1
|
Kruse B, Buzzai AC, Shridhar N, Braun AD, Gellert S, Knauth K, Pozniak J, Peters J, Dittmann P, Mengoni M, van der Sluis TC, Höhn S, Antoranz A, Krone A, Fu Y, Yu D, Essand M, Geffers R, Mougiakakos D, Kahlfuß S, Kashkar H, Gaffal E, Bosisio FM, Bechter O, Rambow F, Marine JC, Kastenmüller W, Müller AJ, Tüting T. CD4 + T cell-induced inflammatory cell death controls immune-evasive tumours. Nature 2023; 618:1033-1040. [PMID: 37316667 PMCID: PMC10307640 DOI: 10.1038/s41586-023-06199-x] [Citation(s) in RCA: 143] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 05/11/2023] [Indexed: 06/16/2023]
Abstract
Most clinically applied cancer immunotherapies rely on the ability of CD8+ cytolytic T cells to directly recognize and kill tumour cells1-3. These strategies are limited by the emergence of major histocompatibility complex (MHC)-deficient tumour cells and the formation of an immunosuppressive tumour microenvironment4-6. The ability of CD4+ effector cells to contribute to antitumour immunity independently of CD8+ T cells is increasingly recognized, but strategies to unleash their full potential remain to be identified7-10. Here, we describe a mechanism whereby a small number of CD4+ T cells is sufficient to eradicate MHC-deficient tumours that escape direct CD8+ T cell targeting. The CD4+ effector T cells preferentially cluster at tumour invasive margins where they interact with MHC-II+CD11c+ antigen-presenting cells. We show that T helper type 1 cell-directed CD4+ T cells and innate immune stimulation reprogramme the tumour-associated myeloid cell network towards interferon-activated antigen-presenting and iNOS-expressing tumouricidal effector phenotypes. Together, CD4+ T cells and tumouricidal myeloid cells orchestrate the induction of remote inflammatory cell death that indirectly eradicates interferon-unresponsive and MHC-deficient tumours. These results warrant the clinical exploitation of this ability of CD4+ T cells and innate immune stimulators in a strategy to complement the direct cytolytic activity of CD8+ T cells and natural killer cells and advance cancer immunotherapies.
Collapse
Affiliation(s)
- Bastian Kruse
- Laboratory of Experimental Dermatology, Department of Dermatology, University Hospital and Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke University, Magdeburg, Germany
| | - Anthony C Buzzai
- Laboratory of Experimental Dermatology, Department of Dermatology, University Hospital and Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke University, Magdeburg, Germany
| | - Naveen Shridhar
- Laboratory of Experimental Dermatology, Department of Dermatology, University Hospital and Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke University, Magdeburg, Germany
| | - Andreas D Braun
- Laboratory of Experimental Dermatology, Department of Dermatology, University Hospital and Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke University, Magdeburg, Germany
| | - Susan Gellert
- Laboratory of Experimental Dermatology, Department of Dermatology, University Hospital and Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke University, Magdeburg, Germany
| | - Kristin Knauth
- Laboratory of Experimental Dermatology, Department of Dermatology, University Hospital and Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke University, Magdeburg, Germany
| | - Joanna Pozniak
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Johannes Peters
- Laboratory of Experimental Dermatology, Department of Dermatology, University Hospital and Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke University, Magdeburg, Germany
| | - Paulina Dittmann
- Laboratory of Experimental Dermatology, Department of Dermatology, University Hospital and Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke University, Magdeburg, Germany
| | - Miriam Mengoni
- Laboratory of Experimental Dermatology, Department of Dermatology, University Hospital and Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke University, Magdeburg, Germany
| | - Tetje Cornelia van der Sluis
- Laboratory of Experimental Dermatology, Department of Dermatology, University Hospital and Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke University, Magdeburg, Germany
| | - Simon Höhn
- Laboratory of Experimental Dermatology, Department of Dermatology, University Hospital and Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke University, Magdeburg, Germany
| | - Asier Antoranz
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Anna Krone
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke University, Magdeburg, Germany
| | - Yan Fu
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke University, Magdeburg, Germany
| | - Di Yu
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Robert Geffers
- Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Dimitrios Mougiakakos
- Department of Hematology, University Hospital and Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke University, Magdeburg, Germany
| | - Sascha Kahlfuß
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke University, Magdeburg, Germany
| | - Hamid Kashkar
- Institute for Molecular Immunology, Centre for Molecular Medicine Cologne and Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases, University of Cologne, Cologne, Germany
| | - Evelyn Gaffal
- Laboratory of Experimental Dermatology, Department of Dermatology, University Hospital and Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke University, Magdeburg, Germany
| | | | - Oliver Bechter
- Department of General Medical Oncology, UZ Leuven, Leuven, Belgium
| | - Florian Rambow
- Department of Applied Computational Cancer Research, Institute for AI in Medicine (IKIM), University Hospital Essen, Essen, Germany
- University of Duisburg-Essen, Essen, Germany
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Andreas J Müller
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke University, Magdeburg, Germany.
| | - Thomas Tüting
- Laboratory of Experimental Dermatology, Department of Dermatology, University Hospital and Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
2
|
Ruotsalainen J, Lopez‐Ramos D, Rogava M, Shridhar N, Glodde N, Gaffal E, Hölzel M, Bald T, Tüting T. The myeloid cell type I IFN system promotes antitumor immunity over pro-tumoral inflammation in cancer T-cell therapy. Clin Transl Immunology 2021; 10:e1276. [PMID: 33968406 PMCID: PMC8082713 DOI: 10.1002/cti2.1276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 08/24/2020] [Accepted: 03/25/2021] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVES Type I interferons are evolutionally conserved cytokines, with broad antimicrobial and immunoregulatory functions. Despite well-characterised role in spontaneous cancer immunosurveillance, the function of type I IFNs in cancer immunotherapy remains incompletely understood. METHODS We utilised genetic mouse models to explore the role of the type I IFN system in CD8+ T-cell immunotherapy targeting the melanocytic lineage antigen gp100. RESULTS The therapeutic efficacy of adoptively transferred T cells was found to depend on a functional type I IFN system in myeloid immune cells. Compromised type I IFN signalling in myeloid immune cells did not prevent expansion, tumor infiltration or effector function of melanoma-specific Pmel-1 CD8+ T cells. However, melanomas growing in globally (Ifnar1-/-) or conditionally (Ifnar1ΔLysM) type I IFN system-deficient mice displayed increased myeloid infiltration, hypoxia and melanoma cell dedifferentiation. Mechanistically, hypoxia was found to induce dedifferentiation and loss of the gp100 target antigen in melanoma cells and type I IFN could directly inhibit the inflammatory activation of myeloid cells. Unexpectedly, the immunotherapy induced significant reduction in tumor blood vessel density and whereas host type I IFN system was not required for the vasculosculpting, it promoted vessel permeability. CONCLUSION Our results substantiate a complex and plastic phenotypic interconnection between melanoma and myeloid cells in the context of T-cell immunotherapy. Type I IFN signalling in myeloid cells was identified as a key regulator of the balance between antitumor immunity and disease-promoting inflammation, thus supporting the development of novel combinatorial immunotherapies targeting this immune cell compartment.
