prior prostate-directed local therapy.
Collapse
Affiliation(s)
- Soumyajit Roy
- Department of Radiation Oncology, Rush University Medical Center, Chicago, IL, USA.
| | - Yilun Sun
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Scott C Morgan
- Division of Radiation Oncology, The Ottawa Hospital Cancer Centre, University of Ottawa, Ottawa, ON, Canada
| | - Christopher J D Wallis
- Department of Urology, Mount Sinai Hospital and University Health Network, University of Toronto, Toronto, ON, Canada
| | - Kevin King
- Department of Radiation Oncology, Rush University Medical Center, Chicago, IL, USA
| | - Yu M Zhou
- Department of Radiation Oncology, Rush University Medical Center, Chicago, IL, USA
| | - Leah A D'souza
- Department of Radiation Oncology, Rush University Medical Center, Chicago, IL, USA
| | - Omar Azem
- Department of Radiation Oncology, Rush University Medical Center, Chicago, IL, USA
| | | | - Nathaniel B Camden
- Department of Radiation Oncology, Rush University Medical Center, Chicago, IL, USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University Hospital Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Amar U Kishan
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Fred Saad
- Department of Surgery, Université de Montréal, Montreal, QC, Canada
| | - Shawn Malone
- Division of Radiation Oncology, The Ottawa Hospital Cancer Centre, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
10
|
Shen Q, Liu Y, Deng X, Hu CD. PRMT5 promotes chemotherapy-induced neuroendocrine differentiation in NSCLC. Thorac Cancer 2023. [PMID: 37140020 DOI: 10.1111/1759-7714.14921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND In response to therapeutic treatments, cancer cells can exhibit a variety of resistance phenotypes including neuroendocrine differentiation (NED). NED is a process by which cancer cells can transdifferentiate into neuroendocrine-like cells in response to treatments, and is now widely accepted as a key mechanism of acquired therapy resistance. Recent clinical evidence has suggested that non-small cell lung cancer (NSCLC) can also transform into small cell lung cancer (SCLC) in patients treated with EGFR inhibitors. However, whether chemotherapy induces NED to confer therapy resistance in NSCLC remains unknown. METHODS We evaluated whether NSCLC cells can undergo NED in response to chemotherapeutic agents etoposide and cisplatin. By Knock-down of PRMT5 or pharmacological inhibition of PRMT5 to identify its role in the NED process. RESULTS We observed that both etoposide and cisplatin can induce NED in multiple NSCLC cell lines. Mechanistically, we identified protein arginine methyltransferase 5 (PRMT5) as a critical mediator of chemotherapy-induced NED. Significantly, the knock-down of PRMT5 or pharmacological inhibition of PRMT5 suppressed the induction of NED and increased the sensitivity to chemotherapy. CONCLUSION Taken together, our results suggest that targeting PRMT5 may be explored as a chemosensitization approach by inhibiting chemotherapy-induced NED.
Collapse
Affiliation(s)
- Qi Shen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy, West Lafayette, Indiana, USA
- Department of Gastroenterology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy, West Lafayette, Indiana, USA
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Xuehong Deng
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy, West Lafayette, Indiana, USA
| | - Chang-Deng Hu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy, West Lafayette, Indiana, USA
| |
Collapse
|
11
|
Roy S, Wallis CJD, Morgan SC, Kishan AU, Le ATT, Malone J, Sun Y, Spratt DE, Saad F, Malone S. Implications of metastatic stage at presentation in docetaxel naïve metastatic castrate resistant prostate cancer. Prostate 2023; 83:912-921. [PMID: 37071764 DOI: 10.1002/pros.24512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/08/2022] [Accepted: 02/22/2023] [Indexed: 04/20/2023]
Abstract
BACKGROUND We performed a secondary analysis of ACIS study to determine if synchronous versus metachronous metastatic presentation has any association with survival and treatment response to dual androgen receptor axis-targeted therapy (ARAT) in docetaxel naïve metastatic castrate resistant prostate cancer (mCRPC). METHODOLOGY In this phase III randomized controlled trial, docetaxel naïve mCRPC patients were randomized to either apalutamide or placebo combined with abiraterone and prednisone. Multivariable Cox regression models were applied to determine the adjusted association of M-stage with radiographic progression-free survival (rPFS) and overall survival (OS). To determine the heterogeneity of treatment effect based on metastatic stage (M-stage) at presentation, Cox regression was applied with interaction terms between M-stage and treatment. RESULTS Among 972 patients, 432 had M0, 334 had M1, while M-stage at presentation was unknown in 206. There was no association of M-stage at presentation with rPFS in patients with prior local therapy (LT) (hazard ratio for M1-stage: 1.22 [95% confidence interval: 0.82-1.82]; unknown: 1.03 [0.77-1.38]) or without prior LT (M1-stage: 0.87 [0.64-1.19]; unknown: 1.15 [0.77-1.72]) with no significant heterogeneity. Similarly, there was no association of M-stage with OS in patients with prior LT (M1-stage: 1.04 [0.81-1.33]; unknown: 0.98 [0.79-1.21]) or without prior LT (M1-stage: 0.95 [0.70-1.29]; unknown: 1.17 [0.80-1.71]) with no significant heterogeneity. Based on M-stage at presentation, we did not find any significant heterogeneity in treatment effect on rPFS (interaction p = 0.13), and OS (interaction p = 0.87). CONCLUSION M-stage at presentation had no association with survival in chemotherapy-naïve mCRPC. We did not find any statistically significant heterogeneity in efficacy of dual ARAT based on synchronous versus metachronous presentation.
Collapse
Affiliation(s)
- Soumyajit Roy
- Department of Radiation Oncology, Rush University Medical Center, Chicago, Illinois, USA
| | - Christopher J D Wallis
- Department of Urology, Mount Sinai Hospital and University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Scott C Morgan
- Division of Radiation Oncology, The Ottawa Hospital Cancer Centre, University of Ottawa, Ottawa, Ontario, Canada
| | - Amar U Kishan
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California, USA
| | | | - Julia Malone
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Yilun Sun
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ontario, USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University Hospital Seidman Cancer Center, Case Western Reserve University, Cleveland, Ontario, USA
| | - Fred Saad
- Department of Surgery, Université de Montréal, Montreal, Quebec, Canada
| | - Shawn Malone
- Division of Radiation Oncology, The Ottawa Hospital Cancer Centre, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Qi X, Zhang ZF, Gao XS, Qin SB, Bai Y, Yu W, He Q, Fan Y, Zhang JH, Jiang Y, He ZS, Li HZ. Treatment-related neuroendocrine prostate cancer managed with partial stereotactic ablative radiotherapy (P-SABR) for long-term survival: a case series. Transl Androl Urol 2023; 12:128-138. [PMID: 36760876 PMCID: PMC9906108 DOI: 10.21037/tau-22-867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
Background The amount of treatment-related neuroendocrine prostate cancer (t-NEPC) increases after hormonal therapy, especially novel androgen receptor pathway inhibitors (ARPIs). T-NEPC is considered a hormone refractory [androgen receptor (AR)-negative] subtype of prostate cancer. Although tumors are initially responsive to platinum-based chemotherapy, the drugs are only effective for a short time. Therefore, whether or not local treatment can prolong survival is of great concern. Case Description In this case series, we discuss 4 t-NEPC cases who were treated with partial stereotactic ablative radiotherapy (P-SABR) for bulky tumors. P-SABR is a radiotherapy regimen that is used in a SABR boost [such as 6 Gy × 4 fractions (f), 8 Gy × 3 f] prior to conventional radiotherapy to enhance the tumor biological effective dose (BED) without increasing the dose to organs at risk. All patients achieved good local control after P-SABR. For patient 1, P-SABR was used for the prostate tumor. After radiotherapy, pathological complete remission (pCR) was achieved, and the prostate lesion remained stable thus far. As of this writing, the patient has been in remission for 3 years after initial t-NEPC diagnosis. Conclusions We describe 4 cases and indicate that P-SABR is safe and effective in the treatment of a large prostate mass and may prolong the survival of these patients.
Collapse
Affiliation(s)
- Xin Qi
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, China
| | - Zhuo-Fei Zhang
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, China
| | - Xian-Shu Gao
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, China
| | - Shang-Bin Qin
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, China
| | - Yun Bai
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, China
| | - Wei Yu
- Department of Urology, Peking University First Hospital, Peking University, Beijing, China
| | - Qun He
- Department of Urology, Peking University First Hospital, Peking University, Beijing, China
| | - Yu Fan
- Department of Urology, Peking University First Hospital, Peking University, Beijing, China
| | - Jian-Hua Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Peking University, Beijing, China
| | - Yuan Jiang
- Department of Medical Imaging, Peking University First Hospital, Peking University, Beijing, China
| | - Zhi-Song He
- Department of Urology, Peking University First Hospital, Peking University, Beijing, China
| | - Hong-Zhen Li
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, China
| |
Collapse
|
13
|
Pawar JS, Al-Amin MY, Hu CD. JNJ-64619178 radiosensitizes and suppresses fractionated ionizing radiation-induced neuroendocrine differentiation (NED) in prostate cancer. Front Oncol 2023; 13:1126482. [PMID: 36959798 PMCID: PMC10028149 DOI: 10.3389/fonc.2023.1126482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
Background Radiation therapy (RT) is a standard treatment regimen for locally advanced prostate cancer; however, its failure results in tumor recurrence, metastasis, and cancer-related death. The recurrence of cancer after radiotherapy is one of the major challenges in prostate cancer treatment. Despite overall cure rate of 93.3% initially, prostate cancer relapse in 20-30% patients after radiation therapy. Cancer cells acquire radioresistance upon fractionated ionizing radiation (FIR) treatment, eventually undergo neuroendocrine differentiation (NED) and transform into neuroendocrine-like cells, a mechanism involved in acquiring resistance to radiation therapy. Radiosensitizers are agents that inhibit the repair of radiation-induced DNA damage. Protein arginine methyltransferase 5 (PRMT5) gets upregulated upon ionizing radiation treatment and epigenetically activates DNA damage repair genes in prostate cancer cells. In this study, we targeted PRMT5 with JNJ-64619178 and assessed its effect on DNA damage repair gene activation, radiosensitization, and FIR-induced NED in prostate cancer. Methods γH2AX foci analysis was performed to evaluate the DNA damage repair after radiation therapy. RT-qPCR and western blot were carried out to analyze the expression of DNA damage repair genes. Clonogenic assay was conducted to find out the surviving fraction after radiation therapy. NED was targeted with JNJ-64619178 in androgen receptor (AR) positive and negative prostate cancer cells undergoing FIR treatment. Results JNJ-64619178 inhibits DNA damage repair in prostate cancer cells independent of their AR status. JNJ-64619178 impairs the repair of ionizing radiation-induced damaged DNA by transcriptionally inhibiting the DNA damage repair gene expression and radiosensitizes prostate, glioblastoma and lung cancer cell line. It targets NED induced by FIR in prostate cancer cells. Conclusion JNJ-64619178 can radiosensitize and suppress NED induced by FIR in prostate cancer cells and can be a potential radiosensitizer for prostate cancer treatment.
