1
|
Sapkota T, Shrestha S, Regmi BP, Bhattarai N. Fabrication of cell-laden hydrogel microcapsules of alginate and chitin fibrils using divalent and trivalent metal ions. RSC Adv 2025; 15:12876-12895. [PMID: 40264879 PMCID: PMC12013471 DOI: 10.1039/d5ra01397f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025] Open
Abstract
Nanofiber-embedded 3D hydrogel constructs have garnered significant attention due to their versatile applications in drug delivery, cell therapy, tissue engineering, and regenerative medicine. These constructs are especially prized for their capacity to mimic the composition of the extracellular matrix (ECM) found in living tissues and organs. The unique chemical and mechanical properties of hydrogel microcapsules have made them particularly notable among various biomaterial constructs for their effectiveness in cell encapsulation, which aims to improve cell growth and proliferation. In this study, we developed alginate hydrogel microcapsules embedded with chitin nanofibrils, using divalent calcium ions and trivalent iron ions as crosslinking agents. An electrostatic encapsulation technique was utilized to create microcapsules with diameters ranging from 200-500 μm, and their physicochemical properties, rheological properties, size, and mechanical stability were evaluated. The rheological analysis demonstrated that the Fe3+ crosslinked hydrogel (AF0) and Fe3+/Ca2+ cross-linked hydrogel (AFC) have higher storage modulus than the Ca2+ crosslinked hydrogel (AC0). Additionally, FTIR analyses of AF0 and AFC demonstrated a broader -O-H stretching peak compared to that of AC0, suggesting that more hydroxyl groups of alginate chains are involved in crosslinking with ferric ions exhibiting extended mechanical stability compared to those crosslinked with calcium ions under in vitro physiological conditions. We also investigated the cellular responses to the composite hydrogels crosslinked with these divalent and trivalent metal ions through in vitro studies involving the seeding and encapsulation of NIH/3T3 fibroblast cells. Remarkably, both types of crosslinked microcapsules maintained excellent cell viability for up to 5 days. Our in vitro scratch assay demonstrated that media extracted from AF0 microcapsules facilitated faster wound closure compared to that extracted from AC0, suggesting that hydrogels crosslinked with Fe3+ ions promote enhanced cellular proliferation. These results suggest that calcium and ferric ion crosslinked alginate-chitin composite microcapsules provide a promising platform for developing 3D hydrogel constructs suitable for various biomedical applications, including wound healing models, tissue engineering, and drug toxicity testing.
Collapse
Affiliation(s)
- Thakur Sapkota
- Department of Applied Science and Technology, North Carolina A&T State University Greensboro NC 27411 USA
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University Greensboro NC 27411 USA
| | - Sita Shrestha
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University Greensboro NC 27411 USA
| | - Bishnu P Regmi
- Department of Chemistry, Florida Agricultural and Mechanical University Tallahassee FL 32307 USA
| | - Narayan Bhattarai
- Department of Applied Science and Technology, North Carolina A&T State University Greensboro NC 27411 USA
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University Greensboro NC 27411 USA
| |
Collapse
|
2
|
Kary AD, Noelle H, Magin CM. Tissue-Informed Biomaterial Innovations Advance Pulmonary Regenerative Engineering. ACS Macro Lett 2025; 14:434-447. [PMID: 40102038 DOI: 10.1021/acsmacrolett.5c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Irreversible progressive pulmonary diseases drastically reduce the patient quality of life, while transplantation remains the only definitive cure. Research into lung regeneration pathways holds significant potential to expand and promote the discovery of new treatment options. Polymeric biomaterials designed to replicate key tissue characteristics (i.e., biochemical composition and mechanical cues) show promise for creating environments in which to study chronic lung diseases and initiate lung tissue regeneration. In this Viewpoint, we explore how naturally derived materials can be employed alone or combined with engineered polymer systems to create advanced tissue culture platforms. Pulmonary tissue models have historically leveraged natural materials, including basement membrane extracts and a decellularized extracellular matrix, as platforms for lung regeneration studies. Here, we provide an overview of the progression of pulmonary regenerative engineering, exploring how innovations in the growing field of tissue-informed biomaterials have the potential to advance lung regeneration research by bridging the gap between biological relevance and mechanical precision.
Collapse
Affiliation(s)
- Anton D Kary
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Haley Noelle
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Chelsea M Magin
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| |
Collapse
|
3
|
Leonard-Duke J, Agro SMJ, Csordas DJ, Bruce AC, Eggertsen TG, Tavakol TN, Comlekoglu T, Barker TH, Bonham CA, Saucerman JJ, Taite LJ, Peirce SM. Multiscale computational model predicts how environmental changes and treatments affect microvascular remodeling in fibrotic disease. PNAS NEXUS 2025; 4:pgae551. [PMID: 39720203 PMCID: PMC11667245 DOI: 10.1093/pnasnexus/pgae551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/13/2024] [Indexed: 12/26/2024]
Abstract
Investigating the molecular, cellular, and tissue-level changes caused by disease, and the effects of pharmacological treatments across these biological scales, necessitates the use of multiscale computational modeling in combination with experimentation. Many diseases dynamically alter the tissue microenvironment in ways that trigger microvascular network remodeling, which leads to the expansion or regression of microvessel networks. When microvessels undergo remodeling in idiopathic pulmonary fibrosis (IPF), functional gas exchange is impaired and lung function declines. We integrated a multiscale computational model with independent experiments to investigate how combinations of biomechanical and biochemical cues in IPF alter cell fate decisions leading to microvascular remodeling. Our computational model predicted that extracellular matrix (ECM) stiffening reduced microvessel area, which was accompanied by physical uncoupling of endothelial cell (EC) and pericytes, the cells that comprise microvessels. Nintedanib, an Food and Drug Administration-approved drug for treating IPF, was predicted to further potentiate microvessel regression by decreasing the percentage of quiescent pericytes while increasing the percentage of pericytes undergoing pericyte-myofibroblast transition in high ECM stiffnesses. Importantly, the model suggested that YAP/TAZ inhibition may overcome the deleterious effects of nintedanib by promoting EC-pericyte coupling and maintaining microvessel homeostasis. Overall, our combination of computational and experimental modeling can predict and explain how cell decisions affect tissue changes during disease and in response to treatments.
Collapse
Affiliation(s)
- Julie Leonard-Duke
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Samuel M J Agro
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - David J Csordas
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Anthony C Bruce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Taylor G Eggertsen
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Tara N Tavakol
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Tien Comlekoglu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Catherine A Bonham
- Department of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Lakeshia J Taite
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
4
|
Zhang X, Al‐Danakh A, Zhu X, Feng D, Yang L, Wu H, Li Y, Wang S, Chen Q, Yang D. Insights into the mechanisms, regulation, and therapeutic implications of extracellular matrix stiffness in cancer. Bioeng Transl Med 2025; 10:e10698. [PMID: 39801760 PMCID: PMC11711218 DOI: 10.1002/btm2.10698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 01/03/2025] Open
Abstract
The tumor microenvironment (TME) is critical for cancer initiation, growth, metastasis, and therapeutic resistance. The extracellular matrix (ECM) is a significant tumor component that serves various functions, including mechanical support, TME regulation, and signal molecule generation. The quantity and cross-linking status of ECM components are crucial factors in tumor development, as they determine tissue stiffness and the interaction between stiff TME and cancer cells, resulting in aberrant mechanotransduction, proliferation, migration, invasion, angiogenesis, immune evasion, and treatment resistance. Therefore, broad knowledge of ECM dysregulation in the TME might aid in developing innovative cancer therapies. This review summarized the available information on major ECM components, their functions, factors that increase and decrease matrix stiffness, and related signaling pathways that interplay between cancer cells and the ECM in TME. Moreover, mechanotransduction alters during tumorogenesis, and current drug therapy based on ECM as targets, as well as future efforts in ECM and cancer, are also discussed.
Collapse
Affiliation(s)
- Ximo Zhang
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Abdullah Al‐Danakh
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Xinqing Zhu
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Dan Feng
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Linlin Yang
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Haotian Wu
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Yingying Li
- Department of Discipline ConstructionDalian Medical UniversityDalianChina
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Institute of GlycobiologyDalian Medical UniversityDalianChina
| | - Qiwei Chen
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
- Zhongda Hospital, Medical School Advanced Institute Life HealthSoutheast UniversityNanjingChina
| | - Deyong Yang
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
- Department of SurgeryHealinghands ClinicDalianChina
| |
Collapse
|
5
|
Barros da Silva P, Zhao X, Bidarra SJ, Nascimento DS, LaLone V, Lourenço BN, Paredes J, Stevens MM, Barrias CC. Tunable Hybrid Hydrogels of Alginate and Cell-Derived dECM to Study the Impact of Matrix Alterations on Epithelial-to-Mesenchymal Transition. Adv Healthc Mater 2024; 13:e2401032. [PMID: 39246099 PMCID: PMC11582509 DOI: 10.1002/adhm.202401032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/27/2024] [Indexed: 09/10/2024]
Abstract
Epithelial-to-mesenchymal transition (EMT) is crucial for tumor progression, being linked to alterations in the extracellular matrix (ECM). Understanding the ECM's role in EMT can uncover new therapeutic targets, yet replicating these interactions in vitro remains challenging. It is shown that hybrid hydrogels of alginate (ALG) and cell-derived decellularized ECM (dECM), with independently tunable composition and stiffness, are useful 3D-models to explore the impact of the breast tumor matrix on EMT. Soft RGD-ALG hydrogels (200 Pa), used as neutral bulk material, supported mammary epithelial cells morphogenesis without spontaneous EMT, allowing to define the gene, protein, and biochemical profiles of cells at different TGFβ1-induced EMT states. To mimic the breast tumor composition, dECM from TGFβ1-activated fibroblasts (adECM) are generated, which shows upregulation of tumor-associated proteins compared to ndECM from normal fibroblasts. Using hybrid adECM-ALG hydrogels, it is shown that the presence of adECM induces partial EMT in normal epithelial cells, and amplifes TGF-β1 effects compared to ALG and ndECM-ALG. Increasing the hydrogel stiffness to tumor-like levels (2.5 kPa) have a synergistic effect, promoting a more evident EMT. These findings shed light on the complex interplay between matrix composition and stiffness in EMT, underscoring the utility of dECM-ALG hydrogels as a valuable in vitro platform for cancer research.
Collapse
Affiliation(s)
- P Barros da Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, 4200-135, Portugal
- FEUP - Faculdade de Engenharia da Universidade do Porto, Porto, 4200-135, Portugal
| | - Xiaoyu Zhao
- Department of Bioengineering, Imperial College London, Exhibition Rd, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, Exhibition Rd, London, SW7 2AZ, UK
| | - Sílvia J Bidarra
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, 4200-135, Portugal
| | - Diana S Nascimento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, 4200-135, Portugal
| | - Vernon LaLone
- Department of Bioengineering, Imperial College London, Exhibition Rd, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, Exhibition Rd, London, SW7 2AZ, UK
- Department of Materials, Imperial College London, Exhibition Rd, London, SW7 2AZ, UK
| | - Bianca N Lourenço
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, 4200-135, Portugal
- FEUP - Faculdade de Engenharia da Universidade do Porto, Porto, 4200-135, Portugal
| | - Joana Paredes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, 4200-319, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, 4200-135, Portugal
| | - Molly M Stevens
- Department of Bioengineering, Imperial College London, Exhibition Rd, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, Exhibition Rd, London, SW7 2AZ, UK
- Department of Materials, Imperial College London, Exhibition Rd, London, SW7 2AZ, UK
| | - C C Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, 4200-135, Portugal
| |
Collapse
|
6
|
Wheeler EE, Leach JK. Tissue-Engineered Three-Dimensional Platforms for Disease Modeling and Therapeutic Development. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39345164 DOI: 10.1089/ten.teb.2024.0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Three-dimensional (3D) tissue-engineered models are under investigation to recapitulate tissue architecture and functionality, thereby overcoming limitations of traditional two-dimensional cultures and preclinical animal models. This review highlights recent developments in 3D platforms designed to model diseases in vitro that affect numerous tissues and organs, including cardiovascular, gastrointestinal, bone marrow, neural, reproductive, and pulmonary systems. We discuss current technologies for engineered tissue models, highlighting the advantages, limitations, and important considerations for modeling tissues and diseases. Lastly, we discuss future advancements necessary to enhance the reliability of 3D models of tissue development and disease.