Collapse
Affiliation(s)
- Janne Ruotsalainen
- Laboratory of Experimental DermatologyDepartment of DermatologyUniversity Hospital MagdeburgMagdeburgGermany
| | - Dorys Lopez‐Ramos
- Laboratory of Experimental DermatologyDepartment of DermatologyUniversity Hospital MagdeburgMagdeburgGermany
| | - Meri Rogava
- Laboratory of Experimental DermatologyDepartment of DermatologyUniversity Hospital MagdeburgMagdeburgGermany
| | - Naveen Shridhar
- Laboratory of Experimental DermatologyDepartment of DermatologyUniversity Hospital MagdeburgMagdeburgGermany
| | - Nicole Glodde
- Laboratory of Experimental DermatologyDepartment of DermatologyUniversity Hospital MagdeburgMagdeburgGermany
- Institute of Experimental Oncology (IEO)Medical FacultyUniversity Hospital BonnUniversity of BonnBonnGermany
| | - Evelyn Gaffal
- Laboratory of Experimental DermatologyDepartment of DermatologyUniversity Hospital MagdeburgMagdeburgGermany
| | - Michael Hölzel
- Institute of Experimental Oncology (IEO)Medical FacultyUniversity Hospital BonnUniversity of BonnBonnGermany
| | - Tobias Bald
- Laboratory of Experimental DermatologyDepartment of DermatologyUniversity Hospital MagdeburgMagdeburgGermany
- Laboratory of Tumor‐ImmunobiologyInstitute of Experimental Oncology (IEO)Medical FacultyUniversity Hospital BonnUniversity of BonnBonnGermany
| | - Thomas Tüting
- Laboratory of Experimental DermatologyDepartment of DermatologyUniversity Hospital MagdeburgMagdeburgGermany
| |
Collapse
|
3
|
Tan K, Xie X, Shi W, Miao L, Dong X, Yang W, Shao C, Zhao H, Wang Y, Wang G, Hou F, Hong Y. Deficiency of canonical Wnt/β-catenin signalling in hepatic dendritic cells triggers autoimmune hepatitis. Liver Int 2020; 40:131-140. [PMID: 31505100 DOI: 10.1111/liv.14246] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease manifested with the aberrant activation of hepatic dendritic cells (HDCs) and the subsequent breakdown of immune homeostasis. As an important player, HDC maintains immunological balance between tolerance to self-antigens versus destruction against pathogens in liver. However, the intracellular signalling networks that program HDC remain unclear. We have now found the role of canonical Wnt/β-catenin signalling in HDCs. METHODS Liver sections from AIH patients and healthy subjects were stained for the markers of Wnt/β-catenin signalling. Concanavalin A (ConA) and HDC/Hepa1-6 vaccine-induced AIH mouse models were examined for liver injury, inflammation and immune cell functions by serum biochemistry, histology, quantitative reverse transcription polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA) and flow cytometry analysis. Wnt/β-catenin signalling expression was measured using immunoblot and qRT-PCR. RESULTS Canonical Wnt/β-catenin signalling in HDC is deficient in AIH patients and a mouse model, which coincides with the immunogenic function of HDCs. Furthermore, Wnt ligand engagement reactivates Wnt/β-catenin signalling and recovers the immunoregulatory phenotype of HDCs, in turn alleviating the severity of AIH. Likewise, pharmacologic activation of Wnt/β-catenin signalling attenuates AIH progression. CONCLUSIONS We report here that the constitutively active canonical Wnt/β-catenin signalling confers HDCs tolerogenicity under steady-state conditions. Deficiency of this pathway gives rise to T cell-mediated immune response and incidence of AIH. It may act as a new pathogenesis and treatment target for AIH.
Collapse
Affiliation(s)
- Kangan Tan
- Infectious Diseases Department, Peking University First Hospital, Beijing, China
| | - Xuehai Xie
- General Surgery Department, Peking University First Hospital, Beijing, China
| | - Wanwan Shi
- Infectious Diseases Department, Peking University First Hospital, Beijing, China
| | - Liang Miao
- Qinhuangdao Third Hospital, Hebei, China
| | - Xiaoqin Dong
- Infectious Diseases Department, Peking University First Hospital, Beijing, China
| | - Wanna Yang
- Infectious Diseases Department, Peking University First Hospital, Beijing, China
| | - Chen Shao
- Pathology Department, Capital Medical University Youan Hospital, Beijing, China
| | - Hong Zhao
- Infectious Diseases Department, Peking University First Hospital, Beijing, China
| | - Yan Wang
- Infectious Diseases Department, Peking University First Hospital, Beijing, China
| | - Guiqiang Wang
- Infectious Diseases Department, Peking University First Hospital, Beijing, China
| | - Fengqin Hou
- Infectious Diseases Department, Peking University First Hospital, Beijing, China
| | - Yuan Hong
- Infectious Diseases Department, Peking University First Hospital, Beijing, China
| |
Collapse
|
4
|
Das K, Eisel D, Vormehr M, Müller-Decker K, Hommertgen A, Jäger D, Zörnig I, Feuerer M, Kopp-Schneider A, Osen W, Eichmüller SB. A transplantable tumor model allowing investigation of NY-BR-1-specific T cell responses in HLA-DRB1*0401 transgenic mice. BMC Cancer 2019; 19:914. [PMID: 31519152 PMCID: PMC6743128 DOI: 10.1186/s12885-019-6102-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/28/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND NY-BR-1 has been described as a breast cancer associated differentiation antigen with intrinsic immunogenicity giving rise to endogenous T and B cell responses. The current study presents the first murine tumor model allowing functional investigation of NY-BR-1-specific immune responses in vivo. METHODS A NY-BR-1 expressing tumor model was established in DR4tg mice based on heterotopic transplantation of stable transfectant clones derived from the murine H2 compatible breast cancer cell line EO771. Composition and phenotype of tumor infiltrating immune cells were analyzed by qPCR and FACS. MHC I binding affinity of candidate CTL epitopes predicted in silico was determined by FACS using the mutant cell line RMA-S. Frequencies of NY-BR-1 specific CTLs among splenocytes of immunized mice were quantified by FACS with an epitope loaded Db-dextramer. Functional CTL activity was determined by IFNγ catch or IFNγ ELISpot assays and statistical analysis was done applying the Mann Whitney test. Tumor protection experiments were performed by immunization of DR4tg mice with replication deficient recombinant adenovirus followed by s.c. challenge with NY-BR-1 expressing breast cancer cells. RESULTS Our results show spontaneous accumulation of CD8+ T cells and F4/80+ myeloid cells preferentially in NY-BR-1 expressing tumors. Upon NY-BR-1-specific immunization experiments combined with in silico prediction and in vitro binding assays, the first NY-BR-1-specific H2-Db-restricted T cell epitope could be identified. Consequently, flow cytometric analysis with fluorochrome conjugated multimers showed enhanced frequencies of CD8+ T cells specific for the newly identified epitope in spleens of immunized mice. Moreover, immunization with Ad.NY-BR-1 resulted in partial protection against outgrowth of NY-BR-1 expressing tumors and promoted intratumoral accumulation of macrophages. CONCLUSION This study introduces the first H2-Db-resctricted CD8+ T cell epitope-specific for the human breast cancer associated tumor antigen NY-BR-1. Our novel, partially humanized tumor model enables investigation of the interplay between HLA-DR4-restricted T cell responses and CTLs within their joint attack of NY-BR-1 expressing tumors.
Collapse
Affiliation(s)
- Krishna Das
- Research Group GMP & T Cell Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Virology, Innsbruck Medical University, Innsbruck, Austria.,Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
| | - David Eisel
- Research Group GMP & T Cell Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University Heidelberg, Heidelberg, Germany.,Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
| | - Mathias Vormehr
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany.,University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Karin Müller-Decker
- Core Facility Tumor Models, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adriane Hommertgen
- Research Group GMP & T Cell Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Molecular & Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dirk Jäger
- CCU Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Medical Oncology, National Center for Tumor Diseases (NCT) and University Hospital Heidelberg, Heidelberg, Germany
| | - Inka Zörnig
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and University Hospital Heidelberg, Heidelberg, Germany
| | - Markus Feuerer
- Institute of Immunology, Regensburg Center for Interventional Immunology (RCI), University Regensburg and University Hospital Regensburg, Regensburg, Germany
| | | | - Wolfram Osen
- Research Group GMP & T Cell Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan B Eichmüller
- Research Group GMP & T Cell Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
5
|
Pilla L, Ferrone S, Maccalli C. Methods for improving the immunogenicity and efficacy of cancer vaccines. Expert Opin Biol Ther 2018; 18:765-784. [PMID: 29874943 PMCID: PMC8670419 DOI: 10.1080/14712598.2018.1485649] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Cancer vaccines represent one of the oldest immunotherapy strategies. A variety of tumor-associated antigens have been exploited to investigate their immunogenicity as well as multiple strategies for vaccine administration. These efforts have led to the development of several clinical trials in tumors with different histological origins to test the clinical efficacy of cancer vaccines. However, suboptimal clinical results have been reported mainly due to the lack of optimized strategies to induce strong and sustained systemic tumor antigen-specific immune responses. AREAS COVERED We provide an overview of different types of cancer vaccines that have been developed and used in the context of clinical studies. Moreover, we review different preclinical and clinical strategies pursued to enhance the immunogenicity, stability, and targeting at tumor site of cancer vaccines. EXPERT OPINION Additional and appropriate preclinical studies are warranted to optimize the immunogenicity and delivery of cancer vaccines. The appropriate choice of target antigens is challenging; however, the exploitation of neoantigens generated from somatic mutations of tumor cells represents a promising approach to target highly immunogenic tumor-specific antigens. Remarkably, the investigation of the combination of cancer vaccines with immunomodulating agents able to skew the tumor microenvironment from immunosuppressive to immunostimulating will dramatically improve their clinical efficacy.
