1
|
Lei R, Yao C, Huang R, Wu W, Ou L, Yang C. STC2 suppresses triple-negative breast cancer migration and invasion by inhibition on EMT and promotion on cell apoptosis. Discov Oncol 2024; 15:339. [PMID: 39117970 PMCID: PMC11310179 DOI: 10.1007/s12672-024-01196-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
To investigate the effects of higher cellular stanniocalcin 2 (STC2) on suppressing the migration and invasion but promoting the apoptosis of triple-negative breast cancer (TNBC). STC2 in TNBC and the para-carcinoma tissues were analyzed by immunohistochemistry (IHC), while the mRNA level was measured by qPCR. Over-expressing or silencing STC2 was established in MDA-MB-231 cells. Epithelial mesenchymal transition (EMT) related proteins, cell migration, invasion, proliferation and apoptosis were detected. MDA-MB-231 with over-expressing or silencing STC2 were injected into nude mice to formatting tumors, and then EMT related proteins were measured by IHC. Lower STC2 expressed in TNBC tissues than in the para-carcinoma tissues. Silencing STC2 promoted EMT of TNBC cell MDA-MB-231, as well as cell migration, invasion and proliferation, but suppressed MDA-MB-231 apoptosis, while over-expressing STC2 had the opposite results, which might be related to PKC/PI3K/AKT/mTOR pathway. STC2 was the protective gene in TNBC, by suppressing migration and invasion to inhibit MDA-MB-231 cell EMT but promote cell apoptosis, in order to suppress TNBC progression.
Collapse
Affiliation(s)
- Ruiwen Lei
- Department of Head-Neck and Breast Surgery, Yuebei People's Hospital of Shantou University, Shaoguan, China
| | - Chaoling Yao
- Department of Head-Neck and Breast Surgery, Yuebei People's Hospital of Shantou University, Shaoguan, China
| | - Renfeng Huang
- Department of Head-Neck and Breast Surgery, Yuebei People's Hospital of Shantou University, Shaoguan, China
| | - Wanming Wu
- Department of Head-Neck and Breast Surgery, Yuebei People's Hospital of Shantou University, Shaoguan, China
| | - Linyang Ou
- Department of Head-Neck and Breast Surgery, Yuebei People's Hospital of Shantou University, Shaoguan, China
| | - Chuansheng Yang
- Department of Head-Neck and Breast Surgery, Yuebei People's Hospital of Shantou University, Shaoguan, China.
| |
Collapse
|
2
|
Biedka S, Alkam D, Washam CL, Yablonska S, Storey A, Byrum SD, Minden JS. One-pot method for preparing DNA, RNA, and protein for multiomics analysis. Commun Biol 2024; 7:324. [PMID: 38485785 PMCID: PMC10940598 DOI: 10.1038/s42003-024-05993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
Typical multiomics studies employ separate methods for DNA, RNA, and protein sample preparation, which is labor intensive, costly, and prone to sampling bias. We describe a method for preparing high-quality, sequencing-ready DNA and RNA, and either intact proteins or mass-spectrometry-ready peptides for whole proteome analysis from a single sample. This method utilizes a reversible protein tagging scheme to covalently link all proteins in a lysate to a bead-based matrix and nucleic acid precipitation and selective solubilization to yield separate pools of protein and nucleic acids. We demonstrate the utility of this method to compare the genomes, transcriptomes, and proteomes of four triple-negative breast cancer cell lines with different degrees of malignancy. These data show the involvement of both RNA and associated proteins, and protein-only dependent pathways that distinguish these cell lines. We also demonstrate the utility of this multiomics workflow for tissue analysis using mouse brain, liver, and lung tissue.
Collapse
Affiliation(s)
| | - Duah Alkam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Charity L Washam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | | | - Aaron Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- Arkansas Children's Research Institute, Little Rock, AR, 72202, USA
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | | |
Collapse
|
3
|
Chu H, Xie W, Guo C, Shi H, Gu J, Qin Z, Xie Y. Inhibiting stanniocalcin 2 reduces sunitinib resistance of Caki-1 renal cancer cells under hypoxia condition. Ann Med Surg (Lond) 2023; 85:5963-5971. [PMID: 38098599 PMCID: PMC10718379 DOI: 10.1097/ms9.0000000000001450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/20/2023] [Indexed: 12/17/2023] Open
Abstract
Background Our previous study has suggested that blocking stanniocalcin 2 (STC2) could reduce sunitinib resistance in clear cell renal cell carcinoma (ccRCC) under normoxia. The hypoxia is a particularly important environment for RCC occurrence and development, as well as sunitinib resistance. The authors proposed that STC2 also plays important roles in RCC sunitinib resistance under hypoxia conditions. Methods The ccRCC Caki-1 cells were treated within the hypoxia conditions. Real-time quantitative PCR and Western blotting were applied to detect the STC2 expression in ccRCC Caki-1 cells. STC2-neutralizing antibodies, STC2 siRNA, and the recombinant human STC2 (rhSTC2) were used to identify targeting regulation on STC2 in modulating sunitinib resistance, proliferation, epithelial-mesenchymal transition (EMT), migration, and invasion. In addition, autophagy flux and the lysosomal acidic environment were investigated by Western blotting and fluorescence staining, and the accumulation of sunitinib in cells was observed with the addition of STC2-neutralizing antibodies and autophagy modulators. Results Under hypoxia conditions, sunitinib disrupted the lysosomal acidic environment and accumulated in Caki-1 cells. Hypoxia-induced the STC2 mRNA and protein levels in Caki-1 cells. STC2-neutralizing antibodies and STC2 siRNA effectively aggravated sunitinib-reduced cell viability and proliferation, which were reversed by rhSTC2. In addition, sunitinib promoted EMT, migration, and invasion, which were reduced by STC2-neutralizing antibodies. Conclusion Inhibiting STC2 could reduce the sunitinib resistance of ccRCC cells under hypoxia conditions.
Collapse
Affiliation(s)
- Hezhen Chu
- Department of Urology, Yixing Traditional Chinese Medicine Hospital
| | - Wenchao Xie
- Department of Urology, Affiliated Hospital of Jiangsu University-Yixing People’s Hospital, Yixing
| | - Chuanzhi Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Haifeng Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Jie Gu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Zhenqian Qin
- Department of Urology, Affiliated Hospital of Jiangsu University-Yixing People’s Hospital, Yixing
| | - Yimin Xie
- Department of Urology, Affiliated Hospital of Jiangsu University-Yixing People’s Hospital, Yixing
| |
Collapse
|
4
|
Wang J, Tu W, Qiu J, Wang D. Predicting prognosis and immunotherapeutic response of clear cell renal cell carcinoma. Front Pharmacol 2022; 13:984080. [PMID: 36313281 PMCID: PMC9614164 DOI: 10.3389/fphar.2022.984080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022] Open
Abstract
Immune checkpoint inhibitors have emerged as a novel therapeutic strategy for many different tumors, including clear cell renal cell carcinoma (ccRCC). However, these drugs are only effective in some ccRCC patients, and can produce a wide range of immune-related adverse reactions. Previous studies have found that ccRCC is different from other tumors, and common biomarkers such as tumor mutational burden, HLA type, and degree of immunological infiltration cannot predict the response of ccRCC to immunotherapy. Therefore, it is necessary to further research and construct corresponding clinical prediction models to predict the efficacy of Immune checkpoint inhibitors. We integrated PBRM1 mutation data, transcriptome data, endogenous retrovirus data, and gene copy number data from 123 patients with advanced ccRCC who participated in prospective clinical trials of PD-1 inhibitors (including CheckMate 009, CheckMate 010, and CheckMate 025 trials). We used AI to optimize mutation data interpretation and established clinical prediction models for survival (for overall survival AUC: 0.931; for progression-free survival AUC: 0.795) and response (ORR AUC: 0.763) to immunotherapy of ccRCC. The models were internally validated by bootstrap. Well-fitted calibration curves were also generated for the nomogram models. Our models showed good performance in predicting survival and response to immunotherapy of ccRCC.
Collapse
|
5
|
Long S, Wang Y, Chen Y, Fang T, Yao Y, Fu K. Pan-cancer analysis of cuproptosis regulation patterns and identification of mTOR-target responder in clear cell renal cell carcinoma. Biol Direct 2022; 17:28. [PMID: 36209249 PMCID: PMC9548146 DOI: 10.1186/s13062-022-00340-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The mechanism of cuproptosis, a novel copper-induced cell death by regulating tricarboxylic acid cycle (TCA)-related genes, has been reported to regulate oxidative phosphorylation system (OXPHOS) in cancers and can be regarded as potential therapeutic strategies in cancer; however, the characteristics of cuproptosis in pan-cancer have not been elucidated. METHODS The multi-omics data of The Cancer Genome Atlas were used to evaluate the cuproptosis-associated characteristics across 32 tumor types. A cuproptosis enrichment score (CEScore) was established using a single sample gene enrichment analysis (ssGSEA) in pan-cancer. Spearman correlation analysis was used to identify pathway most associated with CEScore. Lasso-Cox regression was used to screen prognostic genes associated with OXPHOS and further construct a cuproptosis-related prognostic model in clear cell renal cell carcinoma (ccRCC). RESULTS We revealed that most cuproptosis-related genes (CRGs) were differentially expressed between tumors and normal tissues, and somatic copy number alterations contributed to their aberrant expression. We established a CEScore index to indicate cuproptosis status which was associated with prognosis in most cancers. The CEScore was negatively correlated with OXPHOS and significantly featured prognosis in ccRCC. The ccRCC patients with high-risk scores show worse survival outcomes and bad clinical benefits of Everolimus (mTOR inhibitor). CONCLUSIONS Our findings indicate the importance of abnormal CRGs expression in cancers. In addition, identified several prognostic CRGs as potential markers for prognostic distinction and drug response in the specific tumor. These results accelerate the understanding of copper-induced death in tumor progression and provide cuproptosis-associated novel therapeutic strategies.
Collapse
Affiliation(s)
- Shichao Long
- grid.452223.00000 0004 1757 7615Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Ya Wang
- grid.452223.00000 0004 1757 7615Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Yuqiao Chen
- grid.452223.00000 0004 1757 7615Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Tianshu Fang
- grid.452223.00000 0004 1757 7615Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Yuanbing Yao
- grid.452223.00000 0004 1757 7615Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Kai Fu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China. .,Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
6
|
Dai J, Reyimu A, Sun A, Duoji Z, Zhou W, Liang S, Hu S, Dai W, Xu X. Establishment of prognostic risk model and drug sensitivity based on prognostic related genes of esophageal cancer. Sci Rep 2022; 12:8008. [PMID: 35568702 PMCID: PMC9107481 DOI: 10.1038/s41598-022-11760-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/19/2022] [Indexed: 12/13/2022] Open
Abstract
At present, the treatment of esophageal cancer (EC) is mainly surgical and drug treatment. However, due to drug resistance, these therapies can not effectively improve the prognosis of patients with the EC. Therefore, a multigene prognostic risk scoring system was constructed by bioinformatics analysis method to provide a theoretical basis for the prognosis and treatment decision of EC. The gene expression profiles and clinical data of esophageal cancer patients were gathered from the Cancer Genome Atlas TCGA database, and the differentially expressed genes (DEGs) were screened by R software. Genes with prognostic value were screened by Kaplan Meier analysis, followed by functional enrichment analysis. A cox regression model was used to construct the prognostic risk score model of DEGs. ROC curve and survival curve were utilized to evaluate the performance of the model. Univariate and multivariate Cox regression analysis was used to evaluate whether the model has an independent prognostic value. Network tool mirdip was used to find miRNAs that may regulate risk genes, and Cytoscape software was used to construct gene miRNA regulatory network. GSCA platform is used to analyze the relationship between gene expression and drug sensitivity. 41 DEGs related to prognosis were pre-liminarily screened by survival analysis. A prognostic risk scoring model composed of 8 DEGs (APOA2, COX6A2, CLCNKB, BHLHA15, HIST1H1E, FABP3, UBE2C and ERO1B) was built by Cox regression analysis. In this model, the prognosis of the high-risk score group was poor (P < 0.001). The ROC curve showed that (AUC = 0.862) the model had a good performance in predicting prognosis. In Cox regression analysis, the comprehensive risk score can be employed as an independent prognostic factor of the EC. HIST1H1E, UBE2C and ERO1B interacted with differentially expressed miRNAs. High expression of HIST1H1E was resistant to trametinib, selumetinib, RDEA119, docetaxel and 17-AAG, High expression of UBE2C was resistant to masitinib, and Low expression of ERO1B made the EC more sensitive to FK866. We constructed an EC risk score model composed of 8 DEGs and gene resistance analysis, which can provide reference for prognosis prediction, diagnosis and treatment of the EC patients.