Collapse
Affiliation(s)
- Jogendra Singh Pawar
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- *Correspondence: Jogendra Singh Pawar, ;
| | - Md. Yusuf Al-Amin
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- Purdue University Interdisciplinary Life Sciences Graduate Program, Purdue University, West Lafayette, IN, United States
| | - Chang-Deng Hu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
14
|
Ahmed MB, Alghamdi AAA, Islam SU, Lee JS, Lee YS. cAMP Signaling in Cancer: A PKA-CREB and EPAC-Centric Approach. Cells 2022; 11:cells11132020. [PMID: 35805104 PMCID: PMC9266045 DOI: 10.3390/cells11132020] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is one of the most common causes of death globally. Despite extensive research and considerable advances in cancer therapy, the fundamentals of the disease remain unclear. Understanding the key signaling mechanisms that cause cancer cell malignancy may help to uncover new pharmaco-targets. Cyclic adenosine monophosphate (cAMP) regulates various biological functions, including those in malignant cells. Understanding intracellular second messenger pathways is crucial for identifying downstream proteins involved in cancer growth and development. cAMP regulates cell signaling and a variety of physiological and pathological activities. There may be an impact on gene transcription from protein kinase A (PKA) as well as its downstream effectors, such as cAMP response element-binding protein (CREB). The position of CREB downstream of numerous growth signaling pathways implies its oncogenic potential in tumor cells. Tumor growth is associated with increased CREB expression and activation. PKA can be used as both an onco-drug target and a biomarker to find, identify, and stage tumors. Exploring cAMP effectors and their downstream pathways in cancer has become easier using exchange protein directly activated by cAMP (EPAC) modulators. This signaling system may inhibit or accelerate tumor growth depending on the tumor and its environment. As cAMP and its effectors are critical for cancer development, targeting them may be a useful cancer treatment strategy. Moreover, by reviewing the material from a distinct viewpoint, this review aims to give a knowledge of the impact of the cAMP signaling pathway and the related effectors on cancer incidence and development. These innovative insights seek to encourage the development of novel treatment techniques and new approaches.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
| | | | - Salman Ul Islam
- Department of Pharmacy, Cecos University, Peshawar, Street 1, Sector F 5 Phase 6 Hayatabad, Peshawar 25000, Pakistan;
| | - Joon-Seok Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
| | - Young-Sup Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
- Correspondence: ; Tel.: +82-53-950-6353; Fax: +82-53-943-2762
| |
Collapse
|
15
|
Owens JL, Beketova E, Liu S, Shen Q, Pawar JS, Asberry AM, Yang J, Deng X, Elzey BD, Ratliff TL, Cheng L, Choo CR, Citrin DE, Polascik TJ, Wang B, Huang J, Li C, Wan J, Hu CD. Targeting protein arginine methyltransferase 5 (PRMT5) suppresses radiation-induced neuroendocrine differentiation and sensitizes prostate cancer cells to radiation. Mol Cancer Ther 2022; 21:448-459. [PMID: 35027481 DOI: 10.1158/1535-7163.mct-21-0103] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 10/17/2021] [Accepted: 01/04/2022] [Indexed: 11/16/2022]
Abstract
Prostate cancer remains the second leading cause of cancer death among American men. Radiation therapy (RT) is a potentially curative treatment for localized prostate cancer, and failure to control localized disease contributes to the majority of prostate cancer deaths. Neuroendocrine differentiation (NED) in prostate cancer, a process by which prostate adenocarcinoma cells transdifferentiate into neuroendocrine-like (NE-like) cells, is an emerging mechanism of resistance to cancer therapies and contributes to disease progression. NED also occurs in response to treatment to promote the development of treatment-induced neuroendocrine prostate cancer (NEPC), a highly-aggressive and terminal stage disease. We previously demonstrated that by mimicking clinical RT protocol, fractionated ionizing radiation (FIR) induces prostate cancer cells to undergo NED in vitro and in vivo. Here, we performed transcriptomic analysis and confirmed that FIR-induced NE-like cells share some features of clinical NEPC, suggesting that FIR-induced NED represents a clinically-relevant model. Further, we demonstrated that protein arginine methyltransferase 5 (PRMT5), a master epigenetic regulator of the DNA damage response and a putative oncogene in prostate cancer, along with its cofactors pICln and MEP50, mediate FIR-induced NED. Knockdown of PRMT5, pICln, or MEP50 during FIR-inhibited NED sensitized prostate cancer cells to radiation. Significantly, PRMT5 knockdown in prostate cancer xenograft tumors in mice during FIR prevented NED, enhanced tumor killing, significantly reduced and delayed tumor recurrence, and prolonged overall survival. Collectively, our results demonstrate that PRMT5 promotes FIR-induced NED and suggests that targeting PRMT5 may be a novel and effective radiosensitization approach for prostate cancer RT.
Collapse
Affiliation(s)
- Jake L Owens
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette
| | - Elena Beketova
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine
| | - Qi Shen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette
| | - Jogendra Singh Pawar
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette
| | - Andrew M Asberry
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette
| | - Jie Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette
| | - Xuehong Deng
- Medicinal Chemistry and Molecular Pharmacolog, Purdue University West Lafayette
| | - Bennett D Elzey
- Department of Comparative Pathobiology, Purdue University West Lafayette
| | - Timothy L Ratliff
- Comparative Pathobiology and the Center for Cancer Research, Purdue University West Lafayette
| | - Liang Cheng
- Pathology and Laboratory Medicine, Indiana University School of Medicine
| | | | | | | | - Bangchen Wang
- Department of Pathology, Duke University School of Medicine
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine
| | | | - Jun Wan
- Medical and Molecular Genetics, Indiana University School of Medicine
| | - Chang-Deng Hu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette
| |
Collapse
|
16
|
Stati G, Passaretta F, Gindraux F, Centurione L, Di Pietro R. The Role of the CREB Protein Family Members and the Related Transcription Factors in Radioresistance Mechanisms. Life (Basel) 2021; 11:1437. [PMID: 34947968 PMCID: PMC8706059 DOI: 10.3390/life11121437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 02/05/2023] Open
Abstract
In the framework of space flight, the risk of radiation carcinogenesis is considered a "red" risk due to the high likelihood of occurrence as well as the high potential impact on the quality of life in terms of disease-free survival after space missions. The cyclic AMP response element-binding protein (CREB) is overexpressed both in haematological malignancies and solid tumours and its expression and function are modulated following irradiation. The CREB protein is a transcription factor and member of the CREB/activating transcription factor (ATF) family. As such, it has an essential role in a wide range of cell processes, including cell survival, proliferation, and differentiation. Among the CREB-related nuclear transcription factors, NF-κB and p53 have a relevant role in cell response to ionising radiation. Their expression and function can decide the fate of the cell by choosing between death or survival. The aim of this review was to define the role of the CREB/ATF family members and the related transcription factors in the response to ionising radiation of human haematological malignancies and solid tumours.
Collapse
Affiliation(s)
- Gianmarco Stati
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Francesca Passaretta
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Florelle Gindraux
- Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, 25030 Besançon, France;
- Service de Chirurgie Orthopédique, Traumatologique et Plastique, CHU, 25030 Besançon, France
| | - Lucia Centurione
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| |
Collapse
|
17
|
Mendieta I, Rodríguez-Nieto M, Nuñez-Anita RE, Menchaca-Arredondo JL, García-Alcocer G, Berumen LC. Ultrastructural changes associated to the neuroendocrine transdifferentiation of the lung adenocarcinoma cell line A549. Acta Histochem 2021; 123:151797. [PMID: 34688180 DOI: 10.1016/j.acthis.2021.151797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022]
Abstract
The neuroendocrine transdifferentiation has been found in many cancer cell types, such as prostate, lung and gastrointestinal cells and is accompanied by a lower patient life expectancy. The transdifferentiation process has been induced in vitro by the exposure to different stimuli in human lung adenocarcinoma. The aim of this work was to identify the morphological characteristics of the neuroendocrine phenotype in a human lung cancer cell line, induced by two cAMP elevating agents (IBMX and FSK). Our results showed two phenotypes, one produced by IBMX with higher volume, cell size and increased number of secondary projections, and the other produced by FSK with higher area, roughness of the membrane, cell neurite percentage, number of outgrowths per cell and increased number of primary projections. In conclusion, we describe some morphological and ultrastructural characteristics of the neuroendocrine phenotype in A549 human lung cancer cell line promoted by IBMX and FSK to contribute to the understanding of the autocrine or paracrine signaling within the tumor microenvironment.