Collapse
Affiliation(s)
- Lorenzo Pilla
- Medical Oncology Unit, San Gerardo Hospital, Monza, Italy
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristina Maccalli
- Clinical Research Center, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| |
Collapse
|
6
|
Glodde N, Bald T, van den Boorn-Konijnenberg D, Nakamura K, O’Donnell JS, Szczepanski S, Brandes M, Eickhoff S, Das I, Shridhar N, Hinze D, Rogava M, van der Sluis TC, Ruotsalainen JJ, Gaffal E, Landsberg J, Ludwig KU, Wilhelm C, Riek-Burchardt M, Müller AJ, Gebhardt C, Scolyer RA, Long GV, Janzen V, Teng MW, Kastenmüller W, Mazzone M, Smyth MJ, Tüting T, Hölzel M. Reactive Neutrophil Responses Dependent on the Receptor Tyrosine Kinase c-MET Limit Cancer Immunotherapy. Immunity 2017; 47:789-802.e9. [DOI: 10.1016/j.immuni.2017.09.012] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 07/05/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023]
|
7
|
Mahmoud F, Shields B, Makhoul I, Avaritt N, Wong HK, Hutchins LF, Shalin S, Tackett AJ. Immune surveillance in melanoma: From immune attack to melanoma escape and even counterattack. Cancer Biol Ther 2017; 18:451-469. [PMID: 28513269 DOI: 10.1080/15384047.2017.1323596] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pharmacologic inhibition of the cytotoxic T lymphocyte antigen 4 (CTLA4) and the programmed death receptor-1 (PD1) has resulted in unprecedented durable responses in metastatic melanoma. However, resistance to immunotherapy remains a major challenge. Effective immune surveillance against melanoma requires 4 essential steps: activation of the T lymphocytes, homing of the activated T lymphocytes to the melanoma microenvironment, identification and episode of melanoma cells by activated T lymphocytes, and the sensitivity of melanoma cells to apoptosis. At each of these steps, there are multiple factors that may interfere with the immune surveillance machinery, thus allowing melanoma cells to escape immune attack and develop resistance to immunotherapy. We provide a comprehensive review of the complex immune surveillance mechanisms at play in melanoma, and a detailed discussion of how these mechanisms may allow for the development of intrinsic or acquired resistance to immunotherapeutic modalities, and potential avenues for overcoming this resistance.
Collapse
Affiliation(s)
- Fade Mahmoud
- a Department of Internal Medicine, Division of Hematology/Oncology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Bradley Shields
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Issam Makhoul
- a Department of Internal Medicine, Division of Hematology/Oncology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Nathan Avaritt
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Henry K Wong
- c Department of Dermatology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Laura F Hutchins
- a Department of Internal Medicine, Division of Hematology/Oncology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Sara Shalin
- d Departments of Pathology and Dermatology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Alan J Tackett
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| |
Collapse
|
8
|
Redeker A, Arens R. Improving Adoptive T Cell Therapy: The Particular Role of T Cell Costimulation, Cytokines, and Post-Transfer Vaccination. Front Immunol 2016; 7:345. [PMID: 27656185 PMCID: PMC5011476 DOI: 10.3389/fimmu.2016.00345] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/24/2016] [Indexed: 12/22/2022] Open
Abstract
Adoptive cellular therapy (ACT) is a form of immunotherapy whereby antigen-specific T cells are isolated or engineered, expanded ex vivo, and transferred back to patients. Clinical benefit after ACT has been obtained in treatment of infection, various hematological malignancies, and some solid tumors; however, due to poor functionality and persistence of the transferred T cells, the efficacy of ACT in the treatment of most solid tumors is often marginal. Hence, much effort is undertaken to improve T cell function and persistence in ACT and significant progress is being made. Herein, we will review strategies to improve ACT success rates in the treatment of cancer and infection. We will deliberate on the most favorable phenotype for the tumor-specific T cells that are infused into patients and on how to obtain T cells bearing this phenotype by applying novel ex vivo culture methods. Moreover, we will discuss T cell function and persistence after transfer into patients and how these factors can be manipulated by means of providing costimulatory signals, cytokines, blocking antibodies to inhibitory molecules, and vaccination. Incorporation of these T cell stimulation strategies and combinations of the different treatment modalities are likely to improve clinical response rates further.
Collapse
Affiliation(s)
- Anke Redeker
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center , Leiden , Netherlands
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center , Leiden , Netherlands
| |
Collapse
|
9
|
Hölzel M, Tüting T. Inflammation-Induced Plasticity in Melanoma Therapy and Metastasis. Trends Immunol 2016; 37:364-374. [PMID: 27151281 DOI: 10.1016/j.it.2016.03.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/23/2016] [Accepted: 03/29/2016] [Indexed: 12/18/2022]
Abstract
Phenotype switching contributes to nongenomic heterogeneity in melanoma and other cancers. These dynamic and in part reversible phenotype changes impose diagnostic and therapeutic challenges. Understanding the reciprocal coevolution of melanoma and immune cell phenotypes during disease progression and in response to therapy is a prerequisite to improve current treatment strategies. Here we discuss how proinflammatory signals promote melanoma cell plasticity and govern interactions of melanoma and immune cells in the tumor microenvironment. We examine phenotypic plasticity and heterogeneity in different melanoma mouse models with respect to their utility for translational research and emphasize the interplay between melanoma cells and neutrophils as a critical driver of metastasis.
Collapse
Affiliation(s)
- Michael Hölzel
- Unit for RNA Biology, Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, 53105 Bonn, Germany.
| | - Thomas Tüting
- Department of Dermatology, University Hospital Magdeburg, 39120 Magdeburg, Germany.
| |
Collapse
|
10
|
van der Burg SH, Arens R, Ossendorp F, van Hall T, Melief CJM. Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat Rev Cancer 2016; 16:219-33. [PMID: 26965076 DOI: 10.1038/nrc.2016.16] [Citation(s) in RCA: 510] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Therapeutic vaccines preferentially stimulate T cells against tumour-specific epitopes that are created by DNA mutations or oncogenic viruses. In the setting of premalignant disease, carcinoma in situ or minimal residual disease, therapeutic vaccination can be clinically successful as monotherapy; however, in established cancers, therapeutic vaccines will require co-treatments to overcome immune evasion and to become fully effective. In this Review, we discuss the progress that has been made in overcoming immune evasion controlled by tumour cell-intrinsic factors and the tumour microenvironment. We summarize how therapeutic benefit can be maximized in patients with established cancers by improving vaccine design and by using vaccines to increase the effects of standard chemotherapies, to establish and/or maintain tumour-specific T cells that are re-energized by checkpoint blockade and other therapies, and to sustain the antitumour response of adoptively transferred T cells.
Collapse
Affiliation(s)
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | | | - Cornelis J M Melief
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- ISA Pharmaceuticals, J. H. Oortweg 19, 2333 CH, Leiden, The Netherlands
| |
Collapse
|
11
|
Kabilova TO, Sen’kova AV, Nikolin VP, Popova NA, Zenkova MA, Vlassov VV, Chernolovskaya EL. Antitumor and Antimetastatic Effect of Small Immunostimulatory RNA against B16 Melanoma in Mice. PLoS One 2016; 11:e0150751. [PMID: 26981617 PMCID: PMC4794162 DOI: 10.1371/journal.pone.0150751] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/17/2016] [Indexed: 12/23/2022] Open
Abstract
Small interfering RNAs, depending on their structure, delivery system and sequence, can stimulate innate and adaptive immunity. The aim of this study was to investigate the antitumor and antimetastatic effects of immunostimulatory 19-bp dsRNA with 3'- trinucleotide overhangs (isRNA) on melanoma B16 in C57Bl/6 mice. Recently developed novel cationic liposomes 2X3-DOPE were used for the in vivo delivery of isRNA. Administration of isRNA/2X3-DOPE complexes significantly inhibits melanoma tumor growth and metastasis. Histopathological analysis of spleen cross sections showed hyperplasia of the lymphoid white pulp and formation of large germinal centers after isRNA/2X3-DOPE administration, indicating activation of the immune system. The treatment of melanoma-bearing mice with isRNA/2X3-DOPE decreases the destructive changes in the liver parenchyma. Thus, the developed isRNA displays pronounced immunostimulatory, antitumor and antimetastatic properties against melanoma B16 and may be considered a potential agent in the immunotherapy of melanoma.