Collapse
Affiliation(s)
- Erika E Wheeler
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, California, USA
- Department of Biomedical Engineering, University of California, Davis, California, USA
| | - J Kent Leach
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, California, USA
- Department of Biomedical Engineering, University of California, Davis, California, USA
| |
Collapse
|
7
|
Leonard-Duke J, Agro SMJ, Csordas DJ, Bruce AC, Eggertsen TG, Tavakol TN, Barker TH, Bonham CA, Saucerman JJ, Taite LJ, Peirce SM. Multiscale computational model predicts how environmental changes and drug treatments affect microvascular remodeling in fibrotic disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585249. [PMID: 38559112 PMCID: PMC10979947 DOI: 10.1101/2024.03.15.585249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Investigating the molecular, cellular, and tissue-level changes caused by disease, and the effects of pharmacological treatments across these biological scales, necessitates the use of multiscale computational modeling in combination with experimentation. Many diseases dynamically alter the tissue microenvironment in ways that trigger microvascular network remodeling, which leads to the expansion or regression of microvessel networks. When microvessels undergo remodeling in idiopathic pulmonary fibrosis (IPF), functional gas exchange is impaired due to loss of alveolar structures and lung function declines. Here, we integrated a multiscale computational model with independent experiments to investigate how combinations of biomechanical and biochemical cues in IPF alter cell fate decisions leading to microvascular remodeling. Our computational model predicted that extracellular matrix (ECM) stiffening reduced microvessel area, which was accompanied by physical uncoupling of endothelial cell (ECs) and pericytes, the cells that comprise microvessels. Nintedanib, an FDA-approved drug for treating IPF, was predicted to further potentiate microvessel regression by decreasing the percentage of quiescent pericytes while increasing the percentage of pericytes undergoing pericyte-myofibroblast transition (PMT) in high ECM stiffnesses. Importantly, the model suggested that YAP/TAZ inhibition may overcome the deleterious effects of nintedanib by promoting EC-pericyte coupling and maintaining microvessel homeostasis. Overall, our combination of computational and experimental modeling can explain how cell decisions affect tissue changes during disease and in response to treatments.
Collapse
Affiliation(s)
- Julie Leonard-Duke
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Samuel M. J. Agro
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - David J. Csordas
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Anthony C. Bruce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Taylor G. Eggertsen
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Tara N. Tavakol
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Thomas H. Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Catherine A. Bonham
- Department of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Jeffery J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Lakeshia J. Taite
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Shayn M. Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
8
|
Blomberg R, Sompel K, Hauer C, Smith AJ, Peña B, Driscoll J, Hume PS, Merrick DT, Tennis MA, Magin CM. Hydrogel-Embedded Precision-Cut Lung Slices Model Lung Cancer Premalignancy Ex Vivo. Adv Healthc Mater 2024; 13:e2302246. [PMID: 37953708 PMCID: PMC10872976 DOI: 10.1002/adhm.202302246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/17/2023] [Indexed: 11/14/2023]
Abstract
Lung cancer is the leading global cause of cancer-related deaths. Although smoking cessation is the best prevention, 50% of lung cancer diagnoses occur in people who have quit smoking. Research into treatment options for high-risk patients is constrained to rodent models, which are time-consuming, expensive, and require large cohorts. Embedding precision-cut lung slices (PCLS) within an engineered hydrogel and exposing this tissue to vinyl carbamate, a carcinogen from cigarette smoke, creates an in vitro model of lung cancer premalignancy. Hydrogel formulations are selected to promote early lung cancer cellular phenotypes and extend PCLS viability to six weeks. Hydrogel-embedded PCLS are exposed to vinyl carbamate, which induces adenocarcinoma in mice. Analysis of proliferation, gene expression, histology, tissue stiffness, and cellular content after six weeks reveals that vinyl carbamate induces premalignant lesions with a mixed adenoma/squamous phenotype. Putative chemoprevention agents diffuse through the hydrogel and induce tissue-level changes. The design parameters selected using murine tissue are validated with hydrogel-embedded human PCLS and results show increased proliferation and premalignant lesion gene expression patterns. This tissue-engineered model of human lung cancer premalignancy is the foundation for more sophisticated ex vivo models that enable the study of carcinogenesis and chemoprevention strategies.
Collapse
Affiliation(s)
- Rachel Blomberg
- Department of Bioengineering, University of Colorado, Denver |Anschutz, Aurora, CO, 80045, USA
| | - Kayla Sompel
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Caroline Hauer
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Alex J Smith
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Brisa Peña
- Department of Bioengineering, University of Colorado, Denver |Anschutz, Aurora, CO, 80045, USA
- Cardiovascular Institute & Adult Medical Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jennifer Driscoll
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Patrick S Hume
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Daniel T Merrick
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Meredith A Tennis
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Chelsea M Magin
- Department of Bioengineering, University of Colorado, Denver |Anschutz, Aurora, CO, 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
9
|
Hassani I, Anbiah B, Moore AL, Abraham PT, Odeniyi IA, Habbit NL, Greene MW, Lipke EA. Establishment of a tissue-engineered colon cancer model for comparative analysis of cancer cell lines. J Biomed Mater Res A 2024; 112:231-249. [PMID: 37927200 DOI: 10.1002/jbm.a.37611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 08/13/2023] [Accepted: 08/30/2023] [Indexed: 11/07/2023]
Abstract
To overcome the limitations of in vitro two-dimensional (2D) cancer models in mimicking the complexities of the native tumor milieu, three-dimensional (3D) engineered cancer models using biomimetic materials have been introduced to more closely recapitulate the key attributes of the tumor microenvironment. Specifically, for colorectal cancer (CRC), a few studies have developed 3D engineered tumor models to investigate cell-cell interactions or efficacy of anti-cancer drugs. However, recapitulation of CRC cell line phenotypic differences within a 3D engineered matrix has not been systematically investigated. Here, we developed an in vitro 3D engineered CRC (3D-eCRC) tissue model using the natural-synthetic hybrid biomaterial PEG-fibrinogen and three CRC cell lines, HCT 116, HT-29, and SW480. To better recapitulate native tumor conditions, our 3D-eCRC model supported higher cell density encapsulation (20 × 106 cells/mL) and enabled longer term maintenance (29 days) as compared to previously reported in vitro CRC models. The 3D-eCRCs formed using each cell line demonstrated line-dependent differences in cellular and tissue properties, including cellular growth and morphology, cell subpopulations, cell size, cell granularity, migration patterns, tissue growth, gene expression, and tissue stiffness. Importantly, these differences were found to be most prominent from Day 22 to Day 29, thereby indicating the importance of long-term culture of engineered CRC tissues for recapitulation and investigation of mechanistic differences and drug response. Our 3D-eCRC tissue model showed high potential for supporting future in vitro comparative studies of disease progression, metastatic mechanisms, and anti-cancer drug candidate response in a CRC cell line-dependent manner.
Collapse
Affiliation(s)
- Iman Hassani
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
- Department of Chemical Engineering, Tuskegee University, Tuskegee, Alabama, USA
| | - Benjamin Anbiah
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
| | - Andrew L Moore
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
| | - Peter T Abraham
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
| | - Ifeoluwa A Odeniyi
- Department of Nutritional Sciences, Auburn University, Auburn, Alabama, USA
| | - Nicole L Habbit
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
| | - Michael W Greene
- Department of Nutritional Sciences, Auburn University, Auburn, Alabama, USA
| | - Elizabeth A Lipke
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
10
|
Yuan Y, Tyson C, Szyniec A, Agro S, Tavakol TN, Harmon A, Lampkins D, Pearson L, Dumas JE, Taite LJ. Bioactive Polyurethane-Poly(ethylene Glycol) Diacrylate Hydrogels for Applications in Tissue Engineering. Gels 2024; 10:108. [PMID: 38391438 PMCID: PMC10887679 DOI: 10.3390/gels10020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Polyurethanes (PUs) are a highly adaptable class of biomaterials that are among some of the most researched materials for various biomedical applications. However, engineered tissue scaffolds composed of PU have not found their way into clinical application, mainly due to the difficulty of balancing the control of material properties with the desired cellular response. A simple method for the synthesis of tunable bioactive poly(ethylene glycol) diacrylate (PEGDA) hydrogels containing photocurable PU is described. These hydrogels may be modified with PEGylated peptides or proteins to impart variable biological functions, and the mechanical properties of the hydrogels can be tuned based on the ratios of PU and PEGDA. Studies with human cells revealed that PU-PEG blended hydrogels support cell adhesion and viability when cell adhesion peptides are crosslinked within the hydrogel matrix. These hydrogels represent a unique and highly tailorable system for synthesizing PU-based synthetic extracellular matrices for tissue engineering applications.
Collapse
Affiliation(s)
- Yixuan Yuan
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - Caleb Tyson
- Department of Chemical Engineering, Hampton University, Hampton, VA 23668, USA
| | - Annika Szyniec
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - Samuel Agro
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - Tara N Tavakol
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Alexander Harmon
- Department of Chemical Engineering, Hampton University, Hampton, VA 23668, USA
| | - DessaRae Lampkins
- Department of Chemical Engineering, Hampton University, Hampton, VA 23668, USA
| | - Lauran Pearson
- Department of Chemical Engineering, Hampton University, Hampton, VA 23668, USA
| | - Jerald E Dumas
- Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural & Technical State University, Greensboro, NC 27401, USA
| | - Lakeshia J Taite
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
11
|
Leonard-Duke J, Bruce AC, Peirce SM, Taite LJ. Variations in mechanical stiffness alter microvascular sprouting and stability in a PEG hydrogel model of idiopathic pulmonary fibrosis. Microcirculation 2023; 30:e12817. [PMID: 37248193 PMCID: PMC10524245 DOI: 10.1111/micc.12817] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/07/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
OBJECTIVE Microvascular remodeling is governed by biomechanical and biochemical cues which are dysregulated in idiopathic pulmonary fibrosis. Understanding how these cues impact endothelial cell-pericyte interactions necessitates a model system in which both variables can be independently and reproducibly modulated. In this study we develop a tunable hydrogel-based angiogenesis assay to study how varying angiogenic growth factors and environmental stiffness affect sprouting and vessel organization. METHODS Lungs harvested from mice were cut into 1 mm long segments then cultured on hydrogels having one of seven possible stiffness and growth factor combinations. Time course, brightfield, and immunofluorescence imaging were used to observe and quantify sprout formation. RESULTS Our assay was able to support angiogenesis in a comparable manner to Matrigel in soft 2 kPa gels while enabling tunability to study the effects of stiffness on sprout formation. Matrigel and 2 kPa groups contained significantly more samples with sprouts when compared to the stiffer 10 and 20 kPa gels. Growth factor treatment did not have as obvious an effect, although the 20 kPa PDGF + FGF-treated group had significantly longer vessels than the vascular endothelial growth factor-treated group. CONCLUSIONS We have developed a novel, tunable hydrogel assay for the creation of lung explant vessel organoids which can be modulated to study the impact of specific environmental cues on vessel formation and maturation.
