1
|
Hsu CW, Fang YC, Li JF, Cheng CA. Decoding Complex Biological Milieus: SHINER's Approach to Profiling and Functioning of Extracellular Vesicle Subpopulations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2503638. [PMID: 40255212 DOI: 10.1002/smll.202503638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Indexed: 04/22/2025]
Abstract
Extracellular vesicles (EVs) are celebrated for their pivotal roles in cellular communication and their potential in disease diagnosis and therapeutic applications. However, their inherent heterogeneity acts as a double-edged sword, complicating the isolation of specific EV subpopulations. Conventional EV isolation methods often fall short, relying on biophysical properties, while affinity-based techniques may compromise EV integrity and utility with harsh recovery conditions. To address these limitations, the SHINER (subpopulation homogeneous isolation and nondestructive EV release) workflow is introduced, which redefines how EVs are isolated and recoverd, featuring the innovative SWITCHER (switchable extracellular vesicle releaser) tool. The SHINER workflow facilitates the precise purification and gentle recovery of target EV subpopulations from complex biological mixtures, preserving their structural integrity and biological functionality. Importantly, SHINER demonstrates exceptional adaptability to multiple markers and clinical applications. It not only enhances the ability to trace EV origins for accurate disease diagnosis but also advances fundamental EV research and provides standardized EV materials for therapeutic innovations. By improving the understanding of EVs and enabling the development of personalized diagnostics and treatments, SHINER propels EV-based science into new frontiers of advanced medicine, offering transformative potential for healthcare.
Collapse
Affiliation(s)
- Chen-Wei Hsu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, 10050, Taiwan
| | - Yao-Ching Fang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, 10050, Taiwan
| | - Jhih-Fong Li
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, 10050, Taiwan
| | - Chi-An Cheng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, 10050, Taiwan
| |
Collapse
|
2
|
Guo K, Li S, Wu X, Xiong H. Nanomedicine in the Diagnosis and Treatment of Pancreatic Cancer. Pharmaceutics 2025; 17:449. [PMID: 40284444 PMCID: PMC12030228 DOI: 10.3390/pharmaceutics17040449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with increasing incidence and mortality rates, highlighting the urgent need for early diagnosis and treatment. However, early diagnosis of PDAC is extremely challenging due to the atypical early symptoms or the absence of noticeable symptoms. As a result, many patients are diagnosed with local metastasis, and even patients who are eligible for surgical resection have a high postoperative recurrence rate. Consequently, chemotherapy remains the primary treatment for PDAC. However, the unique biological characteristics of PDAC not only promote tumor progression and metastasis but also often lead to chemoresistance, a significant barrier to successful treatment. Recently, nanomaterials have garnered significant attention as promising materials for diagnosing and treating PDAC, showing great potential in cancer therapy, imaging, and drug delivery. Novel targeted nanomedicines, which encapsulate chemotherapy drugs and gene therapy products, offer significant advantages in overcoming resistance. These nanomedicines not only provide innovative solutions to the limitations of conventional chemotherapy but also improve the selectivity for cancer cells to enhance therapeutic outcomes. Current research is focused on the development of advanced nanomedicines, such as liposomes, nanotubes, and polymer-lipid hybrid systems, aimed at making chemotherapy more effective and longer lasting. This review provides a detailed overview of various nanomedicines utilized in the diagnosis and treatment of PDAC and outlines future directions for their development and key breakthroughs.
Collapse
Affiliation(s)
| | | | - Xinyu Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (K.G.); (S.L.)
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (K.G.); (S.L.)
| |
Collapse
|
3
|
Höfer S, Frasch L, Brajkovic S, Putzker K, Lewis J, Schürmann H, Leone V, Sakhteman A, The M, Bayer FP, Müller J, Hamood F, Siveke JT, Reichert M, Kuster B. Gemcitabine and ATR inhibitors synergize to kill PDAC cells by blocking DNA damage response. Mol Syst Biol 2025; 21:231-253. [PMID: 39838187 PMCID: PMC11876601 DOI: 10.1038/s44320-025-00085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 12/22/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025] Open
Abstract
The DNA-damaging agent Gemcitabine (GEM) is a first-line treatment for pancreatic cancer, but chemoresistance is frequently observed. Several clinical trials investigate the efficacy of GEM in combination with targeted drugs, including kinase inhibitors, but the experimental evidence for such rationale is often unclear. Here, we phenotypically screened 13 human pancreatic adenocarcinoma (PDAC) cell lines against GEM in combination with 146 clinical inhibitors and observed strong synergy for the ATR kinase inhibitor Elimusertib in most cell lines. Dose-dependent phosphoproteome profiling of four ATR inhibitors following DNA damage induction by GEM revealed a strong block of the DNA damage response pathway, including phosphorylated pS468 of CHEK1, as the underlying mechanism of drug synergy. The current work provides a strong rationale for why the combination of GEM and ATR inhibition may be useful for the treatment of PDAC patients and constitutes a rich phenotypic and molecular resource for further investigating effective drug combinations.
Collapse
Affiliation(s)
- Stefanie Höfer
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Larissa Frasch
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Sarah Brajkovic
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Kerstin Putzker
- Chemical Biology Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Joe Lewis
- Chemical Biology Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Hendrik Schürmann
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Valentina Leone
- Department of Internal Medicine II, University Hospital Rechts der Isar, Technical University Munich, Munich, Germany
| | - Amirhossein Sakhteman
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Matthew The
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Florian P Bayer
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Julian Müller
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Firas Hamood
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Jens T Siveke
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, Essen, Germany
| | - Maximilian Reichert
- Department of Internal Medicine II, University Hospital Rechts der Isar, Technical University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.
| |
Collapse
|
4
|
Lin Q, Serratore A, Perri J, Roy Chaudhuri T, Qu J, Ma WW, Kandel ES, Straubinger RM. Expression of fibroblast growth factor receptor 1 correlates inversely with the efficacy of single-agent fibroblast growth factor receptor-specific inhibitors in pancreatic cancer. Br J Pharmacol 2024; 181:1383-1403. [PMID: 37994108 PMCID: PMC11909478 DOI: 10.1111/bph.16289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND AND PURPOSE Elevated fibroblast growth factor receptor (FGFR) activity correlates with pancreatic adenocarcinoma (PDAC) progression and poor prognosis. However, its potential as a therapeutic target remains largely unexplored. EXPERIMENTAL APPROACH The mechanisms of action and therapeutic effects of selective pan-FGFR inhibitors (pan-FGFRi) were explored using in vitro and in vivo PDAC models ranging from gemcitabine-sensitive to highly gemcitabine-resistant (GemR). Gain-/loss-of-function investigations were employed to define the role of individual FGFRs in cell proliferation, migration, and treatment response and resistance. RESULTS The pan-FGFRi NVP-BGJ398 significantly inhibited cell proliferation, migration, and invasion, and downregulated key cell survival- and invasiveness markers in multiple PDAC cell lines. Gemcitabine is a standard-of-care for PDAC, but development of resistance to gemcitabine (GemR) compromises its efficacy. Acquired GemR was modelled experimentally by developing highly GemR cells using escalating gemcitabine exposure in vitro and in vivo. FGFRi treatment inhibited GemR cell proliferation, migration, GemR marker expression, and tumour progression. FGFR2 or FGFR3 loss-of-function by shRNA knockdown failed to decrease cell growth, whereas FGFR1 knockdown was lethal. FGFR1 overexpression promoted cell migration more than proliferation, and reduced FGFRi-mediated inhibition of proliferation and migration. Single-agent FGFRi suppressed the viability and growth of multiple patient-derived xenografts inversely with respect to FGFR1 expression, underscoring the influence of FGFR1-dependent tumour responses to FGFRi. Importantly, secondary data analysis showed that PDAC tumours expressed FGFR1 at lower levels than in normal pancreas tissue. CONCLUSIONS AND IMPLICATIONS Single-agent FGFR inhibitors mediate selective, molecularly-targeted suppression of PDAC proliferation, and their effects are greatest in PDAC tumours expressing low-to-moderate levels of FGFR1.
Collapse
Affiliation(s)
- Qingxiang Lin
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Andrea Serratore
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Jonathan Perri
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Tista Roy Chaudhuri
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Wen Wee Ma
- Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Eugene S Kandel
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Robert M Straubinger
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
5
|
Lin Q, Serratore A, Niu J, Shen S, Roy Chaudhuri T, Ma WW, Qu J, Kandel ES, Straubinger RM. Fibroblast growth factor receptor 1 inhibition suppresses pancreatic cancer chemoresistance and chemotherapy-driven aggressiveness. Drug Resist Updat 2024; 73:101064. [PMID: 38387284 PMCID: PMC11864563 DOI: 10.1016/j.drup.2024.101064] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/26/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
AIMS Pancreatic ductal adenocarcinoma (PDAC) is often intrinsically-resistant to standard-of-care chemotherapies such as gemcitabine. Acquired gemcitabine resistance (GemR) can arise from treatment of initially-sensitive tumors, and chemotherapy can increase tumor aggressiveness. We investigated the molecular mechanisms of chemoresistance and chemotherapy-driven tumor aggressiveness, which are understood incompletely. METHODS Differential proteomic analysis was employed to investigate chemotherapy-driven chemoresistance drivers and responses of PDAC cells and patient-derived tumor xenografts (PDX) having different chemosensitivities. We also investigated the prognostic value of FGFR1 expression in the efficacy of selective pan-FGFR inhibitor (FGFRi)-gemcitabine combinations. RESULTS Quantitative proteomic analysis of a highly-GemR cell line revealed fibroblast growth factor receptor 1 (FGFR1) as the highest-expressed receptor tyrosine kinase. FGFR1 knockdown or FGFRi co-treatment enhanced gemcitabine efficacy and decreased GemR marker expression, implicating FGFR1 in augmentation of GemR. FGFRi treatment reduced PDX tumor progression and prolonged survival significantly, even in highly-resistant tumors in which neither single-agent showed efficacy. Gemcitabine exacerbated aggressiveness of highly-GemR tumors, based upon proliferation and metastatic markers. Combining FGFRi with gemcitabine or gemcitabine+nab-paclitaxel reversed tumor aggressiveness and progression, and prolonged survival significantly. In multiple PDAC PDXs, FGFR1 expression correlated with intrinsic tumor gemcitabine sensitivity. CONCLUSION FGFR1 drives chemoresistance and tumor aggressiveness, which FGFRi can reverse.