Collapse
Affiliation(s)
- Tatyana O. Kabilova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8, Lavrentiev Avenue, Novosibirsk, Russia, 630090
| | - Aleksandra V. Sen’kova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8, Lavrentiev Avenue, Novosibirsk, Russia, 630090
| | - Valeriy P. Nikolin
- Institute of Cytology and Genetics SB RAS, 10, Lavrentiev Avenue, Novosibirsk, Russia, 630090
| | - Nelly A. Popova
- Institute of Cytology and Genetics SB RAS, 10, Lavrentiev Avenue, Novosibirsk, Russia, 630090
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8, Lavrentiev Avenue, Novosibirsk, Russia, 630090
| | - Valentin V. Vlassov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8, Lavrentiev Avenue, Novosibirsk, Russia, 630090
| | - Elena L. Chernolovskaya
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8, Lavrentiev Avenue, Novosibirsk, Russia, 630090
- * E-mail:
| |
Collapse
|
12
|
The experimental power of FR900359 to study Gq-regulated biological processes. Nat Commun 2015; 6:10156. [PMID: 26658454 PMCID: PMC4682109 DOI: 10.1038/ncomms10156] [Citation(s) in RCA: 279] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 11/06/2015] [Indexed: 12/13/2022] Open
Abstract
Despite the discovery of heterotrimeric αβγ G proteins ∼25 years ago, their selective perturbation by cell-permeable inhibitors remains a fundamental challenge. Here we report that the plant-derived depsipeptide FR900359 (FR) is ideally suited to this task. Using a multifaceted approach we systematically characterize FR as a selective inhibitor of Gq/11/14 over all other mammalian Gα isoforms and elaborate its molecular mechanism of action. We also use FR to investigate whether inhibition of Gq proteins is an effective post-receptor strategy to target oncogenic signalling, using melanoma as a model system. FR suppresses many of the hallmark features that are central to the malignancy of melanoma cells, thereby providing new opportunities for therapeutic intervention. Just as pertussis toxin is used extensively to probe and inhibit the signalling of Gi/o proteins, we anticipate that FR will at least be its equivalent for investigating the biological relevance of Gq.
Collapse
|
13
|
Bald T, Landsberg J, Jansen P, Gaffal E, Tüting T. Phorbol ester-induced neutrophilic inflammatory responses selectively promote metastatic spread of melanoma in a TLR4-dependent manner. Oncoimmunology 2015; 5:e1078964. [PMID: 27057457 PMCID: PMC4801457 DOI: 10.1080/2162402x.2015.1078964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 12/15/2022] Open
Abstract
Increased neutrophil counts both in tumor tissue and peripheral blood correlate with poor clinical outcome in melanoma patients suggesting a pro-tumorigenic role of neutrophils for the pathogenesis of malignant melanoma. Recently, we discovered that neutrophilic skin inflammatory responses induced by UV exposure promote metastatic spread of primary cutaneous melanomas in genetically engineered Hgf-Cdk4(R24C) mice. We hypothesized that other pro-inflammatory stimuli that induce neutrophilic inflammatory responses also promote the development and progression of melanomas. In the current study, we therefore investigated how the most potent and frequently used tumor promoter 12-O-Tetradecanoylphorbol-13-acetate (TPA) affects the development and progression of carcinogen-induced melanomas in Hgf-Cdk4(R24C) mice. Local and systemic neutrophilic inflammatory responses induced by TPA also selectively increase the metastatic spread of melanoma cells to draining lymph nodes and lungs. Using a highly metastatic Hgf-Cdk4(R24C) melanoma skin transplant we could show that TPA enhances systemic spread of melanoma cells which was depended on intact TLR4 signaling in recipient mice and on the presence of neutrophils. Altogether, our experimental results support an important mechanistic role of TLR4-driven neutrophilic inflammation for melanoma progression.
Collapse
Affiliation(s)
- Tobias Bald
- Laboratory of Experimental Dermatology, Department of Dermatology and Allergy, University of Bonn , Bonn, Germany
| | - Jennifer Landsberg
- Laboratory of Experimental Dermatology, Department of Dermatology and Allergy, University of Bonn , Bonn, Germany
| | - Philipp Jansen
- Laboratory of Experimental Dermatology, Department of Dermatology and Allergy, University of Bonn , Bonn, Germany
| | - Evelyn Gaffal
- Laboratory of Experimental Dermatology, Department of Dermatology and Allergy, University of Bonn , Bonn, Germany
| | - Thomas Tüting
- Laboratory of Experimental Dermatology, Department of Dermatology and Allergy, University of Bonn , Bonn, Germany
| |
Collapse
|
14
|
Eosinophils orchestrate cancer rejection by normalizing tumor vessels and enhancing infiltration of CD8(+) T cells. Nat Immunol 2015; 16:609-17. [PMID: 25915731 DOI: 10.1038/ni.3159] [Citation(s) in RCA: 377] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/26/2015] [Indexed: 02/07/2023]
Abstract
Tumor-associated eosinophilia is frequently observed in cancer. However, despite numerous studies of patients with cancer and mouse models of cancer, it has remained uncertain if eosinophils contribute to tumor immunity or are mere bystander cells. Here we report that activated eosinophils were essential for tumor rejection in the presence of tumor-specific CD8(+) T cells. Tumor-homing eosinophils secreted chemoattractants that guided T cells into the tumor, which resulted in tumor eradication and survival. Activated eosinophils initiated substantial changes in the tumor microenvironment, including macrophage polarization and normalization of the tumor vasculature, which are known to promote tumor rejection. Thus, our study presents a new concept for eosinophils in cancer that may lead to novel therapeutic strategies.
Collapse
|
15
|
Seth A, Heo MB, Lim YT. Poly (γ-glutamic acid) based combination of water-insoluble paclitaxel and TLR7 agonist for chemo-immunotherapy. Biomaterials 2014; 35:7992-8001. [PMID: 24954733 DOI: 10.1016/j.biomaterials.2014.05.076] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 05/26/2014] [Indexed: 12/21/2022]
Abstract
Advanced anti-cancer regimens are being introduced for more effective cancer treatment with improved life expectancy. In this research, immuno-stimulating agent toll-like receptor-7 (TLR-7) agonist-imiquimod and low dose chemotherapeutic agent-paclitaxel were synergized to demonstrate tumor therapy along with anti-tumor memory effect. Both therapeutic agents being water insoluble were dispersed in water with the help of water soluble polymer: poly (γ-glutamic acid) (γ-PGA) using a co-solvent systems leading to formation of micro-dispersions of drugs. Paclitaxel and imiquimod formed crystalline microstructures in the size range of 2-3 μm and were stably dispersed in γ-PGA matrix for more than 6 months. Paclitaxel and combination of paclitaxel and imiquimod had significant tumor killing effect in-vitro on various tumor cell lines, while antigen presenting cells (dendritic cells-DCs) treated with the same concentration of imiquimod along with the combination led to enhanced proliferation (250%). In DCs, enhanced secretion of pro-inflammatory and Th1 cytokines was observed in cells co-treated with paclitaxel and imiquimod dispersed in γ-PGA. When administered by intra-tumoral injection in mouse melanoma tumor model, the treatment with combination exemplified drastic inhibition of tumor growth leading to 70% survival as compared to individual components with 0% survival at day 41. The anti-tumor response generated was also found to have systemic memory response since the vaccinated mice significantly deferred secondary tumor development at distant site 6 weeks after treatment. The relative number and activation status of DCs in-vivo was found to be dramatically increased in case of mice treated with combination. The dramatic inhibition of tumor treated with combination is expected to be mediated by both chemotherapeutic killing of tumor cells followed by uptake of released antigen by the DCs and due to enhanced proliferation and activation of the DCs.
Collapse
Affiliation(s)
- Anushree Seth
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Min Beom Heo
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT), School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| |
Collapse
|
16
|
Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature 2014; 507:109-13. [PMID: 24572365 DOI: 10.1038/nature13111] [Citation(s) in RCA: 487] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 01/29/2014] [Indexed: 12/12/2022]
Abstract
Intermittent intense ultraviolet (UV) exposure represents an important aetiological factor in the development of malignant melanoma. The ability of UV radiation to cause tumour-initiating DNA mutations in melanocytes is now firmly established, but how the microenvironmental effects of UV radiation influence melanoma pathogenesis is not fully understood. Here we report that repetitive UV exposure of primary cutaneous melanomas in a genetically engineered mouse model promotes metastatic progression, independent of its tumour-initiating effects. UV irradiation enhanced the expansion of tumour cells along abluminal blood vessel surfaces and increased the number of lung metastases. This effect depended on the recruitment and activation of neutrophils, initiated by the release of high mobility group box 1 (HMGB1) from UV-damaged epidermal keratinocytes and driven by Toll-like receptor 4 (TLR4). The UV-induced neutrophilic inflammatory response stimulated angiogenesis and promoted the ability of melanoma cells to migrate towards endothelial cells and use selective motility cues on their surfaces. Our results not only reveal how UV irradiation of epidermal keratinocytes is sensed by the innate immune system, but also show that the resulting inflammatory response catalyses reciprocal melanoma-endothelial cell interactions leading to perivascular invasion, a phenomenon originally described as angiotropism in human melanomas by histopathologists. Angiotropism represents a hitherto underappreciated mechanism of metastasis that also increases the likelihood of intravasation and haematogenous dissemination. Consistent with our findings, ulcerated primary human melanomas with abundant neutrophils and reactive angiogenesis frequently show angiotropism and a high risk for metastases. Our work indicates that targeting the inflammation-induced phenotypic plasticity of melanoma cells and their association with endothelial cells represent rational strategies to specifically interfere with metastatic progression.