Collapse
Affiliation(s)
- Jingjing Dai
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, People's Republic of China
| | - Abdusemer Reyimu
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, People's Republic of China.,Medical College, Anhui University of Science and Technology, Huainan, 232001, Anhui, People's Republic of China
| | - Ao Sun
- Class 11, grade 2018, Clinical Medicine, Nanjing Medical University, Nanjing, 223300, Jiangsu, People's Republic of China
| | - Zaxi Duoji
- Research Center of High Altitude Medicine, Naqu, Tibet, China, People's Hospital of Naqu Affiliated to Dalian Medical University, Tibet, 852000, People's Republic of China
| | - Wubi Zhou
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, People's Republic of China.
| | - Song Liang
- Department of Medical Laboratory, Second branch, The Affiliated Huaian No, People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, People's Republic of China
| | - Suxia Hu
- Department of Medical Laboratory, Huainan First People's Hospital, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan, Anhui, People's Republic of China.
| | - Weijie Dai
- Department of Endoscopy Center, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, People's Republic of China.
| | - Xiaoguang Xu
- Research Center of High Altitude Medicine, Naqu, Tibet, China, People's Hospital of Naqu Affiliated to Dalian Medical University, Tibet, 852000, People's Republic of China.
| |
Collapse
|
7
|
Wang W, Yang C, Wang T, Deng H. Complex roles of nicotinamide N-methyltransferase in cancer progression. Cell Death Dis 2022; 13:267. [PMID: 35338115 PMCID: PMC8956669 DOI: 10.1038/s41419-022-04713-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023]
Abstract
Nicotinamide N-methyltransferase (NNMT) is an intracellular methyltransferase, catalyzing the N-methylation of nicotinamide (NAM) to form 1-methylnicotinamide (1-MNAM), in which S-adenosyl-l-methionine (SAM) is the methyl donor. High expression of NNMT can alter cellular NAM and SAM levels, which in turn, affects nicotinamide adenine dinucleotide (NAD+)-dependent redox reactions and signaling pathways, and remodels cellular epigenetic states. Studies have revealed that NNMT plays critical roles in the occurrence and development of various cancers, and analysis of NNMT expression levels in different cancers from The Cancer Genome Atlas (TCGA) dataset indicated that NNMT might be a potential biomarker and therapeutic target for tumor diagnosis and treatment. This review provides a comprehensive understanding of recent advances on NNMT functions in different tumors and deciphers the complex roles of NNMT in cancer progression.
Collapse
Affiliation(s)
- Weixuan Wang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Changmei Yang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Tianxiang Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China.
| |
Collapse
|
8
|
Genomics of Clear-cell Renal Cell Carcinoma: A Systematic Review and Meta-analysis. Eur Urol 2022; 81:349-361. [PMID: 34991918 DOI: 10.1016/j.eururo.2021.12.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 11/21/2022]
Abstract
CONTEXT Although antiangiogenic treatments and immunotherapies have significantly improved the prognosis of metastatic renal cell carcinoma (RCC), many patients will develop resistance, leading to treatment failure. Genetic tumor heterogeneity is a major cause of this resistance. OBJECTIVE To perform a meta-analysis of genomic data for clear-cell RCC obtained from primary tumors and metastases to assess the prevalence of gene mutations and copy number alterations (CNAs). EVIDENCE ACQUISITION Articles were selected from Medline and Embase libraries using the search algorithm ("Kidney Neoplasms"[Mesh] OR "Renal Cell Carcinoma") AND ("Genomics"[Mesh] OR "Mutation") from January 1999 to February 2021. A critical review was conducted according to the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement. Ninety-three publications were selected for inclusion in this meta-analysis. EVIDENCE SYNTHESIS Our meta-analysis included a total 14 696 patients, 14 299 primary tumor samples, and 969 metastatic samples. We evaluated the overall and subgroup prevalence of gene mutations and CNAs, including comparisons between primary tumors and metastases. In particular, for metastases we observed that the mutation prevalence was significantly more marked for ten genes compared to primary tumors, with no or little heterogeneity across studies. The VHL mutation prevalence increased significantly from 64% in primary tumors to 75% in metastases (p < 0.001). There was a significant increase in CNA prevalence from primary tumors to metastases for chromosomes 1p36.11, 9p21.3, and 18 in terms of losses, and for chromosomes 1q21.3, 7q36.3, 8q, and 20q11.21 in terms of gains. CDKN2A, also called p16 and involved in cell-cycle progression, is located at the 9p21.3 locus and was lost in 76% of metastatic samples. ASXL1, located on 20p11.21 and amplified in 50% of metastatic RCCs compared to 21% of primary tumors (p < 0.001), is closely linked to BAP1 function. CONCLUSIONS Our results underline the added value of preferential biopsies on RCC metastases to fully explore the biology of metastatic disease for therapeutic purposes. PATIENT SUMMARY We reviewed the literature on genetic mutations in primary tumors and metastatic lesions in kidney cancer. Our pooled results for all the relevant studies show a higher level of mutations in metastases than in primary tumors. This highlights the importance of taking biopsies of metastases to analyze genetic mutations and potentially guide selection of the most suitable treatment strategy.
Collapse
|
9
|
Kolenc Ž, Pirih N, Gretic P, Kunej T. Top Trends in Multiomics Research: Evaluation of 52 Published Studies and New Ways of Thinking Terminology and Visual Displays. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:681-692. [PMID: 34678084 DOI: 10.1089/omi.2021.0160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Multiomics study designs have significantly increased understanding of complex biological systems. The multiomics literature is rapidly expanding and so is their heterogeneity. However, the intricacy and fragmentation of omics data are impeding further research. To examine current trends in multiomics field, we reviewed 52 articles from PubMed and Web of Science, which used an integrated omics approach, published between March 2006 and January 2021. From studies, data regarding investigated loci, species, omics type, and phenotype were extracted, curated, and streamlined according to standardized terminology, and summarized in a previously developed graphical summary. Evaluated studies included 21 omics types or applications of omics technology such as genomics, transcriptomics, metabolomics, epigenomics, environmental omics, and pharmacogenomics, species of various phyla including human, mouse, Arabidopsis thaliana, Saccharomyces cerevisiae, and various phenotypes, including cancer and COVID-19. In the analyzed studies, diverse methods, protocols, results, and terminology were used and accordingly, assessment of the studies was challenging. Adoption of standardized multiomics data presentation in the future will further buttress standardization of terminology and reporting of results in systems science. This shall catalyze, we suggest, innovation in both science communication and laboratory medicine by making available scientific knowledge that is easier to grasp, share, and harness toward medical breakthroughs.
Collapse
Affiliation(s)
- Živa Kolenc
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Pirih
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Gretic
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
10
|
Duan A, Wang H, Zhu Y, Wang Q, Zhang J, Hou Q, Xing Y, Shi J, Hou J, Qin Z, Chen Z, Liu Z, Yang J. Chromatin architecture reveals cell type-specific target genes for kidney disease risk variants. BMC Biol 2021; 19:38. [PMID: 33627123 PMCID: PMC7905576 DOI: 10.1186/s12915-021-00977-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/08/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cell type-specific transcriptional programming results from the combinatorial interplay between the repertoire of active regulatory elements. Disease-associated variants disrupt such programming, leading to altered expression of downstream regulated genes and the onset of pathological states. However, due to the non-linear regulatory properties of non-coding elements such as enhancers, which can activate transcription at long distances and in a non-directional way, the identification of causal variants and their target genes remains challenging. Here, we provide a multi-omics analysis to identify regulatory elements associated with functional kidney disease variants, and downstream regulated genes. RESULTS In order to understand the genetic risk of kidney diseases, we generated a comprehensive dataset of the chromatin landscape of human kidney tubule cells, including transcription-centered 3D chromatin organization, histone modifications distribution and transcriptome with HiChIP, ChIP-seq and RNA-seq. We identified genome-wide functional elements and thousands of interactions between the distal elements and target genes. The results revealed that risk variants for renal tumor and chronic kidney disease were enriched in kidney tubule cells. We further pinpointed the target genes for the variants and validated two target genes by CRISPR/Cas9 genome editing techniques in zebrafish, demonstrating that SLC34A1 and MTX1 were indispensable genes to maintain kidney function. CONCLUSIONS Our results provide a valuable multi-omics resource on the chromatin landscape of human kidney tubule cells and establish a bioinformatic pipeline in dissecting functions of kidney disease-associated variants based on cell type-specific epigenome.
Collapse
Affiliation(s)
- Aiping Duan
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Hong Wang
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yan Zhu
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Qi Wang
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jing Zhang
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Qing Hou
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yuexian Xing
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jinsong Shi
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jinhua Hou
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, 1518 Clifton Road N.E, Atlanta, GA, 30322, USA
| | - Zhaohong Chen
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Zhihong Liu
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jingping Yang
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China.
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China.
| |
Collapse
|
11
|
Wu M, Li S, Han J, Liu R, Yuan H, Xu X, Li X, Liu Z. Progression Risk Assessment of Post-surgical Papillary Thyroid Carcinoma Based on Circular RNA-Associated Competing Endogenous RNA Mechanisms. Front Cell Dev Biol 2021; 8:606327. [PMID: 33553144 PMCID: PMC7859334 DOI: 10.3389/fcell.2020.606327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Accurate risk assessment of post-surgical progression in papillary thyroid carcinoma (PTC) patients is critical. Exploring key differentially expressed mRNAs (DE-mRNAs) regulated by differentially expressed circular RNAs (circRNAs) via the ceRNA mechanism could help establish a novel assessment tool. Methods: ceRNA network was established based on differentially expressed RNAs and correlation analysis. DE-mRNAs within the ceRNA network associated with progression-free interval (PFI) of PTC were identified to construct a prognostic ceRNA regulatory subnetwork. least absolute shrinkage and selection operator (LASSO)-Cox regression was applied to identify hub DE-mRNAs and establish a novel DE-mRNA signature in predicting PFI of PTC. Results: Six hub DE-mRNAs, namely, CLCNKB, FXBO27, FXYD6, RIMS2, SPC24, and CDKN2A, were identified to be most significantly related to the PFI of PTC, and a prognostic DE-mRNA signature was proposed. A nomogram incorporating the DE-mRNA signature and clinical parameters was established to improve the progression risk assessment in post-surgical PTC, which was superior to the American Thyroid Association risk stratification system and distant Metastasis, patient Age, Completeness of resection, local Invasion, and tumor Size (MACIS) score American Joint Committee on Cancer staging system. Conclusions: Based on the circRNA-associated ceRNA RNA mechanism, a DE-mRNA signature and prognostic nomogram was established, which may improve the progression risk assessment in post-surgical PTC.