Collapse
Affiliation(s)
- Irasema Mendieta
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario S/N, Cerro de las Campanas 76010, Querétaro, Mexico
| | - Maricela Rodríguez-Nieto
- Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58060, Michoacán, Mexico
| | - Rosa Elvira Nuñez-Anita
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás Hidalgo, Tarímbaro Municipio de Morelia 58920, Michoacán, Mexico
| | - Jorge Luis Menchaca-Arredondo
- Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, Centro de Investigación en Ciencias Físico Matemáticas, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Guadalupe García-Alcocer
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario S/N, Cerro de las Campanas 76010, Querétaro, Mexico
| | - Laura Cristina Berumen
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario S/N, Cerro de las Campanas 76010, Querétaro, Mexico.
| |
Collapse
|
18
|
Macedo-Silva C, Benedetti R, Ciardiello F, Cappabianca S, Jerónimo C, Altucci L. Epigenetic mechanisms underlying prostate cancer radioresistance. Clin Epigenetics 2021; 13:125. [PMID: 34103085 PMCID: PMC8186094 DOI: 10.1186/s13148-021-01111-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy (RT) is one of the mainstay treatments for prostate cancer (PCa), a highly prevalent neoplasm among males worldwide. About 30% of newly diagnosed PCa patients receive RT with a curative intent. However, biochemical relapse occurs in 20–40% of advanced PCa treated with RT either alone or in combination with adjuvant-hormonal therapy. Epigenetic alterations, frequently associated with molecular variations in PCa, contribute to the acquisition of a radioresistant phenotype. Increased DNA damage repair and cell cycle deregulation decreases radio-response in PCa patients. Moreover, the interplay between epigenome and cell growth pathways is extensively described in published literature. Importantly, as the clinical pattern of PCa ranges from an indolent tumor to an aggressive disease, discovering specific targetable epigenetic molecules able to overcome and predict PCa radioresistance is urgently needed. Currently, histone-deacetylase and DNA-methyltransferase inhibitors are the most studied classes of chromatin-modifying drugs (so-called ‘epidrugs’) within cancer radiosensitization context. Nonetheless, the lack of reliable validation trials is a foremost drawback. This review summarizes the major epigenetically induced changes in radioresistant-like PCa cells and describes recently reported targeted epigenetic therapies in pre-clinical and clinical settings. ![]()
Collapse
Affiliation(s)
- Catarina Macedo-Silva
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy.,Cancer Biology and Epigenetics Group, Research Center at Portuguese Oncology Institute of Porto, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center at Portuguese Oncology Institute of Porto, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology at School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal.
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy.
| |
Collapse
|
19
|
Fabian E, Kump P, Schiller D, Brcic I, Gruber C, Heitz PU, Klöppel G, Lipp RW, Moinfar F, Schöfl R, Fickert P, Krejs GJ. Clinical-Pathological Conference Series from the Medical University of Graz : Case No 173: A 77-year-old patient with adenocarcinoma of the prostate, liver metastases and watery diarrhea. Wien Klin Wochenschr 2021; 133:515-522. [PMID: 33398457 PMCID: PMC8116268 DOI: 10.1007/s00508-020-01791-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2020] [Indexed: 11/02/2022]
Affiliation(s)
- Elisabeth Fabian
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Patrizia Kump
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Dietmar Schiller
- Department of Internal Medicine IV, Ordensklinikum Barmherzige Schwestern, Linz, Austria
| | - Iva Brcic
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Christine Gruber
- Institute of Clinical Pathology, Vinzenz Pathologie Verbund, Linz, Austria
| | - Philipp U Heitz
- Department of Pathology, University of Zurich, Zurich, Switzerland
| | - Günter Klöppel
- Institute for General Pathology, Technical University of Munich, Munich, Germany
| | - Rainer W Lipp
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Farid Moinfar
- Institute of Clinical Pathology, Vinzenz Pathologie Verbund, Linz, Austria
| | - Rainer Schöfl
- Department of Internal Medicine IV, Ordensklinikum Barmherzige Schwestern, Linz, Austria
| | - Peter Fickert
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Guenter J Krejs
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
| |
Collapse
|
20
|
Chen M, Singh AK, Repasky EA. Highlighting the Potential for Chronic Stress to Minimize Therapeutic Responses to Radiotherapy through Increased Immunosuppression and Radiation Resistance. Cancers (Basel) 2020; 12:3853. [PMID: 33419318 PMCID: PMC7767049 DOI: 10.3390/cancers12123853] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Ionizing radiation has been used in the treatment of cancer for more than 100 years. While often very effective, there is still a great effort in place to improve the efficacy of radiation therapy for controlling the progression and recurrence of tumors. Recent research has revealed the close interaction between nerves and tumor progression, especially nerves of the autonomic nervous system that are activated by a variety of stressful stimuli including anxiety, pain, sleep loss or depression, each of which is likely to be increased in cancer patients. A growing literature now points to a negative effect of chronic stressful stimuli in tumor progression. In this review article, we present data on the potential for adrenergic stress to influence the efficacy of radiation and in particular, its potential to influence the anti-tumor immune response, and the frequency of an "abscopal effect" or the shrinkage of tumors which are outside an irradiated field. We conclude that chronic stress can be a major impediment to more effective radiation therapy through mechanisms involving immunosuppression and increased resistance to radiation-induced tumor cell death. Overall, these data highlight the potential value of stress reduction strategies to improve the outcome of radiation therapy. At the same time, objective biomarkers that can accurately and objectively reflect the degree of stress in patients over prolonged periods of time, and whether it is influencing immunosuppression and radiation resistance, are also critically needed.
Collapse
Affiliation(s)
- Minhui Chen
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Anurag K. Singh
- Department of Radiation Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Elizabeth A. Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| |
Collapse
|
21
|
A novel miRNA inhibits metastasis of prostate cancer via decreasing CREBBP-mediated histone acetylation. J Cancer Res Clin Oncol 2020; 147:469-480. [PMID: 33221996 DOI: 10.1007/s00432-020-03455-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND To identify novel miRNAs implicated in prostate cancer metastasis. METHODS Sixty-five prostate cancer tissues and paired pan-cancer tissues were sequenced. Novel miRNAs were re-analyzed by MIREAP program. Biological functions of miR-N5 were transwell experiment and colony formation. Target genes of miR-N5 were analyzed by bioinformatic analysis. Downstream of target gene was analyzed by The Cancer Genome Atlas (TCGA) and Memorial Sloan Kettering Cancer Center (MSKCC) databases and confirmed by CHIP experiment. RESULTS We identified a novel miRNA-miR-N5, which was downregulated in PCa cells, PCa tissue, and in the serum of patients with PCa. Knockout of miR-N5 enhanced migration and invasiveness in vitro. miR-N5 specified targeted CREBBP 3'-UTR and inhibited CREBBP expression, which mediated H3K56 acetylation at the promoter of EGFR, β-catenin and CDH1. CONCLUSION This study may shed the light on miR-N5 which influences metastasis via histone acetylation.
Collapse
|
22
|
Liang F, Zhang H, Cheng D, Gao H, Wang J, Yue J, Zhang N, Wang J, Wang Z, Zhao B. Ablation of LGR4 signaling enhances radiation sensitivity of prostate cancer cells. Life Sci 2020; 265:118737. [PMID: 33171177 DOI: 10.1016/j.lfs.2020.118737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022]
Abstract
AIM Our previous study has shown that leucine-rich repeat containing GPCR-4 (LGR4, or GPR48) LGR4 plays a role in cell migration, invasion, proliferation and apoptosis of prostate cancer (PCa). In this study, we aimed to explore whether LGR4 would affect radiation response in PCa. MATERIALS AND METHODS LGR4 expression was silenced by shRNA transfection. qRT-PCR was employed to determine mRNA expression of LGR4 and DNA damage repair genes. Western blot was used to evaluate protein expression of LGR4, RSPO1-4, androgen receptor (AR), cyclic AMP response-element binding protein (CREB1), γH2A.X, and H2A.X. Cell proliferation was detected by CCK-8 assay and apoptosis was assayed by flow cytometry. Additionally, a xenograft model was also established to validate the role of LGR4 in PCa cells after radiation. KEY FINDINGS LGR4 expression was enhanced in PCa cells by radiation treatment in dose- and time-dependent means. RSPO1-4 were also upregulated post-radiation. Furthermore, LGR4 knockdown exacerbated apoptosis, reduced cell viabilities and strengthened nuclear γH2A.X staining in AR positive PCa cells but not in AR negative cells in the presence of radiation. Likewise, LGR4 ablation diminished AR and CREB1 expression induced by radiation. In contrast, RSPO1 stimulation augmented cell viabilities, promoted AR and CREB1 expression, and upregulated DNA repair gene expression, which could be reversed by enzalutamide, except for AR expression. Additionally, LGR4 knockdown further suppressed tumor growth and AR/CREB1 expression but enhanced γH2A.X expression in xenografts. SIGNIFICANCE In all, our study suggested that LGR4 might serve as an important regulator of radiation sensitivity in PCa.
Collapse
Affiliation(s)
- Fang Liang
- Department of Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China.
| | - Hao Zhang
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| | - Duo Cheng
- Department of Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| | - Hui Gao
- Department of Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| | - Junyong Wang
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| | - Junmin Yue
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| | - Nan Zhang
- Department of Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| | - Jingjing Wang
- Department of Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| | - Zhaoyang Wang
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| | - Beibei Zhao
- Department of Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| |
Collapse
|
23
|
Van Bos E, Dekuyper P, Gabriel C, Waterloos M, Van Baelen A, Huybrechts S, Ameye F, Lambrecht A, Vulsteke C, Soenens C. Small cell carcinoma of the prostate after low-dose-rate brachytherapy: a case report. J Med Case Rep 2020; 14:203. [PMID: 33109264 PMCID: PMC7592557 DOI: 10.1186/s13256-020-02523-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/08/2020] [Indexed: 01/22/2023] Open
Abstract
Background Small cell carcinoma of the prostate is a rare condition with important differences from prostatic adenocarcinoma in terms of clinical and prognostic characteristics. A low prostate-specific antigen and a symptomatic patient, including paraneoplastic symptoms, characterize small cell carcinoma of the prostate. Diagnosis is made on the basis of prostate biopsy, and fluorodeoxyglucose positron emission tomography/computed tomography is often used for staging because up to 60% of patients present with de novo metastatic disease. Patients with metastatic disease are usually treated with platinum-based cytotoxic chemotherapy regimens similar to those used for small cell carcinoma of the lung. However, prognosis remains poor, with a median overall survival of 9 to 17 months despite therapy. Case presentation This report describes a case of an 80-year-old Caucasian patient with lymph node and bone metastatic small cell carcinoma of the prostate following low-dose-rate brachytherapy for a low-risk prostate carcinoma and treated with chemotherapy and immunotherapy. Conclusion Low-dose-rate brachytherapy might be an etiology of small cell prostate cancer.