Collapse
Affiliation(s)
- Qingxiang Lin
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Andrea Serratore
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Jin Niu
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Shichen Shen
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Tista Roy Chaudhuri
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Wen Wee Ma
- Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jun Qu
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Eugene S Kandel
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Robert M Straubinger
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA; Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
6
|
Zhu M, Shen H, Wang B, He Y, Chen J, Ren J, Zhang Z, Jian X. LRP1 as a promising therapeutic target for gastrointestinal tumors: Inhibiting proliferation, invasion and migration of cancer cells. Oncol Lett 2023; 26:432. [PMID: 37664649 PMCID: PMC10472044 DOI: 10.3892/ol.2023.14019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Gastrointestinal (GI) cancers are the most common types of tumors worldwide. The lack of cancer biomarkers and targeted drug resistance are barriers to achieving effective cancer therapy. Low-density lipoprotein receptor-related protein 1 (LRP1) is a transmembrane protein that has multiple functions due to its ability to recognize different ligands; however, the role of LRP1 in GI cancer cells remains unclear. The present study aimed to investigate the role of LRP1 in GI tumors. The Cancer Genome Atlas database was used to analyze the potential correlation between expression of LRP1 and prognosis in patients with GI cancer. Bioinformatics analysis was utilized and the expression of LRP1 was simultaneously validated in GI cancer at the cellular level through western blot experiments. LRP1 was expressed at high levels in HGC-27, HepG2 and BxPC-3 cells. LRP1 expression in GI cancer cells was knocked down using lentivirus-mediated shRNA and the effects on biological functions were observed. LRP1 knockdown suppressed the proliferation, invasion and migration of GI cancer cells. LRP1 knockdown inhibited CD36 gene expression in HepG2 and BxPC-3 cells. LRP1 knockdown inhibited the proliferation, invasion and migration of GI cancer cells, suggesting that LRP1 may be a novel target for treatment of GI tumors.
Collapse
Affiliation(s)
- Mengying Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Hao Shen
- Lab Center, The Children's Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China
| | - Bili Wang
- Lab Center, The Children's Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China
| | - Yingfei He
- Department of Pathology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jin Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Jun Ren
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Zhezhong Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xu Jian
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
7
|
Natu J, Nagaraju GP. Gemcitabine effects on tumor microenvironment of pancreatic ductal adenocarcinoma: Special focus on resistance mechanisms and metronomic therapies. Cancer Lett 2023; 573:216382. [PMID: 37666293 DOI: 10.1016/j.canlet.2023.216382] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is considered one of the deadliest malignancies, with dismal survival rates and extremely prevalent chemoresistance. Gemcitabine is one of the primary treatments used in treating PDACs, but its benefits are limited due to chemoresistance, which could be attributed to interactions between the tumor microenvironment (TME) and intracellular processes. In preclinical models, certain schedules of administration of gemcitabine modulate the TME in a manner that does not promote resistance. Metronomic therapy constitutes a promising strategy to overcome some barriers associated with current PDAC treatments. This review will focus on gemcitabine's mechanism in treating PDAC, combination therapies, gemcitabine's interactions with the TME, and gemcitabine in metronomic therapies.
Collapse
Affiliation(s)
- Jay Natu
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL, 35233, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL, 35233, USA.
| |
Collapse
|
8
|
Yamada T, Tateishi R, Iwai M, Tanaka M, Ijichi H, Sano M, Koike K, Todo T. Overcoming resistance of stroma-rich pancreatic cancer with focal adhesion kinase inhibitor combined with G47Δ and immune checkpoint inhibitors. Mol Ther Oncolytics 2022; 28:31-43. [PMID: 36619294 PMCID: PMC9801088 DOI: 10.1016/j.omto.2022.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease known for its dense tumor stroma. Focal adhesion kinase inhibitor (FAKi), a non-receptor type tyrosine kinase inhibitor, reduces the tumor stroma. G47Δ, a third-generation oncolytic herpes simplex virus type 1, destroys tumor cells selectively and induces antitumor immune responses. This study evaluates the efficacy of FAKi and G47Δ in PDAC models in combination with or without immune checkpoint inhibitors. G47Δ was effective in human PDAC cell lines in vitro and in subcutaneous as well as orthotopic tumor models. Transgenic mouse-derived #146 cells were used to generate subcutaneous PDAC tumors with rich stroma in immunocompetent mice. In this #146 tumor model, the efficacy of FAKi was synergistically augmented when combined with G47Δ, which reflected not only a decreased stromal content but also a significant shifting of the tumor microenvironment toward immune stimulation. In transgenic autochthonous PKF mice, a rare model that develops stroma-rich PDAC with a 100% penetrance and resembles human PDAC in various aspects, the prolongation of survival compared with FAKi alone was achieved only when FAKi was combined with G47Δ and immune checkpoint inhibitors. The FAKi combination therapy may be useful to overcome the treatment resistance of stroma-rich PDAC.
Collapse
Affiliation(s)
- Tomoharu Yamada
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, and Department of Surgical Neuro-Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan,Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ryosuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Miwako Iwai
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, and Department of Surgical Neuro-Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Minoru Tanaka
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, and Department of Surgical Neuro-Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hideaki Ijichi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Makoto Sano
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, and Department of Surgical Neuro-Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan,Corresponding author Tomoki Todo, M.D., Ph.D., Division of Innovative Cancer Therapy, Advanced Clinical Research Center, and Department of Surgical Neuro-Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
9
|
Tang H, Xue Y, Li B, Xu X, Zhang F, Guo J, Li Q, Yuan T, Chen Y, Pan Y, Ping Y, Li D. Membrane-camouflaged supramolecular nanoparticles for co-delivery of chemotherapeutic and molecular-targeted drugs with siRNA against patient-derived pancreatic carcinoma. Acta Pharm Sin B 2022; 12:3410-3426. [PMID: 35967289 PMCID: PMC9366227 DOI: 10.1016/j.apsb.2022.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer remains one of the most lethal malignancies worldwide. The combination of the first-line standard agent gemcitabine (GEM) with the molecular-targeted drug erlotinib (Er) has emerged as a promising strategy for pancreatic cancer treatment. However, the clinical benefit from this combination is still far from satisfactory due to the unfavorable drug antagonism and the fibrotic tumor microenvironment. Herein, we propose a membrane-camouflaged dual stimuli-responsive delivery system for the co-delivery of GEM and Er into pancreatic cancer cells and tissues to block the antagonism, as well as reshapes profibrotic tumor microenvironment via simultaneous delivery of small interference RNA (siRNA) for synergistic pancreatic cancer treatment. This “all-in-one” delivery system exhibits sensitive GSH and pH-dependent drug release profiles and enhances the inhibitory effects on the proliferation and migration of tumor cells in vitro. Excitingly, the systemic injection of such a biomimetic drug co-delivery system not only resulted in superior inhibitory effects against orthotopic pancreatic tumor and patient-derived tumor (PDX), but also greatly extended the survival rate of tumor-bearing mice. Our findings provide a promising therapeutic strategy against pancreatic cancer through the enhanced synergistic effect of target therapy, chemotherapy and anti-fibrotic therapy, which represents an appealing way for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Honglin Tang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanan Xue
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bowen Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Corresponding authors.
| | - Xiaojie Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fu Zhang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China
| | - Jiajing Guo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qijun Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Tingting Yuan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuan Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yubin Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Corresponding authors.
| | - Da Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Corresponding authors.
| |
Collapse
|
10
|
Lee JE, Kang YW, Jung KH, Son MK, Shin SM, Kim JS, Kim SJ, Fang Z, Yan HH, Park JH, Yoon YC, Han B, Cheon MJ, Woo MG, Seo MS, Lim JH, Kim YS, Hong SS. Intracellular KRAS-specific antibody enhances the anti-tumor efficacy of gemcitabine in pancreatic cancer by inducing endosomal escape. Cancer Lett 2021; 507:97-111. [PMID: 33744388 DOI: 10.1016/j.canlet.2021.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/16/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
KRAS mutation is associated with the progression and growth of pancreatic cancer and contributes to chemo-resistance, which poses a significant clinical challenge in pancreatic cancer. Here, we developed a RT22-ep59 antibody (Ab) that directly targets the intracellularly activated GTP-bound form of oncogenic KRAS mutants after it is internalized into cytosol by endocytosis through tumor-associated receptor of extracellular epithelial cell adhesion molecule (EpCAM) and investigated its synergistic anticancer effects in the presence of gemcitabine in pancreatic cancer. We first observed that RT22-ep59 specifically recognized tumor-associated EpCAM and reached the cytosol by endosomal escape. In addition, the anticancer effect of RT22-ep59 was observed in the high-EpCAM-expressing pancreatic cancer cells and gemcitabine-resistant pancreatic cancer cells, but it had little effect on the low-EpCAM-expressing pancreatic cancer cells. Additionally, co-treatment with RT22-ep59 and gemcitabine synergistically inhibited cell viability, migration, and invasion in 3D-cultures and exhibited synergistic anticancer activity by inhibiting the RAF/ERK or PI3K/AKT pathways in cells with high-EpCAM expression. In an orthotopic mouse model, combined administration of RT22-ep59 and gemcitabine significantly inhibited tumor growth. Furthermore, the co-treatment suppressed cancer metastasis by blocking EMT signaling in vitro and in vivo. Our results demonstrated that RT22-ep59 synergistically increased the antitumor activity of gemcitabine by inhibiting RAS signaling by specifically targeting KRAS. This indicates that co-treatment with RT22-ep59 and gemcitabine might be considered a potential therapeutic strategy for pancreatic cancer patients harboring KRAS mutation.
Collapse
Affiliation(s)
- Ji Eun Lee
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Yeo Wool Kang
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Kyung Hee Jung
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Mi Kwon Son
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Seung-Min Shin
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Ji-Sun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Soo Jung Kim
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Zhenghuan Fang
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Hong Hua Yan
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Jung Hee Park
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Young-Chan Yoon
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Boreum Han
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Min Ji Cheon
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Min Gyu Woo
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Myung Sung Seo
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Joo Han Lim
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
| | - Soon-Sun Hong
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea.
| |
Collapse
|
11
|
Fujii A, Masuda T, Iwata M, Tobo T, Wakiyama H, Koike K, Kosai K, Nakano T, Kuramitsu S, Kitagawa A, Sato K, Kouyama Y, Shimizu D, Matsumoto Y, Utsunomiya T, Ohtsuka T, Yamanishi Y, Nakamura M, Mimori K. The novel driver gene ASAP2 is a potential druggable target in pancreatic cancer. Cancer Sci 2021; 112:1655-1668. [PMID: 33605496 PMCID: PMC8019229 DOI: 10.1111/cas.14858] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Targeting mutated oncogenes is an effective approach for treating cancer. The 4 main driver genes of pancreatic ductal adenocarcinoma (PDAC) are KRAS, TP53, CDKN2A, and SMAD4, collectively called the "big 4" of PDAC, however they remain challenging therapeutic targets. In this study, ArfGAP with SH3 domain, ankyrin repeat and PH domain 2 (ASAP2), one of the ArfGAP family, was identified as a novel driver gene in PDAC. Clinical analysis with PDAC datasets showed that ASAP2 was overexpressed in PDAC cells based on increased DNA copy numbers, and high ASAP2 expression contributed to a poor prognosis in PDAC. The biological roles of ASAP2 were investigated using ASAP2-knockout PDAC cells generated with CRISPR-Cas9 technology or transfected PDAC cells. In vitro and in vivo analyses showed that ASAP2 promoted tumor growth by facilitating cell cycle progression through phosphorylation of epidermal growth factor receptor (EGFR). A repositioned drug targeting the ASAP2 pathway was identified using a bioinformatics approach. The gene perturbation correlation method showed that niclosamide, an antiparasitic drug, suppressed PDAC growth by inhibition of ASAP2 expression. These data show that ASAP2 is a novel druggable driver gene that activates the EGFR signaling pathway. Furthermore, niclosamide was identified as a repositioned therapeutic agent for PDAC possibly targeting ASAP2.