Collapse
Affiliation(s)
- Julie Leonard-Duke
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Anthony C Bruce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Lakeshia J Taite
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
12
|
Shou Y, Teo XY, Wu KZ, Bai B, Kumar ARK, Low J, Le Z, Tay A. Dynamic Stimulations with Bioengineered Extracellular Matrix-Mimicking Hydrogels for Mechano Cell Reprogramming and Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300670. [PMID: 37119518 PMCID: PMC10375194 DOI: 10.1002/advs.202300670] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Cells interact with their surrounding environment through a combination of static and dynamic mechanical signals that vary over stimulus types, intensity, space, and time. Compared to static mechanical signals such as stiffness, porosity, and topography, the current understanding on the effects of dynamic mechanical stimulations on cells remains limited, attributing to a lack of access to devices, the complexity of experimental set-up, and data interpretation. Yet, in the pursuit of emerging translational applications (e.g., cell manufacturing for clinical treatment), it is crucial to understand how cells respond to a variety of dynamic forces that are omnipresent in vivo so that they can be exploited to enhance manufacturing and therapeutic outcomes. With a rising appreciation of the extracellular matrix (ECM) as a key regulator of biofunctions, researchers have bioengineered a suite of ECM-mimicking hydrogels, which can be fine-tuned with spatiotemporal mechanical cues to model complex static and dynamic mechanical profiles. This review first discusses how mechanical stimuli may impact different cellular components and the various mechanobiology pathways involved. Then, how hydrogels can be designed to incorporate static and dynamic mechanical parameters to influence cell behaviors are described. The Scopus database is also used to analyze the relative strength in evidence, ranging from strong to weak, based on number of published literatures, associated citations, and treatment significance. Additionally, the impacts of static and dynamic mechanical stimulations on clinically relevant cell types including mesenchymal stem cells, fibroblasts, and immune cells, are evaluated. The aim is to draw attention to the paucity of studies on the effects of dynamic mechanical stimuli on cells, as well as to highlight the potential of using a cocktail of various types and intensities of mechanical stimulations to influence cell fates (similar to the concept of biochemical cocktail to direct cell fate). It is envisioned that this progress report will inspire more exciting translational development of mechanoresponsive hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Yufeng Shou
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Xin Yong Teo
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Kenny Zhuoran Wu
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Bingyu Bai
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Arun R. K. Kumar
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Jessalyn Low
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Zhicheng Le
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Andy Tay
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- NUS Tissue Engineering ProgramNational University of SingaporeSingapore117510Singapore
| |
Collapse
|
13
|
Wu KZ, Adine C, Mitriashkin A, Aw BJJ, Iyer NG, Fong ELS. Making In Vitro Tumor Models Whole Again. Adv Healthc Mater 2023; 12:e2202279. [PMID: 36718949 PMCID: PMC11469124 DOI: 10.1002/adhm.202202279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/04/2023] [Indexed: 02/01/2023]
Abstract
As a reductionist approach, patient-derived in vitro tumor models are inherently still too simplistic for personalized drug testing as they do not capture many characteristics of the tumor microenvironment (TME), such as tumor architecture and stromal heterogeneity. This is especially problematic for assessing stromal-targeting drugs such as immunotherapies in which the density and distribution of immune and other stromal cells determine drug efficacy. On the other end, in vivo models are typically costly, low-throughput, and time-consuming to establish. Ex vivo patient-derived tumor explant (PDE) cultures involve the culture of resected tumor fragments that potentially retain the intact TME of the original tumor. Although developed decades ago, PDE cultures have not been widely adopted likely because of their low-throughput and poor long-term viability. However, with growing recognition of the importance of patient-specific TME in mediating drug response, especially in the field of immune-oncology, there is an urgent need to resurrect these holistic cultures. In this Review, the key limitations of patient-derived tumor explant cultures are outlined and technologies that have been developed or could be employed to address these limitations are discussed. Engineered holistic tumor explant cultures may truly realize the concept of personalized medicine for cancer patients.
Collapse
Affiliation(s)
- Kenny Zhuoran Wu
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
| | - Christabella Adine
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
| | - Aleksandr Mitriashkin
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
| | - Benjamin Jun Jie Aw
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
| | - N. Gopalakrishna Iyer
- Department of Head and Neck Surgery, Division of Surgery and Surgical OncologyDuke‐NUS Medical SchoolSingapore169857Singapore
- Department of Head and Neck SurgeryNational Cancer Centre SingaporeSingapore169610Singapore
| | - Eliza Li Shan Fong
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
- The N.1 Institute for HealthNational University of SingaporeSingapore117456Singapore
- Cancer Science Institute (CSI)National University of SingaporeSingapore117599Singapore
| |
Collapse
|
14
|
Ahmed TA, Eldaly B, Eldosuky S, Elkhenany H, El-Derby AM, Elshazly MF, El-Badri N. The interplay of cells, polymers, and vascularization in three-dimensional lung models and their applications in COVID-19 research and therapy. Stem Cell Res Ther 2023; 14:114. [PMID: 37118810 PMCID: PMC10144893 DOI: 10.1186/s13287-023-03341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 04/14/2023] [Indexed: 04/30/2023] Open
Abstract
Millions of people have been affected ever since the emergence of the corona virus disease of 2019 (COVID-19) outbreak, leading to an urgent need for antiviral drug and vaccine development. Current experimentation on traditional two-dimensional culture (2D) fails to accurately mimic the in vivo microenvironment for the disease, while in vivo animal model testing does not faithfully replicate human COVID-19 infection. Human-based three-dimensional (3D) cell culture models such as spheroids, organoids, and organ-on-a-chip present a promising solution to these challenges. In this report, we review the recent 3D in vitro lung models used in COVID-19 infection and drug screening studies and highlight the most common types of natural and synthetic polymers used to generate 3D lung models.
Collapse
Affiliation(s)
- Toka A Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Bassant Eldaly
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Shadwa Eldosuky
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Hoda Elkhenany
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785, Egypt
| | - Azza M El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Muhamed F Elshazly
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt.
| |
Collapse
|
15
|
Blomberg R, Sompel K, Hauer C, Pe A B, Driscoll J, Hume PS, Merrick DT, Tennis MA, Magin CM. Tissue-engineered models of lung cancer premalignancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532835. [PMID: 36993773 PMCID: PMC10055140 DOI: 10.1101/2023.03.15.532835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Lung cancer is the leading global cause of cancer-related deaths. Although smoking cessation is the best preventive action, nearly 50% of all lung cancer diagnoses occur in people who have already quit smoking. Research into treatment options for these high-risk patients has been constrained to rodent models of chemical carcinogenesis, which are time-consuming, expensive, and require large numbers of animals. Here we show that embedding precision-cut lung slices within an engineered hydrogel and exposing this tissue to a carcinogen from cigarette smoke creates an in vitro model of lung cancer premalignancy. Hydrogel formulations were selected to promote early lung cancer cellular phenotypes and extend PCLS viability up to six weeks. In this study, hydrogel-embedded lung slices were exposed to the cigarette smoke derived carcinogen vinyl carbamate, which induces adenocarcinoma in mice. At six weeks, analysis of proliferation, gene expression, histology, tissue stiffness, and cellular content revealed that vinyl carbamate induced the formation of premalignant lesions with a mixed adenoma/squamous phenotype. Two putative chemoprevention agents were able to freely diffuse through the hydrogel and induce tissue-level changes. The design parameters selected using murine tissue were validated with hydrogel-embedded human PCLS and results showed increased proliferation and premalignant lesion gene expression patterns. This tissue-engineered model of human lung cancer premalignancy is the starting point for more sophisticated ex vivo models and a foundation for the study of carcinogenesis and chemoprevention strategies.
Collapse
|
16
|
Wang Y, Liu M, Zhang Y, Liu H, Han L. Recent methods of droplet microfluidics and their applications in spheroids and organoids. LAB ON A CHIP 2023; 23:1080-1096. [PMID: 36628972 DOI: 10.1039/d2lc00493c] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Droplet microfluidic techniques have long been known as a high-throughput approach for cell manipulation. The capacity to compartmentalize cells into picolitre droplets in microfluidic devices has opened up a range of new ways to extract information from cells. Spheroids and organoids are crucial in vitro three-dimensional cell culture models that physiologically mimic natural tissues and organs. With the aid of developments in cell biology and materials science, droplet microfluidics has been applied to construct spheroids and organoids in numerous formats. In this article, we divide droplet microfluidic approaches for managing spheroids and organoids into three categories based on the droplet module format: liquid droplet, microparticle, and microcapsule. We discuss current advances in the use of droplet microfluidics for the generation of tumour spheroids, stem cell spheroids, and organoids, as well as the downstream applications of these methods in high-throughput screening and tissue engineering.
Collapse
Affiliation(s)
- Yihe Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237 P. R. China.
| | - Mengqi Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237 P. R. China.
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237 P. R. China.
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100 P. R. China.
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237 P. R. China.
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, 250100 P. R. China
| |
Collapse
|
17
|
Katz RR, West JL. Tunable PEG Hydrogels for Discerning Differential Tumor Cell Response to Biomechanical Cues. Adv Biol (Weinh) 2022; 6:e2200084. [PMID: 35996804 DOI: 10.1002/adbi.202200084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/01/2022] [Indexed: 01/28/2023]
Abstract
Increased extracellular matrix (ECM) density in the tumor microenvironment has been shown to influence aspects of tumor progression such as proliferation and invasion. Increased matrix density means cells experience not only increased mechanical properties, but also a higher density of bioactive sites. Traditional in vitro ECM models like Matrigel and collagen do not allow these properties to be investigated independently. In this work, a poly(ethylene glycol)-based scaffold is used which modifies with integrin-binding sites for cell attachment and matrix metalloproteinase 2 and 9 sensitive sites for enzyme-mediated degradation. The polymer backbone density and binding site concentration are independently tuned and the effect each of these properties and their interaction have on the proliferation, invasion, and focal complex formation of two different tumor cell lines is evaluated. It is seen that the cell line of epithelial origin (Hs 578T, triple negative breast cancer) proliferates more, invades less, and forms more mature focal complexes in response to an increase in matrix adhesion sites. Conversely, the cell line of mesenchymal origin (HT1080, fibrosarcoma) proliferates more in 2D culture but less in 3D culture, invades less, and forms more mature focal complexes in response to an increase in matrix stiffness.