Collapse
Affiliation(s)
- Eva Van Bos
- Department of Urology, AZ Maria Middelares, Buitenring-Sint-Denijs 30, 9000, Ghent, Belgium.
| | - Peter Dekuyper
- Department of Urology, AZ Maria Middelares, Buitenring-Sint-Denijs 30, 9000, Ghent, Belgium
| | | | - Marjan Waterloos
- Department of Urology, AZ Maria Middelares, Buitenring-Sint-Denijs 30, 9000, Ghent, Belgium
| | - Anthony Van Baelen
- Department of Urology, AZ Maria Middelares, Buitenring-Sint-Denijs 30, 9000, Ghent, Belgium
| | - Stefan Huybrechts
- Department of Urology, AZ Maria Middelares, Buitenring-Sint-Denijs 30, 9000, Ghent, Belgium
| | - Filip Ameye
- Department of Urology, AZ Maria Middelares, Buitenring-Sint-Denijs 30, 9000, Ghent, Belgium
| | | | - Christof Vulsteke
- Department of Oncology, AZ Maria Middelares, Ghent, Belgium.,Department of Molecular Imaging, Pathology, Radiotherapy and Oncology (MIPRO), Center for Oncological Research (CORE), Antwerp University, Antwerp, Belgium
| | - Charlotte Soenens
- Department of Urology, AZ Maria Middelares, Buitenring-Sint-Denijs 30, 9000, Ghent, Belgium
| |
Collapse
|
24
|
Steven A, Friedrich M, Jank P, Heimer N, Budczies J, Denkert C, Seliger B. What turns CREB on? And off? And why does it matter? Cell Mol Life Sci 2020; 77:4049-4067. [PMID: 32347317 PMCID: PMC7532970 DOI: 10.1007/s00018-020-03525-8] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/21/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022]
Abstract
Altered expression and function of the transcription factor cyclic AMP response-binding protein (CREB) has been identified to play an important role in cancer and is associated with the overall survival and therapy response of tumor patients. This review focuses on the expression and activation of CREB under physiologic conditions and in tumors of distinct origin as well as the underlying mechanisms of CREB regulation by diverse stimuli and inhibitors. In addition, the clinical relevance of CREB is summarized, including its use as a prognostic and/or predictive marker as well as a therapeutic target.
Collapse
Affiliation(s)
- André Steven
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Michael Friedrich
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Paul Jank
- Institute of Pathology, Philipps University Marburg, 35043, Marburg, Germany
| | - Nadine Heimer
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Jan Budczies
- Institute of Pathology, University Clinic Heidelberg, 69120, Heidelberg, Germany
| | - Carsten Denkert
- Institute of Pathology, Philipps University Marburg, 35043, Marburg, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany.
| |
Collapse
|
25
|
Felgueiras J, Silva JV, Nunes A, Fernandes I, Patrício A, Maia N, Pelech S, Fardilha M. Investigation of spectroscopic and proteomic alterations underlying prostate carcinogenesis. J Proteomics 2020; 226:103888. [DOI: 10.1016/j.jprot.2020.103888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/03/2020] [Accepted: 06/25/2020] [Indexed: 12/27/2022]
|
26
|
Zhao N, Peacock SO, Lo CH, Heidman LM, Rice MA, Fahrenholtz CD, Greene AM, Magani F, Copello VA, Martinez MJ, Zhang Y, Daaka Y, Lynch CC, Burnstein KL. Arginine vasopressin receptor 1a is a therapeutic target for castration-resistant prostate cancer. Sci Transl Med 2020; 11:11/498/eaaw4636. [PMID: 31243151 DOI: 10.1126/scitranslmed.aaw4636] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 06/03/2019] [Indexed: 12/11/2022]
Abstract
Castration-resistant prostate cancer (CRPC) recurs after androgen deprivation therapy (ADT) and is incurable. Reactivation of androgen receptor (AR) signaling in the low androgen environment of ADT drives CRPC. This AR activity occurs through a variety of mechanisms, including up-regulation of AR coactivators such as VAV3 and expression of constitutively active AR variants such as the clinically relevant AR-V7. AR-V7 lacks a ligand-binding domain and is linked to poor prognosis. We previously showed that VAV3 enhances AR-V7 activity to drive CRPC progression. Gene expression profiling after depletion of either VAV3 or AR-V7 in CRPC cells revealed arginine vasopressin receptor 1a (AVPR1A) as the most commonly down-regulated gene, indicating that this G protein-coupled receptor may be critical for CRPC. Analysis of publicly available human PC datasets showed that AVPR1A has a higher copy number and increased amounts of mRNA in advanced PC. Depletion of AVPR1A in CRPC cells resulted in decreased cell proliferation and reduced cyclin A. In contrast, androgen-dependent PC, AR-negative PC, or nontumorigenic prostate epithelial cells, which have undetectable AVPR1A mRNA, were minimally affected by AVPR1A depletion. Ectopic expression of AVPR1A in androgen-dependent PC cells conferred castration resistance in vitro and in vivo. Furthermore, treatment of CRPC cells with the AVPR1A ligand, arginine vasopressin (AVP), activated ERK and CREB, known promoters of PC progression. A clinically safe and selective AVPR1A antagonist, relcovaptan, prevented CRPC emergence and decreased CRPC orthotopic and bone metastatic growth in mouse models. Based on these preclinical findings, repurposing AVPR1A antagonists is a promising therapeutic approach for CRPC.
Collapse
Affiliation(s)
- Ning Zhao
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Stephanie O Peacock
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Chen Hao Lo
- Department of Tumor Biology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Laine M Heidman
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Meghan A Rice
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Cale D Fahrenholtz
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ann M Greene
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Fiorella Magani
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Valeria A Copello
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Maria Julia Martinez
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Yushan Zhang
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Yehia Daaka
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Conor C Lynch
- Department of Tumor Biology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Kerry L Burnstein
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA. .,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
27
|
UV Light-inactivated HSV-1 Stimulates Natural Killer Cell-induced Killing of Prostate Cancer Cells. J Immunother 2020; 42:162-174. [PMID: 30933043 DOI: 10.1097/cji.0000000000000261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein we demonstrate that ultraviolet light-inactivated Herpes Simplex Virus-1 (UV-HSV-1) stimulates peripheral blood mononuclear cells (PBMCs) to lyse both androgen-sensitive and androgen-independent prostate cancer (PrCA) cell lines, but not the benign prostatic hyperplastic epithelial cell line, BPH-1, and is 1000-10,000-fold more potent at stimulating this killing than ultraviolet light-inactivated Vesicular Stomatitis Virus, adenovirus, reovirus or cytomegalovirus. Among PBMCs, natural killer (NK) cells appear to be a major cell type involved in this killing and UV-HSV-1 appears to directly and potently stimulate NK cell expression of CD69, degranulation, cytokine production, and migration to IL-8 in PC3 conditioned medium. We also found that UV-HSV-1 stimulates glycolysis in PBMCs and NK cells, and that 2-deoxyglucose and the protein kinase C inhibitor, Go6976, and the NFκB inhibitor, Bay 11-7082, all abrogate UV-HSV-1 activated killing of PC3 cells by PBMCs and NK cells. Using neutralizing anti-Toll-like receptor 2 (TLR2) we found that UV-HSV-1, like HSV-1, activates NK cells via TLR2. Taken together, these results are consistent with Toll-like receptor 2 ligands on UV-HSV-1 stimulating TLR2 on NK cells to activate protein kinase C, leading to enhanced glycolysis and NFκB activation, both of which play a critical role in this anti-PrCA innate immune response. Importantly, UV-HSV-1 synergizes with IL-15 to increase the cytolytic activity of PBMCs against PC3 cells and there was considerable donor-to-donor variation in killing ability. These results support the preclinical development of UV-HSV-1 as an adjuvant, in combination with IL-15, for cell infusions of healthy, preselected NK cells to treat PrCA.
Collapse
|
28
|
Zhao Y, Li W. Beta-adrenergic signaling on neuroendocrine differentiation, angiogenesis, and metastasis in prostate cancer progression. Asian J Androl 2020; 21:253-259. [PMID: 29848834 PMCID: PMC6498733 DOI: 10.4103/aja.aja_32_18] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Prostate cancer is a complex, heterogeneous disease that mainly affects the older male population with a high-mortality rate. The mechanisms underlying prostate cancer progression are still incompletely understood. Beta-adrenergic signaling has been shown to regulate multiple cellular processes as a mediator of chronic stress. Recently, beta-adrenergic signaling has been reported to affect the development of aggressive prostate cancer by regulating neuroendocrine differentiation, angiogenesis, and metastasis. Here, we briefly summarize and discuss recent advances in these areas and their implications in prostate cancer therapeutics. We aim to provide a better understanding of the contribution of beta-adrenergic signaling to the progression of aggressive prostate cancer.
Collapse
Affiliation(s)
- Yicheng Zhao
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Division of Oncology, Department of Internal Medicine, and Memorial Herman Cancer Center, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Wenliang Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Division of Oncology, Department of Internal Medicine, and Memorial Herman Cancer Center, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
29
|
Huang YH, Zhang YQ, Huang JT. Neuroendocrine cells of prostate cancer: biologic functions and molecular mechanisms. Asian J Androl 2020; 21:291-295. [PMID: 30924452 PMCID: PMC6498729 DOI: 10.4103/aja.aja_128_18] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer (PCa) is a major health risk for older men worldwide. Existing systemic therapies mostly target androgen receptor (AR). Although treatments are initially effective, the disease always recurs. A potential mechanism for the treatment failure is that PCa contains, in addition to the AR-positive luminal type tumor cells, a small component of neuroendocrine (NE) cells. The function of NE cells in PCa remains poorly understood, and one important characteristic of these cells is their lack of expression of AR and resistance to hormonal therapy. In addition, many patients develop the more aggressive small-cell neuroendocrine carcinoma (SCNC) after hormonal therapy. Although this clinical phenomenon of disease transformation from adenocarcinoma to SCNC is well established, the cell of origin for SCNC remains unclear. Recently, loss of function of Rb and TP53 and amplification and overexpression of MYCN and Aurora A kinase have been identified as important biomarkers and potential disease drivers. In this article, we systematically review the histology of normal prostate and prostate cancer including the main histologic types: adenocarcinoma and SCNC. We also review the findings from many studies using cellular and animal models as well as human specimens that attempt to understand the molecular mechanisms of treatment failure, disease progression, and tumor transformation from adenocarcinoma to SCNC.