Collapse
Affiliation(s)
- Atsushi Fujii
- Department of SurgeryKyushu University Beppu HospitalOitaJapan
- Department of Surgery and OncologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takaaki Masuda
- Department of SurgeryKyushu University Beppu HospitalOitaJapan
| | - Michio Iwata
- Department of Bioscience and BioinformaticsFaculty of Computer Science and Systems EngineeringKyushu Institute of TechnologyFukuokaJapan
| | - Taro Tobo
- Department of Clinical Laboratory MedicineKyushu University Beppu HospitalOitaJapan
| | | | - Kensuke Koike
- Department of SurgeryKyushu University Beppu HospitalOitaJapan
| | - Keisuke Kosai
- Department of SurgeryKyushu University Beppu HospitalOitaJapan
| | - Takafumi Nakano
- Department of SurgeryKyushu University Beppu HospitalOitaJapan
| | | | | | - Kuniaki Sato
- Department of SurgeryKyushu University Beppu HospitalOitaJapan
| | - Yuta Kouyama
- Department of SurgeryKyushu University Beppu HospitalOitaJapan
| | - Dai Shimizu
- Department of SurgeryKyushu University Beppu HospitalOitaJapan
| | | | | | - Takao Ohtsuka
- Department of Digestive Surgery, Breast and Thyroid SurgeryKagoshima UniversityKagoshimaJapan
| | - Yoshihiro Yamanishi
- Department of Bioscience and BioinformaticsFaculty of Computer Science and Systems EngineeringKyushu Institute of TechnologyFukuokaJapan
| | - Masafumi Nakamura
- Department of Surgery and OncologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Koshi Mimori
- Department of SurgeryKyushu University Beppu HospitalOitaJapan
| |
Collapse
|
12
|
Targeted Therapies for Pancreatic Cancer: Overview of Current Treatments and New Opportunities for Personalized Oncology. Cancers (Basel) 2021; 13:cancers13040799. [PMID: 33672917 PMCID: PMC7918504 DOI: 10.3390/cancers13040799] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Cytotoxic chemotherapy remains the only treatment option for most pancreatic ductal adenocarcinoma patients. Currently, the median overall survival of patients with advanced disease rarely exceeds 1 year. The complex network of pancreatic cancer composed of immune cells, endothelial cells, and cancer-associated fibroblasts confers intratumoral and intertumoral heterogeneity with distinct proliferative and metastatic propensity. This heterogeneity can explain why tumors do not behave uniformly and are able to escape therapy. The advance in technology of whole-genome sequencing has now provided the possibility of identifying every somatic mutation, copy-number change, and structural variant in a given cancer, giving rise to personalized targeted therapies. In this review, we provide an overview of the current and emerging treatment strategies in pancreatic cancer. By highlighting new paradigms in pancreatic ductal adenocarcinoma treatment, we hope to stimulate new thoughts for clinical trials aimed at improving patient outcomes.
Collapse
|
13
|
Takahashi R, Ijichi H, Sano M, Miyabayashi K, Mohri D, Kim J, Kimura G, Nakatsuka T, Fujiwara H, Yamamoto K, Kudo Y, Tanaka Y, Tateishi K, Nakai Y, Morishita Y, Soma K, Takeda N, Moses HL, Isayama H, Koike K. Soluble VCAM-1 promotes gemcitabine resistance via macrophage infiltration and predicts therapeutic response in pancreatic cancer. Sci Rep 2020; 10:21194. [PMID: 33273652 PMCID: PMC7713301 DOI: 10.1038/s41598-020-78320-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is one of the malignant diseases with the worst prognosis. Resistance to chemotherapy is a major difficulty in treating the disease. We analyzed plasma samples from a genetically engineered mouse model of pancreatic cancer and found soluble vascular cell adhesion molecule-1 (sVCAM-1) increases in response to gemcitabine treatment. VCAM-1 was expressed and secreted by murine and human pancreatic cancer cells. Subcutaneous allograft tumors with overexpression or knock-down of VCAM-1, as well as VCAM-1-blocking treatment in the spontaneous mouse model of pancreatic cancer, revealed that sVCAM-1 promotes tumor growth and resistance to gemcitabine treatment in vivo but not in vitro. By analyzing allograft tumors and co-culture experiments, we found macrophages were attracted by sVCAM-1 to the tumor microenvironment and facilitated resistance to gemcitabine in tumor cells. In a clinical setting, we found that the change of sVCAM-1 in the plasma of patients with advanced pancreatic cancer was an independent prognostic factor for gemcitabine treatment. Collectively, gemcitabine treatment increases the release of sVCAM-1 from pancreatic cancer cells, which attracts macrophages into the tumor, thereby promoting the resistance to gemcitabine treatment. sVCAM-1 may be a potent clinical biomarker and a potential target for the therapy in pancreatic cancer.
Collapse
Affiliation(s)
- Ryota Takahashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Hideaki Ijichi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Makoto Sano
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Division of Medical Research Planning and Development, Nihon University School of Medicine, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Koji Miyabayashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Dai Mohri
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Jinsuk Kim
- Division of Medical Research Planning and Development, Nihon University School of Medicine, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Gen Kimura
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takuma Nakatsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hiroaki Fujiwara
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Keisuke Yamamoto
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yotaro Kudo
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yasuo Tanaka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Keisuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yousuke Nakai
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yasuyuki Morishita
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Katsura Soma
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Norihiko Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, 329-0498, Japan
| | - Harold L Moses
- Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University, 691 Preston Building, Nashville, TN, 37232, USA
| | - Hiroyuki Isayama
- Department of Gastroenterology, Juntendo University School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
14
|
Rose M, Maurer A, Wirtz J, Bleilevens A, Waldmann T, Wenz M, Eyll M, Geelvink M, Gereitzig M, Rüchel N, Denecke B, Eltze E, Herrmann E, Toma M, Horst D, Grimm T, Denzinger S, Ecke T, Vögeli TA, Knuechel R, Maurer J, Gaisa NT. EGFR activity addiction facilitates anti-ERBB based combination treatment of squamous bladder cancer. Oncogene 2020; 39:6856-6870. [PMID: 32978523 PMCID: PMC7605436 DOI: 10.1038/s41388-020-01465-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/11/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
Recent findings suggested a benefit of anti-EGFR therapy for basal-like muscle-invasive bladder cancer (MIBC). However, the impact on bladder cancer with substantial squamous differentiation (Sq-BLCA) and especially pure squamous cell carcinoma (SCC) remains unknown. Therefore, we comprehensively characterized pure and mixed Sq-BLCA (n = 125) on genetic and protein expression level, and performed functional pathway and drug-response analyses with cell line models and isolated primary SCC (p-SCC) cells of the human urinary bladder. We identified abundant EGFR expression in 95% of Sq-BLCA without evidence for activating EGFR mutations. Both SCaBER and p-SCC cells were sensitive to EGFR tyrosine kinase inhibitors (TKIs: erlotinib and gefitinib). Combined treatment with anti-EGFR TKIs and varying chemotherapeutics led to a concentration-dependent synergism in SCC cells according to the Chou-Talalay method. In addition, the siRNA knockdown of EGFR impaired SCaBER viability suggesting a putative "Achilles heel" of Sq-BLCA. The observed effects seem Sq-BLCA-specific since non-basal urothelial cancer cells were characterized by poor TKI sensitivity associated with a short-term feedback response potentially attenuating anti-tumor activity. Hence, our findings give further insights into a crucial, Sq-BLCA-specific role of the ERBB signaling pathway proposing improved effectiveness of anti-EGFR based regimens in combination with chemotherapeutics in squamous bladder cancers with wild-type EGFR-overexpression.
Collapse
MESH Headings
- Aged
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Transitional Cell/drug therapy
- Carcinoma, Transitional Cell/genetics
- Carcinoma, Transitional Cell/pathology
- Cell Line, Tumor
- Cohort Studies
- Drug Resistance, Neoplasm/drug effects
- Drug Synergism
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Erlotinib Hydrochloride/pharmacology
- Erlotinib Hydrochloride/therapeutic use
- Female
- Gefitinib/pharmacology
- Gefitinib/therapeutic use
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Humans
- Male
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- RNA, Small Interfering/metabolism
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-3/antagonists & inhibitors
- Receptor, ErbB-3/metabolism
- Receptor, ErbB-4/antagonists & inhibitors
- Receptor, ErbB-4/metabolism
- Signal Transduction/drug effects
- Urinary Bladder/pathology
- Urinary Bladder Neoplasms/drug therapy
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/pathology
Collapse
Affiliation(s)
- Michael Rose
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Angela Maurer
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Julia Wirtz
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | | | - Tanja Waldmann
- Department of Gynecology, University Clinic RWTH, Aachen, Germany
| | - Maximilian Wenz
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Marie Eyll
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Mirja Geelvink
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | | | - Nadine Rüchel
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Bernd Denecke
- IZKF Aachen, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Elke Eltze
- Institute of Pathology, Saarbrücken-Rastpfuhl, Saarbrücken, Germany
| | - Edwin Herrmann
- Department of Urology, University Hospital Münster, Münster, Germany
| | - Marieta Toma
- Institute of Pathology, University Hospital Gustav Carus TU Dresden, Dresden, Germany
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - David Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Grimm
- Department of Urology, LMU Munich, Munich, Germany
| | - Stefan Denzinger
- Department of Urology, University of Regensburg, Regensburg, Germany
| | - Thorsten Ecke
- Department of Urology, Helios Hospital Bad Saarow, Bad Saarow, Germany
| | | | - Ruth Knuechel
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Jochen Maurer
- Department of Gynecology, University Clinic RWTH, Aachen, Germany
| | - Nadine T Gaisa
- Institute of Pathology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
15
|
Meng Z, Yuan Q, Zhao J, Wang B, Li S, Offringa R, Jin X, Wu H. The m 6A-Related mRNA Signature Predicts the Prognosis of Pancreatic Cancer Patients. Mol Ther Oncolytics 2020; 17:460-470. [PMID: 32490170 PMCID: PMC7256444 DOI: 10.1016/j.omto.2020.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/23/2020] [Indexed: 12/19/2022] Open
Abstract
N6-methyladenosine (m6A) has an important epitranscriptomic modification that controls cancer self-renewal and cell fate. The addition of m6A to mRNA is a reversible modification. The deposition of m6A is encoded by a methyltransferase complex involving three homologous factors, jargonized as "writers," "erasers," and "readers." However, their roles in pancreatic adenocarcinoma (PAAD) are underexploited. With the use of The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases, we provided an mRNA signature that may improve the prognostic prediction of PAAD patients based on the genetic status of m6A regulators. PAAD patients with genetic alteration of m6A regulators had worse disease-free and overall survival. After comparing PAAD groups with/without genetic alteration of m6A regulators, we identified 196 differentially expressed genes (DEGs). Then, we generated a 16-mRNA signature score system through least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Multivariate cox regression analysis demonstrated that a high-risk score significantly correlates with poor prognosis. Moreover, time-dependent receiver operating characteristic (ROC) curves revealed it was effective in predicting the overall survival in both training and validation sets. PAH, ZPLD1, PPFIA3, and TNNT1 from our signature also exhibited an independent prognostic value. Collectively, these findings can improve the understanding of m6A modifications in PAAD and potentially guide therapies in PAAD patients.