Collapse
Affiliation(s)
- Rachel R Katz
- Department of Biomedical Engineering, Duke University, Fitzpatrick Center (FCIEMAS), Room 1427, 101 Science Drive, Campus Box 90281, Durham, NC, 27708-0281, USA
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, Fitzpatrick Center (FCIEMAS), Room 1427, 101 Science Drive, Campus Box 90281, Durham, NC, 27708-0281, USA.,Department of Biomedical Engineering, University of Virginia, 351 McCormick Rd, Charlottesville, VA, 22904, USA
| |
Collapse
|
18
|
Sahan AZ, Baday M, Patel CB. Biomimetic Hydrogels in the Study of Cancer Mechanobiology: Overview, Biomedical Applications, and Future Perspectives. Gels 2022; 8:gels8080496. [PMID: 36005097 PMCID: PMC9407355 DOI: 10.3390/gels8080496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/26/2022] [Accepted: 07/02/2022] [Indexed: 11/18/2022] Open
Abstract
Hydrogels are biocompatible polymers that are tunable to the system under study, allowing them to be widely used in medicine, bioprinting, tissue engineering, and biomechanics. Hydrogels are used to mimic the three-dimensional microenvironment of tissues, which is essential to understanding cell–cell interactions and intracellular signaling pathways (e.g., proliferation, apoptosis, growth, and survival). Emerging evidence suggests that the malignant properties of cancer cells depend on mechanical cues that arise from changes in their microenvironment. These mechanobiological cues include stiffness, shear stress, and pressure, and have an impact on cancer proliferation and invasion. The hydrogels can be tuned to simulate these mechanobiological tissue properties. Although interest in and research on the biomedical applications of hydrogels has increased in the past 25 years, there is still much to learn about the development of biomimetic hydrogels and their potential applications in biomedical and clinical settings. This review highlights the application of hydrogels in developing pre-clinical cancer models and their potential for translation to human disease with a focus on reviewing the utility of such models in studying glioblastoma progression.
Collapse
Affiliation(s)
- Ayse Z. Sahan
- Biomedical Sciences Graduate Program, Department of Pharmacology, School of Medicine, University California at San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Murat Baday
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Precision Health and Integrated Diagnostics Center, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Correspondence: (M.B.); (C.B.P.)
| | - Chirag B. Patel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA
- Correspondence: (M.B.); (C.B.P.)
| |
Collapse
|
19
|
Ross A, Sauce-Guevara MA, Alarcon EI, Mendez-Rojas MA. Peptide Biomaterials for Tissue Regeneration. Front Bioeng Biotechnol 2022; 10:893936. [PMID: 35992354 PMCID: PMC9388858 DOI: 10.3389/fbioe.2022.893936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022] Open
Abstract
Expanding the toolbox of therapeutic materials for soft tissue and organ repair has become a critical component of tissue engineering. While animal- and plant-derived proteins are the foundation for developing biomimetic tissue constructs, using peptides as either constituents or frameworks for the materials has gained increasing momentum in recent years. This mini review discusses recent advances in peptide-based biomaterials' design and application. We also discuss some of the future challenges posed and opportunities opened by peptide-based structures in the field of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Alex Ross
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Mildred A. Sauce-Guevara
- Department of Chemical and Biological Sciences, Universidad de Las Américas Puebla, Puebla, Mexico
| | - Emilio I. Alarcon
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Miguel A. Mendez-Rojas
- Department of Chemical and Biological Sciences, Universidad de Las Américas Puebla, Puebla, Mexico
| |
Collapse
|
20
|
Rossi R, De Angelis ML, Xhelili E, Sette G, Eramo A, De Maria R, Cesta Incani U, Francescangeli F, Zeuner A. Lung Cancer Organoids: The Rough Path to Personalized Medicine. Cancers (Basel) 2022; 14:3703. [PMID: 35954367 PMCID: PMC9367558 DOI: 10.3390/cancers14153703] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide. Despite significant advances in research and therapy, a dismal 5-year survival rate of only 10-20% urges the development of reliable preclinical models and effective therapeutic tools. Lung cancer is characterized by a high degree of heterogeneity in its histology, a genomic landscape, and response to therapies that has been traditionally difficult to reproduce in preclinical models. However, the advent of three-dimensional culture technologies has opened new perspectives to recapitulate in vitro individualized tumor features and to anticipate treatment efficacy. The generation of lung cancer organoids (LCOs) has encountered greater challenges as compared to organoids derived from other tumors. In the last two years, many efforts have been dedicated to optimizing LCO-based platforms, resulting in improved rates of LCO production, purity, culture timing, and long-term expansion. However, due to the complexity of lung cancer, further advances are required in order to meet clinical needs. Here, we discuss the evolution of LCO technology and the use of LCOs in basic and translational lung cancer research. Although the field of LCOs is still in its infancy, its prospective development will likely lead to new strategies for drug testing and biomarker identification, thus allowing a more personalized therapeutic approach for lung cancer patients.
Collapse
Affiliation(s)
- Rachele Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.R.); (M.L.D.A.); (G.S.); (A.E.); (F.F.)
| | - Maria Laura De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.R.); (M.L.D.A.); (G.S.); (A.E.); (F.F.)
| | - Eljona Xhelili
- Department of Surgical Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy;
| | - Giovanni Sette
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.R.); (M.L.D.A.); (G.S.); (A.E.); (F.F.)
| | - Adriana Eramo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.R.); (M.L.D.A.); (G.S.); (A.E.); (F.F.)
| | - Ruggero De Maria
- Institute of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy;
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Ursula Cesta Incani
- Division of Oncology, University and Hospital Trust of Verona (AOUI), Piazzale Ludovico Antonio Scuro 10, 37134 Verona, Italy;
| | - Federica Francescangeli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.R.); (M.L.D.A.); (G.S.); (A.E.); (F.F.)
| | - Ann Zeuner
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.R.); (M.L.D.A.); (G.S.); (A.E.); (F.F.)
| |
Collapse
|
21
|
Increased Stiffness Downregulates Focal Adhesion Kinase Expression in Pancreatic Cancer Cells Cultured in 3D Self-Assembling Peptide Scaffolds. Biomedicines 2022; 10:biomedicines10081835. [PMID: 36009384 PMCID: PMC9405295 DOI: 10.3390/biomedicines10081835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/18/2023] Open
Abstract
The focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that participates in integrin-mediated signal transduction and contributes to different biological processes, such as cell migration, survival, proliferation and angiogenesis. Moreover, FAK can be activated by autophosphorylation at position Y397 and trigger different signaling pathways in response to increased extracellular matrix stiffness. In addition, FAK is overexpressed and/or hyperactivated in many epithelial cancers, and its expression correlates with tumor malignancy and invasion potential. One of the characteristics of solid tumors is an over deposition of ECM components, which generates a stiff microenvironment that promotes, among other features, sustained cell proliferation and survival. Researchers are, therefore, increasingly developing cell culture models to mimic the increased stiffness associated with these kinds of tumors. In the present work, we have developed a new 3D in vitro model to study the effect of matrix stiffness in pancreatic ductal adenocarcinoma (PDAC) cells as this kind of tumor is characterized by a desmoplastic stroma and an increased stiffness compared to its normal counterpart. For that, we have used a synthetic self-assembling peptide nanofiber matrix, RAD16-I, which does not suffer a significant degradation in vitro, thus allowing to maintain the same local stiffness along culture time. We show that increased matrix stiffness in synthetic 3D RAD16-I gels, but not in collagen type I scaffolds, promotes FAK downregulation at a protein level in all the cell lines analyzed. Moreover, even though it has classically been described that stiff 3D matrices promote an increase in pFAKY397/FAK proteins, we found that this ratio in soft and stiff RAD16-I gels is cell-type-dependent. This study highlights how cell response to increased matrix stiffness greatly depends on the nature of the matrix used for 3D culture.
Collapse
|
22
|
Tian H, Shi H, Yu J, Ge S, Ruan J. Biophysics Role and Biomimetic Culture Systems of ECM Stiffness in Cancer EMT. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2100094. [PMID: 35712024 PMCID: PMC9189138 DOI: 10.1002/gch2.202100094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/14/2022] [Indexed: 06/15/2023]
Abstract
Oncological diseases have become the second leading cause of death from noncommunicable diseases worldwide and a major threat to human health. With the continuous progress in cancer research, the mechanical cues from the tumor microenvironment environment (TME) have been found to play an irreplaceable role in the progression of many cancers. As the main extracellular mechanical signal carrier, extracellular matrix (ECM) stiffness may influence cancer progression through biomechanical transduction to modify downstream gene expression, promote epithelial-mesenchymal transition (EMT), and regulate the stemness of cancer cells. EMT is an important mechanism that induces cancer cell metastasis and is closely influenced by ECM stiffness, either independently or in conjunction with other molecules. In this review, the unique role of ECM stiffness in EMT in different kinds of cancers is first summarized. By continually examining the significance of ECM stiffness in cancer progression, a biomimetic culture system based on 3D manufacturing and novel material technologies is developed to mimic ECM stiffness. The authors then look back on the novel development of the ECM stiffness biomimetic culture systems and finally provide new insights into ECM stiffness in cancer progression which can broaden the fields' horizons with a view toward developing new cancer diagnosis methods and therapies.
Collapse
Affiliation(s)
- Hao Tian
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| | - Hanhan Shi
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| | - Jie Yu
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| | - Shengfang Ge
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| | - Jing Ruan
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| |
Collapse
|
23
|
Khoonkari M, Liang D, Kamperman M, Kruyt FAE, van Rijn P. Physics of Brain Cancer: Multiscale Alterations of Glioblastoma Cells under Extracellular Matrix Stiffening. Pharmaceutics 2022; 14:pharmaceutics14051031. [PMID: 35631616 PMCID: PMC9145282 DOI: 10.3390/pharmaceutics14051031] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
The biology and physics underlying glioblastoma is not yet completely understood, resulting in the limited efficacy of current clinical therapy. Recent studies have indicated the importance of mechanical stress on the development and malignancy of cancer. Various types of mechanical stress activate adaptive tumor cell responses that include alterations in the extracellular matrix (ECM) which have an impact on tumor malignancy. In this review, we describe and discuss the current knowledge of the effects of ECM alterations and mechanical stress on GBM aggressiveness. Gradual changes in the brain ECM have been connected to the biological and physical alterations of GBM cells. For example, increased expression of several ECM components such as glycosaminoglycans (GAGs), hyaluronic acid (HA), proteoglycans and fibrous proteins result in stiffening of the brain ECM, which alters inter- and intracellular signaling activity. Several mechanosensing signaling pathways have been identified that orchestrate adaptive responses, such as Hippo/YAP, CD44, and actin skeleton signaling, which remodel the cytoskeleton and affect cellular properties such as cell–cell/ECM interactions, growth, and migration/invasion of GBM cells. In vitro, hydrogels are used as a model to mimic the stiffening of the brain ECM and reconstruct its mechanics, which we also discuss. Overall, we provide an overview of the tumor microenvironmental landscape of GBM with a focus on ECM stiffening and its associated adaptive cellular signaling pathways and their possible therapeutic exploitation.
Collapse
Affiliation(s)
- Mohammad Khoonkari
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.K.); (D.L.)
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;
| | - Dong Liang
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.K.); (D.L.)
| | - Marleen Kamperman
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;
| | - Frank A. E. Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.K.); (D.L.)