Collapse
Affiliation(s)
- Yu-Hua Huang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ya-Qun Zhang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Jiao-Ti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC 27514, USA
| |
Collapse
|
30
|
Liu Y, Chang Y, Cai Y. circTNFRSF21, a newly identified circular RNA promotes endometrial carcinoma pathogenesis through regulating miR-1227-MAPK13/ATF2 axis. Aging (Albany NY) 2020; 12:6774-6792. [PMID: 32299063 PMCID: PMC7202486 DOI: 10.18632/aging.103037] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/20/2020] [Indexed: 12/22/2022]
Abstract
Background: Circular RNA is a type of non-coding RNA with great potential in regulating gene expression and associated with disease progression. However, the role of circular RNA in endometrial carcinoma (EC) remains largely unknown. Results: In this study, we found that circTNFRSF21 was highly expressed in EC cells and tumor tissues. In vitro and in vivo results showed that circTNFRSF21 was linked to increased EC cell growth and EC xenografts formation in nude mice. Mechanically, we showed that circTNFRSF21 acts as a sponge of miR-1227 in EC cells to rescue MAPK13/ATF2 signaling pathway activity. Conclusions: Our studies suggested that in the EC, circTNFRSF21 promotes EC formation through downregulating miR-1227 expression and activating MAPK13/ATF2 signaling pathway. These findings provide strong evidence that circTNFRSF21-miR-1227-MAPK13/ATF2 axis is a promising target for EC treatment. Methods: qRT-PCR was used to detect circTNFRSF21expression in EC patients and EC cell lines. Cell growth, cell colony formation, cell apoptosis, cell cycle progression, and in vivo tumor formation assays were used to evaluate the roles of circTNFRSF21 in EC. Western blot, luciferase assay, RNA pull-down, siRNA knockdown, and CRISPR gene knock out assays were applied to study the mechanisms through which circTNFRSF21 regulates EC formation.
Collapse
Affiliation(s)
- Yun Liu
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yue Chang
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yixuan Cai
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
31
|
Sayan M, Mamidanna S, Fuat Eren M, Daliparty V, Zoto Mustafayev T, Nelson C, Ohri N, Jabbour SK, Guven Mert A, Atalar B. New horizons from novel therapies in malignant pleural mesothelioma. Adv Respir Med 2020; 88:343-351. [PMID: 32869268 PMCID: PMC10865433 DOI: 10.5603/arm.a2020.0103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/12/2020] [Indexed: 11/25/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a relatively rare, but highly lethal cancer of the pleural mesothelial cells. Its pathoge-nesis is integrally linked to asbestos exposure. In spite of recent developments providing a more detailed understanding of the pathogenesis, the outcomes continue to be poor. To date, trimodality therapy involving surgery coupled with chemotherapy and/or radiotherapy remains the standard of therapy. The development of resistance of the tumor cells to radiation and several che-motherapeutic agents poses even greater challenges in the management of this cancer. Ionizing radiation damages cancer cell DNA and aids in therapeutic response, but it also activates cell survival signaling pathways that helps the tumor cells to overcome radiation-induced cytotoxicity. A careful evaluation of the biology involved in mesothelioma with an emphasis on the workings of pro-survival signaling pathways might offer some guidance for treatment options. This review focuses on the existing treatment options for MPM, novel treatment approaches based on recent studies combining the use of inhibitors which target different pro-survival pathways, and radiotherapy to optimize treatment.
Collapse
Affiliation(s)
- Mutlay Sayan
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.
| | - Swati Mamidanna
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Mehmet Fuat Eren
- Radiation Oncology Clinic, Marmara University Istanbul Pendik Education and Research Hospital, Istanbul, Turkey
| | - Vasudev Daliparty
- Department of Internal Medicine, Raritan Bay Medical Center, Perth Amboy, New Jersey, USA
| | - Teuta Zoto Mustafayev
- Department of Medical Oncology, Mehmet Ali Aydınlar Acıbadem University, School of Medicine, Istanbul, Turkey
| | - Carl Nelson
- Department of Radiation Oncology, University of Vermont Medical Center, Burlington, Vermont, USA
| | - Nisha Ohri
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Aslihan Guven Mert
- Department of Radiation Oncology, Acıbadem Maslak Hospital, Istanbul, Turkey
| | - Banu Atalar
- Department of Radiation Oncology, Acıbadem Maslak Hospital, Istanbul, Turkey
| |
Collapse
|
32
|
Patel GK, Chugh N, Tripathi M. Neuroendocrine Differentiation of Prostate Cancer-An Intriguing Example of Tumor Evolution at Play. Cancers (Basel) 2019; 11:E1405. [PMID: 31547070 PMCID: PMC6826557 DOI: 10.3390/cancers11101405] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Our understanding of neuroendocrine prostate cancer (NEPC) has assumed a new perspective in light of the recent advances in research. Although classical NEPC is rarely seen in the clinic, focal neuroendocrine trans-differentiation of prostate adenocarcinoma occurs in about 30% of advanced prostate cancer (PCa) cases, and represents a therapeutic challenge. Even though our knowledge of the mechanisms that mediate neuroendocrine differentiation (NED) is still evolving, the role of androgen deprivation therapy (ADT) as a key driver of this phenomenon is increasingly becoming evident. In this review, we discuss the molecular, cellular, and therapeutic mediators of NED, and emphasize the role of the tumor microenvironment (TME) in orchestrating the phenotype. Understanding the role of the TME in mediating NED could provide us with valuable insights into the plasticity associated with the phenotype, and reveal potential therapeutic targets against this aggressive form of PCa.
Collapse
Affiliation(s)
- Girijesh Kumar Patel
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Natasha Chugh
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Manisha Tripathi
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
33
|
Murata K, Saga R, Monzen S, Tsuruga E, Hasegawa K, Hosokawa Y. Understanding the mechanism underlying the acquisition of radioresistance in human prostate cancer cells. Oncol Lett 2019; 17:5830-5838. [PMID: 31186811 DOI: 10.3892/ol.2019.10219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 02/15/2019] [Indexed: 01/19/2023] Open
Abstract
Acquisition of radioresistance (RR) has been reported during cancer treatment with fractionated irradiation. However, RR is poorly understood in the prognosis of radiotherapy. Although radiotherapy is important in the treatment of prostate cancer (PCa), acquisition of RR has been reported in PCa with an increased number of cancer stem cells (CSCs), neuroendocrine differentiation (NED) and epithelial-mesenchymal transition. However, to the best of our knowledge, the mechanism underlying RR acquisition during fractionated irradiation remains unclear. In the present study, human PCa cell lines were subjected to fractionated irradiation according to a fixed schedule as follows: Irradiation (IR)1, 2 Gy/day with a total of 20 Gy; IR2, 4 Gy/day with a total of 20 Gy; and IR3, 4 Gy/day with a total of 56 Gy. The expression of cluster of differentiation (CD)44, a CSC marker, was identified to be increased by fractionated irradiation, particularly in DU145 cells. The expression levels of CD133 and CD138 were increased compared with those in parental cells following a single irradiation or multiple irradiations; however, the expression levels decreased with subsequent irradiation. RR was evidently acquired by exposure to 56 Gy radiation, which resulted in increased expression of the NED markers CD133 and CD138, and increased mRNA expression levels of the pluripotency-associated genes octamer-binding transcription factor 4 and Nanog homeobox. These data indicate that radiation-induced CSCs emerge due to the exposure of cells to fractionated irradiation. In addition, the consequent increase in the expression of NED markers is possibly induced by the increased expression of pluripotency-associated genes. Therefore, it can be suggested that cancer cells acquire RR due to increased expression of pluripotency-associated genes following exposure to fractionated irradiation.
Collapse
Affiliation(s)
- Kosho Murata
- Department of Radiation Science, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| | - Ryo Saga
- Department of Radiation Science, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| | - Satoru Monzen
- Department of Radiation Science, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| | - Echi Tsuruga
- Department of Radiation Science, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| | - Kazuki Hasegawa
- Department of Radiation Science, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| | - Yoichiro Hosokawa
- Department of Radiation Science, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| |
Collapse
|
34
|
Abstract
The genomics of prostate cancer (PCA) has been difficult to study compared with some other cancer types for a multitude of reasons, despite significant efforts since the early 1980s. Overcoming some of these obstacles has paved the way for greater insight into the genomics of PCA. The advent of high-throughput technologies coming from the initial use of microsatellite and oligonucleotide probes gave rise to techniques like comparative genomic hybridization (CGH). With the introduction of massively parallel genomic sequencing, referred to as next-generation sequencing (NGS), a deeper understanding of cancer genomics in general has occurred. Along with these technologic advances, there has been the development of computational biology and statistical approaches to address novel large data sets characterized by single base resolution. This review will provide a historic perspective of PCA genomics with an emphasis on the cardinal mutations and alterations observed to be consistently seen in PCA for both hormone-naïve localized PCA and castration-resistant prostate cancer (CRPC). There will be a focus on alterations that have the greatest potential to play a role in disease progression and therapy management.