Collapse
|
17
|
Kim SJ, Ha GH, Kim SH, Kang CD. Combination of cancer immunotherapy with clinically available drugs that can block immunosuppressive cells. Immunol Invest 2013; 43:517-34. [PMID: 24295450 DOI: 10.3109/08820139.2013.857352] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Although cancer immunotherapy, which is able to target specifically cancer cells without detrimental effects to normal cell functions, would serve as an ideal therapeutic modality, most of the randomized clinical trials of cancer immunotherapy have not demonstrated a meaningful survival benefit to cancer patients over preexisting therapeutic modalities. Due to the discrepancy between the impressive preclinical results and the limited clinical results, the cancer immunotherapy is not accepted generally as a standard therapy for cancers. A variety of immune escape mechanisms are thought to be involved in this ineffectiveness of cancer immunotherapy. Therefore, elimination of immunosuppressive activities in tumor microenvironment will enhance the effectiveness of cancer immunotherapy, which is currently focused on activation of tumor-specific immune responses. Since there are now increasing evidences showing that many cytotoxic anticancer drugs including targeted agents given in lower-than-therapeutic doses have not only the ability to eliminate tumor cells but can also block the immunosuppressive activities in tumor microenvironments and consequently favor the development of anticancer immune responses, clinically available drugs can be considered for their rapid application to cancer immunotherapies to enhance the efficacy of cancer immunotherapies with marginal effects on cancer treatment.
Collapse
Affiliation(s)
- So-Jung Kim
- MD-PhD Program, Pusan National University School of Medicine , Yangsan , South Korea 626-870
| | | | | | | |
Collapse
|
18
|
Diken M, Attig S, Grunwitz C, Kranz L, Simon P, van de Roemer N, Vascotto F, Kreiter S. CIMT 2013: advancing targeted therapies--report on the 11th Annual Meeting of the Association for Cancer Immunotherapy, May 14-16 2013, Mainz, Germany. Hum Vaccin Immunother 2013; 9:2025-32. [PMID: 23877042 PMCID: PMC3906376 DOI: 10.4161/hv.25768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The 11th Annual Meeting of Association for Cancer Immunotherapy (CIMT) welcomed more than 700 scientists around the world to Mainz, Germany and continued to be the largest immunotherapy meeting in Europe. Renowned speakers from various fields of cancer immunotherapy gave lectures under CIMT2013’s tag: “Advancing targeted therapies” the highlights of which are summarized in this meeting report.
Collapse
Affiliation(s)
- Mustafa Diken
- TRON-Translational Oncology at the University Medical Center of Johannes Gutenberg University; Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Turning Tumors into Vaccines: Co-opting the Innate Immune System. Immunity 2013; 39:27-37. [DOI: 10.1016/j.immuni.2013.07.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/10/2013] [Indexed: 02/07/2023]
|
20
|
Tüting T. T cell immunotherapy for melanoma from bedside to bench to barn and back: how conceptual advances in experimental mouse models can be translated into clinical benefit for patients. Pigment Cell Melanoma Res 2013; 26:441-56. [PMID: 23617831 DOI: 10.1111/pcmr.12111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/18/2013] [Indexed: 12/27/2022]
Abstract
A solid scientific basis now supports the concept that cytotoxic T lymphocytes can specifically recognize and destroy melanoma cells. Over the last decades, clinicians and basic scientists have joined forces to advance our concepts of melanoma immunobiology. This has catalyzed the rational development of therapeutic approaches to enforce melanoma-specific T cell responses. Preclinical studies in experimental mouse models paved the way for their successful translation into clinical benefit for patients with metastatic melanoma. A more thorough understanding of how melanomas develop resistance to T cell immunotherapy is necessary to extend this success. This requires a continued interdisciplinary effort of melanoma biologists and immunologists that closely connects clinical observations with in vitro investigations and appropriate in vivo mouse models: From bedside to bench to barn and back.
Collapse
Affiliation(s)
- Thomas Tüting
- Laboratory of Experimental Dermatology, Department of Dermatology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
21
|
Hölzel M, Bovier A, Tüting T. Plasticity of tumour and immune cells: a source of heterogeneity and a cause for therapy resistance? Nat Rev Cancer 2013; 13:365-76. [PMID: 23535846 DOI: 10.1038/nrc3498] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Immunotherapies, signal transduction inhibitors and chemotherapies can successfully achieve remissions in advanced stage cancer patients, but durable responses are rare. Using malignant melanoma as a paradigm, we propose that therapy-induced injury to tumour tissue and the resultant inflammation can activate protective and regenerative responses that represent a shared resistance mechanism to different treatments. Inflammation-driven phenotypic plasticity alters the antigenic landscape of tumour cells, rewires oncogenic signalling networks, protects against cell death and reprogrammes immune cell functions. We propose that the successful combination of cancer treatments to tackle resistance requires an interdisciplinary understanding of these resistance mechanisms, supported by mathematical models.
Collapse
Affiliation(s)
- Michael Hölzel
- Unit for RNA Biology, Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, 53105 Bonn, Germany
| | | | | |
Collapse
|
22
|
Nanoparticle mediated co-delivery of paclitaxel and a TLR-4 agonist results in tumor regression and enhanced immune response in the tumor microenvironment of a mouse model. Int J Pharm 2013; 445:171-80. [DOI: 10.1016/j.ijpharm.2013.01.045] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 01/14/2013] [Accepted: 01/17/2013] [Indexed: 12/29/2022]
|
23
|
Auphan-Anezin N, Verdeil G, Grange M, Soudja SM, Wehbe M, Buferne M, Mas A, Schmitt-Verhulst AM. Immunosuppression in inflammatory melanoma: can it be resisted by adoptively transferred T cells? Pigment Cell Melanoma Res 2012; 26:167-75. [PMID: 23217139 DOI: 10.1111/pcmr.12056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 11/28/2012] [Indexed: 01/05/2023]
Abstract
Discovery of tumor antigen (TA) recognized by autologous T cells (TCs) in patients with melanoma has led to clinical protocols using either vaccination or adoptive transfer of TA-specific TCs. However, efficacy of these treatments has been hampered by inhibitory effects exerted on tumor-infiltrating TCs by tumor-intrinsic mediators or by recruitment of immunosuppressive cells. A mouse model of autochthonous melanoma recapitulates some aspects of inflammatory melanoma development in patients. These include a systemic Th2-/Th17-oriented chronic inflammation, recruitment of immunosuppressive myeloid cells and acquisition by tumor-infiltrating TCs of an 'exhausted' phenotype characterized by expression of multiple inhibitory receptors including programmed death-1, also expressed on patients' melanoma-infiltrating TCs. Rather than using extracellular blocking reagents to inhibitory surface molecules on TCs, we sought to dampen negative signaling exerted on them. Adoptively transferred TCs presenting increased cytokine receptor signaling due to expression of an active Stat5 transcription factor were efficient at inducing melanoma regression in the preclinical melanoma model. These transferred TCs thrived and retained expression of effector molecules in the melanoma microenvironment, defining a protocol endowing TCs with the ability to resist melanoma-induced immunosuppression.