Collapse
Affiliation(s)
- Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuo Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiashu Han
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- MD Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rui Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hongwei Yuan
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiequn Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaobin Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Peters I, Merseburger AS, Tezval H, Lafos M, Tabrizi PF, Mazdak M, Wolters M, Kuczyk MA, Serth J, von Klot CA. The Prognostic Value of DNA Methylation Markers in Renal Cell Cancer: A Systematic Review. KIDNEY CANCER 2020. [DOI: 10.3233/kca-190069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Inga Peters
- Department of Urology and Urologic Oncology, Hannover Medical School, Hannover, Germany
| | | | - Hossein Tezval
- Department of Urology and Urologic Oncology, Hannover Medical School, Hannover, Germany
| | - Marcel Lafos
- Department of Pathology, Hannover Medical School, Hannover, Germany
| | - Pouriya Faraj Tabrizi
- Department of Urology and Urologic Oncology, Hannover Medical School, Hannover, Germany
| | - Mehrdad Mazdak
- Department of Urology and Urologic Oncology, Hannover Medical School, Hannover, Germany
| | - Mathias Wolters
- Department of Urology and Urologic Oncology, Hannover Medical School, Hannover, Germany
| | - Markus A. Kuczyk
- Department of Urology and Urologic Oncology, Hannover Medical School, Hannover, Germany
| | - Jürgen Serth
- Department of Urology and Urologic Oncology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
13
|
Huang XQ, Hao S, Zhou ZQ, Huang B, Fang JY, Tang Y, Zhang JH, Xia JC. The Roles of Ubiquitination Factor E4B (UBE4B) in the Postoperative Prognosis of Patients with Renal Cell Carcinoma and in Renal Tumor Cells Growth and Metastasis. Onco Targets Ther 2020; 13:185-197. [PMID: 32021266 PMCID: PMC6956714 DOI: 10.2147/ott.s229577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/24/2019] [Indexed: 12/22/2022] Open
Abstract
Object This study aimed at investigating the clinical significance and biological function of ubiquitination factor E4B (UBE4B) in human renal cell carcinoma (RCC). Methods 19 paired clear cell renal cell carcinoma (ccRCC) tumor samples and the matched neighboring non-tumor samples were used to detect the expression of UBE4B in RCC tumor by Western blotting and RT-qPCR. UBE4B expression was also detected in 151 ccRCC paraffin-embedded tumor samples by using immunohistochemistry. Overall survival (OS) in different UBE4B expression groups were compared with Log rank test. The prognostic value of UBE4B expression in OS was evaluated with the univariate and multivariate Cox regression models. UBE4B was knocked down by small interfering RNA (siRNA) technology, and the effect of UBE4B on cell proliferation, colony formation, metastasis, apoptosis and cell cycle of RCC cells were examined in vitro. Results Both protein and mRNA levels of UBE4B were up-regulated in ccRCC tumor tissues in contrast to the corresponding adjacent nontumor ones. UBE4B expression was positively associated with tumor-node-metastasis (TNM) stage and distant metastasis in ccRCC patients. Survival analyses indicated that low expression of UBE4B was associated with increased OS in ccRCC patients. Functional analyses demonstrated that siRNA silencing of UBE4B expression in SKRC39 and ACHN cells further reduced the growth, motility and invasiveness of RCC cells. Moreover, siRNA silencing of UBE4B in the RCC cell lines did not induce apoptosis, and an increase in the cell population was observed during the G0/G1 phase of the cell cycle. Conclusion UBE4B might act as an oncogene in regulating RCC development. Therefore it could be served as an effective indicator to predict OS and a potential biomarker for targeted therapy of RCC patients.
Collapse
Affiliation(s)
- Xu-Qiong Huang
- Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Shuai Hao
- Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Zi-Qi Zhou
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Bin Huang
- Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Jia-Ying Fang
- Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Yan Tang
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Jian-Hua Zhang
- Department of Health Service Management, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People's Republic of China
| | - Jian-Chuan Xia
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
14
|
Barsoum I, Tawedrous E, Faragalla H, Yousef GM. Histo-genomics: digital pathology at the forefront of precision medicine. ACTA ACUST UNITED AC 2020; 6:203-212. [PMID: 30827078 DOI: 10.1515/dx-2018-0064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/28/2018] [Indexed: 12/26/2022]
Abstract
The toughest challenge OMICs face is that they provide extremely high molecular resolution but poor spatial information. Understanding the cellular/histological context of the overwhelming genetic data is critical for a full understanding of the clinical behavior of a malignant tumor. Digital pathology can add an extra layer of information to help visualize in a spatial and microenvironmental context the molecular information of cancer. Thus, histo-genomics provide a unique chance for data integration. In the era of a precision medicine, a four-dimensional (4D) (temporal/spatial) analysis of cancer aided by digital pathology can be a critical step to understand the evolution/progression of different cancers and consequently tailor individual treatment plans. For instance, the integration of molecular biomarkers expression into a three-dimensional (3D) image of a digitally scanned tumor can offer a better understanding of its subtype, behavior, host immune response and prognosis. Using advanced digital image analysis, a larger spectrum of parameters can be analyzed as potential predictors of clinical behavior. Correlation between morphological features and host immune response can be also performed with therapeutic implications. Radio-histomics, or the interface of radiological images and histology is another emerging exciting field which encompasses the integration of radiological imaging with digital pathological images, genomics, and clinical data to portray a more holistic approach to understating and treating disease. These advances in digital slide scanning are not without technical challenges, which will be addressed carefully in this review with quick peek at its future.
Collapse
Affiliation(s)
- Ivraym Barsoum
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Eriny Tawedrous
- Department of Laboratory Medicine, and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Hala Faragalla
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - George M Yousef
- Department of Laboratory Medicine, and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
15
|
Liu T, Fang P, Han C, Ma Z, Xu W, Xia W, Hu J, Xu Y, Xu L, Yin R, Wang S, Zhang Q. Four transcription profile-based models identify novel prognostic signatures in oesophageal cancer. J Cell Mol Med 2020; 24:711-721. [PMID: 31746108 PMCID: PMC6933393 DOI: 10.1111/jcmm.14779] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/31/2019] [Accepted: 09/22/2019] [Indexed: 12/24/2022] Open
Abstract
Oesophageal cancer (ESCA) is a clinically challenging disease with poor prognosis and health-related quality of life. Here, we investigated the transcriptome of ESCA to identify high risk-related signatures. A total of 159 ESCA patients of The Cancer Genome Atlas (TCGA) were sorted by three phases. In the discovery phase, differentially expressed transcripts were filtered; in the training phase, two adjusted Cox regressions and two machine leaning models were used to construct and estimate signatures; and in the validation phase, prognostic signatures were validated in the testing dataset and the independent external cohort. We constructed two signatures from three types of RNA markers by Akaike information criterion (AIC) and least absolute shrinkage and selection operator (LASSO) Cox regressions, respectively, and all candidate markers were further estimated by Random Forest (RFS) and Support Vector Machine (SVM) algorithms. Both signatures had good predictive performances in the independent external oesophageal squamous cell carcinoma (ESCC) cohort and performed better than common clinicopathological indicators in the TCGA dataset. Machine learning algorithms predicted prognosis with high specificities and measured the importance of markers to verify the risk weightings. Furthermore, the cell function and immunohistochemical (IHC) staining assays identified that the common risky marker FABP3 is a novel oncogene in ESCA.
Collapse
Affiliation(s)
- Tongyan Liu
- Department of Thoracic SurgeryThe Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchNanjingChina
- Department of Scientific ResearchThe Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchNanjingChina
| | - Panqi Fang
- Department of Thoracic SurgeryThe Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchNanjingChina
- Department of Clinical PharmacySchool of Basic Medical Sciences and Clinical PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Chencheng Han
- Department of Thoracic SurgeryThe Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchNanjingChina
- The Fourth Clinical College of Nanjing Medical UniversityNanjingChina
| | - Zhifei Ma
- Department of Thoracic SurgeryThe Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchNanjingChina
- The Fourth Clinical College of Nanjing Medical UniversityNanjingChina
| | - Weizhang Xu
- Department of Thoracic SurgeryThe Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchNanjingChina
| | - Wenjia Xia
- Department of Thoracic SurgeryThe Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchNanjingChina
| | - Jingwen Hu
- Department of Thoracic SurgeryThe Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchNanjingChina
| | - Youtao Xu
- Department of Thoracic SurgeryThe Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchNanjingChina
| | - Lin Xu
- Department of Thoracic SurgeryThe Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchNanjingChina
| | - Rong Yin
- Department of Thoracic SurgeryThe Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchNanjingChina
- Department of Scientific ResearchThe Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchNanjingChina
- Jiangsu Biobank of Clinical ResourcesNanjingChina
| | - Siwei Wang
- Department of Thoracic SurgeryThe Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchNanjingChina
- The Fourth Clinical College of Nanjing Medical UniversityNanjingChina
| | - Qin Zhang
- Department of Thoracic SurgeryThe Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchNanjingChina
| |
Collapse
|
16
|
Expression of Stanniocalcin 2 in Breast Cancer and Its Clinical Significance. Curr Med Sci 2019; 39:978-983. [PMID: 31845230 DOI: 10.1007/s11596-019-2131-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/05/2019] [Indexed: 12/13/2022]
Abstract
This study aims to explore the expression of stanniocalcin 2 (STC2) gene in breast cancer and its clinical significance. Female patients with breast cancer from Zhongnan Hospital of Wuhan University admitted during March 2014 to October 2014 were enrolled in this study. All the tissues used in this experiment included 50 cases of breast cancer tissues and corresponding 50 cases of paracancer normal breast tissues with complete patients' information. The real-time quantitative polymerase chain reaction (qPCR) was applied to detect the expression of STC2 gene in 50 cases of breast cancer and paracancer normal breast tissues. The results showed that the expression level of STC2 gene in 50 cases of breast cancer tissues was significantly higher than that in paracancer normal breast tissues (P<0.001). The expression of STC2 gene was correlated with lymph node metastasis, distant metastasis, TNM stage and histological grade (P<0.001). The expression level of STC2 gene was significantly higher in breast cancer tissues with higher expression of Ki-67 (P<0.001). The expression level of STC2 gene was significantly higher in estrogen receptor (ER) positive breast cancer tissues than in ER negative ones (P<0.001). However, different groups of age, pathological type, tumor size, PR expression and human epidermal growth factor receptor-2 (HER2) expression did not show significant differences in STC2 expression (P>0.05). In conclusion, the abnormal overexpression of STC2 gene may play a role in the development and progression of breast cancer, and it can be used as an independent metastasis and prognostic factor of breast cancer. In addition, STC2 gene probably promotes the development and metastasis of breast cancer by interacting with estrogen and ER, and it may become a new direction for breast cancer endocrine therapy.
Collapse
|
17
|
Roles of microRNAs and prospective view of competing endogenous RNAs in mycotoxicosis. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 782:108285. [DOI: 10.1016/j.mrrev.2019.108285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/07/2019] [Accepted: 07/05/2019] [Indexed: 12/14/2022]
|
18
|
STC2 Is a Potential Prognostic Biomarker for Pancreatic Cancer and Promotes Migration and Invasion by Inducing Epithelial-Mesenchymal Transition. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8042489. [PMID: 32258098 PMCID: PMC7099867 DOI: 10.1155/2019/8042489] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/11/2019] [Accepted: 06/20/2019] [Indexed: 01/20/2023]
Abstract
Aberrant expression of stanniocalcin 2 (STC2) is implicated in cancer development. STC2 acts as a tumor promoter to drive some cancers. However, its contribution to the development of pancreatic cancer remains unclear. This study showed that the expression of STC2 was significantly upregulated in pancreatic cancer tissues. Moreover, its expression was positively correlated with tumor size and lymph node metastasis and negatively correlated with 5-year survival rate of pancreatic cancer patients. Additionally, the expression levels of STC2 were a novel biomarker for predicting overall survival rate after surgery. Furthermore, overexpression of STC2 could promote the proliferation, migration, and invasion of pancreatic cancer cell lines, while knocking down of STC2 led to antiproliferation and antimetastasis activities. Further mechanistic investigations revealed that the expression of STC2 could significantly promote the epithelial-mesenchymal transition (EMT) in pancreatic cancer cells. These data indicated that the overexpression of STC2 in pancreatic cancer contributes to the metastasis through the promotion of EMT, suggesting that STC2 is a potential prognostic biomarker and therapeutic target for pancreatic cancer.