Collapse
Affiliation(s)
- Mark A Rubin
- Englander Institute for Precision Medicine, Weill Cornell Medical College-New York Presbyterian Hospital, New York, New York 10065
- Sandra and Edward Meyer Cancer Center at Weill Cornell Medical College, New York, New York 10021
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10021
- Department of BioMedical Research, University of Bern, 3012 Bern, Switzerland
| | - Francesca Demichelis
- Englander Institute for Precision Medicine, Weill Cornell Medical College-New York Presbyterian Hospital, New York, New York 10065
- Centre for Integrative Biology, University of Trento, 38123 Trento, Italy
| |
Collapse
|
35
|
Wnt/Beta-Catenin Signaling and Prostate Cancer Therapy Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:351-378. [PMID: 31900917 DOI: 10.1007/978-3-030-32656-2_16] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metastatic or locally advanced prostate cancer (PCa) is typically treated with androgen deprivation therapy (ADT). Initially, PCa responds to the treatment and regresses. However, PCa almost always develops resistance to androgen deprivation and progresses to castrate-resistant prostate cancer (CRPCa), a currently incurable form of PCa. Wnt/β-Catenin signaling is frequently activated in late stage PCa and contributes to the development of therapy resistance. Although activating mutations in the Wnt/β-Catenin pathway are not common in primary PCa, this signaling cascade can be activated through other mechanisms in late stage PCa, including cross talk with other signaling pathways, growth factors and cytokines produced by the damaged tumor microenvironment, release of the co-activator β-Catenin from sequestration after inhibition of androgen receptor (AR) signaling, altered expression of Wnt ligands and factors that modulate the Wnt signaling, and therapy-induced cellular senescence. Research from genetically engineered mouse models indicates that activation of Wnt/β-Catenin signaling in the prostate is oncogenic, enables castrate-resistant PCa growth, induces an epithelial-to-mesenchymal transition (EMT), promotes neuroendocrine (NE) differentiation, and confers stem cell-like features to PCa cells. These important roles of Wnt/β-Catenin signaling in PCa progression underscore the need for the development of drugs targeting this pathway to treat therapy-resistant PCa.
Collapse
|
36
|
Zhu R, Yang X, Xue X, Shen M, Chen F, Chen X, Tsai Y, Keng PC, Chen Y, Lee SO, Chen Y. RETRACTED: Neuroendocrine differentiation contributes to radioresistance development and metastatic potential increase in non-small cell lung cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1878-1890. [PMID: 30262435 DOI: 10.1016/j.bbamcr.2018.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 12/29/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy).
This article has been retracted at the request of the authors and their institute. The BBA Editor-in-Chief has agreed to retract the paper.
In this paper, there were two errors identified to the journal by the authors: The first error was in Western blot gel band images of Fig. 4A (p-MAPK, MAPK, p-Erk, and Stat3) and the 8 gel band images of Fig. 4G. The second error was in the cell culture images of Figures 3F, 3J, and 4E.
The authors state that these errors were due to uploading mistakes in the preparation of the manuscript. The authors apologize for these errors and any inconvenience caused.
The Editor-in-Chief initially agreed to retract the paper based on the identification of these two errors. Readers are able to see further discussion of the paper on the PubPeer site here: https://pubpeer.com/publications/569EB2CE7A7335D7F3F8F3FF310936
Collapse
Affiliation(s)
- Rongying Zhu
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China
| | - Xiaodong Yang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China
| | - Xiang Xue
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China
| | - Mingjing Shen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China
| | - Feng Chen
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Xiaodong Chen
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Ying Tsai
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Peter C Keng
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Yongbing Chen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China
| | - Soo Ok Lee
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | - Yuhchyau Chen
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
37
|
Soundararajan R, Paranjape AN, Maity S, Aparicio A, Mani SA. EMT, stemness and tumor plasticity in aggressive variant neuroendocrine prostate cancers. Biochim Biophys Acta Rev Cancer 2018; 1870:229-238. [PMID: 29981816 DOI: 10.1016/j.bbcan.2018.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 12/25/2022]
Abstract
Neuroendocrine/Aggressive Variant Prostate Cancers are lethal variants of the disease, with an aggressive clinical course and very short responses to conventional therapy. The age-adjusted incidence rate for this tumor sub-type has steadily increased over the past 20 years in the United States, with no reduction in the associated mortality rate. The molecular networks fueling its emergence and sustenance are still obscure; however, many factors have been associated with the onset and progression of neuroendocrine differentiation in clinically typical adenocarcinomas including loss of androgen-receptor expression and/or signaling, conventional therapy, and dysregulated cytokine function. "Tumor-plasticity" and the ability to dedifferentiate into alternate cell lineages are central to this process. Epithelial-to-mesenchymal (EMT) signaling pathways are major promoters of stem-cell properties in prostate tumor cells. In this review, we examine the contributions of EMT-induced cellular-plasticity and stem-cell signaling pathways to the progression of Neuroendocrine/Aggressive Variant Prostate Cancers in the light of potential therapeutic opportunities.
Collapse
Affiliation(s)
- Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Anurag N Paranjape
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sankar Maity
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Stem Cell and Developmental Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
38
|
Nam RK, Benatar T, Amemiya Y, Wallis CJ, Romero JM, Tsagaris M, Sherman C, Sugar L, Seth A. MicroRNA-652 induces NED in LNCaP and EMT in PC3 prostate cancer cells. Oncotarget 2018; 9:19159-19176. [PMID: 29721191 PMCID: PMC5922385 DOI: 10.18632/oncotarget.24937] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 03/06/2018] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNA molecules that post-transcriptionally regulate gene expression. Dysregulation of miRNAs is frequently associated with disease and, in particular, is involved in prostate cancer progression. Next generation miRNA sequencing identified a panel of five miRNAs associated with prostate cancer recurrence and metastasis. High expression of one of these five miRNAs, miR-652, correlated significantly with an increased rate of prostate cancer biochemical recurrence. Overexpression of miR-652 in prostate cancer cells, PC3 and LNCaP, resulted in increased growth, migration and invasion. Prostate cancer cell xenografts overexpressing miR-652 showed increased tumorigenicity and metastases. We found that miR-652 directly targets the B" regulatory subunit, PPP2R3A, of the tumor suppressor PP2A, inducing epithelial-mesenchymal transition (EMT) in PC3 cells and neuroendocrine-like differentiation (NED) in LNCaP cells. The mesenchymal marker N-cadherin increased and epithelial marker E-cadherin decreased in PC3 cells overexpressing miR-652. In LNCaP cells and xenografted tumors, overexpression of miR-652 increased markers of NED, including chromogranin A, neuron specific enolase, and synaptophysin. MiR-652 may contribute to prostate tumor progression by promoting NED through decreased PP2A function. MiR-652 expression could serve as a biomarker for aggressive prostate cancer, as well as provide an opportunity for novel therapy in prostate cancer.
Collapse
Affiliation(s)
- Robert K. Nam
- 1 Division of Urology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Tania Benatar
- 2 Platform Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Yutaka Amemiya
- 3 Genomics Facility, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Christopher J.D. Wallis
- 1 Division of Urology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Joan Miguel Romero
- 2 Platform Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Melina Tsagaris
- 2 Platform Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Christopher Sherman
- 4 Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- 5 Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Linda Sugar
- 4 Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- 5 Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Arun Seth
- 2 Platform Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- 3 Genomics Facility, Sunnybrook Research Institute, Toronto, ON, Canada
- 4 Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- 5 Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
39
|
Aoki Y, Nishizawa D, Yoshida K, Hasegawa J, Kasai S, Takahashi K, Koukita Y, Ichinohe T, Hayashida M, Fukuda KI, Ikeda K. Association between the rs7583431 single nucleotide polymorphism close to the activating transcription factor 2 gene and the analgesic effect of fentanyl in the cold pain test. Neuropsychopharmacol Rep 2018; 38:86-91. [PMID: 30106255 PMCID: PMC7292331 DOI: 10.1002/npr2.12012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/20/2018] [Accepted: 01/29/2018] [Indexed: 11/19/2022] Open
Abstract
Background Activating transcription factor 2 (ATF2) is a member of the leucine zipper family of DNA binding proteins and is widely distributed in tissues. Several recent studies have demonstrated that this protein is involved in mechanisms that are related to pain and inflammation. However, unclear is whether polymorphisms of the ATF2 gene, which encodes the human ATF2 protein, influence pain or analgesic sensitivity. This study examined associations between the analgesic effect of fentanyl in the cold pressor‐induced pain test and polymorphisms in the ATF2 gene in 355 Japanese subjects. Results In this study, 33 single nucleotide polymorphisms (SNPs) were selected, and a total of 2 linkage disequilibrium blocks with 6 Tag SNPs (rs1153702, rs7583431, rs2302663, rs3845744, rs268214, and rs1982235) were observed in the region within and around the ATF2 gene. We further analyzed associations between these Tag SNPs and clinical data. Even after multiple testing with Bonferroni adjustments, an increase in the analgesic effect of fentanyl in the cold pressor‐induced pain test was significantly associated with a greater number of the A allele of the rs7583431 SNP (linear regression, P = .001). Conclusions The present findings may contribute to adequate pain relief in individual patients. Although more research on the genetic factors that influence opioid sensitivity is needed, analgesic requirements may be predicted by analyzing ATF2SNPs, together with other polymorphisms of genes that are reportedly associated with opioid sensitivity, such as CREB1,OPRM1, and GIRK2. In this study, 33 single nucleotide polymorphisms (SNPs) were selected, and a total of 2 linkage disequilibrium blocks with 6 Tag SNPs (rs1153702, rs7583431, rs2302663, rs3845744, rs268214, and rs1982235) were observed in the region within and around the ATF2 gene. We further analyzed associations between these Tag SNPs and clinical data. Even after multiple testing with Bonferroni adjustments, an increase in the analgesic effect of fentanyl in the cold pressor‐induced pain test was significantly associated with a greater number of the A allele of the rs7583431 SNP (linear regression, P = .001).