Collapse
Affiliation(s)
- Nathalie Auphan-Anezin
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université UM2, Marseille, France.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Landsberg J, Kohlmeyer J, Renn M, Bald T, Rogava M, Cron M, Fatho M, Lennerz V, Wölfel T, Hölzel M, Tüting T. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature 2012; 490:412-6. [PMID: 23051752 DOI: 10.1038/nature11538] [Citation(s) in RCA: 450] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/24/2012] [Indexed: 12/23/2022]
Abstract
Adoptive cell transfer therapies (ACTs) with cytotoxic T cells that target melanocytic antigens can achieve remissions in patients with metastatic melanomas, but tumours frequently relapse. Hypotheses explaining the acquired resistance to ACTs include the selection of antigen-deficient tumour cell variants and the induction of T-cell tolerance. However, the lack of appropriate experimental melanoma models has so far impeded clear insights into the underlying mechanisms. Here we establish an effective ACT protocol in a genetically engineered mouse melanoma model that recapitulates tumour regression, remission and relapse as seen in patients. We report the unexpected observation that melanomas acquire ACT resistance through an inflammation-induced reversible loss of melanocytic antigens. In serial transplantation experiments, melanoma cells switch between a differentiated and a dedifferentiated phenotype in response to T-cell-driven inflammatory stimuli. We identified the proinflammatory cytokine tumour necrosis factor (TNF)-α as a crucial factor that directly caused reversible dedifferentiation of mouse and human melanoma cells. Tumour cells exposed to TNF-α were poorly recognized by T cells specific for melanocytic antigens, whereas recognition by T cells specific for non-melanocytic antigens was unaffected or even increased. Our results demonstrate that the phenotypic plasticity of melanoma cells in an inflammatory microenvironment contributes to tumour relapse after initially successful T-cell immunotherapy. On the basis of our work, we propose that future ACT protocols should simultaneously target melanocytic and non-melanocytic antigens to ensure broad recognition of both differentiated and dedifferentiated melanoma cells, and include strategies to sustain T-cell effector functions by blocking immune-inhibitory mechanisms in the tumour microenvironment.
Collapse
Affiliation(s)
- Jennifer Landsberg
- Laboratory of Experimental Dermatology, Department of Dermatology and Allergy, University of Bonn, D-53105 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Towards curative cancer immunotherapy: overcoming posttherapy tumor escape. Clin Dev Immunol 2012; 2012:124187. [PMID: 22778760 PMCID: PMC3386616 DOI: 10.1155/2012/124187] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/06/2012] [Indexed: 02/07/2023]
Abstract
The past decade has witnessed the evolvement of cancer immunotherapy as an increasingly effective therapeutic modality, evidenced by the approval of two immune-based products by the FDA, that is, the cancer vaccine Provenge (sipuleucel-T) for prostate cancer and the antagonist antibody against cytotoxic T-lymphocyte antigen-4 (CTLA-4) ipilimumab for advanced melanoma. In addition, the clinical evaluations of a variety of promising immunotherapy drugs are well under way. Benefiting from more efficacious immunotherapeutic agents and treatment strategies, a number of recent clinical studies have achieved unprecedented therapeutic outcomes in some patients with certain types of cancers. Despite these advances, however, the efficacy of most cancer immunotherapies currently under clinical development has been modest. A recurring scenario is that therapeutic maneuvers initially led to measurable antitumor immune responses in cancer patients but ultimately failed to improve patient outcomes. It is increasingly recognized that tumor cells can antagonize therapy-induced immune attacks through a variety of counterregulation mechanisms, which represent a fundamental barrier to the success of cancer immunotherapy. Herein we summarize the findings from some recent preclinical and clinical studies, focusing on how tumor cells advance their survival and expansion by hijacking therapy-induced immune effector mechanisms that would otherwise mediate their destruction.
Collapse
|
26
|
Hong Y, Peng Y, Xiao H, Mi M, Munn D, He Y. Immunoglobulin Fc fragment tagging allows strong activation of endogenous CD4 T cells to reshape the tumor milieu and enhance the antitumor effect of lentivector immunization. THE JOURNAL OF IMMUNOLOGY 2012; 188:4819-27. [PMID: 22504640 DOI: 10.4049/jimmunol.1103512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A major problem with current cancer vaccines is that the induction of CD8 immune responses is rarely associated with antitumor benefits, mainly owing to multiple immune suppressions in established tumor lesions. In this study, we investigated if and how activation of endogenous CD4 T cells could be achieved to influence the suppressive tumor milieu and antitumor effect. We engineered a lentivector (lv) to express a nominal fusion Ag composed of hepatitis B surface protein and IgG2a Fc fragment (HBS-Fc-lv) to increase the magnitude of CD8 response but, more importantly, to induce effective coactivation of CD4 T cells. We found that, remarkably, immunization with HBS-Fc-lv caused significant regression of established tumors. Immunologic analysis revealed that, compared with HBS-lv without Fc fragment, immunization with HBS-Fc-lv markedly increased the number of functional CD8 and CD4 T cells and the level of Th1/Tc1-like cytokines in the tumor while substantially decreasing the regulatory T cell ratio. The favorable immunologic changes in tumor lesions and the improvement of antitumor effects from HBS-Fc-lv immunization were dependent on the CD4 activation, which was Fc receptor mediated. Adoptive transfer of CD4 T cells from the HBS-Fc-lv-immunized mice could activate endogenous CD8 T cells in an IFN-γ-dependent manner. We conclude that endogenous CD4 T cells can be activated by lv expressing Fc-tagged Ag to provide another layer of help--that is, creating a Th1/Tc1-like proinflammatory milieu within the tumor lesion to boost the effector phase of immune responses in enhancing the antitumor effect.
Collapse
Affiliation(s)
- Yuan Hong
- Immunology/Immunotherapy Program, Cancer Center, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | | | | | |
Collapse
|
27
|
Skivka L, Susak Y, Trompak O, Kudryavets Y, Bezdeneznikh N, Semesiuk N, Lykhova O. The effect of monotherapy and combined therapy with NSC-631570 (ukrain) on growth of low- and high-metastasizing B16 melanoma in mice. J Oncol Pharm Pract 2011; 17:339-349. [PMID: 20817651 DOI: 10.1177/1078155210382470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND NSC-631570 (ukrain) is a semisynthetic derivative of the Chelidonium majus alcaloids and the alkylans thiotepa. It exerts a selective cytotoxic effect on tumor cells in vitro and in vivo and shows the ability to modulate immunocyte functions. Purpose. The aim of our work was to carry out a comparative investigation of the effects of NSC-631570 alone or in combination with pathogen-associated molecules (PAM) on the growth of low- and high-metastasizing melanoma B16 in mice. METHODS NSC-631570 was administered intravenously and PAM intramuscularly to tumor-bearing mice seven times every third day, starting from the second day after the transplantation of tumor cells. The effect of monotherapy and combined therapy on tumor growth was evaluated by the indices of tumor growth inhibition in experimental animals. Cell cycle distribution of cancer cells was determined by flow cytometry. TAP1 and TAP2 expression was evaluated by RT-PCR. The metabolic activity of phagocytes was determined by NBT-test, phagocytosis was tested by flow cytometry, and arginase activity was estimated by colorimetric determination of urea. RESULTS Combined therapy and monotherapy with NSC-631570 resulted in significant inhibition of tumor growth in melanoma-bearing mice. Monotherapy with Ukrain was more effective in mice with high-metastasizing tumors. The therapeutic efficacy of NSC-631570 used in combination with PAM was more expressed in mice with low-metastasizing melanoma. CONCLUSION The effectiveness of monotherapy and combined therapy with NSC-631570 in the treatment of melanoma B16 depends on the biological properties of the tumor and the immune state of the organism.
Collapse
Affiliation(s)
- Lm Skivka
- Microbiology and General Immunology (sub)department, Biological Department, Taras Shevchenko Kyiv National University, Kyiv, Ukraine.
| | | | | | | | | | | | | |
Collapse
|
28
|
Garrido C, Romero I, Berruguilla E, Cancela B, Algarra I, Collado A, García-Lora A, Garrido F. Immunotherapy eradicates metastases with reversible defects in MHC class I expression. Cancer Immunol Immunother 2011; 60:1257-68. [PMID: 21553283 PMCID: PMC11028956 DOI: 10.1007/s00262-011-1027-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Accepted: 04/21/2011] [Indexed: 01/05/2023]
Abstract
Tumor or metastatic cells lose MHC class I (MHC-I) expression during cancer progression as an escape mechanism from immune surveillance. These defects in MHC-I may be reversible by cytokines or different agents (soft lesions) or irreversible due to structural defects (hard lesions). The nature of these MHC-I alterations might determine the success or failure of immunotherapy treatments. In this study, we have used an MHC-I-positive murine fibrosarcoma tumor clone, GR9-A7, which generates multiple lung and lymph node metastases with reversible MHC-I alterations after treatment with IFN-γ. Four different antitumor treatments were carried out after primary tumor excision to determine their capacity to inhibit spontaneous metastatic colonization of the GR9-A7 tumor clone. We found that 2 different immunotherapy protocols (CpG plus autologous irradiated-GR9-A7 cells and protein-bound polysaccharide K (PSK) and 1 chemoimmunotherapy (docetaxel plus PSK) induced eradication of metastases. In contrast, chemotherapy with docetaxel alone produced only partial reduction in the number of metastases. Flow cytometric analysis of lymphocyte populations showed an immunosuppression in GR9-A7 tumor-bearing host, which could be reverted by immunotherapy treatments. Our results suggest that irreversible or reversible MHC-I alterations in tumor target cells may determine its progression or regression independently of the type of immunotherapy used.