- Correspondence: (F.A.E.K.); (P.v.R.)
| | - Patrick van Rijn
- Department of Biomedical Engineering-FB40, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Correspondence: (F.A.E.K.); (P.v.R.)
| |
Collapse
|
24
|
Farino Reyes CJ, Slater JH. Tuning Hydrogel Adhesivity and Degradability to Model the Influence of Premetastatic Niche Matrix Properties on Breast Cancer Dormancy and Reactivation. Adv Biol (Weinh) 2022; 6:e2200012. [PMID: 35277951 PMCID: PMC9090988 DOI: 10.1002/adbi.202200012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 01/01/2000] [Indexed: 01/27/2023]
Abstract
Dormant, disseminated tumor cells (DTCs) can persist for decades in secondary tissues before being reactivated to form tumors. The properties of the premetastatic niche can influence the DTC phenotype. To better understand how matrix properties of premetastatic niches influence DTC behavior, three hydrogel formulations are implemented to model a permissive niche and two nonpermissive niches. Poly(ethylene glycol) (PEG)-based hydrogels with varying adhesivity ([RGDS]) and degradability ([N-vinyl pyrrolidinone]) are implemented to mimic a permissive niche with high adhesivity and degradability and two nonpermissive niches, one with moderate adhesivity and degradability and one with no adhesivity and high degradability. The influence of matrix properties on estrogen receptor positive (ER+ ) breast cancer cells (MCF7s) is determined via a multimetric analysis. MCF7s cultured in the permissive niche adopted a growth state, while those in the nonpermissive niche with reduced adhesivity and degradability underwent tumor mass dormancy. Complete removal of adhesivity while maintaining high degradability induced single cell dormancy. The ability to mimic reactivation of dormant cells through a dynamic increase in [RGDS] is also demonstrated. This platform provides the capability of inducing growth, dormancy, and reactivation of ER+ breast cancer and can be useful in understanding how premetastatic niche properties influence cancer cell fate.
Collapse
Affiliation(s)
- Cindy J. Farino Reyes
- Department of Biomedical Engineering University of Delaware 590 Avenue 1743, Biomedical Engineering Newark DE 19713 USA
| | - John H. Slater
- Department of Biomedical Engineering University of Delaware 590 Avenue 1743, Biomedical Engineering Newark DE 19713 USA
| |
Collapse
|
25
|
Katz RR, West JL. Reductionist Three-Dimensional Tumor Microenvironment Models in Synthetic Hydrogels. Cancers (Basel) 2022; 14:cancers14051225. [PMID: 35267532 PMCID: PMC8909517 DOI: 10.3390/cancers14051225] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Tumors exist in a complex, three-dimensional environment which helps them to survive, grow, metastasize, and resist drug treatment. Simple, reproducible, in vitro models of this environment are necessary in order to better understand tumor behavior. Naturally derived polymers are great 3D cell culture substrates, but they often lack the tunability and batch-to-batch consistency which can be found in synthetic polymer systems. In this review, we describe the current state of and future directions for tumor microenvironment models in synthetic hydrogels. Abstract The tumor microenvironment (TME) plays a determining role in everything from disease progression to drug resistance. As such, in vitro models which can recapitulate the cell–cell and cell–matrix interactions that occur in situ are key to the investigation of tumor behavior and selecting effective therapeutic drugs. While naturally derived matrices can retain the dimensionality of the native TME, they lack tunability and batch-to-batch consistency. As such, many synthetic polymer systems have been employed to create physiologically relevant TME cultures. In this review, we discussed the common semi-synthetic and synthetic polymers used as hydrogel matrices for tumor models. We reviewed studies in synthetic hydrogels which investigated tumor cell interactions with vasculature and immune cells. Finally, we reviewed the utility of these models as chemotherapeutic drug-screening platforms, as well as the future directions of the field.
Collapse
Affiliation(s)
- Rachel R. Katz
- Department of Biomedical Engineering, Duke University, Durham, NC 27705, USA;
| | - Jennifer L. West
- Department of Biomedical Engineering, Duke University, Durham, NC 27705, USA;
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
- Correspondence:
| |
Collapse
|
26
|
Jia Y, Wei Z, Zhang S, Yang B, Li Y. Instructive Hydrogels for Primary Tumor Cell Culture: Current Status and Outlook. Adv Healthc Mater 2022; 11:e2102479. [PMID: 35182456 DOI: 10.1002/adhm.202102479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/07/2022] [Indexed: 02/06/2023]
Abstract
Primary tumor organoids (PTOs) growth in hydrogels have emerged as an important in vitro model that recapitulates many characteristics of the native tumor tissue, and have important applications in fundamental cancer research and for the development of useful therapeutic treatment. This paper begins with reviewing the methods of isolation of primary tumor cells. Then, recent advances on the instructive hydrogels as biomimetic extracellular matrix for primary tumor cell culture and construction of PTO models are summarized. Emerging microtechnology for growth of PTOs in microscale hydrogels and the applications of PTOs are highlighted. This paper concludes with an outlook on the future directions in the investigation of instructive hydrogels for PTO growth.
Collapse
Affiliation(s)
- Yiyang Jia
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 China
| | - Zhentong Wei
- Department of Oncologic Gynecology The First Hospital of Jilin University Changchun 130021 China
| | - Songling Zhang
- Department of Oncologic Gynecology The First Hospital of Jilin University Changchun 130021 China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 China
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 China
| | - Yunfeng Li
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 China
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 China
| |
Collapse
|
27
|
Beeghly GF, Amofa KY, Fischbach C, Kumar S. Regulation of Tumor Invasion by the Physical Microenvironment: Lessons from Breast and Brain Cancer. Annu Rev Biomed Eng 2022; 24:29-59. [PMID: 35119915 DOI: 10.1146/annurev-bioeng-110220-115419] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The success of anticancer therapies is often limited by heterogeneity within and between tumors. While much attention has been devoted to understanding the intrinsic molecular diversity of tumor cells, the surrounding tissue microenvironment is also highly complex and coevolves with tumor cells to drive clinical outcomes. Here, we propose that diverse types of solid tumors share common physical motifs that change in time and space, serving as universal regulators of malignancy. We use breast cancer and glioblastoma as instructive examples and highlight how invasion in both diseases is driven by the appropriation of structural guidance cues, contact-dependent heterotypic interactions with stromal cells, and elevated interstitial fluid pressure and flow. We discuss how engineering strategies show increasing value for measuring and modeling these physical properties for mechanistic studies. Moreover, engineered systems offer great promise for developing and testing novel therapies that improve patient prognosis by normalizing the physical tumor microenvironment. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Garrett F Beeghly
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA;
| | - Kwasi Y Amofa
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, USA; .,Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA; .,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York, USA
| | - Sanjay Kumar
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, USA; .,Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California, USA.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
28
|
Wang C, Jiang X, Huang B, Zhou W, Cui X, Zheng C, Liu F, Bi J, Zhang Y, Luo H, Yuan L, Yang J, Yu Y. Inhibition of matrix stiffness relating integrin β1 signaling pathway inhibits tumor growth in vitro and in hepatocellular cancer xenografts. BMC Cancer 2021; 21:1276. [PMID: 34823500 PMCID: PMC8620230 DOI: 10.1186/s12885-021-08982-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023] Open
Abstract
Background Cancer development is strictly correlated to composition and physical properties of the extracellular matrix. Particularly, a higher matrix stiffness has been demonstrated to promote tumor sustained growth. Our purpose was to explore the role of matrix stiffness in liver cancer development. Methods The matrix stiffness of tumor tissues was determined by atomic force microscopy (AFM) analysis. In vitro, we used a tunable Polyacrylamide (PA) hydrogels culture system for liver cancer cells culture. The expression level of integrin β1, phosphorylated FAK, ERK1/2, and NF-κB in SMMC-7721 cells was measured by western blotting analysis. We performed MTT, colony formation and transwell assay to examine the tumorigenic and metastatic potential of SMMC-7721 cells cultured on the tunable PA hydrogels. SMMC-7721 cancer xenografts were established to explore the anticancer effects of integrin inhibitors. Results Our study provided evidence that liver tumor tissues from metastatic patients possessed a higher matrix stiffness, when compared to the non-metastatic group. Liver cancer cells cultured on high stiffness PA hydrogels displayed enhanced tumorigenic potential and migrative properties. Mechanistically, activation of integrin β1/FAK/ ERK1/2/NF-κB signaling pathway was observed in SMMC-7721 cells cultured on high stiffness PA hydrogels. Inhibition of ERK1/2, FAK, and NF-κB signaling suppressed the pro-tumor effects induced by matrix stiffness. Combination of chemotherapy and integrin β1 inhibitor suppressed the tumor growth and prolonged survival time in hepatocellular cancer xenografts. Conclusion A higher matrix stiffness equipped tumor cells with enhanced stemness and proliferative characteristics, which was dependent on the activation of integrin β1/FAK/ERK1/2/NF-κB signaling pathway. Blockade of integrin signals efficiently improved the outcome of chemotherapy, which described an innovative approach for liver cancer treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08982-3.
Collapse
Affiliation(s)
- Changsong Wang
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Xiaozhong Jiang
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Bin Huang
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Wenhao Zhou
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Xiao Cui
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Chenghong Zheng
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Fenghao Liu
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Jieling Bi
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Yi Zhang
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Hong Luo
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Lin Yuan
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Jianyong Yang
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Yu Yu
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China. .,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.
| |
Collapse
|
29
|
Lobo DA, Ginestra P, Ceretti E, Miquel TP, Ciurana J. Cancer Cell Direct Bioprinting: A Focused Review. MICROMACHINES 2021; 12:764. [PMID: 34203530 PMCID: PMC8305105 DOI: 10.3390/mi12070764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022]
Abstract
Three-dimensional printing technologies allow for the fabrication of complex parts with accurate geometry and less production time. When applied to biomedical applications, two different approaches, known as direct or indirect bioprinting, may be performed. The classical way is to print a support structure, the scaffold, and then culture the cells. Due to the low efficiency of this method, direct bioprinting has been proposed, with or without the use of scaffolds. Scaffolds are the most common technology to culture cells, but bioassembly of cells may be an interesting methodology to mimic the native microenvironment, the extracellular matrix, where the cells interact between themselves. The purpose of this review is to give an updated report about the materials, the bioprinting technologies, and the cells used in cancer research for breast, brain, lung, liver, reproductive, gastric, skin, and bladder associated cancers, to help the development of possible treatments to lower the mortality rates, increasing the effectiveness of guided therapies. This work introduces direct bioprinting to be considered as a key factor above the main tissue engineering technologies.
Collapse
Affiliation(s)
- David Angelats Lobo
- Department of Mechanical and Industrial Engineering, University of Brescia, V. Branze 38, 25123 Brescia, Italy; (D.A.L.); (E.C.)
- New Therapeutic Targets Laboratory (TargetsLab), Oncology Unit, Department of Medical Sciences, Girona Institute for Biomedical Research, University of Girona, Emili Grahit 77, 17003 Girona, Spain;
| | - Paola Ginestra
- Department of Mechanical and Industrial Engineering, University of Brescia, V. Branze 38, 25123 Brescia, Italy; (D.A.L.); (E.C.)
| | - Elisabetta Ceretti
- Department of Mechanical and Industrial Engineering, University of Brescia, V. Branze 38, 25123 Brescia, Italy; (D.A.L.); (E.C.)
| | - Teresa Puig Miquel
- New Therapeutic Targets Laboratory (TargetsLab), Oncology Unit, Department of Medical Sciences, Girona Institute for Biomedical Research, University of Girona, Emili Grahit 77, 17003 Girona, Spain;
| | - Joaquim Ciurana
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, Maria Aurèlia Capmany 61, 17003 Girona, Spain;
| |
Collapse
|
30
|
3D Modeling of Epithelial Tumors-The Synergy between Materials Engineering, 3D Bioprinting, High-Content Imaging, and Nanotechnology. Int J Mol Sci 2021; 22:ijms22126225. [PMID: 34207601 PMCID: PMC8230141 DOI: 10.3390/ijms22126225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
The current statistics on cancer show that 90% of all human cancers originate from epithelial cells. Breast and prostate cancer are examples of common tumors of epithelial origin that would benefit from improved drug treatment strategies. About 90% of preclinically approved drugs fail in clinical trials, partially due to the use of too simplified in vitro models and a lack of mimicking the tumor microenvironment in drug efficacy testing. This review focuses on the origin and mechanism of epithelial cancers, followed by experimental models designed to recapitulate the epithelial cancer structure and microenvironment, such as 2D and 3D cell culture models and animal models. A specific focus is put on novel technologies for cell culture of spheroids, organoids, and 3D-printed tissue-like models utilizing biomaterials of natural or synthetic origins. Further emphasis is laid on high-content imaging technologies that are used in the field to visualize in vitro models and their morphology. The associated technological advancements and challenges are also discussed. Finally, the review gives an insight into the potential of exploiting nanotechnological approaches in epithelial cancer research both as tools in tumor modeling and how they can be utilized for the development of nanotherapeutics.