![]()
Collapse
Affiliation(s)
- Yoshinori Aoki
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Dental Anesthesiology, Tokyo Dental College, Tokyo, Japan
| | - Daisuke Nishizawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kaori Yoshida
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Dental Anesthesiology, Tokyo Dental College, Tokyo, Japan
| | - Junko Hasegawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shinya Kasai
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kaori Takahashi
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Dental Anesthesiology, Tokyo Dental College, Tokyo, Japan
| | - Yoshihiko Koukita
- Department of Dental Anesthesiology, Tokyo Dental College, Tokyo, Japan
| | - Tatsuya Ichinohe
- Department of Dental Anesthesiology, Tokyo Dental College, Tokyo, Japan
| | | | - Ken-Ichi Fukuda
- Department of Oral Health Science, Tokyo Dental College, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
40
|
Prasad A, Khudaynazar N, Tantravahi RV, Gillum AM, Hoffman BS. ON 01910.Na (rigosertib) inhibits PI3K/Akt pathway and activates oxidative stress signals in head and neck cancer cell lines. Oncotarget 2018; 7:79388-79400. [PMID: 27764820 PMCID: PMC5346722 DOI: 10.18632/oncotarget.12692] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 09/24/2016] [Indexed: 01/21/2023] Open
Abstract
Squamous cell carcinoma of the head and neck (HNSCC) is characterized by high morbidity and mortality. Treatment failure, drug resistance and chemoradiation toxicity have necessitated the development of alternative treatment strategies. Styryl benzyl sulfones, a family of novel small molecule inhibitors, are being evaluated as anti-neoplastic agents in multiple clinical trials. The activity of these compounds has been well characterized in several preclinical tumor studies, but their activity has yet to be fully examined in HNSCC. We tested ON 01910.Na (rigosertib), a styryl benzyl sulfone in late-stage development, in HNSCC preclinical models. Rigosertib induced cytotoxicity in both HPV(+) and HPV(−) HNSCC cells in a dose-dependent manner. Characterization of the underlying molecular mechanism indicated that rigosertib induced inhibition of the PI3K/Akt/mTOR pathway, induced oxidative stress resulting in increased generation of reactive oxygen species (ROS), and activated extracellular signal-regulated kinases (ERK1/2) and c-Jun NH2-terminal kinase (JNK). Increased phosphorylation and cytoplasmic translocation of ATF-2 were also observed following rigosertib treatment. These changes in cell signaling led us to consider combining rigosertib with HNSCC standard-of-care therapies, such as cisplatin and radiation. Our study highlights the promising preclinical activity of rigosertib in HNSCC irrespective of HPV status and provides a molecular basis for rigosertib in combination with standard of care agents for HNSCC.
Collapse
Affiliation(s)
- Anil Prasad
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Nagina Khudaynazar
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
41
|
Steven A, Leisz S, Sychra K, Hiebl B, Wickenhauser C, Mougiakakos D, Kiessling R, Denkert C, Seliger B. Hypoxia-mediated alterations and their role in the HER-2/neuregulated CREB status and localization. Oncotarget 2018; 7:52061-52084. [PMID: 27409833 PMCID: PMC5239535 DOI: 10.18632/oncotarget.10474] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/17/2016] [Indexed: 01/16/2023] Open
Abstract
The cAMP-responsive element-binding protein (CREB) is involved in the tumorigenicity of HER-2/neu-overexpressing murine and human tumor cells, but a link between the HER-2/neu-mediated CREB activation, its posttranslational modification and localization and changes in the cellular metabolism, due to an altered (tumor) microenvironment remains to be established. The present study demonstrated that shRNA-mediated silencing of CREB in HER-2/neu-transformed cells resulted in decreased tumor formation, which was associated with reduced angiogenesis, but increased necrotic and hypoxic areas in the tumor. Hypoxia induced pCREBSer133, but not pCREBSer121 expression in HER-2/neu-transformed cells. This was accompanied by upregulation of the hypoxia-inducible genes GLUT1 and VEGF, increased cell migration and matrix metalloproteinase-mediated invasion. Treatment of HER-2/neu+ cells with signal transduction inhibitors targeting in particular HER-2/neu was able to revert hypoxia-controlled CREB activation. In addition to changes in the phosphorylation, hypoxic response of HER-2/neu+ cells caused a transient ubiquitination and SUMOylation as well as a co-localization of nuclear CREB to the mitochondrial matrix. A mitochondrial localization of CREB was also demonstrated in hypoxic areas of HER-2/neu+ mammary carcinoma lesions. This was accompanied by an altered gene expression pattern, activity and metabolism of mitochondria leading to an increased respiratory rate, oxidative phosphorylation and mitochondrial membrane potential and consequently to an enhanced apoptosis and reduced cell viability. These data suggest that the HER-2/neu-mediated CREB activation caused by a hypoxic tumor microenvironment contributes to the neoplastic phenotype of HER-2/neu+ cells at various levels.
Collapse
Affiliation(s)
- André Steven
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sandra Leisz
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | - Bernhard Hiebl
- Centre for Basic Medical Research, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
42
|
Steven A, Seliger B. Control of CREB expression in tumors: from molecular mechanisms and signal transduction pathways to therapeutic target. Oncotarget 2018; 7:35454-65. [PMID: 26934558 PMCID: PMC5085243 DOI: 10.18632/oncotarget.7721] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/26/2016] [Indexed: 12/11/2022] Open
Abstract
The cyclic AMP response element binding (CREB) protein has pleiotropic activities in physiologic processes. Due to its central position downstream of many growth signaling pathways CREB has the ability to influence cell survival, growth and differentiation of normal, but also of tumor cells suggesting an oncogenic potential of CREB. Indeed, increased CREB expression and activation is associated with tumor progression, chemotherapy resistance and reduced patients' survival. We summarize here the different cellular functions of CREB in tumors of distinct histology as well as its use as potential prognostic marker. In addition, the underlying molecular mechanisms to achieve constitutive activation of CREB including structural alterations, such as gene amplification and chromosomal translocation, and deregulation, which could occur at the transcriptional, post-transcriptional and post-translational level, will be described. Since downregulation of CREB by different strategies resulted in inhibition of cell proliferation, invasion and induction of apoptosis, the role of CREB as a promising target for cancer therapy will be also discussed.
Collapse
Affiliation(s)
- André Steven
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
43
|
Rubin MA, Demichelis F. The Genomics of Prostate Cancer: emerging understanding with technologic advances. Mod Pathol 2018; 31:S1-11. [PMID: 29297493 DOI: 10.1038/modpathol.2017.166] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 01/06/2023]
Abstract
With the advent of next-generation sequencing technologies and large whole-exome and genome studies in prostate and other cancers, our understanding of the landscape of genomic alterations has dramatically been refined. In additional to well-known alterations in genomic regions involving 8p, 8q, 10q23, common ETS translocations and androgen receptor amplifications, newer technology have uncovered recurrent mutations in SPOP, FOXA1, MED12, IDH and complex large scale genomic alterations (eg, chromoplexy). This review surveys the enhanced landscape of genomic alterations in clinically localized and advanced prostate cancer.
Collapse
Affiliation(s)
- Mark A Rubin
- Institute for Precision Medicine, Weill Cornell Medical College-New York Presbyterian Hospital, New York, NY, USA.,Sandra and Edward Meyer Cancer Center at Weill Cornell Medical College, New York, NY, USA.,Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Francesca Demichelis
- Institute for Precision Medicine, Weill Cornell Medical College-New York Presbyterian Hospital, New York, NY, USA.,Centre of Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
44
|
Steven A, Leisz S, Wickenhauser C, Schulz K, Mougiakakos D, Kiessling R, Denkert C, Seliger B. Linking CREB function with altered metabolism in murine fibroblast-based model cell lines. Oncotarget 2017; 8:97439-97463. [PMID: 29228623 PMCID: PMC5722575 DOI: 10.18632/oncotarget.22135] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/26/2017] [Indexed: 01/31/2023] Open
Abstract
The cAMP-responsive element binding protein CREB is frequently overexpressed and activated in tumors of distinct histology, leading to enhanced proliferation, migration, invasion and angiogenesis as well as reduced apoptosis. The de-regulated expression of CREB might be linked with transcriptional as well as post-transcriptional regulation mechanisms. We show here that altered CREB expression levels and function are associated with changes in the cellular metabolism. Using comparative proteome-based analysis an altered expression pattern of proteins involved in the cellular metabolism in particular in glycolysis was found upon CREB down-regulation in HER-2/neu-transfected cell lines. This was associated with diminished expression levels of the glucose transporter 1, reduced glucose uptake and reduced glycolytic activity in HER-2/neu-transfected cells with down-regulated CREB when compared to HER-2/neu+ cells. Furthermore, hypoxia-induced CREB activity resulted in changes of the metabolism in HER-2/neu transfected cells. Low pH values in the supernatant of HER-2/neu transformants were restored by CREB down-regulation, but further decreased by hypoxia. The altered intracellular pH values were associated with a distinct expression of lactate dehydrogenase, and its substrate lactate. Moreover, enhanced phosphorylation of CREB on residue Ser133 was accompanied by a down-regulation of pERK and an up-regulation of pAKT. CREB promotes the detoxification of ROS by catalase, therefore protecting the mitochondrial activity under oxidative stress. These data suggest that there might exists a link between CREB function and the altered metabolism in HER-2/neu-transformed cells. Thus, targeting these altered metabolic pathways might represent an attractive therapeutic approach at least for the treatment of patients with HER-2/neu overexpressing tumors.
Collapse
Affiliation(s)
- André Steven
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sandra Leisz
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Kristin Schulz
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
45
|
Biology and evolution of poorly differentiated neuroendocrine tumors. Nat Med 2017; 23:1-10. [PMID: 28586335 DOI: 10.1038/nm.4341] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 04/13/2017] [Indexed: 12/11/2022]
Abstract
Neuroendocrine (NE) cancers are a diverse group of neoplasms typically diagnosed and treated on the basis of their site of origin. This Perspective focuses on advances in our understanding of the tumorigenesis and treatment of poorly differentiated neuroendocrine tumors. Recent evidence from sequencing indicates that, although neuroendocrine tumors can arise de novo, they can also develop as a result of lineage plasticity in response to pressure from targeted therapies. We discuss the shared genomic alterations of these tumors independently of their site of origin, and we explore potential therapeutic strategies on the basis of recent biological findings.