Collapse
|
19
|
Weng X, Zeng L, Yan F, He M, Wu X, Zheng D. Cyclin-dependent kinase inhibitor 2B gene is associated with the sensitivity of hepatoma cells to Sorafenib. Onco Targets Ther 2019; 12:5025-5036. [PMID: 31388306 PMCID: PMC6607202 DOI: 10.2147/ott.s196607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/06/2019] [Indexed: 01/01/2023] Open
Abstract
Purpose: The sensitivity of advanced hepatocellular carcinoma (HCC) to Sorafenib is low. The purpose of this study was to investigate the effects of cyclin-dependent kinase inhibitor 2B (CDKN2B) gene on the prognosis of HCC and the sensitivity of HCC cells to Sorafenib. Patients and methods: Streptavidin-perosidase (SP) staining was performed to determine the expression of CDKN2B in HCC tissues and adjacent tissues. The cell counting kit-8 (CCK-8) assay was carried out to determine cell viability. CDKN2B mRNA and protein were tested by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot, respectively. CDKN2B gene was silenced or over-expressed in the cells by plasmid transfection technique. Flow cytometry was carried out to detect cell cycle and apoptosis. Results: SP staining results showed that CDKN2B was positive in adjacent tissues and in HCC tissues from partial response (PR) patients, CDKN2B was slightly positive in stable disease (SD) patients, but negative in progression disease (PD) patients. The survival rate of patients with low expression of CDKN2B was low. Up-regulation of CDKN2B expression could promote the pro-apoptotic effect of Sorafenib and cell arrest in G1 phase. When the CDKN2B gene expression was down-regulated, the cell apoptosis rate and the proportion of cells treated with Sorafenib in G1 phase decreased. Silencing CDKN2B reversed CDKN2B overexpression caused by Sorafenib. Conclusion: CDKN2B genes were lowly expressed in tumor tissues from HCC patients who were treated with Sorafenib and had a poor prognosis. Up-regulation of CDKN2B promoted sensitivity of HCC to Sorafenib, and similarly down-regulation of CDKN2B reduced the sensitivity.
Collapse
Affiliation(s)
- Xie Weng
- Department of Cancer Center,TCM-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong Province510310, People’s Republic of China
| | - Lixian Zeng
- Department of Cancer Center,TCM-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong Province510310, People’s Republic of China
| | - Feifei Yan
- Department of Cancer Center,TCM-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong Province510310, People’s Republic of China
| | - Mengxue He
- Department of Cancer Center,TCM-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong Province510310, People’s Republic of China
| | - Xiuqiong Wu
- Department of Cancer Center,TCM-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong Province510310, People’s Republic of China
| | - Dayong Zheng
- Department of Cancer Center,TCM-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong Province510310, People’s Republic of China
| |
Collapse
|
20
|
Wierzbicki PM, Klacz J, Kotulak-Chrzaszcz A, Wronska A, Stanislawowski M, Rybarczyk A, Ludziejewska A, Kmiec Z, Matuszewski M. Prognostic significance of VHL, HIF1A, HIF2A, VEGFA and p53 expression in patients with clear‑cell renal cell carcinoma treated with sunitinib as first‑line treatment. Int J Oncol 2019; 55:371-390. [PMID: 31268155 PMCID: PMC6615924 DOI: 10.3892/ijo.2019.4830] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/30/2019] [Indexed: 12/11/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell cancer, characterized by the highest mortality rate among other RCC subtypes due to the occurrence of metastasis and drug resistance following surgery. The Von Hippel-Lindau tumor suppressor (VHL)-hypoxia-inducible factor 1 subunit α (HIF1A)/hypoxia-inducible factor 2α (HIF2A)-vascular endothelial growth factor A (VEGFA) protein axis is involved in the development and progression of ccRCC, whereas sunitinib, a tyrosine kinase inhibitor, blocks the binding of VEGFA to its receptor. The aim of the present study was to examine the possible association of the gene expression of VHL, HIF1A, HIF2A, VEGFA and tumor protein P53 (P53) in cancer tissue with the outcome of ccRCC patients who were treated with sunitinib as first-line therapy following nephrec-tomy. A total of 36 ccRCC patients were enrolled, 11 of whom were administered sunitinib post-operatively. Tumor and control samples were collected, and mRNA and protein levels were assessed by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. High mRNA and protein expression levels of HIF2A and VEGFA were found to be associated with shorter overall survival (OS) and progression-free survival (PFS) rates, as well as with unfavorable risk factors of cancer recurrence and mortality. Resistance to sunitinib was also observed; the OS and PFS rates were shorter (median OS and PFS: 12 and 6 months, respectively, vs. undetermined). Sunitinib resistance was associated with high HIF2A and VEGFA protein levels (b=0.57 and b=0.69 for OS and PFS, respectively; P<0.001). Taken together, the findings of this study suggest that the protein levels of HIF2A and VEGFA in tumor tissue may serve as independent prognostic factors in ccRCC. ccRCC patients with increased intratumoral HIF2A and VEGFA protein levels, and unaltered VHL protein levels, are not likely to benefit from sunitinib treatment following nephrectomy; however, this hypothesis requires verification by large-scale replication studies.
Collapse
Affiliation(s)
- Piotr M Wierzbicki
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, 80211 Gdansk, Poland
| | - Jakub Klacz
- Department of Urology, Faculty of Medicine, Medical University of Gdansk, 80402 Gdansk, Poland
| | - Anna Kotulak-Chrzaszcz
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, 80211 Gdansk, Poland
| | - Agata Wronska
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, 80211 Gdansk, Poland
| | - Marcin Stanislawowski
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, 80211 Gdansk, Poland
| | - Agnieszka Rybarczyk
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, 80211 Gdansk, Poland
| | | | - Zbigniew Kmiec
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, 80211 Gdansk, Poland
| | - Marcin Matuszewski
- Department of Urology, Faculty of Medicine, Medical University of Gdansk, 80402 Gdansk, Poland
| |
Collapse
|
21
|
Li Y, Guan B, Liu J, Zhang Z, He S, Zhan Y, Su B, Han H, Zhang X, Wang B, Li X, Zhou L, Zhao W. MicroRNA-200b is downregulated and suppresses metastasis by targeting LAMA4 in renal cell carcinoma. EBioMedicine 2019; 44:439-451. [PMID: 31130475 PMCID: PMC6604878 DOI: 10.1016/j.ebiom.2019.05.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 01/14/2023] Open
Abstract
Background Metastasis is the primary cause of tumor death in renal cell carcinoma (RCC). Improved diagnostic markers of metastasis are critically needed for RCC. MicoRNAs are demonstrated to be stable and significant biomarkers for several malignancies. In this study, we aimed to explore the metastasis related microRNAs and its mechanism in RCC. Methods The relationship between microRNAs expression and prognosis and metastasis of RCC patients were explored by data mining through expression profiles from The Cancer Genome Atlas (TCGA). A total of 80 RCC tissues and adjacent normal kidney tissues were obtained from Department of Urology, Peking University First Hospital. Expression of microRNA-200b (miR-200b) in RCC tissues and cell lines were determined by bioinformatic data mining and quantitative real-time PCR (qRT-PCR). The effects of miR-200b on cell proliferation, migration and invasion were determined by cell counting kit-8 and colony formation assay, wound healing assay and Boyden chamber assay. Mouse cell-derived xenograft and patient-derived xenograft model were also performed to evaluate the effects of miR-200b on tumor growth and metastasis in vivo. The molecular mechanism of miR-200b function was investigated using bioinformatic target predication and high-throughput cDNA sequencing (RNA-seq) and validated by luciferase reporter assay, qRT-PCR, Western blot and immunostaining in vitro and in vivo. Findings Our findings indicates that miR-200b is frequently downregulated and have potential utility as a biomarker of metastasis and prognosis in RCC. Interestingly, ectopic expression of miR-200b in the Caki-1 and OSRC-2 cell lines suppresses cell migration and invasion in vitro as well as tumor metastases in vivo. However, miR-200b has no effect on cell proliferation in vitro and tumor growth in vivo. In addition, bioinformatics target predication and RNA-seq results reveals that Laminin subunit alpha 4 (LAMA4) is one target of miR-200b and significantly inhibited by miR-200b in vitro and in vivo. Interpretation These results demonstrate a previously undescribed role of miR-200b as a suppressor of tumor metastasis in RCC by directly destabilizing LAMA4 mRNA.
Collapse
Affiliation(s)
- Yifan Li
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing 100034, China
| | - Bao Guan
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing 100034, China
| | - Jingtao Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Pharmacy Department, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhongyuan Zhang
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing 100034, China
| | - Shiming He
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing 100034, China
| | - Yonghao Zhan
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing 100034, China
| | - Boxing Su
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing 100034, China
| | - Haibo Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cell Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaochun Zhang
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing 100034, China
| | - Boqing Wang
- Department of Hepatopancreatobiliary Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing 100034, China.
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing 100034, China.
| | - Wei Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cell Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| |
Collapse
|
22
|
Zhuang Q, Chen Z, Shen J, Fan M, Xue D, Lu H, Xu R, He X. RASSF1A promoter methylation correlates development, progression, and poor cancer-specific survival of renal cell carcinoma: trial sequential analysis. Onco Targets Ther 2018; 12:119-134. [PMID: 30588036 PMCID: PMC6304251 DOI: 10.2147/ott.s183142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background This meta-analysis evaluated the clinicopathologic and prognostic significance of RASSF1A promoter methylation in renal cell carcinoma (RCC). Materials and methods The ORs or HRs and their 95% CIs were calculated. Trial sequential analysis was conducted. Results Twenty-two articles that included 1,421 patients with RCC and 724 controls were identified. RASSF1A promoter methylation correlated with RCC in tissue, blood, and urine samples. On multivariate analysis, RASSF1A promoter methylation was associated with tumor grade (grade 3–4 vs 1–2: OR=3.59), clinical stage (stage 3–4 vs 1–2: OR=2.15), T classification (pT2–4 vs pT1: OR=2.66), histologic subtypes (papillary vs clear cell: OR=2.91), and cancer-specific survival (HR=1.78), but it was not linked to age, gender, lymph node status, distant metastasis, or overall survival. The Cancer Genome Atlas data also showed that RASSF1A methylation was significantly more likely to be seen in papillary vs clear-cell RCC (OR=23.19). Conclusion RASSF1A promoter methylation may be associated with the development and progression of RCC, as well as poor cancer-specific survival. Methylation was more frequent in papillary vs clear-cell RCC. More studies are needed to confirm these findings in blood or urine samples.
Collapse
Affiliation(s)
- Qianfeng Zhuang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China,
| | - Zhen Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China,
| | - Jie Shen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China,
| | - Min Fan
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China,
| | - Dong Xue
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China,
| | - Hao Lu
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China,
| | - Renfang Xu
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China,
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China,
| |
Collapse
|
23
|
Zhao C, Chen J, Ling Y, Wang S. Quantitative proteomics using SILAC-MS identifies N-acetylcysteine-solution-triggered reversal response of renal cell carcinoma cell lines. J Cell Biochem 2018; 120:9506-9513. [PMID: 30520128 DOI: 10.1002/jcb.28226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/15/2018] [Indexed: 11/07/2022]
Abstract
N-acetylcysteine (NAC), a precursor for glutathione (GSH), causes permeable antioxidation protecting normal cells and disrupting cancer cells. In the present study, we found that a NAC-based medium can trigger a reversal response of human clear cell renal cell carcinoma (ccRCC). To further investigate the action of a NAC-based solution in ccRCC cell lines, 786-O and SN12C were incubated in a serum-free acid medium (low pH) in the presence of 2 mM NAC for 24 hours or in a serum-free medium (normal pH) as the control, and then a phenotypic and proteomic analyses were performed. To determine the reversal occurrence, we tested the phenotypic features associated with cancer cells. Under this premise, a systematic and in-depth analysis of NAC-solution-triggered protein alterations was carried out by quantitative proteomics in both cell lines. Among the paramount protein signature, we identified a large number of proteins associated with cancer features were downregulated, but other proteins in the KEGG pathways associated with recovery of the missing tumorigenicity, such as the p53 pathway and repair pathway, were significantly upregulated. Quantification of notable proteins was validated by messenger RNA (mRNA) and protein levels in the ccRCC cell line. Collectively, our data indicate that the NAC-based solution inhibits human ccRCC cell growth by decreasing cell proliferation and inducing apoptosis, limiting their migration by limiting cell motility and completely changing their metabolic mode. Thus, NAC-based solutions could be used for the prevention or treatment of ccRCC.