Collapse
|
31
|
Rahmanian M, Seyfoori A, Ghasemi M, Shamsi M, Kolahchi AR, Modarres HP, Sanati-Nezhad A, Majidzadeh-A K. In-vitro tumor microenvironment models containing physical and biological barriers for modelling multidrug resistance mechanisms and multidrug delivery strategies. J Control Release 2021; 334:164-177. [PMID: 33895200 DOI: 10.1016/j.jconrel.2021.04.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
The complexity and heterogeneity of the three-dimensional (3D) tumor microenvironment have brought challenges to tumor studies and cancer treatment. The complex functions and interactions of cells involved in tumor microenvironment have led to various multidrug resistance (MDR) and raised challenges for cancer treatment. Traditional tumor models are limited in their ability to simulate the resistance mechanisms and not conducive to the discovery of multidrug resistance and delivery processes. New technologies for making 3D tissue models have shown the potential to simulate the 3D tumor microenvironment and identify mechanisms underlying the MDR. This review overviews the main barriers against multidrug delivery in the tumor microenvironment and highlights the advances in microfluidic-based tumor models with the success in simulating several drug delivery barriers. It also presents the progress in modeling various genetic and epigenetic factors involved in regulating the tumor microenvironment as a noticeable insight in 3D microfluidic tumor models for recognizing multidrug resistance and delivery mechanisms. Further correlation between the results obtained from microfluidic drug resistance tumor models and the clinical MDR data would open up avenues to gain insight into the performance of different multidrug delivery treatment strategies.
Collapse
Affiliation(s)
- Mehdi Rahmanian
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Amir Seyfoori
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Mohsen Ghasemi
- Genetics Department, Breast Cancer Research Center (BCRC), Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Milad Shamsi
- Center for BioEngineering Research and Education (CBRE), University of Calgary, Calgary, Alberta T2N 1N4, Canada; BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Ahmad Rezaei Kolahchi
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Hassan Pezeshgi Modarres
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Amir Sanati-Nezhad
- Center for BioEngineering Research and Education (CBRE), University of Calgary, Calgary, Alberta T2N 1N4, Canada; BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| | - Keivan Majidzadeh-A
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran; Genetics Department, Breast Cancer Research Center (BCRC), Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran.
| |
Collapse
|
32
|
Leggett SE, Hruska AM, Guo M, Wong IY. The epithelial-mesenchymal transition and the cytoskeleton in bioengineered systems. Cell Commun Signal 2021; 19:32. [PMID: 33691719 PMCID: PMC7945251 DOI: 10.1186/s12964-021-00713-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/26/2021] [Indexed: 01/04/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is intrinsically linked to alterations of the intracellular cytoskeleton and the extracellular matrix. After EMT, cells acquire an elongated morphology with front/back polarity, which can be attributed to actin-driven protrusion formation as well as the gain of vimentin expression. Consequently, cells can deform and remodel the surrounding matrix in order to facilitate local invasion. In this review, we highlight recent bioengineering approaches to elucidate EMT and functional changes in the cytoskeleton. First, we review transitions between multicellular clusters and dispersed individuals on planar surfaces, which often exhibit coordinated behaviors driven by leader cells and EMT. Second, we consider the functional role of vimentin, which can be probed at subcellular length scales and within confined spaces. Third, we discuss the role of topographical patterning and EMT via a contact guidance like mechanism. Finally, we address how multicellular clusters disorganize and disseminate in 3D matrix. These new technologies enable controlled physical microenvironments and higher-resolution spatiotemporal measurements of EMT at the single cell level. In closing, we consider future directions for the field and outstanding questions regarding EMT and the cytoskeleton for human cancer progression. Video Abstract.
Collapse
Affiliation(s)
- Susan E Leggett
- Department of Chemical and Biological Engineering, Princeton University, William St, Princeton, NJ, 08544, USA
| | - Alex M Hruska
- School of Engineering, Center for Biomedical Engineering, and Joint Program in Cancer Biology, Brown University, 184 Hope St Box D, Providence, RI, 02912, USA
| | - Ming Guo
- Department of Mechanical Engineering, MIT, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Ian Y Wong
- School of Engineering, Center for Biomedical Engineering, and Joint Program in Cancer Biology, Brown University, 184 Hope St Box D, Providence, RI, 02912, USA.
| |
Collapse
|
33
|
Development, characterization, and applications of multi-material stereolithography bioprinting. Sci Rep 2021; 11:3171. [PMID: 33542283 PMCID: PMC7862383 DOI: 10.1038/s41598-021-82102-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 01/14/2021] [Indexed: 01/30/2023] Open
Abstract
As a 3D bioprinting technique, hydrogel stereolithography has historically been limited in its ability to capture the spatial heterogeneity that permeates mammalian tissues and dictates structure-function relationships. This limitation stems directly from the difficulty of preventing unwanted material mixing when switching between different liquid bioinks. Accordingly, we present the development, characterization, and application of a multi-material stereolithography bioprinter that provides controlled material selection, yields precise regional feature alignment, and minimizes bioink mixing. Fluorescent tracers were first used to highlight the broad design freedoms afforded by this fabrication strategy, complemented by morphometric image analysis to validate architectural fidelity. To evaluate the bioactivity of printed gels, 344SQ lung adenocarcinoma cells were printed in a 3D core/shell architecture. These cells exhibited native phenotypic behavior as evidenced by apparent proliferation and formation of spherical multicellular aggregates. Cells were also printed as pre-formed multicellular aggregates, which appropriately developed invasive protrusions in response to hTGF-β1. Finally, we constructed a simplified model of intratumoral heterogeneity with two separate sub-populations of 344SQ cells, which together grew over 14 days to form a dense regional interface. Together, these studies highlight the potential of multi-material stereolithography to probe heterotypic interactions between distinct cell types in tissue-specific microenvironments.
Collapse
|
34
|
Abstract
Defined by its potential for self-renewal, differentiation and tumorigenicity, cancer stem cells (CSCs) are considered responsible for drug resistance and relapse. To understand the behavior of CSC, the effects of the microenvironment in each tissue are a matter of great concerns for scientists in cancer biology. However, there are many complicated obstacles in the mimicking the microenvironment of CSCs even with current advanced technology. In this context, novel biomaterials have widely been assessed as in vitro platforms for their ability to mimic cancer microenvironment. These efforts should be successful to identify and characterize various CSCs specific in each type of cancer. Therefore, extracellular matrix scaffolds made of biomaterial will modulate the interactions and facilitate the investigation of CSC associated with biological phenomena simplifying the complexity of the microenvironment. In this review, we summarize latest advances in biomaterial scaffolds, which are exploited to mimic CSC microenvironment, and their chemical and biological requirements with discussion. The discussion includes the possible effects on both cells in tumors and microenvironment to propose what the critical factors are in controlling the CSC microenvironment focusing the future investigation. Our insights on their availability in drug screening will also follow the discussion.
Collapse
|
35
|
Choi SR, Yang Y, Huang KY, Kong HJ, Flick MJ, Han B. Engineering of biomaterials for tumor modeling. MATERIALS TODAY. ADVANCES 2020; 8:100117. [PMID: 34541484 PMCID: PMC8448271 DOI: 10.1016/j.mtadv.2020.100117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Development of biomaterials mimicking tumor and its microenvironment has recently emerged for the use of drug discovery, precision medicine, and cancer biology. These biomimetic models have developed by reconstituting tumor and stroma cells within the 3D extracellular matrix. The models are recently extended to recapitulate the in vivo tumor microenvironment, including biological, chemical, and mechanical conditions tailored for specific cancer type and its microenvironment. In spite of the recent emergence of various innovative engineered tumor models, many of these models are still early stage to be adapted for cancer research. In this article, we review the current status of biomaterials engineering for tumor models considering three main aspects - cellular engineering, matrix engineering, and engineering for microenvironmental conditions. Considering cancer-specific variability in these aspects, our discussion is focused on pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC). In addition, we further discussed the current challenges and future opportunities to create reliable and relevant tumor models.
Collapse
Affiliation(s)
- Sae Rome Choi
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yi Yang
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Blood Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Kai-Yu Huang
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyun Joon Kong
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Matthew J. Flick
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Blood Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
36
|
Serizawa T, Maeda T, Yamaguchi S, Sawada T. Aqueous Suspensions of Cellulose Oligomer Nanoribbons for Growth and Natural Filtration-Based Separation of Cancer Spheroids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13890-13898. [PMID: 33135411 DOI: 10.1021/acs.langmuir.0c02294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In vitro growth of cancer spheroids (CSs) and the subsequent separation of CSs from a 2D or 3D cell culture system are important for fundamental cancer studies and cancer drug screening. Although biopolymer-based or synthetic hydrogels are suitable candidates to be used as 3D cell culture scaffolds, alternatives with better processing capabilities are still required to set up cell culture microenvironment. In this study, we show that aqueous suspensions of crystalline nanoribbons composed of cellulose oligomers have a potential for CS growth and separation. The nanoribbon suspensions in serum-containing cell culture media fixed single cancer cells and CSs with large sizes in a 3D space, leading to suspension cultures for CS growth corresponding to culture time. Well-grown CSs were easily separated from the suspensions by natural filtration using a mesh filter with a suitable pore size. Cell viability tests revealed negligible cytotoxicity of the nanoribbons. In addition, physical damages to CSs by the separation procedures were negligible. Stable suspensions of biocompatible nanomaterials will thus provide novel microenvironments for growth and separation of diverse cell aggregates.
Collapse
Affiliation(s)
- Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Tohru Maeda
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Saeko Yamaguchi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| |
Collapse
|
37
|
Natural and Synthetic Biomaterials for Engineering Multicellular Tumor Spheroids. Polymers (Basel) 2020; 12:polym12112506. [PMID: 33126468 PMCID: PMC7692845 DOI: 10.3390/polym12112506] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
The lack of in vitro models that represent the native tumor microenvironment is a significant challenge for cancer research. Two-dimensional (2D) monolayer culture has long been the standard for in vitro cell-based studies. However, differences between 2D culture and the in vivo environment have led to poor translation of cancer research from in vitro to in vivo models, slowing the progress of the field. Recent advances in three-dimensional (3D) culture have improved the ability of in vitro culture to replicate in vivo conditions. Although 3D cultures still cannot achieve the complexity of the in vivo environment, they can still better replicate the cell-cell and cell-matrix interactions of solid tumors. Multicellular tumor spheroids (MCTS) are three-dimensional (3D) clusters of cells with tumor-like features such as oxygen gradients and drug resistance, and represent an important translational tool for cancer research. Accordingly, natural and synthetic polymers, including collagen, hyaluronic acid, Matrigel®, polyethylene glycol (PEG), alginate and chitosan, have been used to form and study MCTS for improved clinical translatability. This review evaluates the current state of biomaterial-based MCTS formation, including advantages and disadvantages of the different biomaterials and their recent applications to the field of cancer research, with a focus on the past five years.