Collapse
Affiliation(s)
- Zibo Meng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qingchen Yuan
- Key Lab of Molecular Biological Targeted Therapies of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingyuan Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo Wang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shoukang Li
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rienk Offringa
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Xin Jin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
16
|
The Use of Genetically Engineered Mouse Models for Studying the Function of Mutated Driver Genes in Pancreatic Cancer. J Clin Med 2019; 8:jcm8091369. [PMID: 31480737 PMCID: PMC6780401 DOI: 10.3390/jcm8091369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is often treatment-resistant, with the emerging standard of care, gemcitabine, affording only a few months of incrementally-deteriorating survival. Reflecting on the history of failed clinical trials, genetically engineered mouse models (GEMMs) in oncology research provides the inspiration to discover new treatments for pancreatic cancer that come from better knowledge of pathogenesis mechanisms, not only of the derangements in and consequently acquired capabilities of the cancer cells, but also in the aberrant microenvironment that becomes established to support, sustain, and enhance neoplastic progression. On the other hand, the existing mutational profile of pancreatic cancer guides our understanding of the disease, but leaves many important questions of pancreatic cancer biology unanswered. Over the past decade, a series of transgenic and gene knockout mouse modes have been produced that develop pancreatic cancers with features reflective of metastatic pancreatic ductal adenocarcinoma (PDAC) in humans. Animal models of PDAC are likely to be essential to understanding the genetics and biology of the disease and may provide the foundation for advances in early diagnosis and treatment.
Collapse
|
17
|
Pancreatic ductal adenocarcinoma: biological hallmarks, current status, and future perspectives of combined modality treatment approaches. Radiat Oncol 2019; 14:141. [PMID: 31395068 PMCID: PMC6688256 DOI: 10.1186/s13014-019-1345-6] [Citation(s) in RCA: 300] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/24/2019] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly devastating disease with poor prognosis and rising incidence. Late detection and a particularly aggressive biology are the major challenges which determine therapeutic failure. In this review, we present the current status and the recent advances in PDAC treatment together with the biological and immunological hallmarks of this cancer entity. On this basis, we discuss new concepts combining distinct treatment modalities in order to improve therapeutic efficacy and clinical outcome - with a specific focus on protocols involving radio(chemo)therapeutic approaches.
Collapse
|
18
|
Poteet E, Liu D, Liang Z, Van Buren G, Chen C, Yao Q. Mesothelin and TGF-α predict pancreatic cancer cell sensitivity to EGFR inhibitors and effective combination treatment with trametinib. PLoS One 2019; 14:e0213294. [PMID: 30921351 PMCID: PMC6438513 DOI: 10.1371/journal.pone.0213294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/18/2019] [Indexed: 01/12/2023] Open
Abstract
Clinical trials of EGFR inhibitors in combination with gemcitabine for the treatment of pancreatic ductal adenocarcinoma (PDAC) have generated mixed results partially due to the poorly defined effectiveness of EGFR inhibitors in PDAC. Here, we studied a panel of PDAC cell lines to compare the IC50s of the EGFR inhibitors gefitinib and cetuximab. We found that gefitinib induced biphasic inhibition in over 50% of PDAC cells, with the initial growth inhibition occurring at nanomolar concentrations and a second growth inhibition occurring outside the clinical range. In contrast to gefitinib, cetuximab produced a single phase growth inhibition in a subset of PDAC cells. Using this sensitivity data, we screened for correlations between cell morphology proteins and EGFR ligands to EGFR inhibitor sensitivity, and found that mesothelin and the EGFR ligand TGF-α have a strong correlation to gefitinib and cetuximab sensitivity. Analysis of downstream signaling pathways indicated that plc-γ1 and c-myc were consistently inhibited by EGFR inhibitor treatment in sensitive cell lines. While an inconsistent additive effect was observed with either cetuximab or gefitinib in combination with gemcitabine, the cell pathway data indicated consistent ERK activation, leading us to pursue EGFR inhibitors in combination with trametinib, a MEK1/2 inhibitor. Both cetuximab and gefitinib in combination with trametinib produced an additive effect in all EGFR sensitive cell lines. Our results indicate that mesothelin and TGF-α can predict PDAC sensitivity to EGFR inhibitors and a combination of EGFR inhibitors with trametinib could be a novel effective treatment for PDAC.
Collapse
Affiliation(s)
- Ethan Poteet
- Michael E. DeBakey Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dongliang Liu
- Michael E. DeBakey Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, Texas, United States of America
| | - Zhengdong Liang
- Michael E. DeBakey Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, Texas, United States of America
| | - George Van Buren
- Michael E. DeBakey Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, Texas, United States of America
| | - Changyi Chen
- Michael E. DeBakey Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, Texas, United States of America
| | - Qizhi Yao
- Michael E. DeBakey Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas, United States of America
| |
Collapse
|
19
|
Monks A, Zhao Y, Hose C, Hamed H, Krushkal J, Fang J, Sonkin D, Palmisano A, Polley EC, Fogli LK, Konaté MM, Miller SB, Simpson MA, Voth AR, Li MC, Harris E, Wu X, Connelly JW, Rapisarda A, Teicher BA, Simon R, Doroshow JH. The NCI Transcriptional Pharmacodynamics Workbench: A Tool to Examine Dynamic Expression Profiling of Therapeutic Response in the NCI-60 Cell Line Panel. Cancer Res 2018; 78:6807-6817. [PMID: 30355619 PMCID: PMC6295263 DOI: 10.1158/0008-5472.can-18-0989] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/24/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022]
Abstract
: The intracellular effects and overall efficacies of anticancer therapies can vary significantly by tumor type. To identify patterns of drug-induced gene modulation that occur in different cancer cell types, we measured gene-expression changes across the NCI-60 cell line panel after exposure to 15 anticancer agents. The results were integrated into a combined database and set of interactive analysis tools, designated the NCI Transcriptional Pharmacodynamics Workbench (NCI TPW), that allows exploration of gene-expression modulation by molecular pathway, drug target, and association with drug sensitivity. We identified common transcriptional responses across agents and cell types and uncovered gene-expression changes associated with drug sensitivity. We also demonstrated the value of this tool for investigating clinically relevant molecular hypotheses and identifying candidate biomarkers of drug activity. The NCI TPW, publicly available at https://tpwb.nci.nih.gov, provides a comprehensive resource to facilitate understanding of tumor cell characteristics that define sensitivity to commonly used anticancer drugs. SIGNIFICANCE: The NCI Transcriptional Pharmacodynamics Workbench represents the most extensive compilation to date of directly measured longitudinal transcriptional responses to anticancer agents across a thoroughly characterized ensemble of cancer cell lines.
Collapse
Affiliation(s)
- Anne Monks
- Molecular Pharmacology Group, Frederick National Laboratory for Cancer Research sponsored by the NCI, Frederick, Maryland
| | - Yingdong Zhao
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, Maryland
| | - Curtis Hose
- Molecular Pharmacology Group, Frederick National Laboratory for Cancer Research sponsored by the NCI, Frederick, Maryland
| | - Hossein Hamed
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, Maryland
| | - Julia Krushkal
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, Maryland
| | - Jianwen Fang
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, Maryland
| | - Dmitriy Sonkin
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, Maryland
| | - Alida Palmisano
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, Maryland
| | - Eric C Polley
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Laura K Fogli
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Mariam M Konaté
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Sarah B Miller
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Melanie A Simpson
- Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research sponsored by the NCI, Frederick, Maryland
| | - Andrea Regier Voth
- Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research sponsored by the NCI, Frederick, Maryland
| | - Ming-Chung Li
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, Maryland
| | - Erik Harris
- Molecular Pharmacology Group, Frederick National Laboratory for Cancer Research sponsored by the NCI, Frederick, Maryland
| | - Xiaolin Wu
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the NCI, Frederick, Maryland
| | - John W Connelly
- Molecular Pharmacology Group, Frederick National Laboratory for Cancer Research sponsored by the NCI, Frederick, Maryland
| | - Annamaria Rapisarda
- Molecular Pharmacology Group, Frederick National Laboratory for Cancer Research sponsored by the NCI, Frederick, Maryland
| | - Beverly A Teicher
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Richard Simon
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, Maryland
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland.
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| |
Collapse
|
20
|
Hu Q, Qin Y, Xiang J, Liu W, Xu W, Sun Q, Ji S, Liu J, Zhang Z, Ni Q, Xu J, Yu X, Zhang B. dCK negatively regulates the NRF2/ARE axis and ROS production in pancreatic cancer. Cell Prolif 2018; 51:e12456. [PMID: 29701272 PMCID: PMC6528851 DOI: 10.1111/cpr.12456] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/03/2018] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Decreased deoxycytidine kinase (dCK) expression is a reported indicator of gemcitabine efficacy in pancreatic cancer, due to the impact of this kinase on gemcitabine metabolism. The transcription factor NF-E2 p45-related factor 2 (NRF2, also called Nfe2l2), a master regulator of redox homoeostasis, has been reported to tightly control the expression of numerous ROS-detoxification genes and participates in drug resistance. However, the contribution of dCK to the NRF2 signalling axis has seldom been discussed and needs investigation. MATERIALS AND METHODS By overexpressing dCK in pancreatic cancer cells, we assessed the impact of dCK on NRF2 transcriptional activity. Furthermore, we measured the impact of dCK expression on the intracellular redox balance and reactive oxygen species (ROS) production. By utilizing immunohistochemical staining and tissues from pancreatic cancer patients, we assessed the correlation between dCK and NRF2 expression. Through proliferation and metastasis assays, we examined the impact of dCK expression on cell proliferation and metastasis. RESULTS dCK negatively regulates NRF2 transcriptional activity, leading to the decreased expression of ARE-driven antioxidant genes. In addition, dCK negatively regulates intracellular redox homoeostasis and ROS production. Negative correlations between dCK and NRF2 levels in pancreatic cancer cell lines and patient samples were observed. In vitro cell line studies suggested that dCK negatively regulated proliferation and metastasis. CONCLUSION Decreased dCK expression promotes NRF2-driven antioxidant transcription, which further enhances gemcitabine treatment resistance, forming a feedback loop.