Collapse
Affiliation(s)
- Cristina Garrido
- Departamento De Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
- Servicio de Análisis Clínicos and Inmunología, Hospital Universitario Virgen de las Nieves, Av. Fuerzas Armadas 2, 18014 Granada, Spain
| | - Irene Romero
- Servicio de Análisis Clínicos and Inmunología, Hospital Universitario Virgen de las Nieves, Av. Fuerzas Armadas 2, 18014 Granada, Spain
| | - Enrique Berruguilla
- Servicio de Análisis Clínicos and Inmunología, Hospital Universitario Virgen de las Nieves, Av. Fuerzas Armadas 2, 18014 Granada, Spain
| | - Bárbara Cancela
- Servicio de Farmacia, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Ignacio Algarra
- Departamento de Ciencias de la Salud, Universidad de Jaén, Jaén, Spain
| | - Antonia Collado
- Unidad de Investigación, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Angel García-Lora
- Servicio de Análisis Clínicos and Inmunología, Hospital Universitario Virgen de las Nieves, Av. Fuerzas Armadas 2, 18014 Granada, Spain
| | - Federico Garrido
- Departamento De Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
- Servicio de Análisis Clínicos and Inmunología, Hospital Universitario Virgen de las Nieves, Av. Fuerzas Armadas 2, 18014 Granada, Spain
| |
Collapse
|
29
|
Gaffal E, Landsberg J, Bald T, Sporleder A, Kohlmeyer J, Tüting T. Neonatal UVB exposure accelerates melanoma growth and enhances distant metastases in Hgf-Cdk4(R24C) C57BL/6 mice. Int J Cancer 2011; 129:285-94. [PMID: 21207411 DOI: 10.1002/ijc.25913] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 12/20/2010] [Indexed: 12/11/2022]
Abstract
Genetically engineered mouse models offer new opportunities to experimentally investigate the impact of UV on melanoma pathogenesis. Here we irradiated a cohort of newborn 15 Hgf-Cdk4(R24C) mice on the pigmented C57BL/6 background with one erythemogenic dose of 6 kJ/m(2) UVB and compared the development of nevi and melanoma with a cohort of 30 untreated Hgf-Cdk4(R24C) mice. Neonatal UVB exposure decreased the latency and accelerated the growth of primary melanomas resulting in a significantly decreased time from melanoma onset to melanoma-related death (61 days vs. 96 days). Interestingly, we did not observe differences in the development of melanocytic nevi. Histopathological investigations revealed that UVB irradiation shifted the spectrum of melanomas toward a more aggressive phenotype with increased tumor cell proliferation, invasive growth and enhanced angiogenesis. Accordingly, we observed distal melanoma metastases in the lungs more frequently in the UV-irradiated than in the untreated cohort of Hgf-Cdk4(R24C) mice (73% vs. 47%). UVB-induced melanomas only contained very few infiltrating immune cells and expressed very low levels of proinflammatory chemokines. Taken together, our results demonstrate that neonatal UVB exposure promoted the early appearance of rapidly enlarging primary melanomas in Hgf-Cdk4(R24C) C57BL/6 mice which showed enhanced invasive and metastatic behaviour without a persistent tumor-associated inflammatory response. The preferential impact of UVB irradiation on the progression of melanoma without an effect on the development of nevi supports the hypothesis that the molecular targets of UVB are involved in bypassing the proliferative arrest of transformed melanocytes without alerting a cellular immune response.
Collapse
Affiliation(s)
- Evelyn Gaffal
- Department of Dermatology and Allergy, Laboratory of Experimental Dermatology, University of Bonn, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Whole recombinant yeast vaccine induces antitumor immunity and improves survival in a genetically engineered mouse model of melanoma. Gene Ther 2011; 18:827-34. [PMID: 21390072 DOI: 10.1038/gt.2011.28] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Malignant melanoma is one of the deadliest forms of skin cancer and its incidence is expected to rise over the next two decades. At present, there are no effective therapies for advanced melanoma. We have previously shown that administration of whole recombinant yeast expressing human MART-1 (hMART-IT) induces protective antimelanoma immunity in a B16F10 transplantable mouse model. In this study, we examine the effectiveness of the hMART-IT vaccine in a congenic strain of genetically engineered mouse model of melanoma, which recapitulates both the underlying genetics and the proper tumor microenvironment of naturally occurring melanoma. Subcutaneous administration of hMART-IT induced cytotoxicity against melanoma cells and antigen-specific production of Th1-specific cytokines by splenocytes. Weekly administration of hMART-IT significantly delayed the development of melanoma and prolonged the survival of mice compared with controls. Although histological analysis demonstrated diffuse infiltration of CD4(+) T cells and CD8(+) T cells, no reduction of regulatory T cells was observed, suggesting that hMART-IT cannot prevent immunotolerance in the tumor microenvironment. This study provides a proof of concept that genetically engineered mouse models lend valuable insights into immunotherapeutics being tested in the preclinical setting.
Collapse
|
31
|
Adoptive immunotherapy combined with intratumoral TLR agonist delivery eradicates established melanoma in mice. Cancer Immunol Immunother 2011; 60:671-83. [PMID: 21327636 DOI: 10.1007/s00262-011-0984-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 01/26/2011] [Indexed: 12/17/2022]
Abstract
Toll-like receptor (TLR) agonists can trigger broad inflammatory responses that elicit rapid innate immunity and promote the activities of lymphocytes, which can potentially enhance adoptive immunotherapy in the tumor-bearing setting. In the present study, we found that Polyinosinic:Polycytidylic Acid [Poly(I:C)] and CpG oligodeoxynucleotide 1826 [CpG], agonists for TLR 3 and 9, respectively, potently activated adoptively transferred T cells against a murine model of established melanoma. Intratumoral injection of Poly(I:C) and CpG, combined with systemic transfer of activated pmel-1 T cells, specific for gp100(25-33), led to enhanced survival and eradication of 9-day established subcutaneous B16F10 melanomas in a proportion of mice. A series of survival studies in knockout mice supported a key mechanistic pathway, whereby TLR agonists acted via host cells to enhance IFN-γ production by adoptively transferred T cells. IFN-γ, in turn, enhanced the immunogenicity of the B16F10 melanoma line, leading to increased killing by adoptively transferred T cells. Thus, this combination approach counteracted tumor escape from immunotherapy via downregulation of immunogenicity. In conclusion, TLR agonists may represent advanced adjuvants within the setting of adoptive T-cell immunotherapy of cancer and hold promise as a safe means of enhancing this approach within the clinic.
Collapse
|
32
|
Ly LV, Sluijter M, Versluis M, Luyten GP, van der Burg SH, Melief CJ, Jager MJ, van Hall T. Peptide Vaccination after T-Cell Transfer Causes Massive Clonal Expansion, Tumor Eradication, and Manageable Cytokine Storm. Cancer Res 2010; 70:8339-46. [DOI: 10.1158/0008-5472.can-10-2288] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Zhou Q, Xiao H, Liu Y, Peng Y, Hong Y, Yagita H, Chandler P, Munn DH, Mellor A, Fu N, He Y. Blockade of programmed death-1 pathway rescues the effector function of tumor-infiltrating T cells and enhances the antitumor efficacy of lentivector immunization. THE JOURNAL OF IMMUNOLOGY 2010; 185:5082-92. [PMID: 20926790 DOI: 10.4049/jimmunol.1001821] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite intensive effort, the antitumor efficacy of tumor vaccines remains limited in treating established tumors regardless of the potent systemic tumor-specific immune response and the increases of tumor infiltration of T effector cells. In the current study, we demonstrated that although lentivector (lv) immunization markedly increased Ag-dependent tumor infiltration of CD8 and CD4 T cells and generated Ag-specific antitumor effect, it simultaneously increased the absolute number of myeloid-derived suppressor cells and regulatory T cells in the tumor lesions. In addition, lv immunization induced expression of programmed death-ligand 1 in the tumor lesions. Furthermore, the tumor-infiltrating CD8 T cells expressed high levels of programmed death-1 and were partially dysfunctional, producing lower amounts of effector cytokines and possessing a reduced cytotoxicity. Together, these immune-suppression mechanisms in the tumor microenvironment pose a major obstacle to effective tumor immunotherapy and may explain the limited antitumor efficacy of lv immunization. The loss of effector function in the tumor microenvironment is reversible, and the effector function of CD8 T cells in the tumor could be partially rescued by blocking programmed death-1 and programmed death-ligand 1 pathway in vitro and in vivo, resulting in enhanced antitumor efficacy of lv immunization. These data suggest that immunization alone may exacerbate immune suppression in the tumor lesions and that methods to improve the tumor microenvironment and to rescue the effector functions of tumor-infiltrating T cells should be incorporated into immunization strategies to achieve enhanced antitumor efficacy.