Collapse
|
38
|
Ort C, Lee W, Kalashnikov N, Moraes C. Disentangling the fibrous microenvironment: designer culture models for improved drug discovery. Expert Opin Drug Discov 2020; 16:159-171. [PMID: 32988224 DOI: 10.1080/17460441.2020.1822815] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Standard high-throughput screening (HTS) assays rarely identify clinically viable 'hits', likely because cells do not experience physiologically realistic culture conditions. The biophysical nature of the extracellular matrix has emerged as a critical driver of cell function and response and recreating these factors could be critically important in streamlining the drug discovery pipeline. AREAS COVERED The authors review recent design strategies to understand and manipulate biophysical features of three-dimensional fibrous tissues. The effects of architectural parameters of the extracellular matrix and their resulting mechanical behaviors are deconstructed; and their individual and combined impact on cell behavior is examined. The authors then illustrate the potential impact of these physical features on designing next-generation platforms to identify drugs effective against breast cancer. EXPERT OPINION Progression toward increased culture complexity must be balanced against the demanding technical requirements for high-throughput screening; and strategies to identify the minimal set of microenvironmental parameters needed to recreate disease-relevant responses must be specifically tailored to the disease stage and organ system being studied. Although challenging, this can be achieved through integrative and multidisciplinary technologies that span microfabrication, cell biology, and tissue engineering.
Collapse
Affiliation(s)
- Carley Ort
- Department of Chemical Engineering, McGill University , Montreal, Canada
| | - Wontae Lee
- Department of Chemical Engineering, McGill University , Montreal, Canada
| | - Nikita Kalashnikov
- Department of Chemical Engineering, McGill University , Montreal, Canada
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University , Montreal, Canada.,Department of Biomedical Engineering, McGill University , Montreal, Canada.,Rosalind & Morris Goodman Cancer Research Center, McGill University , Montreal, Canada
| |
Collapse
|
39
|
Pustchi SE, Avci NG, Akay YM, Akay M. Astrocytes Decreased the Sensitivity of Glioblastoma Cells to Temozolomide and Bay 11-7082. Int J Mol Sci 2020; 21:E7154. [PMID: 32998285 PMCID: PMC7583902 DOI: 10.3390/ijms21197154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant type of astrocytic tumors. GBM patients have a poor prognosis with a median survival of approximately 15 months despite the "Stupp" Regimen and high tumor recurrence due to the tumor resistance to chemotherapy. In this study, we co-cultured GBM cells with human astrocytes in three-dimensional (3D) poly(ethylene glycol) dimethyl acrylate (PEGDA) microwells to mimic the tumor microenvironment. We treated 3D co- and mono-cultured cells with Temozolomide (TMZ) and the nuclear factor-κB (NF-κB) inhibitor Bay 11-7082 and investigated the combined effect of the drugs. We assessed the expressions of glial fibrillary acidic protein (GFAP) and vimentin that play a role in the tumor malignancy and activation of the astrocytes as well as Notch-1 and survivin that play a role in GBM malignancy after the drug treatment to understand how astrocytes induced GBM drug response. Our results showed that in the co-culture, astrocytes increased GBM survival and resistance after combined drug treatment compared to mono-cultures. These data restated the importance of 3D cell culture to mimic the tumor microenvironment for drug screening.
Collapse
MESH Headings
- Antineoplastic Agents, Alkylating/pharmacology
- Astrocytes/cytology
- Astrocytes/drug effects
- Astrocytes/metabolism
- Cell Line, Tumor
- Cell Survival/drug effects
- Cell Survival/genetics
- Coculture Techniques/methods
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic
- Glial Fibrillary Acidic Protein/genetics
- Glial Fibrillary Acidic Protein/metabolism
- Humans
- Models, Biological
- Neuroglia/drug effects
- Neuroglia/metabolism
- Neuroglia/pathology
- Nitriles/pharmacology
- Primary Cell Culture
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Signal Transduction
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
- Sulfones/pharmacology
- Survivin/genetics
- Survivin/metabolism
- Temozolomide/pharmacology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Vimentin/genetics
- Vimentin/metabolism
Collapse
Affiliation(s)
| | | | | | - Metin Akay
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (S.E.P.); (N.G.A.); (Y.M.A.)
| |
Collapse
|
40
|
Balion Z, Sipailaite E, Stasyte G, Vailionyte A, Mazetyte-Godiene A, Seskeviciute I, Bernotiene R, Phopase J, Jekabsone A. Investigation of Cancer Cell Migration and Proliferation on Synthetic Extracellular Matrix Peptide Hydrogels. Front Bioeng Biotechnol 2020; 8:773. [PMID: 33014989 PMCID: PMC7498748 DOI: 10.3389/fbioe.2020.00773] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/18/2020] [Indexed: 01/10/2023] Open
Abstract
Chemical and mechanical properties of a tumor microenvironment are essential players in cancer progression, and it is important to precisely control the extracellular conditions while designing cancer in vitro models. The study investigates synthetic hydrogel matrices from multi-arm polyethylene glycol (PEG) functionalized with collagen-like peptide (CLP) CG(PKG)4(POG)4(DOG)4 alone and conjugated with either cell adhesion peptide RGD (mimicking fibronectin) or IKVAV (mimicking laminin). Human glioblastoma HROG36, rat C6 glioma cells, and A375 human melanoma cells were grown on the hydrogels and monitored for migration, proliferation, projected cell area, cell shape index, size and number, distribution of focal contacts in individual cells, and focal adhesion number. PEG-CLP-RGD induced migration of both glioma cell lines and also stimulated proliferation (assessed as metabolic activity) of HROG36 cells. Migration of C6 cells were also stimulated by PEG-CLP-IKVAV. These responses strongly correlated with the changes in adhesion and morphology parameters of individual cells – projected cell area, cell shape index, and focal contact number. Melanoma A375 cell proliferation was increased by PEG-CLP-RGD, and this was accompanied by a decrease in cell shape index. However, neither RGD nor IKVAV conjugated to PEG-CLP stimulated migratory capacity of A375 cells. Taken together, the study presents synthetic scaffolds with extracellular matrix (ECM)-mimicking peptides that allow for the exploration of the effect of ECM signaling to cancer cells.
Collapse
Affiliation(s)
- Zbigniev Balion
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Emilija Sipailaite
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Gabija Stasyte
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Agne Vailionyte
- Ferentis UAB, Vilnius, Lithuania.,Department of Nanoengineering, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Airina Mazetyte-Godiene
- Ferentis UAB, Vilnius, Lithuania.,Department of Nanoengineering, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Ieva Seskeviciute
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rasa Bernotiene
- Laboratory of Molecular Neurobiology, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jaywant Phopase
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Aiste Jekabsone
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Laboratory of Molecular Neurobiology, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
41
|
Li J, Parra-Cantu C, Wang Z, Zhang YS. Improving Bioprinted Volumetric Tumor Microenvironments In Vitro. Trends Cancer 2020; 6:745-756. [PMID: 32680649 PMCID: PMC7483398 DOI: 10.1016/j.trecan.2020.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 01/09/2023]
Abstract
Despite the great breakthroughs in the past few decades in illuminating the pathological mechanisms of cancer and in developing new anticancer drugs, it remains extremely challenging to cure most cancers. Therefore, it is imperative to develop more sophisticated and more biomimetic preclinical cancer models. 3D models combined with dynamic culture techniques show great potential to accurately emulate the volumetric tumor microenvironment (TME). Here we introduce advances in bioprinting technologies for in vitro cancer modeling and their applications. Finally, we look ahead to the remaining challenges associated with current bioprinting strategies for achieving faithful cancer modeling.
Collapse
Affiliation(s)
- Jun Li
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Carolina Parra-Cantu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Zongyi Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
42
|
Wang T, Wang L, Wang G, Zhuang Y. Leveraging and manufacturing in vitro multicellular spheroid-based tumor cell model as a preclinical tool for translating dysregulated tumor metabolism into clinical targets and biomarkers. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00325-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
43
|
Northcutt LA, Suarez-Arnedo A, Rafat M. Emerging Biomimetic Materials for Studying Tumor and Immune Cell Behavior. Ann Biomed Eng 2020; 48:2064-2077. [PMID: 31617045 PMCID: PMC7156320 DOI: 10.1007/s10439-019-02384-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023]
Abstract
Cancer is one of the leading causes of death both in the United States and worldwide. The dynamic microenvironment in which tumors grow consists of fibroblasts, immune cells, extracellular matrix (ECM), and cytokines that enable progression and metastasis. Novel biomaterials that mimic these complex surroundings give insight into the biological, chemical, and physical environment that cause cancer cells to metastasize and invade into other tissues. Two-dimensional (2D) cultures are useful for gaining limited information about cancer cell behavior; however, they do not accurately represent the environments that cells experience in vivo. Recent advances in the design and tunability of diverse three-dimensional (3D) biomaterials complement biological knowledge and allow for improved recapitulation of in vivo conditions. Understanding cell-ECM and cell-cell interactions that facilitate tumor survival will accelerate the design of more effective therapies. This review discusses innovative materials currently being used to study tumor and immune cell behavior and interactions, including materials that mimic the ECM composition, mechanical stiffness, and integrin binding sites of the tumor microenvironment.
Collapse
Affiliation(s)
- Logan A Northcutt
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | | | - Marjan Rafat
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Engineering and Science Building, Rm. 426, Nashville, TN, 37212, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
44
|
Temples MN, Adjei IM, Nimocks PM, Djeu J, Sharma B. Engineered Three-Dimensional Tumor Models to Study Natural Killer Cell Suppression. ACS Biomater Sci Eng 2020; 6:4179-4199. [PMID: 33463353 DOI: 10.1021/acsbiomaterials.0c00259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A critical hurdle associated with natural killer (NK) cell immunotherapies is inadequate infiltration and function in the solid tumor microenvironment. Well-controlled 3D culture systems could advance our understanding of the role of various biophysical and biochemical cues that impact NK cell migration in solid tumors. The objectives of this study were to establish a biomaterial which (i) supports NK cell migration and (ii) recapitulates features of the in vivo solid tumor microenvironment, to study NK infiltration and function in a 3D system. Using peptide-functionalized poly(ethylene glycol)-based hydrogels, the extent of NK-92 cell migration was observed to be largely dependent on the density of integrin binding sites and the presence of matrix metalloproteinase degradable sites. When lung cancer cells were encapsulated into the hydrogels to create tumor microenvironments, the extent of NK-92 cell migration and functional activity was dependent on the cancer cell type and duration of 3D culture. NK-92 cells showed greater migration into the models consisting of nonmetastatic A549 cells relative to metastatic H1299 cells, and reduced migration in both models when cancer cells were cultured for 7 days versus 1 day. In addition, the production of NK cell-related pro-inflammatory cytokines and chemokines was reduced in H1299 models relative to A549 models. These differences in NK-92 cell migration and cytokine/chemokine production corresponded to differences in the production of various immunomodulatory molecules by the different cancer cells, namely, the H1299 models showed increased stress ligand shedding and immunosuppressive cytokine production, particularly TGF-β. Indeed, inhibition of TGF-β receptor I in NK-92 cells restored their infiltration in H1299 models to levels similar to that in A549 models and increased overall infiltration in both models. Relative to conventional 2D cocultures, NK-92 cell mediated cytotoxicity was reduced in the 3D tumor models, suggesting the hydrogel serves to mimic some features of the biophysical barriers in in vivo tumor microenvironments. This study demonstrates the feasibility of a synthetic hydrogel system for investigating the biophysical and biochemical cues impacting NK cell infiltration and NK cell-cancer cell interactions in the solid tumor microenvironment.