Collapse
Affiliation(s)
- Cuihong Zhao
- Department of Pharmacy, Hanzhong Central Hospital, Hanzhong, Shanxi, China
| | - Jianhua Chen
- Department of Orthopedics, Hanzhong Central Hospital, Hanzhong, Shanxi, China
| | - Yong Ling
- Department of Pharmacy, The Affiliated Hospital of Qingdao University Medical College, Qingdao, China
| | - Shenghai Wang
- Department of Orthopedics, Hanzhong Central Hospital, Hanzhong, Shanxi, China
| |
Collapse
|
24
|
Wang Y, Wang Y, Liu F. A 44-gene set constructed for predicting the prognosis of clear cell renal cell carcinoma. Int J Mol Med 2018; 42:3105-3114. [PMID: 30272265 PMCID: PMC6202093 DOI: 10.3892/ijmm.2018.3899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most frequent type of renal cell carcinoma (RCC). The present study aimed to examine prognostic markers and construct a prognostic prediction system for ccRCC. The mRNA sequencing data of ccRCC was downloaded from The Cancer Genome Atlas (TCGA) database, and the GSE40435 dataset was obtained from the Gene Expression Omnibus database. Using the Limma package, the differentially expressed genes (DEGs) in the TCGA dataset and GSE40435 dataset were obtained, respectively, and the overlapped DEGs were selected. Subsequently, Cox regression analysis was applied for screening prognosis-associated genes. Following visualization of the co-expression network using Cytoscape software, the network modules were examined using the GraphWeb tool. Functional annotation for genes in the network was performed using the clusterProfiler package. Finally, a prognostic prediction system was constructed through Bayes discriminant analysis and confirmed with the GSE29609 validation dataset. The results revealed a total of 263 overlapped DEGs and 161 prognosis-associated genes. Following construction of the co-expression network, 16 functional terms and three pathways were obtained for genes in the network. In addition, red, yellow (Involving chemokine ligand 10 (CXCL10), CD27 molecule (CD27) and runt-related transcription factor 3 (RUNX3)], green (Involving angiopoietin-like 4 (ANGPTL4), stannio-calcin 2 (STC2), and sperm associated antigen 4 (SPAG4)], and cyan modules were extracted from the co-expression network. Additionally, the prognostic prediction system involving 44 signature genes, including ANGPTL4, STC2, CXCL10, SPAG4, CD27, matrix metalloproteinase (MMP9) and RUNX3, was identified and confirmed. In conclusion, the 44-gene prognostic prediction system involving ANGPTL4, STC2, CXCL10, SPAG4, CD27, MMP9 and RUNX3 may be utilized for predicting the prognosis of patients with ccRCC.
Collapse
Affiliation(s)
- Yonggang Wang
- Department of Urology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yao Wang
- Department of Urology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Feng Liu
- Department of Urology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
25
|
Nam HY, Chandrashekar DS, Kundu A, Shelar S, Kho EY, Sonpavde G, Naik G, Ghatalia P, Livi CB, Varambally S, Sudarshan S. Integrative Epigenetic and Gene Expression Analysis of Renal Tumor Progression to Metastasis. Mol Cancer Res 2018; 17:84-96. [PMID: 30131446 DOI: 10.1158/1541-7786.mcr-17-0636] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/20/2018] [Accepted: 08/03/2018] [Indexed: 12/21/2022]
Abstract
The Cancer Genome Atlas (TCGA) and other large-scale genomic data pipelines have been integral to the current understanding of the molecular events underlying renal cell carcinoma (RCC). These data networks have focused mostly on primary RCC, which often demonstrates indolent behavior. However, metastatic disease is the major cause of mortality associated with RCC and data sets examining metastatic tumors are sparse. Therefore, a more comprehensive analysis of gene expression and DNA methylome profiling of metastatic RCC in addition to primary RCC and normal kidney was performed. Integrative analysis of the methylome and transcriptome identified over 30 RCC-specific genes whose mRNA expression inversely correlated with promoter methylation, including several known targets of hypoxia inducible factors. Notably, genes encoding several metabolism-related proteins were identified as differentially regulated via methylation including hexokinase 2, aldolase C, stearoyl-CoA desaturase, and estrogen-related receptor-γ (ESRRG), which has a known role in the regulation of nuclear-encoded mitochondrial metabolism genes. Several gene expression changes could portend prognosis in the TCGA cohort. Mechanistically, ESRRG loss occurs via DNA methylation and histone repressive silencing mediated by the polycomb repressor complex 2. Restoration of ESRRG in RCC lines suppresses migratory and invasive phenotypes independently of its canonical role in mitochondrial metabolism. IMPLICATIONS: Collectively, these data provide significant insight into the biology of aggressive RCC and demonstrate a novel role for DNA methylation in the promotion of HIF signaling and invasive phenotypes in renal cancer.
Collapse
Affiliation(s)
- Hye-Young Nam
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Anirban Kundu
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sandeep Shelar
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Eun-Young Kho
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Guru Sonpavde
- Department of Medical Oncology, Dana Farber Cancer Institute, Massachusetts
| | - Gurudatta Naik
- Department of Medicine, Section of Hematology-Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Pooja Ghatalia
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia Pennsylvania
| | - Carolina B Livi
- Department of Molecular Medicine, University of Texas Health Sciences Center at San Antonio, Texas
| | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama. .,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Pathology, Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| | - Sunil Sudarshan
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama. .,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
26
|
|
27
|
Ortega-Bernal D, La Rosa CHGD, Arechaga-Ocampo E, Alvarez-Avitia MA, Moreno NS, Rangel-Escareño C. A meta-analysis of transcriptome datasets characterizes malignant transformation from melanocytes and nevi to melanoma. Oncol Lett 2018; 16:1899-1911. [PMID: 30008882 DOI: 10.3892/ol.2018.8861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/12/2018] [Indexed: 12/24/2022] Open
Abstract
Melanoma represents one of the most aggressive malignancies and has a high tendency to metastasize. The present study aims to investigate the molecular mechanisms of two pathways to cancer transformation with the purpose of identifying potential biomarkers. Our approach is based on a meta-analysis of gene expression profiling contrasting two scenarios: A model that describes a transformation pathway from melanocyte to melanoma and a second model where transformation occurs through an intermediary nevus. Data consists of three independent, publicly available microarray datasets from the Gene Expression Omnibus (GEO) database comprising samples from melanocytes, nevi and melanoma. The present analysis identified 808 differentially expressed genes (528 upregulated and 360 downregulated) in melanoma compared with nevi, and 2,331 differentially expressed genes (946 upregulated and 1,385 downregulated) in melanoma compared with melanocytes. Further analysis narrowed down this list, since 682 differentially expressed genes were found in both models (417 upregulated and 265 downregulated). Enrichment analysis identified relevant dysregulated pathways. This article also presented a discussion on significant genes including ADAM like decysin 1, neudesin neurotrophic factor, MMP19, apolipoprotein L6, C-X-C motif chemokine ligand (CXCL)8, basic, immunoglobulin-like variable motif containing and CXCL16. These are of particular interest because they encode secreted proteins hence represent potential blood biomarkers for the early detection of malignant transformation in both scenarios. Cytotoxic T-lymphocyte associated protein 4, an important therapeutic target in melanoma treatment, was also upregulated in both comparisons indicating a potential involvement in immune tolerance, not only at advanced stages but also during the early transformation to melanoma. The results of the present study may provide a research direction for studying the mechanisms underlying the development of melanoma, depending on its origin.
Collapse
Affiliation(s)
- Daniel Ortega-Bernal
- Natural Sciences Department, Universidad Autónoma Metropolitana, Mexico City 05300, Mexico
| | | | - Elena Arechaga-Ocampo
- Natural Sciences Department, Universidad Autónoma Metropolitana, Mexico City 05300, Mexico
| | | | - Nora Sobrevilla Moreno
- Medical Oncology Department, Instituto Nacional de Cancerología, Mexico City 14080, Mexico
| | - Claudia Rangel-Escareño
- Computational and Integrative Genomics Laboratory, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico
| |
Collapse
|
28
|
Zhao Z, Zhang M, Duan X, Deng T, Qiu H, Zeng G. Low NR3C2 levels correlate with aggressive features and poor prognosis in non‐distant metastatic clear‐cell renal cell carcinoma. J Cell Physiol 2018; 233:6825-6838. [PMID: 29693713 DOI: 10.1002/jcp.26550] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/16/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Zhijian Zhao
- Department of Urology and Guangdong Key Laboratory of Urology The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Mengping Zhang
- Department of Oncology The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Xiaolu Duan
- Department of Urology and Guangdong Key Laboratory of Urology The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Tuo Deng
- Department of Urology and Guangdong Key Laboratory of Urology The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Huijuan Qiu
- Department of VIP, Sun Yat‐Sen University Cancer Center, State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Guangzhou China
| | - Guohua Zeng
- Department of Urology and Guangdong Key Laboratory of Urology The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
| |
Collapse
|
29
|
Clinical Relevance of Gene Copy Number Variation in Metastatic Clear Cell Renal Cell Carcinoma. Clin Genitourin Cancer 2018; 16:e795-e805. [PMID: 29548613 DOI: 10.1016/j.clgc.2018.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/11/2018] [Accepted: 02/18/2018] [Indexed: 01/30/2023]
Abstract
BACKGROUND Gene copy number variations (CNVs) have been reported to be frequent in renal cell carcinoma (RCC), with potential prognostic value for some. However, their clinical utility, especially to guide treatment of metastatic disease remains to be established. Our objectives were to assess CNVs on a panel of selected genes and determine their clinical relevance in patients who underwent treatment of metastatic RCC. PATIENTS AND METHODS The genetic assessment was performed on frozen tissue samples of clear cell metastatic RCC using quantitative multiplex polymerase chain reaction of short fluorescent fragment method to detect CNVs on a panel of 14 genes of interest. The comparison of the electropherogram obtained from both tumor and normal renal adjacent tissue allowed for CNV identification. The clinical, biologic, and survival characteristics were assessed for their associations with the most frequent CNVs. RESULTS Fifty patients with clear cell metastatic RCC were included. The CNV rate was 21.4%. The loss of CDKN2A and PLG was associated with a higher tumor stage (P < .05). The loss of PLG and ALDOB was associated with a higher Fuhrman grade (P < .05). The loss of ALDOB was also associated with a worse Heng prognostic score (95% vs. 66%; P = .029) and lower 24-month survival rate (18% vs. 58%; P = .012). The loss of both ALDOB and PLG was frequent (32%) and was associated with a higher tumor stage and grade (P < .05). CONCLUSION As expected, we showed that several CNVs were associated with clinical relevance, especially those located on CDKN2A, PLG, and ALDOB, in a homogeneous cohort of patients with clear cell metastatic RCC.