Collapse
|
21
|
TGF-βRII Knock-down in Pancreatic Cancer Cells Promotes Tumor Growth and Gemcitabine Resistance. Importance of STAT3 Phosphorylation on S727. Cancers (Basel) 2018; 10:cancers10080254. [PMID: 30065235 PMCID: PMC6116183 DOI: 10.3390/cancers10080254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 01/05/2023] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is one of the most deadly cancers in the Western world because of a lack of early diagnostic markers and efficient therapeutics. At the time of diagnosis, more than 80% of patients have metastasis or locally advanced cancer and are therefore not eligible for surgical resection. Pancreatic cancer cells also harbour a high resistance to chemotherapeutic drugs such as gemcitabine that is one of the main palliative treatments for PDAC. Proteins involved in TGF-β signaling pathway (SMAD4 or TGF-βRII) are frequently mutated in PDAC (50–80%). TGF-β signalling pathway plays antagonistic roles during carcinogenesis by initially inhibiting epithelial growth and later promoting the progression of advanced tumors and thus emerged as both tumor suppressor and oncogenic pathways. In order to decipher the role of TGF-β in pancreatic carcinogenesis and chemoresistance, we generated CAPAN-1 and CAPAN-2 cell lines knocked down for TGF-βRII (first actor of TGF-β signaling). The impact on biological properties of these TGF-βRII-KD cells was studied both in vitro and in vivo. We show that TGF-βRII silencing alters tumor growth and migration as well as resistance to gemcitabine. TGF-βRII silencing also leads to S727 STAT3 and S63 c-Jun phosphorylation, decrease of MRP3 and increase of MRP4 ABC transporter expression and induction of a partial EMT phenotype. These markers associated with TGF-β signaling pathways may thus appear as potent therapeutic tools to better treat/manage pancreatic cancer.
Collapse
|
22
|
Jiang H, Xu M, Li L, Grierson P, Dodhiawala P, Highkin M, Zhang D, Li Q, Wang-Gillam A, Lim KH. Concurrent HER or PI3K Inhibition Potentiates the Antitumor Effect of the ERK Inhibitor Ulixertinib in Preclinical Pancreatic Cancer Models. Mol Cancer Ther 2018; 17:2144-2155. [PMID: 30065098 DOI: 10.1158/1535-7163.mct-17-1142] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 04/12/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023]
Abstract
Effective treatment for pancreatic ductal adenocarcinoma (PDAC) is an urgent, unmet medical need. Targeting KRAS, the oncogene that is present in >95% of PDAC, is a heavily pursued strategy, but remains unsuccessful in the clinic. Therefore, targeting key effector cascades of KRAS oncoprotein, particularly the mitogenic RAF-MEK-ERK pathway, represents the next best strategy. However, RAF or MEK inhibitors have failed to show clinical efficacy in PDAC. Several studies have shown that cancer cells treated with RAF or MEK inhibitors adopt multiple mechanisms to reactivate ERK signaling. Therefore, development of ERK-specific inhibitors carries the promise to effectively abrogate this pathway. Ulixertinib (or BVD-523) is a first-in-class ERK-specific inhibitor that has demonstrated promising antitumor activity in a phase I clinical trial for advanced solid tumors with NRAS and BRAF mutations, providing a strong rationale to test this inhibitor in PDAC. In this study, we show that ulixertinib effectively inhibits in vitro growth of multiple PDAC lines and potentiates the cytotoxic effect of gemcitabine. Moreover, we found that PDAC cells treated with ulixertinib upregulates the parallel PI3K-AKT pathway through activating the HER/ErbB family proteins. Concurrent inhibition of PI3K or HER proteins synergizes with ulixertinib in suppressing PDAC cell growth in vitro and in vivo Overall, our study provides the preclinical rationale for testing combinations of ulixertinib with chemotherapy or PI3K and HER inhibitors in PDAC patients. Mol Cancer Ther; 17(10); 2144-55. ©2018 AACR.
Collapse
Affiliation(s)
- Hongmei Jiang
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Mai Xu
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Lin Li
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Patrick Grierson
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Paarth Dodhiawala
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Maureen Highkin
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Daoxiang Zhang
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Qiong Li
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri.,Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Andrea Wang-Gillam
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri.
| | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri.
| |
Collapse
|
23
|
Felsenstein M, Hruban RH, Wood LD. New Developments in the Molecular Mechanisms of Pancreatic Tumorigenesis. Adv Anat Pathol 2018; 25:131-142. [PMID: 28914620 DOI: 10.1097/pap.0000000000000172] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pancreatic cancer is an aggressive disease with a dismal prognosis in dire need of novel diagnostic and therapeutic approaches. The past decade has witnessed an explosion of data on the genetic alterations that occur in pancreatic cancer, as comprehensive next-generation sequencing analyses have been performed on samples from large cohorts of patients. These studies have defined the genomic landscape of this disease and identified novel candidates whose mutations contribute to pancreatic tumorigenesis. They have also clarified the genetic alterations that underlie multistep tumorigenesis in precursor lesions and provided insights into clonal evolution in pancreatic neoplasia. In addition to these important insights into pancreatic cancer biology, these large scale genomic studies have also provided a foundation for the development of novel early detection strategies and targeted therapies. In this review, we discuss the results of these comprehensive sequencing studies of pancreatic neoplasms, with a particular focus on how their results will impact the clinical care of patients with pancreatic cancer.
Collapse
|
24
|
Ubezio P, Falcetta F, Carrassa L, Lupi M. Integrated experimental and simulation study of the response to sequential treatment with erlotinib and gemcitabine in pancreatic cancer. Oncotarget 2017; 7:15492-506. [PMID: 26909860 PMCID: PMC4941256 DOI: 10.18632/oncotarget.7491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/29/2016] [Indexed: 12/29/2022] Open
Abstract
The combination of erlotinib with gemcitabine is one of the most promising therapies for advanced pancreatic cancer. Aiming at optimizing this combination, we analyzed in detail the response to sequential treatments with erlotinib → gemcitabine and gemcitabine → erlotinib with an 18 h interval, adopting a previously established experimental/computational approach to quantify the cytostatic and cytotoxic effects at G1, S and G2M checkpoints. This assessment was achieved by contemporary fits of flow cytometric and time-lapse experiments in two human pancreatic cancer cell lines (BxPC-3 and Capan-1) with a mathematical model reproducing the fluxes of cells through the cycle during and after treatment.The S-phase checkpoint contributes in the response to erlotinib, suggesting that the G1 arrest may hamper S-phase cytotoxicity. The response to gemcitabine was driven by the dynamics of the progressive resumption from the S-phase arrest after drug washout. The effects induced by single drugs were used to simulate combined treatments, introducing changes when required. Gemcitabine → erlotinib was more than additive in both cell lines, strengthening the cytostatic effects on cells recovering from the arrest induced by gemcitabine. The interval in the erlotinib → gemcitabine sequence enabled to overcome the antagonist effect of G1 block on gemcitabine efficacy and improved the outcome in Capan-1 cells.
Collapse
Affiliation(s)
- Paolo Ubezio
- Department of Oncology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Francesca Falcetta
- Department of Oncology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Laura Carrassa
- Department of Oncology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Monica Lupi
- Department of Oncology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| |
Collapse
|
25
|
Noorani M, Azarpira N, Karimian K, Heli H. Erlotinib-loaded albumin nanoparticles: A novel injectable form of erlotinib and its in vivo efficacy against pancreatic adenocarcinoma ASPC-1 and PANC-1 cell lines. Int J Pharm 2017; 531:299-305. [DOI: 10.1016/j.ijpharm.2017.08.102] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 02/07/2023]
|
26
|
Wang T, Zhuang Z, Zhang P, Wang Y, Mu L, Jin H, Zhou L, Ma X, Liang R, Yuan Y. Effect of arenobufagin on human pancreatic carcinoma cells. Oncol Lett 2017; 14:4971-4976. [PMID: 29085509 DOI: 10.3892/ol.2017.6798] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 06/15/2017] [Indexed: 12/21/2022] Open
Abstract
Pancreatic carcinoma (PC) is a deadly form of cancer with poor overall survival. Currently, chemotherapy such as gemcitabine and 5-fluorouracil (5-FU) are the most popular medications that can improve survival, but rapid drug-resistance makes the search for more effective drugs urgent. Upon looking for natural components to treat PC, it was found that arenobufagin, a cardiac glycosides-like compound, showed significant effects on the gemcitabine-resistant pancreatic carcinoma cell line Panc-1 and the gemcitabine-sensitive cell line ASPC-1 at nanomolar concentrations. The present study used MTT and clonogenic survival assays to examine survival and proliferation, and western blotting to assess changes in the associated mitogen activated protein kinase and phosphoinositide 3-kinase pathways and expression of apoptosis-related proteins. The current study also detected the cell cycle by flow cytometry. Arenobufagin inhibited cell survival and proliferation, decreased the phosphorylation of key downstream proteins of K-Ras, including protein kinase B and extracellular signal related kinase, induced cell cycle G2/M phase arrest and apoptosis, and downregulated the level of phosphorylated epidermal growth factor receptor. Notably, the present data also showed that arenobufagin can enhance the sensitivity of PC cells to gemcitabine and 5-FU. In conclusion, arenobufagin could enhance the effect of gemcitabine and 5-FU on PC cells by targeting multiple key proteins. Therefore, arenobufagin has potential as anadjuvant therapy for the treatment of PC.
Collapse
Affiliation(s)
- Tianjiao Wang
- General Surgery, The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Zhumei Zhuang
- General Surgery, The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Peng Zhang
- General Surgery, The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yueyue Wang
- General Surgery, The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Lin Mu
- College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Haifeng Jin
- General Surgery, The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Lei Zhou
- General Surgery, The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Xiaochi Ma
- College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Rui Liang
- General Surgery, The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yuhui Yuan
- General Surgery, The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
27
|
Liao X, Huang R, Liu X, Han C, Yu L, Wang S, Sun N, Li B, Ning X, Peng T. Distinct prognostic values of alcohol dehydrogenase mRNA expression in pancreatic adenocarcinoma. Onco Targets Ther 2017; 10:3719-3732. [PMID: 28769575 PMCID: PMC5533474 DOI: 10.2147/ott.s140221] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Alcohol dehydrogenase (ADH) isoenzymes have been reported as a potential diagnostic marker for pancreatic cancer, but their prognostic value in pancreatic cancer remains unclear. The aim of this investigation was to identify the prognostic value of ADH genes in human patients with pancreatic adenocarcinoma (PAAD). Materials and methods An RNA sequencing dataset and corresponding survival profiles of PAAD were obtained from The Cancer Genome Atlas. Survival analysis and gene set enrichment analysis were used to investigate the prediction value and potential mechanism of ADH genes in PAAD prognosis. Results Survival analysis of ADH genes suggests that a high expression of ADH1A (adjusted P=0.037, adjusted hazard ratio [HR] =0.627, 95% CI =0.404–0.972) and ADH6 (adjusted P=0.018, adjusted HR =0.588, 95% CI =0.378–0.914) were associated with a significantly decreased risk of death, while a high expression of ADH5 was associated with a significantly increased risk of death (adjusted P=0.043, adjusted HR =1.564, 95% CI =1.013–2.414). Joint effects analysis of three ADH gene prognostic markers suggests that the prognosis difference for any marker combination was more significant than that for any individual marker. The potential mechanism of ADH1A and ADH6 in PAAD prognosis was that a high expression of ADH1A and ADH6 was involved in the P450 pathway and biological processes, while high ADH5 expression was involved in transforming growth factor β regulation-related pathways and biological processes, Wnt, the cell cycle, ErbB, and mitogen-activated protein kinase signaling pathways. Conclusion Our data suggest that ADH1A, ADH5, and ADH6 expression may be potential prognostic markers of PAAD and in combination have a strong interaction and better predictive value for PAAD prognosis.