Collapse
Affiliation(s)
- Madison N Temples
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-56, 1275 Center Drive, Gainesville, Florida 32611-6131, United States
| | - Isaac M Adjei
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-56, 1275 Center Drive, Gainesville, Florida 32611-6131, United States
| | - Phoebe M Nimocks
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-56, 1275 Center Drive, Gainesville, Florida 32611-6131, United States
| | - Julie Djeu
- Department of Immunology, Moffitt Cancer Center MRC 4E, 12902 Magnolia Drive, Tampa, Florida 33612-9497, United States
| | - Blanka Sharma
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-56, 1275 Center Drive, Gainesville, Florida 32611-6131, United States
| |
Collapse
|
45
|
Barros da Silva P, Coelho M, Bidarra SJ, Neves SC, Barrias CC. Reshaping in vitro Models of Breast Tissue: Integration of Stromal and Parenchymal Compartments in 3D Printed Hydrogels. Front Bioeng Biotechnol 2020; 8:494. [PMID: 32596217 PMCID: PMC7300215 DOI: 10.3389/fbioe.2020.00494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/28/2020] [Indexed: 12/30/2022] Open
Abstract
Breast tissue consists of an epithelial parenchyma embedded in stroma, of heterogeneous and complex composition, undergoing several morphological and functional alterations throughout females' lifespan. Improved knowledge on the crosstalk between parenchymal and stromal mammary cells should provide important insights on breast tissue dynamics, both under healthy and diseased states. Here, we describe an advanced 3D in vitro model of breast tissue, combining multiple components, namely stromal cells and their extracellular matrix (ECM), as well as parenchymal epithelial cells, in a hybrid system. To build the model, porous scaffolds were produced by extrusion 3D printing of peptide-modified alginate hydrogels, and then populated with human mammary fibroblasts. Seeded fibroblasts were able to adhere, spread and produce endogenous ECM, providing adequate coverage of the scaffold surface, without obstructing the pores. On a second stage, a peptide-modified alginate pre-gel laden with mammary gland epithelial cells was used to fill the scaffold's pores, forming a hydrogel in situ by ionic crosslinking. Throughout time, epithelial cells formed prototypical mammary acini-like structures, in close proximity with fibroblasts and their ECM. This generated a heterotypic 3D model that partially recreates both stromal and parenchymal compartments of breast tissue, promoting cell-cell and cell-matrix crosstalk. Furthermore, the hybrid system could be easily dissolved for cell recovery and subsequent analysis by standard cellular/molecular assays. In particular, we show that retrieved cell populations could be discriminated by flow cytometry using cell-type specific markers. This integrative 3D model stands out as a promising in vitro platform for studying breast stroma-parenchyma interactions, both under physiological and pathological settings.
Collapse
Affiliation(s)
- Patrícia Barros da Silva
- i3S—Instituto de Inovação e Investigação em Saúde, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Mariana Coelho
- i3S—Instituto de Inovação e Investigação em Saúde, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Sílvia Joana Bidarra
- i3S—Instituto de Inovação e Investigação em Saúde, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Sara Carvalheira Neves
- i3S—Instituto de Inovação e Investigação em Saúde, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Cristina Carvalho Barrias
- i3S—Instituto de Inovação e Investigação em Saúde, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
46
|
Brown A, He H, Trumper E, Valdez J, Hammond P, Griffith LG. Engineering PEG-based hydrogels to foster efficient endothelial network formation in free-swelling and confined microenvironments. Biomaterials 2020; 243:119921. [PMID: 32172030 PMCID: PMC7203641 DOI: 10.1016/j.biomaterials.2020.119921] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
In vitro tissue engineered models are poised to have significant impact on disease modeling and preclinical drug development. Reliable methods to induce microvascular networks in such microphysiological systems are needed to improve the size and physiological function of these models. By systematically engineering several physical and biomolecular properties of the cellular microenvironment (including crosslinking density, polymer density, adhesion ligand concentration, and degradability), we establish design principles that describe how synthetic matrix properties influence vascular morphogenesis in modular and tunable hydrogels based on commercial 8-arm poly (ethylene glycol) (PEG8a) macromers. We apply these design principles to generate endothelial networks that exhibit consistent morphology throughout depths of hydrogel greater than 1 mm. These PEG8a-based hydrogels have relatively high volumetric swelling ratios (>1.5), which limits their utility in confined environments such as microfluidic devices. To overcome this limitation, we mitigate swelling by incorporating a highly functional PEG-grafted alpha-helical poly (propargyl-l-glutamate) (PPLGgPEG) macromer along with the canonical 8-arm PEG8a macromer in gel formation. This hydrogel platform supports enhanced endothelial morphogenesis in neutral-swelling environments. Finally, we incorporate PEG8a-PPLGgPEG gels into microfluidic devices and demonstrate improved diffusion kinetics and microvascular network formation in situ compared to PEG8a-based gels.
Collapse
Affiliation(s)
- Alexander Brown
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hongkun He
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ella Trumper
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jorge Valdez
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Paula Hammond
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
47
|
Sorrin AJ, Ruhi MK, Ferlic NA, Karimnia V, Polacheck WJ, Celli JP, Huang HC, Rizvi I. Photodynamic Therapy and the Biophysics of the Tumor Microenvironment. Photochem Photobiol 2020; 96:232-259. [PMID: 31895481 PMCID: PMC7138751 DOI: 10.1111/php.13209] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Targeting the tumor microenvironment (TME) provides opportunities to modulate tumor physiology, enhance the delivery of therapeutic agents, impact immune response and overcome resistance. Photodynamic therapy (PDT) is a photochemistry-based, nonthermal modality that produces reactive molecular species at the site of light activation and is in the clinic for nononcologic and oncologic applications. The unique mechanisms and exquisite spatiotemporal control inherent to PDT enable selective modulation or destruction of the TME and cancer cells. Mechanical stress plays an important role in tumor growth and survival, with increasing implications for therapy design and drug delivery, but remains understudied in the context of PDT and PDT-based combinations. This review describes pharmacoengineering and bioengineering approaches in PDT to target cellular and noncellular components of the TME, as well as molecular targets on tumor and tumor-associated cells. Particular emphasis is placed on the role of mechanical stress in the context of targeted PDT regimens, and combinations, for primary and metastatic tumors.
Collapse
Affiliation(s)
- Aaron J. Sorrin
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Mustafa Kemal Ruhi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC, 27599, USA
| | - Nathaniel A. Ferlic
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Vida Karimnia
- Department of Physics, College of Science and Mathematics, University of Massachusetts at Boston, Boston, MA, 02125, USA
| | - William J. Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC, 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Jonathan P. Celli
- Department of Physics, College of Science and Mathematics, University of Massachusetts at Boston, Boston, MA, 02125, USA
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| |
Collapse
|
48
|
Jafari R, Cramer GM, Celli JP. Modulation of Extracellular Matrix Rigidity Via Riboflavin-mediated Photocrosslinking Regulates Invasive Motility and Treatment Response in a 3D Pancreatic Tumor Model. Photochem Photobiol 2020; 96:365-372. [PMID: 31820435 DOI: 10.1111/php.13191] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/04/2019] [Indexed: 01/01/2023]
Abstract
In this study, we evaluate the use of riboflavin-mediated collagen photocrosslinking as an experimental tool to modulate extracellular matrix (ECM) mechanical properties in 3D in vitro tumor models. Using this approach in conjunction with 3D pancreatic tumor spheroid transplants, we show that the extent of matrix photocrosslinking in reconstituted hydrogels with fixed protein concentration scales inversely with the extent of invasive progression achieved by cells infiltrating into the surrounding ECM from primary transplanted spheroids. Using cross-linking to manipulate the extent of invasion into ECM in conjunction with imaging-based treatment assessment, we further leverage this approach as a means for assaying differential therapeutic response in primary nodule and ECM-invading populations and compare response to verteporfin-based photodynamic therapy (PDT) and oxaliplatin chemotherapy. Treatment response data shows that invading cell populations (which also exhibit markers of increased EMT) are highly chemoresistant yet have significantly increased sensitivity to PDT relative to the primary nodule. In contrast, the oxaliplatin treatment achieves greater growth inhibition of the primary nodule. These findings may be significant in themselves, while the methodology developed here could have a broader range of applications in developing strategies to target invasive disease and/or mecahanobiological determinants of therapeutic response in solid tumors.
Collapse
Affiliation(s)
- Rojin Jafari
- Department of Physics, University of Massachusetts, Boston, MA
| | - Gwendolyn M Cramer
- Department of Physics, University of Massachusetts, Boston, MA.,Molecular, Cellular and Organismal Biology (MCOB) Program, University of Massachusetts, Boston, MA
| | | |
Collapse
|
49
|
Schutrum BE, Whitman MA, Fischbach C. Biomaterials-Based Model Systems to Study Tumor–Microenvironment Interactions. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
50
|
Funfak A, Bouzhir L, Gontran E, Minier N, Dupuis-Williams P, Gobaa S. Biophysical Control of Bile Duct Epithelial Morphogenesis in Natural and Synthetic Scaffolds. Front Bioeng Biotechnol 2019; 7:417. [PMID: 31921820 PMCID: PMC6923240 DOI: 10.3389/fbioe.2019.00417] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/29/2019] [Indexed: 12/11/2022] Open
Abstract
The integration of bile duct epithelial cells (cholangiocytes) in artificial liver culture systems is important in order to generate more physiologically relevant liver models. Understanding the role of the cellular microenvironment on differentiation, physiology, and organogenesis of cholangiocytes into functional biliary tubes is essential for the development of new liver therapies, notably in the field of cholangiophaties. In this study, we investigated the role of natural or synthetic scaffolds on cholangiocytes cyst growth, lumen formation and polarization. We demonstrated that cholangiocyte cyst formation efficiency can be similar between natural and synthetic matrices provided that the mechanical properties of the hydrogels are matched. When using synthetic matrices, we also tried to understand the impact of elasticity, matrix metalloprotease-mediated degradation and integrin ligand density on cyst morphogenesis. We demonstrated that hydrogel stiffness regulates cyst formation. We found that controlling integrin ligand density was key in the establishment of large polarized cysts of cholangiocytes. The mechanism of lumen formation was found to rely on cell self-organization and proliferation. The formed cholangiocyte organoids showed a good MDR1 (multi drug resistance protein) transport activity. Our study highlights the advantages of fully synthetic scaffold as a tool to develop bile duct models.
Collapse
Affiliation(s)
- Anette Funfak
- Institut Pasteur, Biomaterials and Microfluidics Core Facility, Paris, France
| | - Latifa Bouzhir
- Université Paris-Saclay, UMR-S1174 INSERM, Orsay, France
| | - Emilie Gontran
- Université Paris-Saclay, UMR-S1174 INSERM, Orsay, France
| | - Nicolas Minier
- Institut Pasteur, Biomaterials and Microfluidics Core Facility, Paris, France.,Université de Technologie de Compiègne, Alliance Sorbonne Université, Compiègne, France
| | - Pascale Dupuis-Williams
- Université Paris-Saclay, UMR-S1174 INSERM, Orsay, France.,ESPCI, PSL University, Paris, France
| | - Samy Gobaa
- Institut Pasteur, Biomaterials and Microfluidics Core Facility, Paris, France
| |
Collapse
|