Collapse
Affiliation(s)
- Qifeng Zhou
- Immunology/Immunotherapy Program, Medical College of Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mondino A, Dardalhon V, Hess Michelini R, Loisel-Meyer S, Taylor N. Redirecting the immune response: role of adoptive T cell therapy. Hum Gene Ther 2010; 21:533-41. [PMID: 20201627 DOI: 10.1089/hum.2010.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Adoptive T cell therapy is aimed at overcoming constraints of the endogenous immune response. In patients with malignancies, this approach is based on the possibility of administering sufficient numbers of tumor-reactive lymphocytes under conditions in which they will promote a therapeutic response. Although this strategy is potentially applicable to a vast number of malignancies, its efficacy, to date, has been limited. This is likely related to several factors including an insufficient persistence and reactivation of infused cells, insufficient tumor infiltration, and the presence of an immunosuppressive environment. Here, we review the importance of pretransplantation host conditioning and posttransplantation strategies that have been shown to contribute to the therapeutic efficacy of infused T lymphocytes.
Collapse
Affiliation(s)
- Anna Mondino
- Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy.
| | | | | | | | | |
Collapse
|
35
|
Coccoris M, Straetemans T, Govers C, Lamers C, Sleijfer S, Debets R. T cell receptor (TCR) gene therapy to treat melanoma: lessons from clinical and preclinical studies. Expert Opin Biol Ther 2010; 10:547-62. [PMID: 20146634 DOI: 10.1517/14712591003614756] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Adoptive T cell therapy (ACT) with tumour infiltrating lymphocytes is currently the best treatment option for metastatic melanoma. Despite its clinical successes, ACT has limitations in availability and generation of therapeutic T cells for a larger group of patients. Introduction of tumour-specific T cell receptors into T cells, termed TCR gene therapy, can provide an alternative for ACT that is more widely applicable and might be extended to other types of cancer. AREAS COVERED IN THIS REVIEW The current status of TCR gene therapy studies including clinical challenges, such as on-target toxicity, compromised anti-tumour T cell responses, compromised T cell persistence and potential immunogenicity of receptor transgenes. Strategies to address these challenges are covered. WHAT THE READER WILL GAIN A listing and discussion of strategies that aim at improving the efficacy and safety of TCR gene therapy. Such strategies address antigen choice, TCR mis-pairing, functional avidity and persistence of T cells, immune responses towards receptor transgenes, and combination of ACT with other therapies. TAKE HOME MESSAGE To ensure further clinical development of TCR gene therapy, it is necessary to choose safe T cell target antigens, and implement (combinations of) strategies that enhance the correct pairing of TCR transgenes and the functional avidity and persistence of T cells.
Collapse
Affiliation(s)
- Miriam Coccoris
- Erasmus MC-Daniel den Hoed Cancer Center, Laboratory of Experimental Tumor immunology, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
36
|
Westwood JA, Berry LJ, Wang LX, Duong CP, Pegram HJ, Darcy PK, Kershaw MH. Enhancing adoptive immunotherapy of cancer. Expert Opin Biol Ther 2010; 10:531-45. [PMID: 20132063 DOI: 10.1517/14712591003610622] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Conventional therapies, including surgery, chemotherapy and radiotherapy have contributed much to cancer treatment. However, these treatment modalities fail in a large proportion of patients, and there is a great need for effective alternate therapies. Adoptive immunotherapy can be effective against some cancers that have failed all other treatment options, even when disease burdens are massive. AREAS COVERED IN THIS REVIEW This review gives a brief introduction of the historical origins of adoptive immunotherapy and then provides details of strategies for increasing the potency of cell transfer. Approaches for enhancing adoptive immunotherapy include: selecting the right type of cell; providing cytokine support; preconditioning patients and tuning the tumor microenvironment. The review also provides insights into the safety, feasibility and costs of this form of therapy. WHAT THE READER WILL GAIN This article will give the reader an appreciation of the potential of adoptive immunotherapy, as well as an understanding of some limitations and current approaches for optimizing the effectiveness of this approach. TAKE HOME MESSAGE With recent developments in knowledge of the interactions between the immune system and tumors, the field of adoptive immunotherapy is now poised to make dramatic contributions to cancer therapy.
Collapse
Affiliation(s)
- Jennifer A Westwood
- Peter MacCallum Cancer Centre, Cancer Immunology Research Program, St. Andrews Place, Melbourne, Victoria 3002, Australia
| | | | | | | | | | | | | |
Collapse
|
37
|
Landsberg J, Gaffal E, Cron M, Kohlmeyer J, Renn M, Tüting T. Autochthonous primary and metastatic melanomas in Hgf-Cdk4R24C mice evade T-cell-mediated immune surveillance. Pigment Cell Melanoma Res 2010; 23:649-60. [DOI: 10.1111/j.1755-148x.2010.00744.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Ma Y, Kepp O, Ghiringhelli F, Apetoh L, Aymeric L, Locher C, Tesniere A, Martins I, Ly A, Haynes NM, Smyth MJ, Kroemer G, Zitvogel L. Chemotherapy and radiotherapy: cryptic anticancer vaccines. Semin Immunol 2010; 22:113-24. [PMID: 20403709 DOI: 10.1016/j.smim.2010.03.001] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Accepted: 03/15/2010] [Indexed: 02/07/2023]
Abstract
An attractive, yet hitherto unproven concept predicts that the promotion of tumor regression should elicit the host's immune response against residual tumor cells to achieve an optimal therapeutic effect. In a way, chemo- or radiotherapy must trigger "danger signals" emitted from immunogenic cell death and hence elicit "danger associated molecular patterns" to stimulate powerful anticancer immune responses. Here, based on the recent experimental and clinical evidence, we will discuss the molecular identity of the multiple checkpoints that dictate the success of "immunogenic chemotherapy" at the levels of the drug, of the tumor cell and of the host immune system.
Collapse
Affiliation(s)
- Yuting Ma
- INSERM, U805, F-94805 Villejuif, France; Institut Gustave Roussy, F-94805 Villejuif, France; Université Paris-Sud, F-94805 Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Salem ML, Cole DJ. Dendritic cell recovery post-lymphodepletion: a potential mechanism for anti-cancer adoptive T cell therapy and vaccination. Cancer Immunol Immunother 2010; 59:341-353. [PMID: 19921513 PMCID: PMC3070377 DOI: 10.1007/s00262-009-0792-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 10/26/2009] [Indexed: 02/07/2023]
Abstract
Adoptive transfer of autologous tumor-reactive T cells holds promise as a cancer immunotherapy. In this approach, T cells are harvested from a tumor-bearing host, expanded in vitro and infused back to the same host. Conditioning of the recipient host with a lymphodepletion regimen of chemotherapy or radiotherapy before adoptive T cell transfer has been shown to substantially improve survival and anti-tumor responses of the transferred cells. These effects are further enhanced when the adoptive T cell transfer is followed by vaccination with tumor antigens in combination with a potent immune adjuvant. Although significant progress has been made toward an understanding of the reasons underlying the beneficial effects of lymphodepletion to T cell adoptive therapy, the precise mechanisms remain poorly understood. Recent studies, including ours, would indicate a more central role for antigen presenting cells, in particular dendritic cells. Unraveling the exact role of these important cells in mediation of the beneficial effects of lymphodepletion could provide novel pathways toward the rational design of more effective anti-cancer immunotherapy. This article focuses on how the frequency, phenotype, and functions of dendritic cells are altered during the lymphopenic and recovery phases post-induction of lymphodepletion, and how they affect the anti-tumor responses of adoptively transferred T cells.
Collapse
Affiliation(s)
- Mohamed Labib Salem
- Surgery Department, Medical University of South Carolina, Charleston, 29425, USA.
| | | |
Collapse
|
40
|
T cell receptor gene therapy: strategies for optimizing transgenic TCR pairing. Trends Mol Med 2010; 16:77-87. [DOI: 10.1016/j.molmed.2009.12.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 12/21/2009] [Accepted: 12/21/2009] [Indexed: 11/19/2022]
|