Collapse
|
30
|
Xu GH, Lou N, Shi HC, Xu YC, Ruan HL, Xiao W, Liu L, Li X, Xiao HB, Qiu B, Bao L, Yuan CF, Zhou YL, Hu WJ, Chen K, Yang HM, Zhang XP. Up-regulation of SR-BI promotes progression and serves as a prognostic biomarker in clear cell renal cell carcinoma. BMC Cancer 2018; 18:88. [PMID: 29357836 PMCID: PMC5778766 DOI: 10.1186/s12885-017-3761-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/06/2017] [Indexed: 01/05/2023] Open
Abstract
Background Scavenger receptor class B type I (SR-BI) has been reported to be involved in carcinogenesis of several human cancers. However, it is currently unknown whether SR-BI plays a role in clear cell renal cell carcinoma (ccRCC). Here, we aimed to evaluate a tumor promotive mechanism for SR-BI in ccRCC. Methods The expression of SR-BI was evaluated by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blot and immunohistochemistry (IHC) in ccRCC tissues and cell lines. Lipid droplets in ccRCC tissues and normal kidney tissues were examined by Oil Red O (ORO) and hematoxylin-eosin (HE) staining. The correlation between SR-BI mRNA levels and clinicopathological features was analyzed by Pearson’s chi-square test or Fisher’s exact test. Kaplan-Meier analysis and Cox model were used to evaluate the difference in progression-free survival (PFS) associated with expression of SR-BI. Inhibition of SR-BI was conducted by using small interfering RNA (siRNA). In vitro assays were performed to assess the impact of SR-BI knockdown on cell biological behaviors. High density lipoprotein (HDL)-cholesterol content in ccRCC cells and extracellular media was also measured after transfection with siRNA. Results The expression of SR-BI was markedly up-regulated in ccRCC tissues and tumor cell lines. ORO and HE staining revealed huge amounts of lipid droplets accumulation in ccRCC. Clinical analysis showed that over-expression of SR-BI was positively associated with tumor size, grade, distant metastasis and inversely correlated with PFS. Furthermore, SR-BI was proved to be an independent prognostic marker in ccRCC patients. The inhibition of SR-BI attenuated the tumorous behaviors of ccRCC cells, expression of metastasis and AKT pathway related proteins. The content of HDL-cholesterol was reduced in cells while increased in extracellular media after transfection with si-SR-BI. Conclusions Our results demonstrate that SR-BI functions as an oncogene and promotes progression of ccRCC. SR-BI may serve as a potential prognostic biomarker and therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Guang-Hua Xu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Ning Lou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Hang-Chuan Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Yu-Chen Xu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Hai-Long Ruan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Wen Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Lei Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Xiang Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Hai-Bing Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Bin Qiu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Lin Bao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Chang-Fei Yuan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Ya-Li Zhou
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No.13, Hangkong Road, Wuhan, Hubei, 430030, China
| | - Wen-Jun Hu
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No.13, Hangkong Road, Wuhan, Hubei, 430030, China
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Hong-Mei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No.13, Hangkong Road, Wuhan, Hubei, 430030, China.
| | - Xiao-Ping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China.
| |
Collapse
|
31
|
Wang J, Huang Y, Zhang J, Xing B, Xuan W, Wang H, Huang H, Yang J, Tang J. NRP-2 in tumor lymphangiogenesis and lymphatic metastasis. Cancer Lett 2018; 418:176-184. [PMID: 29339213 DOI: 10.1016/j.canlet.2018.01.040] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 12/13/2022]
Abstract
Neuropilin-2 (NRP-2) not only functions as a receptor for semaphorins, a family of neural axon guidance factors, but also interacts with VEGFs, a family of vascular endothelial growth factors. As an independent receptor or a co-receptor, NRP-2 binds to ligands VEGF-C/D, activates the VEGF-C/D-NRP-2 signaling axis, and further regulates lymphangiogenesis-associated factors in both lymphatic endothelial cells (LECs) and some tumor cells during tumor progression. Via VEGF-C/D-NRP-2 axis, NRP-2 induces LEC proliferation, reconstruction and lymphangiogenesis and subsequently promotes tumor cell migration, invasion and lymphatic metastasis. There are similarities and differences among NRP-1, NRP-2 and VEGFR-3 in chemical structure, ligand specificity, chromosomal location, soluble protein forms, cellular functions and expression profiles. High expression of NRP-2 in LECs and tumor cells has been observed in different anatomic sites, histological patterns and progression stages of various tumors, especially during tumor lymphangiogenesis and lymphatic metastasis, and therefore the NRP-2 and VEGF-C/D-NRP-2 axis are closely related to tumor development, progression, invasion, and metastasis. In addition, it is important for prognosis of tumor. The studies on NRP-2 targeted therapy have recently achieved some successes, utilizing NRP-2 blocking antibodies, NRP-2 inhibitory peptides, soluble NRP-2 antagonists, small molecule inhibitors and various NRP-2 gene therapeutic strategies.
Collapse
Affiliation(s)
- Jingwen Wang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China; Institute of Medical Technology, Ningbo College of Health Science, No.51, XueFu Road, Ningbo Zhejiang 315100, China
| | - Yuhong Huang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - Jun Zhang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - Boyi Xing
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - Wei Xuan
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - Honghai Wang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - He Huang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - Jiayu Yang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - Jianwu Tang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China.
| |
Collapse
|
32
|
Dorn J, Bayani J, Yousef GM, Yang F, Magdolen V, Kiechle M, Diamandis EP, Schmitt M. Clinical utility of kallikrein-related peptidases (KLK) in urogenital malignancies. Thromb Haemost 2017; 110:408-22. [DOI: 10.1160/th13-03-0206] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 05/25/2013] [Indexed: 12/19/2022]
Abstract
SummaryKallikrein-related peptidases (KLK), which represent a major tissue-associated proteolytic system, stand for a rich source of biomarkers that may allow molecular classification, early diagnosis and prognosis of human malignancies as well as prediction of response or failure to cancer-directed drugs. International research points to an important role of certain KLKs in female and male urogenital tract malignancies, in addition to cancers of the lung, brain, skin, head and neck, and the gastrointestinal tract. Regarding the female/male urogenital tract, remarkably, all of the KLKs are expressed in the normal prostate, testis, and kidney whereas the uterus, the ovary, and the urinary bladder are expressing a limited number of KLKs only. Most of the information regarding KLK expression in tumour-affected organs is available for ovarian cancer; all of the 12 KLKs tested so far were found to be elevated in the malignant state, depicting them as valuable biomarkers to distinguish between the normal and the cancerous phenotype. In contrast, for kidney cancer, a series of KLKs was found to be downregulated, while other KLKs were not expressed. Evidently, depending on the type of cancer or cancer stage, individual KLKs may show characteristics of a Janus-faced behaviour, by either expanding or inhibiting cancer progression and metastasis.
Collapse
|
33
|
Stojcheva N, Schechtmann G, Sass S, Roth P, Florea AM, Stefanski A, Stühler K, Wolter M, Müller NS, Theis FJ, Weller M, Reifenberger G, Happold C. MicroRNA-138 promotes acquired alkylator resistance in glioblastoma by targeting the Bcl-2-interacting mediator BIM. Oncotarget 2017; 7:12937-50. [PMID: 26887050 PMCID: PMC4914333 DOI: 10.18632/oncotarget.7346] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/26/2016] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma is the most aggressive brain tumor in adults with a median survival below 12 months in population-based studies. The main reason for tumor recurrence and progression is constitutive or acquired resistance to the standard of care of surgical resection followed by radiotherapy with concomitant and adjuvant temozolomide (TMZ/RT→TMZ). Here, we investigated the role of microRNA (miRNA) alterations as mediators of alkylator resistance in glioblastoma cells. Using microarray-based miRNA expression profiling of parental and TMZ-resistant cultures of three human glioma cell lines, we identified a set of differentially expressed miRNA candidates. From these, we selected miR-138 for further functional analyses as this miRNA was not only upregulated in TMZ-resistant versus parental cells, but also showed increased expression in vivo in recurrent glioblastoma tissue samples after TMZ/RT→TMZ treatment. Transient transfection of miR-138 mimics in glioma cells with low basal miR-138 expression increased glioma cell proliferation. Moreover, miR-138 overexpression increased TMZ resistance in long-term glioblastoma cell lines and glioma initiating cell cultures. The apoptosis regulator BIM was identified as a direct target of miR-138, and its silencing mediated the induced TMZ resistance phenotype. Altered sensitivity to apoptosis played only a minor role in this resistance mechanism. Instead, we identified the induction of autophagy to be regulated downstream of the miR-138/BIM axis and to promote cell survival following TMZ exposure. Our data thus define miR-138 as a glioblastoma cell survival-promoting miRNA associated with resistance to TMZ therapy in vitro and with tumor progression in vivo.
Collapse
Affiliation(s)
- Nina Stojcheva
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Gennadi Schechtmann
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Steffen Sass
- Institute of Computational Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Patrick Roth
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Ana-Maria Florea
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Biological and Medical Research Center (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biological and Medical Research Center (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marietta Wolter
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Nikola S Müller
- Institute of Computational Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Department of Mathematics, Technische Universität München, Garching, Germany
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Guido Reifenberger
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Heidelberg, partner site Essen/Düsseldorf, Germany
| | - Caroline Happold
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
34
|
Lichner Z, Mac-Way F, Yousef GM. Obstacles in Renal Regenerative Medicine: Metabolic and Epigenetic Parallels Between Cellular Reprogramming and Kidney Cancer Oncogenesis. Eur Urol Focus 2017; 5:250-261. [PMID: 28847686 DOI: 10.1016/j.euf.2017.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/11/2017] [Accepted: 08/08/2017] [Indexed: 12/11/2022]
Abstract
CONTEXT Regenerative medicine has recently presented a revolutionary solution to end-stage kidney disease. Reprogramming patients' own cells generates induced pluripotent stem cells that are subsequently differentiated to "kidney organoid," a structure that is anatomically and functionally similar to the kidney. This approach holds the promise of a transplantable, immunocompetent, and functional kidney that could be produced in vitro. However, caution must be taken due to the molecular-level similarities between induced pluripotent stem cells and renal cell carcinomas. As such, if cell reprogramming is not tightly controlled, it can lead to carcinogenic changes. OBJECTIVE Based on recent next-generation sequencing results and other supporting data, we identified three major molecular attributes of renal cell carcinoma: metabolic alterations, epigenetic changes, and miRNA-based alterations. Strikingly, these variations are mirrored in induced pluripotent stem cells, which are the main cell source of renal regenerative medicine. Our objective was to discuss the shared metabolic, epigenetic and miRNA-regulated characteristics and to abridge their significance in renal regenerative medicine. EVIDENCE ACQUISITION English-language literature was retrieved through PubMed. EVIDENCE SYNTHESIS Authors collected the published evidence and evaluated the content based on independent literature findings. Articles were filtered to include only highly relevant, recent publications that presented reproducible results by authorities of the field. CONCLUSIONS The kidney represents a unique metabolic environment that could be hijacked by induced pluripotent stem cells or by partially differentiated cells for oncogenic transformation. Future differentiation protocols must produce kidney organoids that are fully engaged in filtration function. PATIENT SUMMARY A new technology can produce mini-kidneys or kidney organoids. This review discusses some of the challenges this technology has to face, including its high oncogenic potential. Understanding these similarities will lead to the safe creation of new functional kidney units in patients with kidney failure.
Collapse
Affiliation(s)
- Zsuzsanna Lichner
- Department of Laboratory Medicine and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Fabrice Mac-Way
- Research Center of CHU de Québec, l'Hôtel-Dieu de Québec Hospital, Division of Nephrology, Faculty and Department of Medicine, Laval University, Quebec, Canada
| | - George M Yousef
- Department of Laboratory Medicine and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
35
|
Joosten SC, Deckers IA, Aarts MJ, Hoeben A, van Roermund JG, Smits KM, Melotte V, van Engeland M, Tjan-Heijnen VC. Prognostic DNA methylation markers for renal cell carcinoma: a systematic review. Epigenomics 2017; 9:1243-1257. [PMID: 28803494 DOI: 10.2217/epi-2017-0040] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM Despite numerous published prognostic methylation markers for renal cell carcinoma (RCC), none of these have yet changed patient management. Our aim is to systematically review and evaluate the literature on prognostic DNA methylation markers for RCC. MATERIALS & METHODS We conducted an exhaustive search of PubMed, EMBASE and MEDLINE up to April 2017 and identified 49 publications. Studies were reviewed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement, assessed for their reporting quality using the Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK) criteria, and were graded to determine the level of evidence (LOE) for each biomarker. RESULTS We identified promoter methylation of BNC1, SCUBE3, GATA5, SFRP1, GREM1, RASSF1A, PCDH8, LAD1 and NEFH as promising prognostic markers. Extensive methodological heterogeneity across the included studies was observed, which hampers comparability and reproducibility of results, providing a possible explanation why these biomarkers do not reach the clinic. CONCLUSION Potential prognostic methylation markers for RCC have been identified, but they require further validation in prospective studies to determine their true clinical value.
Collapse
Affiliation(s)
- Sophie C Joosten
- Division of Medical Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Ivette Ag Deckers
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Maureen J Aarts
- Division of Medical Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Ann Hoeben
- Division of Medical Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Joep G van Roermund
- Department of Urology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Kim M Smits
- Division of Medical Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Veerle Melotte
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Manon van Engeland
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Vivianne C Tjan-Heijnen
- Division of Medical Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|
36
|
Ramsden DB, Waring RH, Barlow DJ, Parsons RB. Nicotinamide N-Methyltransferase in Health and Cancer. Int J Tryptophan Res 2017; 10:1178646917691739. [PMID: 35185340 PMCID: PMC8851132 DOI: 10.1177/1178646917691739] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/11/2017] [Indexed: 12/19/2022] Open
Abstract
Over the past decade, the roles of nicotinamide N-methyltransferase and its product 1-methyl nicotinamide have emerged from playing merely minor roles in phase 2 xenobiotic metabolism as actors in some of the most important scenes of human life. In this review, the structures of the gene, messenger RNA, and protein are discussed, together with the role of the enzyme in many of the common cancers that afflict people today.