Collapse
Affiliation(s)
| | - Rui Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Xiaoguang Liu
- Department of Hepatobiliary Surgery.,Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong
| | | | - Long Yu
- Department of Hepatobiliary Surgery.,Department of Hepatobiliary and Pancreatic Surgery
| | - Shijun Wang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan
| | - Na Sun
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Bopei Li
- Department of Gastrointestinal Surgery
| | - Xin Ning
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tao Peng
- Department of Hepatobiliary Surgery
| |
Collapse
|
28
|
Jin X, Pan Y, Wang L, Ma T, Zhang L, Tang AH, Billadeau DD, Wu H, Huang H. Fructose-1,6-bisphosphatase Inhibits ERK Activation and Bypasses Gemcitabine Resistance in Pancreatic Cancer by Blocking IQGAP1-MAPK Interaction. Cancer Res 2017; 77:4328-4341. [PMID: 28720574 DOI: 10.1158/0008-5472.can-16-3143] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/04/2017] [Accepted: 06/16/2017] [Indexed: 11/16/2022]
Abstract
Dysregulation of the MAPK pathway correlates with progression of pancreatic ductal adenocarcinoma (PDAC) progression. IQ motif containing GTPase-activating protein 1 (IQGAP1) is a MAPK scaffold that directly regulates the activation of RAF, MEK, and ERK. Fructose-1,6-bisphosphatase (FBP1), a key enzyme in gluconeogenesis, is transcriptionally downregulated in various cancers, including PDAC. Here, we demonstrate that FBP1 acts as a negative modulator of the IQGAP1-MAPK signaling axis in PDAC cells. FBP1 binding to the WW domain of IQGAP1 impeded IQGAP1-dependent ERK1/2 phosphorylation (pERK1/2) in a manner independent of FBP1 enzymatic activity. Conversely, decreased FBP1 expression induced pERK1/2 levels in PDAC cell lines and correlated with increased pERK1/2 levels in patient specimens. Treatment with gemcitabine caused undesirable activation of ERK1/2 in PDAC cells, but cotreatment with the FBP1-derived small peptide inhibitor FBP1 E4 overcame gemcitabine-induced ERK activation, thereby increasing the anticancer efficacy of gemcitabine in PDAC. These findings identify a primary mechanism of resistance of PDAC to standard therapy and suggest that the FBP1-IQGAP1-ERK1/2 signaling axis can be targeted for effective treatment of PDAC. Cancer Res; 77(16); 4328-41. ©2017 AACR.
Collapse
Affiliation(s)
- Xin Jin
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Liguo Wang
- Department of Medical Informatics and Statistics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Tao Ma
- Department of Medical Informatics and Statistics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Lizhi Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Amy H Tang
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia.,Leroy T. Canoles Jr. Cancer Center, Eastern Virginia Medical School, Norfork, Virginia
| | - Daniel D Billadeau
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota.,Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota. .,Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
29
|
Li H, Zhou W, Li L, Wu J, Liu X, Zhao L, Jia L, Sun Y. Inhibition of Neddylation Modification Sensitizes Pancreatic Cancer Cells to Gemcitabine. Neoplasia 2017; 19:509-518. [PMID: 28535453 PMCID: PMC5440286 DOI: 10.1016/j.neo.2017.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/07/2017] [Accepted: 04/08/2017] [Indexed: 11/27/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death in the USA with a 5-year survival rate less than 3% to 5%. Gemcitabine remains as a standard care for PDAC patients. Although protein neddylation is abnormally activated in many human cancers, whether neddylation dysregulation is involved in PDAC and whether targeting neddylation would sensitize pancreatic cancer cells to gemcitabine remain elusive. Here we report that high expression of neddylation components, NEDD8 and NAE1, are associated with poor survival of PDAC patients. Blockage of neddylation by MLN4924, a small molecule inhibitor targeting this modification, significantly sensitizes pancreatic cancer cells to gemcitabine, as evidenced by reduced growth both in monolayer culture and soft agar, reduced clonogenic survival, decreased invasion capacity, increased apoptosis, G2/M arrest, and senescence. Importantly, combinational treatment of MLN4924-gemcitabine near completely suppressed in vivo growth of pancreatic cancer cells. Mechanistically, accumulation of NOXA, a pro-apoptotic protein and ERBIN, a RAS signal inhibitor, appears to play, at least in part, a causal role in MLN4924 chemo-sensitization. Our study demonstrates that neddylation modification is a valid target for PDAC, and provides the proof-of-concept evidence for future clinical trial of MLN4924-gemcitabine combination for the treatment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Hua Li
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | - Weihua Zhou
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | - Lihui Li
- Cancer Institute, Fudan University Shanghai Cancer Center, Collaborative Innovation Center of Cancer Medicine, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jianfu Wu
- Cancer Institute, Fudan University Shanghai Cancer Center, Collaborative Innovation Center of Cancer Medicine, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaoli Liu
- Cancer Institute, Fudan University Shanghai Cancer Center, Collaborative Innovation Center of Cancer Medicine, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lili Zhao
- Department of Biostatistics, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | - Lijun Jia
- Oncology Institute of Traditional Chinese Medicine, Shanghai Research Institute of traditional Chinese Medicine, Shanghai 200032, China; Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yi Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.
| |
Collapse
|
30
|
Serum Metabolomic Profiles for Human Pancreatic Cancer Discrimination. Int J Mol Sci 2017; 18:ijms18040767. [PMID: 28375170 PMCID: PMC5412351 DOI: 10.3390/ijms18040767] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 12/15/2022] Open
Abstract
This study evaluated the clinical use of serum metabolomics to discriminate malignant cancers including pancreatic cancer (PC) from malignant diseases, such as biliary tract cancer (BTC), intraductal papillary mucinous carcinoma (IPMC), and various benign pancreaticobiliary diseases. Capillary electrophoresis−mass spectrometry was used to analyze charged metabolites. We repeatedly analyzed serum samples (n = 41) of different storage durations to identify metabolites showing high quantitative reproducibility, and subsequently analyzed all samples (n = 140). Overall, 189 metabolites were quantified and 66 metabolites had a 20% coefficient of variation and, of these, 24 metabolites showed significant differences among control, benign, and malignant groups (p < 0.05; Steel–Dwass test). Four multiple logistic regression models (MLR) were developed and one MLR model clearly discriminated all disease patients from healthy controls with an area under receiver operating characteristic curve (AUC) of 0.970 (95% confidential interval (CI), 0.946–0.994, p < 0.0001). Another model to discriminate PC from BTC and IPMC yielded AUC = 0.831 (95% CI, 0.650–1.01, p = 0.0020) with higher accuracy compared with tumor markers including carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA19-9), pancreatic cancer-associated antigen (DUPAN2) and s-pancreas-1 antigen (SPAN1). Changes in metabolomic profiles might be used to screen for malignant cancers as well as to differentiate between PC and other malignant diseases.
Collapse
|
31
|
Boccellino M, Quagliuolo L, Alaia C, Grimaldi A, Addeo R, Nicoletti GF, Kast RE, Caraglia M. The strange connection between epidermal growth factor receptor tyrosine kinase inhibitors and dapsone: from rash mitigation to the increase in anti-tumor activity. Curr Med Res Opin 2016; 32:1839-1848. [PMID: 27398628 DOI: 10.1080/03007995.2016.1211522] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The presence of an aberrantly activated epidermal growth factor receptor (EGFR) in many epithelial tumors, due to its overexpression, activating mutations, gene amplification and/or overexpression of receptor ligands, represent the fundamental basis underlying the use of EGFR tyrosine kinase inhibitors (EGFR-TKIs). Drugs inhibiting the EGFR have different mechanisms of action; while erlotinib and gefitinib inhibit the intracellular tyrosine kinase, monoclonal antibodies like cetuximab and panitumumab bind the extracellular domain of the EGFR both activating immunomediated anti-cancer effect and inhibiting receptor function. On the other hand, interleukin-8 has tumor promoting as well as neo-angiogenesis enhancing effects and several attempts have been made to inhibit its activity. One of these is based on the use of the old sulfone antibiotic dapsone that has demonstrated several interleukin-8 system inhibiting actions. Erlotinib typically gives a rash that has recently been proven to come out via up-regulated keratinocyte interleukin-8 synthesis with histological features reminiscent of typical neutrophilic dermatoses. In this review, we report experimental evidence that shows the use of dapsone to improve quality of life in erlotinib-treated patients by ameliorating rash as well as short-circuiting a growth-enhancing aspect of erlotinib based on increased interleukin-8 secretion.
Collapse
Affiliation(s)
- Mariarosaria Boccellino
- a Department of Biochemistry, Biophysics and General Pathology , Second University of Naples , Naples , Italy
| | - Lucio Quagliuolo
- a Department of Biochemistry, Biophysics and General Pathology , Second University of Naples , Naples , Italy
| | - Concetta Alaia
- a Department of Biochemistry, Biophysics and General Pathology , Second University of Naples , Naples , Italy
| | - Anna Grimaldi
- a Department of Biochemistry, Biophysics and General Pathology , Second University of Naples , Naples , Italy
| | - Raffaele Addeo
- b Oncology DH ASL Napoli 3 Nord, Frattamaggiore Hospital , Frattamaggiore , Naples , Italy
| | | | | | - Michele Caraglia
- a Department of Biochemistry, Biophysics and General Pathology , Second University of Naples , Naples , Italy
| |
Collapse
|
32
|
Liu X, Pitarresi JR, Cuitiño MC, Kladney RD, Woelke SA, Sizemore GM, Nayak SG, Egriboz O, Schweickert PG, Yu L, Trela S, Schilling DJ, Halloran SK, Li M, Dutta S, Fernandez SA, Rosol TJ, Lesinski GB, Shakya R, Ludwig T, Konieczny SF, Leone G, Wu J, Ostrowski MC. Genetic ablation of Smoothened in pancreatic fibroblasts increases acinar-ductal metaplasia. Genes Dev 2016; 30:1943-55. [PMID: 27633013 PMCID: PMC5066238 DOI: 10.1101/gad.283499.116] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/08/2016] [Indexed: 12/17/2022]
Abstract
Liu et al. show that disruption of paracrine Hedgehog signaling via genetic ablation of Smoothened (Smo) in stromal fibroblasts in a KrasG12D mouse model increased acinar-to-ductal metaplasia (ADM). Smo-deleted fibroblasts had higher expression of transforming growth factor-α (Tgfα) mRNA and secreted higher levels of TGFα, leading to activation of EGFR signaling in acinar cells and increased ADM. The contribution of the microenvironment to pancreatic acinar-to-ductal metaplasia (ADM), a preneoplastic transition in oncogenic Kras-driven pancreatic cancer progression, is currently unclear. Here we show that disruption of paracrine Hedgehog signaling via genetic ablation of Smoothened (Smo) in stromal fibroblasts in a KrasG12D mouse model increased ADM. Smo-deleted fibroblasts had higher expression of transforming growth factor-α (Tgfa) mRNA and secreted higher levels of TGFα, leading to activation of EGFR signaling in acinar cells and increased ADM. The mechanism involved activation of AKT and noncanonical activation of the GLI family transcription factor GLI2. GLI2 was phosphorylated at Ser230 in an AKT-dependent fashion and directly regulated Tgfa expression in fibroblasts lacking Smo. Additionally, Smo-deleted fibroblasts stimulated the growth of KrasG12D/Tp53R172H pancreatic tumor cells in vivo and in vitro. These results define a non-cell-autonomous mechanism modulating KrasG12D-driven ADM that is balanced by cross-talk between Hedgehog/SMO and AKT/GLI2 pathways in stromal fibroblasts.