Collapse
|
46
|
D’Auria F, Centurione L, Centurione MA, Angelini A, Di Pietro R. Regulation of Cancer Cell Responsiveness to Ionizing Radiation Treatment by Cyclic AMP Response Element Binding Nuclear Transcription Factor. Front Oncol 2017; 7:76. [PMID: 28529924 PMCID: PMC5418225 DOI: 10.3389/fonc.2017.00076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/07/2017] [Indexed: 02/05/2023] Open
Abstract
Cyclic AMP response element binding (CREB) protein is a member of the CREB/activating transcription factor (ATF) family of transcription factors that play an important role in the cell response to different environmental stimuli leading to proliferation, differentiation, apoptosis, and survival. A number of studies highlight the involvement of CREB in the resistance to ionizing radiation (IR) therapy, demonstrating a relationship between IR-induced CREB family members' activation and cell survival. Consistent with these observations, we have recently demonstrated that CREB and ATF-1 are expressed in leukemia cell lines and that low-dose radiation treatment can trigger CREB activation, leading to survival of erythro-leukemia cells (K562). On the other hand, a number of evidences highlight a proapoptotic role of CREB following IR treatment of cancer cells. Since the development of multiple mechanisms of resistance is one key problem of most malignancies, including those of hematological origin, it is highly desirable to identify biological markers of responsiveness/unresponsiveness useful to follow-up the individual response and to adjust anticancer treatments. Taking into account all these considerations, this mini-review will be focused on the involvement of CREB/ATF family members in response to IR therapy, to deepen our knowledge of this topic, and to pave the way to translation into a therapeutic context.
Collapse
Affiliation(s)
- Francesca D’Auria
- Department of Cardiac and Vascular Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Lucia Centurione
- Department of Medicine and Ageing Sciences, G. d’Annunzio University, Chieti, Italy
| | | | - Antonio Angelini
- Department of Medicine and Ageing Sciences, G. d’Annunzio University, Chieti, Italy
- Ageing Research Center, CeSI, G. d’Annunzio University Foundation, Chieti, Italy
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, G. d’Annunzio University, Chieti, Italy
| |
Collapse
|
47
|
Watson G, Ronai ZA, Lau E. ATF2, a paradigm of the multifaceted regulation of transcription factors in biology and disease. Pharmacol Res 2017; 119:347-357. [PMID: 28212892 PMCID: PMC5457671 DOI: 10.1016/j.phrs.2017.02.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 01/16/2023]
Abstract
Stringent transcriptional regulation is crucial for normal cellular biology and organismal development. Perturbations in the proper regulation of transcription factors can result in numerous pathologies, including cancer. Thus, understanding how transcription factors are regulated and how they are dysregulated in disease states is key to the therapeutic targeting of these factors and/or the pathways that they regulate. Activating transcription factor 2 (ATF2) has been studied in a number of developmental and pathological conditions. Recent findings have shed light on the transcriptional, post-transcriptional, and post-translational regulatory mechanisms that influence ATF2 function, and thus, the transcriptional programs coordinated by ATF2. Given our current knowledge of its multiple levels of regulation and function, ATF2 represents a paradigm for the mechanistic complexity that can regulate transcription factor function. Thus, increasing our understanding of the regulation and function of ATF2 will provide insights into fundamental regulatory mechanisms that influence how cells integrate extracellular and intracellular signals into a genomic response through transcription factors. Characterization of ATF2 dysfunction in the context of pathological conditions, particularly in cancer biology and response to therapy, will be important in understanding how pathways controlled by ATF2 or other transcription factors might be therapeutically exploited. In this review, we provide an overview of the currently known upstream regulators and downstream targets of ATF2.
Collapse
Affiliation(s)
- Gregory Watson
- Department of Tumor Biology and Program in Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Ze'ev A Ronai
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA; Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, 3109601, Israel
| | - Eric Lau
- Department of Tumor Biology and Program in Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
48
|
Yadav SS, Li J, Stockert JA, Herzog B, O'Connor J, Garzon-Manco L, Parsons R, Tewari AK, Yadav KK. Induction of Neuroendocrine Differentiation in Prostate Cancer Cells by Dovitinib (TKI-258) and its Therapeutic Implications. Transl Oncol 2017; 10:357-366. [PMID: 28342996 PMCID: PMC5369368 DOI: 10.1016/j.tranon.2017.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer (PCa) remains the second-leading cause of cancer-related deaths in American men with an estimated mortality of more than 26,000 in 2016 alone. Aggressive and metastatic tumors are treated with androgen deprivation therapies (ADT); however, the tumors acquire resistance and develop into lethal castration resistant prostate cancer (CRPC). With the advent of better therapeutics, the incidences of a more aggressive neuroendocrine prostate cancer (NEPC) variant continue to emerge. Although de novo occurrences of NEPC are rare, more than 25% of the therapy-resistant patients on highly potent new-generation anti-androgen therapies end up with NEPC. This, along with previous observations of an increase in the number of such NE cells in aggressive tumors, has been suggested as a mechanism of resistance development during prostate cancer progression. Dovitinib (TKI-258/CHIR-258) is a pan receptor tyrosine kinase (RTK) inhibitor that targets VEGFR, FGFR, PDGFR, and KIT. It has shown efficacy in mouse-model of PCa bone metastasis, and is presently in clinical trials for several cancers. We observed that both androgen receptor (AR) positive and AR-negative PCa cells differentiate into a NE phenotype upon treatment with Dovitinib. The NE differentiation was also observed when mice harboring PC3-xenografted tumors were systemically treated with Dovitinib. The mechanistic underpinnings of this differentiation are unclear, but seem to be supported through MAPK-, PI3K-, and Wnt-signaling pathways. Further elucidation of the differentiation process will enable the identification of alternative salvage or combination therapies to overcome the potential resistance development.
Collapse
Affiliation(s)
- Shalini S Yadav
- Department of Urology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574
| | - Jinyi Li
- Department of Urology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574
| | - Jennifer A Stockert
- Department of Urology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574
| | - Bryan Herzog
- Department of Urology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574
| | - James O'Connor
- Department of Urology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574
| | - Luis Garzon-Manco
- Department of Urology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574
| | - Ramon Parsons
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574
| | - Ashutosh K Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574
| | - Kamlesh K Yadav
- Department of Urology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574.
| |
Collapse
|
49
|
Cao W, Ma E, Zhou L, Yuan T, Zhang C. Exploring the FGFR3-related oncogenic mechanism in bladder cancer using bioinformatics strategy. World J Surg Oncol 2017; 15:66. [PMID: 28320388 PMCID: PMC5359882 DOI: 10.1186/s12957-017-1125-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/06/2017] [Indexed: 11/25/2022] Open
Abstract
Background Aberrant activation of fibroblast growth factor receptor 3 (FGFR3) is frequently observed in bladder cancer, but how it involved in carcinogenesis is not well understood. The current study was aimed to investigate the underlying mechanism on the progression of bladder cancer. Methods The GSE41035 dataset downloaded from Gene Expression Omnibus was used to identify the differentially expressed genes (DEGs) between bladder cancer cell line RT112 with or without depletion of FGFR3, and gene ontology enrichment analysis was performed. Then, FGFR3-centered protein–protein interaction (PPI) and regulatory networks were constructed. Combined with the data retrieved from GSE31684, prognostic makers for bladder cancer were predicted. Results We identified a total of 2855 DEGs, and most of them were associated with blood vessel morphogenesis and cell division. In addition, KIAA1377, POLA2, FGFR3, and EPHA4 were the hub genes with high degree in the FGFR3-centered PPI network. Besides, 17 microRNAs (miRNAs) and 6 transcriptional factors (TFs) were predicted to be the regulators of the nodes in PPI network. Moreover, CSTF2, POLA1, HMOX2, and EFNB2 may be associated with the prognosis of bladder cancer patient. Conclusions The current study may provide some insights into the molecular mechanism of FGFR3 as a mediator in bladder cancer.
Collapse
Affiliation(s)
- Wei Cao
- Department of Urinary Surgery, The Second Affiliated Hospital of Harbin Medical University, 150086, Harbin, Heilongjiang province, China
| | - Enguang Ma
- Department of Urinary Surgery, Harbin First Hospital, 150010, Harbin, Heilongjiang province, China
| | - Li Zhou
- Department of Urinary Surgery, The Second Affiliated Hospital of Harbin Medical University, 150086, Harbin, Heilongjiang province, China
| | - Tan Yuan
- Department of Urinary Surgery, The Second Affiliated Hospital of Harbin Medical University, 150086, Harbin, Heilongjiang province, China
| | - Chunying Zhang
- Department of Urinary Surgery, The Second Affiliated Hospital of Harbin Medical University, 150086, Harbin, Heilongjiang province, China.
| |
Collapse
|
50
|
Mitochondrial ATF2 translocation contributes to apoptosis induction and BRAF inhibitor resistance in melanoma through the interaction of Bim with VDAC1. Oncotarget 2016; 6:36338-53. [PMID: 26462148 PMCID: PMC4742181 DOI: 10.18632/oncotarget.5537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/29/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The mitochondrial accumulation of ATF2 is involved in tumor suppressor activities via cytochrome c release in melanoma cells. However, the signaling pathways that connect mitochondrial ATF2 accumulation and cytochrome c release are not well documented. METHODS Several melanoma cell lines, B16F10, K1735M2, A375 and A375-R1, were treated with paclitaxel and vemurafenib to test the function of mitochondrial ATF2 and its connection to Bim and voltage-dependent anion channel 1 (VDAC1). Immunoprecipitation analysis was performed to investigate the functional interaction between the involved proteins. VDAC1 oligomerization was evaluated using an EGS-based crosslinking assay. RESULTS The expression and migration of ATF2 to the mitochondria accounted for paclitaxel stimuli and acquired resistance to BRAF inhibitors. Mitochondrial ATF2 facilitated Bim stabilization through the inhibition of its degradation by the proteasome, thereby promoting cytochrome c release and inducing apoptosis in B16F10 and A375 cells. Studies using B16F10 and A375 cells genetically modified for ATF2 indicated that mitochondrial ATF2 was able to dissociate Bim from the Mcl-1/Bim complex to trigger VDAC1 oligomerization. Immunoprecipitation analysis revealed that Bim interacts with VDAC1, and this interaction was remarkably enhanced during apoptosis. CONCLUSION These results reveal that mitochondrial ATF2 is associated with the induction of apoptosis and BRAF inhibitor resistance through Bim activation, which might suggest potential novel therapies for the targeted induction of apoptosis in melanoma therapy.
Collapse
|