Collapse
Affiliation(s)
- David B Ramsden
- Institute of Metabolism and Systems Research, The Medical School, University of Birmingham, Birmingham, UK
| | | | - David J Barlow
- Institute of Pharmaceutical Science, King’s College London, London, UK
| | - Richard B Parsons
- Institute of Pharmaceutical Science, King’s College London, London, UK
| |
Collapse
|
37
|
Thiesen HJ, Steinbeck F, Maruschke M, Koczan D, Ziems B, Hakenberg OW. Stratification of clear cell renal cell carcinoma (ccRCC) genomes by gene-directed copy number alteration (CNA) analysis. PLoS One 2017; 12:e0176659. [PMID: 28486536 PMCID: PMC5423597 DOI: 10.1371/journal.pone.0176659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/14/2017] [Indexed: 11/18/2022] Open
Abstract
Tumorigenic processes are understood to be driven by epi-/genetic and genomic alterations from single point mutations to chromosomal alterations such as insertions and deletions of nucleotides up to gains and losses of large chromosomal fragments including products of chromosomal rearrangements e.g. fusion genes and proteins. Overall comparisons of copy number alterations (CNAs) presented in 48 clear cell renal cell carcinoma (ccRCC) genomes resulted in ratios of gene losses versus gene gains between 26 ccRCC Fuhrman malignancy grades G1 (ratio 1.25) and 20 G3 (ratio 0.58). Gene losses and gains of 15762 CNA genes were mapped to 795 chromosomal cytoband loci including 280 KEGG pathways. CNAs were classified according to their contribution to Fuhrman tumour gradings G1 and G3. Gene gains and losses turned out to be highly structured processes in ccRCC genomes enabling the subclassification and stratification of ccRCC tumours in a genome-wide manner. CNAs of ccRCC seem to start with common tumour related gene losses flanked by CNAs specifying Fuhrman grade G1 losses and CNA gains favouring grade G3 tumours. The appearance of recurrent CNA signatures implies the presence of causal mechanisms most likely implicated in the pathogenesis and disease-outcome of ccRCC tumours distinguishing lower from higher malignant tumours. The diagnostic quality of initial 201 genes (108 genes supporting G1 and 93 genes G3 phenotypes) has been successfully validated on published Swiss data (GSE19949) leading to a restricted CNA gene set of 171 CNA genes of which 85 genes favour Fuhrman grade G1 and 86 genes Fuhrman grade G3. Regarding these gene sets overall survival decreased with the number of G3 related gene losses plus G3 related gene gains. CNA gene sets presented define an entry to a gene-directed and pathway-related functional understanding of ongoing copy number alterations within and between individual ccRCC tumours leading to CNA genes of prognostic and predictive value.
Collapse
Affiliation(s)
- H.-J. Thiesen
- Institute of Immunology, University of Rostock, Rostock, Germany
- * E-mail:
| | - F. Steinbeck
- Institute of Immunology, University of Rostock, Rostock, Germany
| | - M. Maruschke
- Department of Urology, University of Rostock, Rostock, Germany
- Department of Urology, HELIOS Hanseklinikum Stralsund, Germany
| | - D. Koczan
- Institute of Immunology, University of Rostock, Rostock, Germany
| | - B. Ziems
- Steinbeis Center for Proteome Analysis, Rostock, Germany
| | - O. W. Hakenberg
- Department of Urology, University of Rostock, Rostock, Germany
| |
Collapse
|
38
|
Epigallocatechin-3-gallate Sensitizes Human 786-O Renal Cell Carcinoma Cells to TRAIL-Induced Apoptosis. Cell Biochem Biophys 2016; 72:157-64. [PMID: 25539708 DOI: 10.1007/s12013-014-0428-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent. Epigallocatechin-3-gallate (EGCG) is a polyphenolic constituent of green tea. In this study, potentiating effect of EGCG on TRAIL-induced apoptosis human renal carcinoma cell line 786-O which is relatively resistant to TRAIL was examined, and the possible mechanism was investigated. Here, we show that co-treatment with EGCG and TRAIL induced significantly more profound apoptosis in 786-O cells. Treatment of 786-O cells with EGCG and TRAIL downregulated c-FLIP, Mcl-1, and Bcl-2 proteins in a caspase-dependent pathway. Moreover, we found that pretreatment with NAC markedly inhibited the expression levels of c-FLIP, Mcl-1, and Bcl-2 downregulated by the combinatory treatment, suggesting that the regulating effect of EGCG on these above apoptosis-relevant molecules was partially mediated by generation of ROS. Taken together, the present study demonstrates that EGCG sensitizes human 786-O renal cell carcinoma cells to TRAIL-induced apoptosis by downregulation of c-FLIP, Mcl-1, and Bcl-2.
Collapse
|
39
|
Sun Y, Ji P, Chen T, Zhou X, Yang D, Guo Y, Liu Y, Hu L, Xia D, Liu Y, Multani AS, Shmulevich I, Kucherlapati R, Kopetz S, Sood AK, Hamilton SR, Sun B, Zhang W. MIIP haploinsufficiency induces chromosomal instability and promotes tumour progression in colorectal cancer. J Pathol 2016; 241:67-79. [PMID: 27741356 DOI: 10.1002/path.4823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 12/20/2022]
Abstract
The gene encoding migration and invasion inhibitory protein (MIIP), located on 1p36.22, is a potential tumour suppressor gene in glioma. In this study, we aimed to explore the role and mechanism of action of MIIP in colorectal cancer (CRC). MIIP protein expression gradually decreased along the colorectal adenoma-carcinoma sequence and was negatively correlated with lymph node and distant metastasis in 526 colorectal tissue samples (p < 0.05 for all). Analysis of The Cancer Genome Atlas (TCGA) data showed that decreased MIIP expression was significantly associated with MIIP hemizygous deletion (p = 0.0005), which was detected in 27.7% (52/188) of CRC cases, and associated with lymph node and distant metastasis (p < 0.05 for both). We deleted one copy of the MIIP gene in HCT116 CRC cells using zinc finger nuclease technology and demonstrated that MIIP haploinsufficiency resulted in increased colony formation and cell migration and invasion, which was consistent with the results from siRNA-mediated MIIP knockdown in two CRC cell lines (p < 0.05 for all). Moreover, MIIP haploinsufficiency promoted CRC progression in vivo (p < 0.05). Genomic instability and spectral karyotyping assays demonstrated that MIIP haploinsufficiency induced chromosomal instability (CIN). Besides modulating the downstream proteins of APC/CCdc20 , securin and cyclin B1, MIIP haploinsufficiency inhibited topoisomerase II (Topo II) activity and induced chromosomal missegregation. Therefore, we report that MIIP is a novel potential tumour suppressor gene in CRC. Moreover, we characterized the MIIP gene as a novel CIN suppressor gene, through altering the stability of mitotic checkpoint proteins and disturbing Topo II activity. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yan Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ping Ji
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tao Chen
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xinhui Zhou
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Da Yang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuhong Guo
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yuexin Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Limei Hu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dianren Xia
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yanxue Liu
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Asha S Multani
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Raju Kucherlapati
- Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stanley R Hamilton
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Wei Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Winston-Salem, NC 20174, USA
| |
Collapse
|
40
|
Meo AD, Pasic MD, Yousef GM. Proteomics and peptidomics: moving toward precision medicine in urological malignancies. Oncotarget 2016; 7:52460-52474. [PMID: 27119500 PMCID: PMC5239567 DOI: 10.18632/oncotarget.8931] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/16/2016] [Indexed: 12/31/2022] Open
Abstract
Urological malignancies are a major cause of morbidity and mortality worldwide. Advances in early detection, diagnosis, prognosis and prediction of treatment response can significantly improve patient care. Proteomic and peptidomic profiling studies are at the center of kidney, prostate and bladder cancer biomarker discovery and have shown great promise for improved clinical assessment. Mass spectrometry (MS) is the most widely employed method for proteomic and peptidomic analyses. A number of MS platforms have been developed to facilitate accurate identification of clinically relevant markers in various complex biological samples including tissue, urine and blood. Furthermore, protein profiling studies have been instrumental in the successful introduction of several diagnostic multimarker tests into the clinic. In this review, we will provide a brief overview of high-throughput technologies for protein and peptide based biomarker discovery. We will also examine the current state of kidney, prostate and bladder cancer biomarker research as well as review the journey toward successful clinical implementation.
Collapse
Affiliation(s)
- Ashley Di Meo
- Department of Laboratory Medicine, and The Keenan Research Centre for Biomedical Science at The Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Maria D. Pasic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine, St. Joseph's Health Centre, Toronto, Ontario, Canada
| | - George M. Yousef
- Department of Laboratory Medicine, and The Keenan Research Centre for Biomedical Science at The Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
41
|
Renal Cancer Stem Cells: Characterization and Targeted Therapies. Stem Cells Int 2016; 2016:8342625. [PMID: 27293448 PMCID: PMC4884584 DOI: 10.1155/2016/8342625] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/24/2016] [Indexed: 02/08/2023] Open
Abstract
Renal cell carcinoma (RCC) is a major neoplasm with high incidence in western countries. Tumors are heterogeneous and are composed of differentiated cancer cells, stromal cells, and cancer stem cells (CSCs). CSCs possess two main properties: self-renewal and proliferation. Additionally, they can generate new tumors once transplanted into immunodeficient mice. Several approaches have been described to identify them, through the expression of cell markers, functional assays, or a combination of both. As CSCs are involved in the resistance mechanisms to radio- and chemotherapies, several new strategies have been proposed to directly target CSCs in RCC. One approach drives CSCs to differentiate into cancer cells sensitive to conventional treatments, while the other proposes to eradicate them selectively. A series of innovative therapies aiming at eliminating CSCs have been designed to treat other types of cancer and have not been experimented with on RCC yet, but they reveal themselves to be promising. In conclusion, CSCs are an important player in carcinogenesis and represent a valid target for therapy in RCC patients.
Collapse
|
42
|
Lichner Z, Saleh C, Subramaniam V, Seivwright A, Prud'homme GJ, Yousef GM. miR-17 inhibition enhances the formation of kidney cancer spheres with stem cell/ tumor initiating cell properties. Oncotarget 2016; 6:5567-81. [PMID: 25011053 PMCID: PMC4467387 DOI: 10.18632/oncotarget.1901] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/16/2014] [Indexed: 12/30/2022] Open
Abstract
Renal cell carcinoma (RCC) is an aggressive disease, with 35% chance of metastasis. The 'cancer stem cell' hypothesis suggests that a subset of cancer cells possess stem cell properties and is crucial in tumor initiation, metastasis and treatment resistance. We isolated RCC spheres and showed that they exhibit cancer stem cell/ tumor initiating cell-like properties including the formation of self-renewing spheres, high tumorigenicity and the ability to differentiate to cell types of the original tumor. Spheres showed increased expression of stem cell-related transcription factors and mesenchymal markers. miRNAs were differentially expressed between RCC spheres and their parental cells. Inhibition of miR-17 accelerated the formation of RCC spheres which shared molecular characteristics with the spontaneous RCC spheres. Target prediction pointed out TGFβ pathway activation as a possible mechanism to drive RCC sphere formation. We demonstrate that miR-17 overexpression interferes with the TGFβ-EMT axis and hinders RCC sphere formation; and validated TGFBR2 as a direct and biologically relevant target during this process. Thus, a single miRNA may have an impact on the formation of highly tumorigenic cancer spheres of kidney cancer.