Collapse
Affiliation(s)
- Xin Liu
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jason R Pitarresi
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Maria C Cuitiño
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Raleigh D Kladney
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Sarah A Woelke
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Gina M Sizemore
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Sunayana G Nayak
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Onur Egriboz
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Patrick G Schweickert
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA; the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA; the Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Lianbo Yu
- Department of Biomedical Informatics' Center for Biostatistics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Stefan Trela
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Daniel J Schilling
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Shannon K Halloran
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Maokun Li
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Shourik Dutta
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Soledad A Fernandez
- Department of Biomedical Informatics' Center for Biostatistics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Thomas J Rosol
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA
| | - Gregory B Lesinski
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Reena Shakya
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Thomas Ludwig
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Stephen F Konieczny
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA; the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA; the Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Gustavo Leone
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jinghai Wu
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Michael C Ostrowski
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
33
|
Gharibi A, Adamian Y, Kelber JA. Cellular and molecular aspects of pancreatic cancer. Acta Histochem 2016; 118:305-16. [PMID: 26868366 PMCID: PMC5654315 DOI: 10.1016/j.acthis.2016.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly malignancy that affects nearly 50,000 patients each year. The overall 5-year survival rate for this malignancy remains the lowest of any cancer at around 7% due to limited diagnostic methods, disease aggressiveness and a lack of targeted therapeutic interventions. This review highlights the successes achieved over the past several decades as well as the significant cellular and molecular hurdles that remain in combatting this deadly disease at a translational level.
Collapse
Affiliation(s)
- A Gharibi
- Developmental Oncogene Laboratory, Department of Biology, California State University Northridge, Northridge, CA 91330, USA
| | - Y Adamian
- Developmental Oncogene Laboratory, Department of Biology, California State University Northridge, Northridge, CA 91330, USA
| | - J A Kelber
- Developmental Oncogene Laboratory, Department of Biology, California State University Northridge, Northridge, CA 91330, USA.
| |
Collapse
|
34
|
Zhou Y, Gong B, Jiang ZL, Zhong S, Liu XC, Dong K, Wu HS, Yang HJ, Zhu SK. Microarray expression profile analysis of long non-coding RNAs in pancreatic ductal adenocarcinoma. Int J Oncol 2016; 48:670-680. [PMID: 26676849 DOI: 10.3892/ijo.2015.3292] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/08/2015] [Indexed: 11/05/2022] Open
Abstract
Long non-coding RNA (lncRNA) is a variety of the human transcriptome that does not code for proteins and plays an important role in the development and progression of multiple solid malignant tumors. However, the roles of lncRNAs in the development of pancreatic ductal adenocarcinoma (PDAC) remain unknown. In this study, we investigated the expression patterns of lncRNAs in three PDAC tumor samples (T) relative to those of matched adjacent non-tumor tissues (N) via a microarray with 30,586 lncRNA probes and 26,109 mRNA probes. The lncRNA microarray revealed 27,279 lncRNAs in PDAC samples, of which 2,331 were significantly upregulated (P<0.05; T/N>2.0) and 1,641 were downregulated (P<0.05; N/T>2.0) compared with matched adjacent non-tumor samples. In addition, 19,995 mRNAs were detected, of which 1,676 were significantly upregulated (P<0.05; T/N>2.0) and 1,981 were downregulated (P<0.05; N/T>2.0). Pathway analysis indicated that 41 pathways corresponded to upregulated transcripts and 25 pathways corresponded to downregulated transcripts (P-value cut-off is 0.05). Gene ontology (GO) analysis showed that the highest enriched GOs targeted by upregulated and downregulated transcripts were tissue homeostasis. The validation results from quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis and microarray analysis were consistent. Furthermore, the expression level of long intergenic non-coding RNA HOTAIRM1 was upregulated in 12 PDAC tissues samples compared with matched adjacent non-tumor samples by qRT-PCR. The results showed that the lncRNA and mRNA expression profiles differed significantly between the PDAC tissues and their adjacent non-tumor tissues, and the revelation of an association between HOTAIRM1 expression and PDAC is especially noteworthy. These findings may provide new potential molecular markers for diagnosis and treatment of PDAC.
Collapse
Affiliation(s)
- Yu Zhou
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Institute of Laboratory Medicine, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Bo Gong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Institute of Laboratory Medicine, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Zhi-Lin Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Institute of Laboratory Medicine, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Shan Zhong
- Organ Transplant Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Xing-Chao Liu
- Organ Transplant Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Ke Dong
- Organ Transplant Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - He-Shui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hong-Ji Yang
- Organ Transplant Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Shi-Kai Zhu
- Organ Transplant Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
35
|
Nagathihalli NS, Castellanos JA, Shi C, Beesetty Y, Reyzer ML, Caprioli R, Chen X, Walsh AJ, Skala MC, Moses HL, Merchant NB. Signal Transducer and Activator of Transcription 3, Mediated Remodeling of the Tumor Microenvironment Results in Enhanced Tumor Drug Delivery in a Mouse Model of Pancreatic Cancer. Gastroenterology 2015; 149:1932-1943.e9. [PMID: 26255562 PMCID: PMC4863449 DOI: 10.1053/j.gastro.2015.07.058] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 07/01/2015] [Accepted: 07/30/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS A hallmark of pancreatic ductal adenocarcinoma (PDAC) is the presence of a dense desmoplastic reaction (stroma) that impedes drug delivery to the tumor. Attempts to deplete the tumor stroma have resulted in formation of more aggressive tumors. We have identified signal transducer and activator of transcription (STAT) 3 as a biomarker of resistance to cytotoxic and molecularly targeted therapy in PDAC. The purpose of this study is to investigate the effects of targeting STAT3 on the PDAC stroma and on therapeutic resistance. METHODS Activated STAT3 protein expression was determined in human pancreatic tissues and tumor cell lines. In vivo effects of AZD1480, a JAK/STAT3 inhibitor, gemcitabine or the combination were determined in Ptf1a(cre/+);LSL-Kras(G12D/+);Tgfbr2(flox/flox) (PKT) mice and in orthotopic tumor xenografts. Drug delivery was analyzed by matrix-assisted laser desorption/ionization imaging mass spectrometry. Collagen second harmonic generation imaging quantified tumor collagen alignment and density. RESULTS STAT3 activation correlates with decreased survival and advanced tumor stage in patients with PDAC. STAT3 inhibition combined with gemcitabine significantly inhibits tumor growth in both an orthotopic and the PKT mouse model of PDAC. This combined therapy attenuates in vivo expression of SPARC, increases microvessel density, and enhances drug delivery to the tumor without depletion of stromal collagen or hyaluronan. Instead, the PDAC tumors demonstrate vascular normalization, remodeling of the tumor stroma, and down-regulation of cytidine deaminase. CONCLUSIONS Targeted inhibition of STAT3 combined with gemcitabine enhances in vivo drug delivery and therapeutic response in PDAC. These effects occur through tumor stromal remodeling and down-regulation of cytidine deaminase without depletion of tumor stromal content.
Collapse
Affiliation(s)
- Nagaraj S. Nagathihalli
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Jason A. Castellanos
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Chanjuan Shi
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Yugandhar Beesetty
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Michelle L. Reyzer
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Richard Caprioli
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Xi Chen
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Alex J. Walsh
- Department of Biomedical Engineering, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Melissa C. Skala
- Department of Biomedical Engineering, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Harold L. Moses
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Nipun B. Merchant
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Florida
| |
Collapse
|
36
|
Gopinathan A, Morton JP, Jodrell DI, Sansom OJ. GEMMs as preclinical models for testing pancreatic cancer therapies. Dis Model Mech 2015; 8:1185-200. [PMID: 26438692 PMCID: PMC4610236 DOI: 10.1242/dmm.021055] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is the most common form of pancreatic tumour, with a very limited survival rate and currently no available disease-modifying treatments. Despite recent advances in the production of genetically engineered mouse models (GEMMs), the development of new therapies for pancreatic cancer is still hampered by a lack of reliable and predictive preclinical animal models for this disease. Preclinical models are vitally important for assessing therapies in the first stages of the drug development pipeline, prior to their transition to the clinical arena. GEMMs carry mutations in genes that are associated with specific human diseases and they can thus accurately mimic the genetic, phenotypic and physiological aspects of human pathologies. Here, we discuss different GEMMs of human pancreatic cancer, with a focus on the Lox-Stop-Lox (LSL)-Kras(G12D); LSL-Trp53(R172H); Pdx1-cre (KPC) model, one of the most widely used preclinical models for this disease. We describe its application in preclinical research, highlighting its advantages and disadvantages, its potential for predicting clinical outcomes in humans and the factors that can affect such outcomes, and, finally, future developments that could advance the discovery of new therapies for pancreatic cancer.
Collapse
Affiliation(s)
- Aarthi Gopinathan
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | | | - Duncan I Jodrell
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| |
Collapse
|
37
|
Mohammed A, Janakiram NB, Pant S, Rao CV. Molecular Targeted Intervention for Pancreatic Cancer. Cancers (Basel) 2015; 7:1499-542. [PMID: 26266422 PMCID: PMC4586783 DOI: 10.3390/cancers7030850] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/24/2015] [Accepted: 08/04/2015] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) remains one of the worst cancers, with almost uniform lethality. PC risk is associated with westernized diet, tobacco, alcohol, obesity, chronic pancreatitis, and family history of pancreatic cancer. New targeted agents and the use of various therapeutic combinations have yet to provide adequate treatments for patients with advanced cancer. To design better preventive and/or treatment strategies against PC, knowledge of PC pathogenesis at the molecular level is vital. With the advent of genetically modified animals, significant advances have been made in understanding the molecular biology and pathogenesis of PC. Currently, several clinical trials and preclinical evaluations are underway to investigate novel agents that target signaling defects in PC. An important consideration in evaluating novel drugs is determining whether an agent can reach the target in concentrations effective to treat the disease. Recently, we have reported evidence for chemoprevention of PC. Here, we provide a comprehensive review of current updates on molecularly targeted interventions, as well as dietary, phytochemical, immunoregulatory, and microenvironment-based approaches for the development of novel therapeutic and preventive regimens. Special attention is given to prevention and treatment in preclinical genetically engineered mouse studies and human clinical studies.