Collapse
Affiliation(s)
- Zsuzsanna Lichner
- Department of Laboratory Medicine, and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, University of Toronto, Toronto, Canada
| | - Carol Saleh
- Department of Laboratory Medicine, and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, University of Toronto, Toronto, Canada
| | - Venkateswaran Subramaniam
- Department of Laboratory Medicine, and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, University of Toronto, Toronto, Canada
| | - Annetta Seivwright
- Department of Pathology and Laboratory Medicine, University of Toronto, Toronto, Canada
| | - Gerald Joseph Prud'homme
- Department of Laboratory Medicine, and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, University of Toronto, Toronto, Canada
| | - George Makram Yousef
- Department of Laboratory Medicine, and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
43
|
Specific genomic aberrations predict survival, but low mutation rate in cancer hot spots, in clear cell renal cell carcinoma. Appl Immunohistochem Mol Morphol 2016; 23:334-42. [PMID: 24992170 PMCID: PMC4431677 DOI: 10.1097/pai.0000000000000087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Supplemental Digital Content is available in the text. Detailed genetic profiling of clear cell renal cell carcinoma (ccRCC) has revealed genomic regions commonly affected by structural changes and a general genetic heterogeneity. VHL and PBRM1, both located at chromosome 3p, are 2 major genes mutated at high frequency but apart from these aberrations, the mutational landscape in ccRCC is largely undefined. Potential prognostic information given by the genomic changes appears to depend on the particular cohort studied. We analyzed a Swedish ccRCC cohort of 74 patients and found common changes (loss or gain occurring in >20% of the tumors) in 12 chromosomal regions (1p, 3p, 3q, 5q, 6q, 7p, 7q 8p, 9p, 9q, 10q, and 14q). A poor outcome was associated with gain of 7q and losses on 9p, 9q, and 14q. These aberrations were more frequent in metastasized tumors, suggesting alterations of genes important for tumor progression. Sequencing of 48 genes implicated in cancer revealed that only VHL, TP53, and PTEN were mutated at a noticeable frequency (51%, 9%, and 9%, respectively). Shorter relative telomere length (RTL) has been associated with loss of specific chromosomal regions in ccRCC tumors, but we could not verify this finding. However, a significantly lower tumor/nontumor (T/N) RTL ratio was detected for tumors with losses in 4q or 9p. In conclusion, poor outcome in ccRCC was associated with gain of 7q and loss on 9p, 9q, and 14q, whereas the mutation rate overall was low in a screen of cancer-associated genes.
Collapse
|
44
|
Xiao H, Xiao W, Cao J, Li H, Guan W, Guo X, Chen K, Zheng T, Ye Z, Wang J, Xu H. miR-206 functions as a novel cell cycle regulator and tumor suppressor in clear-cell renal cell carcinoma. Cancer Lett 2016; 374:107-116. [PMID: 26808577 DOI: 10.1016/j.canlet.2016.01.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/31/2015] [Accepted: 01/18/2016] [Indexed: 01/15/2023]
Abstract
PURPOSE In this study we tried to systematically investigate the tumor suppressing microRNAs in ccRCC. MATERIALS AND METHODS The MTS cell viability and colony formation assay were used to systematically detect the tumor suppressing ability of down-regulated miRNAs in ccRCC. Then miR-206 expression was detected by RT-qPCR and in situ hybridization in ccRCC cell lines and clinical samples. Oligonucleotides were used to overexpress or down-regulate miR-206. MTS cell viability, EdU cell proliferation, colony formation assay, flow cytometry, Xenograft subcutaneously and orthotopic implantations were done to examine tumor suppressing effects of miR-206 in vitro and in vivo. Luciferase assay was performed to verify the precise target of miR-206. RESULTS We reviewed and experimentally analyzed the currently available miRNA expression profiles data of ccRCC and identified miR-206 as one of the most critical tumor-suppressing microRNAs in ccRCC. In addition, miR-206 inhibited ccRCC cell proliferation through inducing cell cycle arrest by directly targeting cell cycle related gene CDK4, CDK9 and CCND1. CONCLUSIONS All these results suggested that miR-206 functioned as a novel cell cycle regulator and tumor suppressor in ccRCC and could be considered as a potential target for ccRCC therapy.
Collapse
Affiliation(s)
- Haibing Xiao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Xiao
- Translational Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Cao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Heng Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Guan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaolin Guo
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Zheng
- Department of Urology, Puai Hospital, Wuhan, 430033, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ji Wang
- Department of Cell Death and Cancer Genetics, The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA.
| | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
45
|
Temporal Identification of Dysregulated Genes and Pathways in Clear Cell Renal Cell Carcinoma Based on Systematic Tracking of Disrupted Modules. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2015; 2015:313740. [PMID: 26543493 PMCID: PMC4620417 DOI: 10.1155/2015/313740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/31/2015] [Accepted: 08/11/2015] [Indexed: 11/17/2022]
Abstract
Objective. The objective of this work is to identify dysregulated genes and pathways of ccRCC temporally according to systematic tracking of the dysregulated modules of reweighted Protein-Protein Interaction (PPI) networks. Methods. Firstly, normal and ccRCC PPI network were inferred and reweighted based on Pearson correlation coefficient (PCC). Then, we identified altered modules using maximum weight bipartite matching and ranked them in nonincreasing order. Finally, gene compositions of altered modules were analyzed, and pathways enrichment analyses of genes in altered modules were carried out based on Expression Analysis Systematic Explored (EASE) test. Results. We obtained 136, 576, 693, and 531 disrupted modules of ccRCC stages I, II, III, and IV, respectively. Gene composition analyses of altered modules revealed that there were 56 common genes (such as MAPK1, CCNA2, and GSTM3) existing in the four stages. Besides pathway enrichment analysis identified 5 common pathways (glutathione metabolism, cell cycle, alanine, aspartate, and glutamate metabolism, arginine and proline metabolism, and metabolism of xenobiotics by cytochrome P450) across stages I, II, III, and IV. Conclusions. We successfully identified dysregulated genes and pathways of ccRCC in different stages, and these might be potential biological markers and processes for treatment and etiology mechanism in ccRCC.
Collapse
|
46
|
Wu J, Lai M, Shao C, Wang J, Wei JJ. STC2 overexpression mediated by HMGA2 is a biomarker for aggressiveness of high-grade serous ovarian cancer. Oncol Rep 2015; 34:1494-502. [PMID: 26165228 DOI: 10.3892/or.2015.4120] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/17/2015] [Indexed: 12/14/2022] Open
Abstract
High-grade serous cancer (HGSC) is a lethal form of ovarian cancer due to invasion and early metastasis. Gain of epithelial-mesenchymal transition (EMT) contributes to the aggressiveness of HGSC. High-mobility gene group A2 (HMGA2), an architectural transcription factor, plays a major role in HGSC through the regulation of EMT gene expression. Based on the gene profiling analysis, we found that the potent EMT gene, stanniocalcin 2 (STC2), was highly correlated with HMGA2 expression. In the present study, we demonstrated that STC2 was directly regulated by HMGA2 at the transcriptional level. Overexpressing STC2 in vitro directly enhanced cell migration and invasion. To investigate the correlation of STC2 and HMGA2 expression and the potential biomarker for ovarian cancer, three independent large cohorts of ovarian cancer (cohort 1=278, cohort 2=150 and cohort 3=95 cases) were examined in the present study. The results showed that the expression of HMGA2 and STC2 was positively correlated. Furthermore, STC2 expression was significantly associated with tumor grade and histotype. HGSC had significantly higher levels of STC2 expression and was inversely correlated with patient survival. These findings suggested that STC2 is an important new biomarker that can be used for HGSC.
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Maode Lai
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Changshun Shao
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Jian Wang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jian-Jun Wei
- Department of Pathology, Northwestern University School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
47
|
White-Al Habeeb NM, Di Meo A, Scorilas A, Rotondo F, Masui O, Seivwright A, Gabril M, Girgis AHA, Jewett MA, Yousef GM. Alpha-enolase is a potential prognostic marker in clear cell renal cell carcinoma. Clin Exp Metastasis 2015; 32:531-41. [DOI: 10.1007/s10585-015-9725-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/27/2015] [Indexed: 01/20/2023]
|
48
|
The epigenetic landscape of clear-cell renal cell carcinoma. J Kidney Cancer VHL 2015; 2:90-104. [PMID: 28326264 PMCID: PMC5345536 DOI: 10.15586/jkcvhl.2015.33] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/26/2015] [Indexed: 01/29/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of all kidney tumors. During the last few years, epigenetics has emerged as an important mechanism in ccRCC pathogenesis. Recent reports, involving large-scale methylation and sequencing analyses, have identified genes frequently inactivated by promoter methylation and recurrent mutations in genes encoding chromatin regulatory proteins. Interestingly, three of detected genes (PBRM1, SETD2 and BAP1) are located on chromosome 3p, near the VHL gene, inactivated in over 80% ccRCC cases. This suggests that 3p alterations are an essential part of ccRCC pathogenesis. Moreover, most of the proteins encoded by these genes cooperate in histone H3 modifications. The aim of this review is to summarize the latest discoveries shedding light on deregulation of chromatin machinery in ccRCC. Newly described ccRCC-specific epigenetic alterations could potentially serve as novel diagnostic and prognostic biomarkers and become an object of novel therapeutic strategies.
Collapse
|
49
|
Wala SJ, Karamchandani JR, Saleeb R, Evans A, Ding Q, Ibrahim R, Jewett M, Pasic M, Finelli A, Pace K, Lianidou E, Yousef GM. An integrated genomic analysis of papillary renal cell carcinoma type 1 uncovers the role of focal adhesion and extracellular matrix pathways. Mol Oncol 2015; 9:1667-77. [PMID: 26051997 DOI: 10.1016/j.molonc.2015.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/18/2015] [Accepted: 04/20/2015] [Indexed: 02/03/2023] Open
Abstract
Papillary renal cell carcinoma (pRCC) is the second most common RCC subtype and can be further classified as type 1 (pRCC1) or 2 (pRCC2). There is currently minimal understanding of pRCC1 pathogenesis, and treatment decisions are mostly empirical. The aim of this study was to identify biological pathways that are involved in pRCC1 pathogenesis using an integrated genomic approach. By microarray analysis, we identified a number of significantly dysregulated genes and microRNAs (miRNAs) that were unique to pRCC1. Integrated bioinformatics analyses showed enrichment of the focal adhesion and extracellular matrix (ECM) pathways. We experimentally validated that many members of these pathways are dysregulated in pRCC1. We identified and experimentally validated the downregulation of miR-199a-3p in pRCC1. Using cell line models, we showed that miR-199a-3p plays an important role in pRCC1 pathogenesis. Gain of function experiments showed that miR-199a-3p overexpression significantly decreased cell proliferation (p = 0.013). We also provide evidence that miR-199a-3p regulates the expression of genes linked to the focal adhesion and ECM pathways, such as caveolin 2 (CAV2), integrin beta 8 (ITGB8), MET proto-oncogene and mammalian target of rapamycin (MTOR). Using a luciferase reporter assay, we further provide evidence that miR-199a-3p overexpression decreases the expression of MET and MTOR. Using an integrated gene/miRNA approach, we provide evidence linking miRNAs to the focal adhesion and ECM pathways in pRCC1 pathogenesis. This novel information can contribute to the development of effective targeted therapies for pRCC1, for which there is none currently available in the clinic.
Collapse
Affiliation(s)
- Samantha Jane Wala
- The Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| | - Jason Raj Karamchandani
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| | - Rola Saleeb
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| | - Andrew Evans
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Department of Pathology, Toronto General Hospital, Toronto, Ontario, Canada.
| | - Qiang Ding
- The Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada.
| | - Rania Ibrahim
- The Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada.
| | - Michael Jewett
- Department of Surgery, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada.
| | - Maria Pasic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Department of Laboratory Medicine, St. Joseph's Health Centre, 30 Queensway, Ontario M6R 1B5, Canada.
| | - Antonio Finelli
- Department of Surgery, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada.
| | - Kenneth Pace
- Department of Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada.
| | - Evi Lianidou
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, 15771 Athens, Greece.
| | - George Makram Yousef
- The Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
50
|
Jafri M, Wake NC, Ascher DB, Pires DE, Gentle D, Morris MR, Rattenberry E, Simpson MA, Trembath RC, Weber A, Woodward ER, Donaldson A, Blundell TL, Latif F, Maher ER. Germline Mutations in the CDKN2B Tumor Suppressor Gene Predispose to Renal Cell Carcinoma. Cancer Discov 2015; 5:723-9. [DOI: 10.1158/2159-8290.cd-14-1096] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 04/09/2015] [Indexed: 11/16/2022]
|