Collapse
Affiliation(s)
- Altaf Mohammed
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Naveena B Janakiram
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Shubham Pant
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
38
|
Amiloride sensitizes human pancreatic cancer cells to erlotinib in vitro through inhibition of the PI3K/AKT signaling pathway. Acta Pharmacol Sin 2015; 36:614-26. [PMID: 25864651 DOI: 10.1038/aps.2015.4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 01/08/2015] [Indexed: 01/05/2023]
Abstract
AIM Blockade of EGFR by EGFR tyrosine kinase inhibitors such as erlotinib is insufficient for effective treatment of human pancreatic cancer due to independent activation of the Akt pathway, while amiloride, a potassium-sparing diuretic, has been found as a potential Akt inhibitor. The aim of this study was to investigate the anticancer effects of combined amiloride with erlotinib against human pancreatic cancer cells in vitro. METHODS Cell proliferation, colony formation, cell cycle and apoptosis were analyzed in 4 human pancreatic cancer cell lines Bxpc-3, PANC-1, Aspc-1 and CFPAC-1 treated with erlotinib or amiloride alone, or in their combination. The synergistic analysis for the effects of combinations of amiloride and erlotinib was performed using Chou-Talalay's combination index isobolographic method. RESULTS Amiloride (10, 30, and 100 μmol/L) concentration-dependently potentiated erlotinib-induced inhibition of cell proliferation and colony formation in the 4 pancreatic cancer cell lines. Isobolographic analysis confirmed that combinations of amiloride and erlotinib produced synergistic cytotoxic effects. Amiloride significantly potentiated erlotinib-induced G0/G1 cell-cycle arrest and apoptosis in Bxpc-3 and PANC-1 cells. Amiloride inhibited EGF-stimulated phorsphorylation of AKT, and significantly enhanced erlotinib-induced downregulation of phorsphorylation of EGFR, AKT, PI3K P85 and GSK 3β in Bxpc-3 and PANC-1 cells. CONCLUSION Amiloride sensitizes human pancreatic cancer cells to erlotinib in vitro through inhibition of the PI3K/AKT signaling pathway. Treatment of pancreatic cancer patients with combination of erlotinib and amiloride merits further investigation.
Collapse
|
39
|
Kadera BE, Toste PA, Wu N, Li L, Nguyen AH, Dawson DW, Donahue TR. Low expression of the E3 ubiquitin ligase CBL confers chemoresistance in human pancreatic cancer and is targeted by epidermal growth factor receptor inhibition. Clin Cancer Res 2015; 21:157-65. [PMID: 25348515 PMCID: PMC4286535 DOI: 10.1158/1078-0432.ccr-14-0610] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE Expression of CBL, an ubiquitin ligase, is decreased in 60% of human pancreatic ductal adenocarcinomas (PDAC) and is associated with shorter overall survival. We sought to determine how low CBL directly contributes to clinically more aggressive PDAC. EXPERIMENTAL DESIGN Human PDACs were stained for CBL, pEGFR, and EGFR. CBL-low was modeled in PDAC cells (Panc-1, L3.6pl, and AsPC-1) via transient transfection (siRNA) or stable knockdown (shRNA). Cell viability and apoptosis were measured by MTT assays and FACS. Immunoblot and a phospho-receptor tyrosine kinase (pRTK) array were used to probe signal transduction. NOD-scid-IL2Rγ(null) mice were subcutaneously implanted with PDAC or PDAC(CBL-low) cells on opposite flanks and treated with gemcitabine ± erlotinib for ≥4 weeks. RESULTS There was an inverse correlation between CBL and pEGFR protein expression in 12 of 15 tumors. CBL knockdown increased PDAC resistance to gemcitabine and 5-fluorouracil (5-FU) by upregulating pEGFR (Y1068), pERK, and pAKT. A pRTK array of PDAC(CBL-low) cells revealed additional activated tyrosine kinases but all to a much lower magnitude than EGFR. Increased chemoresistance from low CBL was abrogated by the EGFR inhibitor erlotinib both in vitro and in vivo. Erlotinib+gemcitabine-treated PDAC(CBL-low) cells exhibited greater apoptosis by cleaved PARP, caspase-3, and Annexin V/PI. CONCLUSIONS Low CBL causes chemoresistance in PDAC via stress-induced EGFR activation that can be effectively abrogated by EGFR inhibition. These results suggest that dysregulation of ubiquitination is a key mechanism of EGFR hyperactivation in PDAC and that low CBL may define PDAC tumors likely to respond to erlotinib treatment.
Collapse
Affiliation(s)
- Brian E Kadera
- Department of Surgery, Division of General Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Paul A Toste
- Department of Surgery, Division of General Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Nanping Wu
- Department of Surgery, Division of General Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Luyi Li
- Department of Surgery, Division of General Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Andrew H Nguyen
- Department of Surgery, Division of General Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - David W Dawson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California. Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Timothy R Donahue
- Department of Surgery, Division of General Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California. Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California. Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.
| |
Collapse
|
40
|
Pan Y, Zheng M, Zhong L, Yang J, Zhou S, Qin Y, Xiang R, Chen Y, Yang SY. A Preclinical Evaluation of SKLB261, a Multikinase Inhibitor of EGFR/Src/VEGFR2, as a Therapeutic Agent against Pancreatic Cancer. Mol Cancer Ther 2014; 14:407-18. [PMID: 25519702 DOI: 10.1158/1535-7163.mct-14-0485] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Youli Pan
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Mingwu Zheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Lei Zhong
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Jiao Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Shu Zhou
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Ya Qin
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Rong Xiang
- Department of Clinical Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Yuzong Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore, Singapore
| | - Sheng-Yong Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
41
|
Joshi AD, Catravas JD. Commentary: CHIPping away pancreatic tumors? ANNALS OF TRANSLATIONAL MEDICINE 2014; 2:105. [PMID: 25489579 DOI: 10.3978/j.issn.2305-5839.2014.11.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/10/2014] [Indexed: 11/14/2022]
Affiliation(s)
- Atul D Joshi
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - John D Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| |
Collapse
|
42
|
Ali S, Ahmad A, Aboukameel A, Ahmed A, Bao B, Banerjee S, Philip PA, Sarkar FH. Deregulation of miR-146a expression in a mouse model of pancreatic cancer affecting EGFR signaling. Cancer Lett 2014; 351:134-42. [PMID: 24839931 DOI: 10.1016/j.canlet.2014.05.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 04/09/2014] [Accepted: 05/11/2014] [Indexed: 01/20/2023]
Abstract
Aberrant expression of microRNAs (miRNAs) plays important roles in the development and progression of pancreatic cancer (PC). Expression analysis of miR-146a in human PC tissues showed decreased expression in about 80% of samples compared to corresponding non-cancerous tissue. Moreover, expression of miR-146a in eight PC cell lines, and in pancreatic tissues obtained from transgenic mouse models of K-Ras (K), Pdx1-Cre (C), K-Ras;Pdx1-Cre (KC) and K-Ras;Pdx1-Cre;INK4a/Arf (KCI), showed down-regulation of miR-146a expression in KCI mice which was in part led to over-expression of its target gene, epidermal growth factor receptor (EGFR). Treatment of PC cells with CDF, a novel synthetic compound, led to re-expression of miR-146a, resulting in the down-regulation of EGFR expression. Moreover, re-expression of miR-146a by stable transfection or treatment with CDF in vivo (xenograft animal model) resulted in decreased tumor growth which was consistent with reduced EGFR, ERK1, ERK2, and K-Ras expression. Further knock-down of miR-146a in AsPC-1 cells led to the up-regulation of EGFR expression and showed increased clonogenic growth. In addition, knock-down of EGFR by EGFR siRNA transfection of parental AsPC-1 cells and AsPC-1 cells stably transfected with pre-miR-146a resulted in decreased invasive capacity, which was further confirmed by reduced luciferase activity in cells transfected with pMIR-Luc reporter vector containing miR-146a binding site. Collectively, these results suggest that the loss of expression of miR-146a is a fundamental mechanism for over-expression of EGFR signaling and that re-expression of miR-146a by CDF treatment could be useful in designing personalized strategy for the treatment of human PC.
Collapse
Affiliation(s)
- Shadan Ali
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Aamir Ahmad
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Amro Aboukameel
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Alia Ahmed
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Bin Bao
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Sanjeev Banerjee
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Philip A Philip
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Fazlul H Sarkar
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States; Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States.
| |
Collapse
|
43
|
Luan Z, He Y, Alattar M, Chen Z, He F. Targeting the prohibitin scaffold-CRAF kinase interaction in RAS-ERK-driven pancreatic ductal adenocarcinoma. Mol Cancer 2014; 13:38. [PMID: 24568222 PMCID: PMC3938031 DOI: 10.1186/1476-4598-13-38] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 02/19/2014] [Indexed: 12/19/2022] Open
Abstract
Background Robust ERK1/2 activity, which frequently results from KRAS mutation, invariably occurs in pancreatic ductal adenocarcinoma (PDAC). However, direct interference of KRAS signaling has not led to clinically successful drugs. Correct localization of RAF is regulated by the scaffold protein prohibitin (PHB) that ensures the spatial organization between RAS and RAF in plasma membranes, thus leading to activation of downstream effectors. Methods PHB expression was analyzed in human pancreatic cancer cell lines, normal pancreas, and PDAC tissue. Furthermore, genetic ablation or pharmacological inhibition of PHB was performed to determine its role in growth, migration, and signaling of pancreatic cancer cells in vitro and in vivo. Results The level of PHB expression was crucial for maintenance of oncogenic ERK-driven pancreatic tumorigenesis. Additionally, rocaglamide (RocA), a small molecular inhibitor, selectively bound to PHB with nanomolar affinity to disrupt the PHB-CRAF interaction by altering its localization to the plasma membrane. Consequently, there was an impairment of oncogenic RAS-ERK signaling, thereby blocking in vitro and in vivo growth and metastasis of pancreatic cancer cells that were addicted to RAS-ERK signaling. More importantly, RocA treatment resulted in a significant increase of the lifespan of tumor-bearing mice without any detectable toxicity. Conclusions Blockade of the PHB scaffold-CRAF kinase interaction, which is distinct from direct kinase inhibition, may be a new therapeutic strategy to target oncogenic ERK-driven pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | | |
Collapse
|