1
|
Scepanovic G, Balaghi N, Rothenberg KE, Fernandez-Gonzalez R. mTor limits autophagy to facilitate cell volume expansion and rapid wound repair in Drosophila embryos. Dev Cell 2025:S1534-5807(24)00778-0. [PMID: 39824179 DOI: 10.1016/j.devcel.2024.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 07/16/2024] [Accepted: 12/23/2024] [Indexed: 01/20/2025]
Abstract
Embryonic wounds repair rapidly, with no inflammation or scarring. Embryonic wound healing is driven by collective cell movements facilitated by the increase in the volume of the cells adjacent to the wound. The mechanistic target of rapamycin (mTor) complex 1 (TORC1) is associated with cell growth. We found that disrupting TORC1 signaling in Drosophila embryos prevented cell volume increases and slowed down wound repair. Catabolic processes, such as autophagy, can inhibit cell growth. Five-dimensional microscopy demonstrated that the number of autophagosomes decreased during wound repair, suggesting that autophagy must be tightly regulated for rapid wound healing. mTor inhibition increased autophagy, and activating autophagy prevented cell volume expansion and slowed down wound closure. Finally, reducing autophagy in embryos with disrupted TORC1 signaling rescued cell volume changes and rapid wound repair. Together, our results show that TORC1 activation upon wounding negatively regulates autophagy, allowing cells to increase their volumes to facilitate rapid wound healing.
Collapse
Affiliation(s)
- Gordana Scepanovic
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Negar Balaghi
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Katheryn E Rothenberg
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Rodrigo Fernandez-Gonzalez
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
2
|
Steiner I, Flores-Tellez TDNJ, Mevel R, Ali A, Wang P, Schofield P, Behan C, Forsythe N, Ashton G, Taylor C, Mills IG, Oliveira P, McDade SS, Zaiss DM, Choudhury A, Lacaud G, Baena E. Autocrine activation of MAPK signaling mediates intrinsic tolerance to androgen deprivation in LY6D prostate cancer cells. Cell Rep 2023; 42:112377. [PMID: 37060563 DOI: 10.1016/j.celrep.2023.112377] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/12/2022] [Accepted: 03/23/2023] [Indexed: 04/16/2023] Open
Abstract
The emergence of castration-resistant prostate cancer remains an area of unmet clinical need. We recently identified a subpopulation of normal prostate progenitor cells, characterized by an intrinsic resistance to androgen deprivation and expression of LY6D. We here demonstrate that conditional deletion of PTEN in the murine prostate epithelium causes an expansion of transformed LY6D+ progenitor cells without impairing stem cell properties. Transcriptomic analyses of LY6D+ luminal cells identified an autocrine positive feedback loop, based on the secretion of amphiregulin (AREG)-mediated activation of mitogen-activated protein kinase (MAPK) signaling, increasing cellular fitness and organoid formation. Pharmacological interference with this pathway overcomes the castration-resistant properties of LY6D+ cells with a suppression of organoid formation and loss of LY6D+ cells in vivo. Notably, LY6D+ tumor cells are enriched in high-grade and androgen-resistant prostate cancer, providing clinical evidence for their contribution to advanced disease. Our data indicate that early interference with MAPK inhibitors can prevent progression of castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Ivana Steiner
- Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Teresita Del N J Flores-Tellez
- Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Renaud Mevel
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Amin Ali
- Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Pengbo Wang
- Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Pieta Schofield
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Caron Behan
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Nicholas Forsythe
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7BL Northern Ireland, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Garry Ashton
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Catherine Taylor
- The Christie NHS Foundation Trust, Manchester Academic Health Sciences Centre, M20 4BX Manchester, UK
| | - Ian G Mills
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7BL Northern Ireland, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK; Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, OX3 9DU Oxford, UK; Department of Clinical Sciences and Centre for Cancer Biomarkers, University of Bergen, 7804 Bergen, Norway
| | - Pedro Oliveira
- Department of Pathology, The Christie NHS Foundation Trust, M20 4BX Manchester, UK
| | - Simon S McDade
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7BL Northern Ireland, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Dietmar M Zaiss
- Department of Immune Medicine, University Regensburg, Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, and Leibniz Institute for Immunotherapy (LIT), 93053 Regensburg, Germany
| | - Ananya Choudhury
- The Christie NHS Foundation Trust, Manchester Academic Health Sciences Centre, M20 4BX Manchester, UK; The University of Manchester, Manchester Cancer Research Centre, M20 4BX Manchester, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Georges Lacaud
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Esther Baena
- Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK.
| |
Collapse
|
3
|
Chatterjee N, Pazarentzos E, Mayekar MK, Gui P, Allegakoen DV, Hrustanovic G, Olivas V, Lin L, Verschueren E, Johnson JR, Hofree M, Yan JJ, Newton BW, Dollen JV, Earnshaw CH, Flanagan J, Chan E, Asthana S, Ideker T, Wu W, Suzuki J, Barad BA, Kirichok Y, Fraser JS, Weiss WA, Krogan NJ, Tulpule A, Sabnis AJ, Bivona TG. Synthetic Essentiality of Metabolic Regulator PDHK1 in PTEN-Deficient Cells and Cancers. Cell Rep 2019; 28:2317-2330.e8. [PMID: 31461649 PMCID: PMC6728083 DOI: 10.1016/j.celrep.2019.07.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 06/19/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor and bi-functional lipid and protein phosphatase. We report that the metabolic regulator pyruvate dehydrogenase kinase1 (PDHK1) is a synthetic-essential gene in PTEN-deficient cancer and normal cells. The PTEN protein phosphatase dephosphorylates nuclear factor κB (NF-κB)-activating protein (NKAP) and limits NFκB activation to suppress expression of PDHK1, a NF-κB target gene. Loss of the PTEN protein phosphatase upregulates PDHK1 to induce aerobic glycolysis and PDHK1 cellular dependence. PTEN-deficient human tumors harbor increased PDHK1, a biomarker of decreased patient survival. This study uncovers a PTEN-regulated signaling pathway and reveals PDHK1 as a potential target in PTEN-deficient cancers.
Collapse
Affiliation(s)
- Nilanjana Chatterjee
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Evangelos Pazarentzos
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Manasi K Mayekar
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Philippe Gui
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David V Allegakoen
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gorjan Hrustanovic
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Victor Olivas
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Luping Lin
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Erik Verschueren
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA
| | - Jeffrey R Johnson
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA
| | - Matan Hofree
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Jenny J Yan
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Billy W Newton
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA
| | - John V Dollen
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA
| | - Charles H Earnshaw
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jennifer Flanagan
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Elton Chan
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Saurabh Asthana
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Trey Ideker
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Junji Suzuki
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Benjamin A Barad
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuriy Kirichok
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - William A Weiss
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nevan J Krogan
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA
| | - Asmin Tulpule
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Amit J Sabnis
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA.
| |
Collapse
|
4
|
Hu Q, Li C, Wang S, Li Y, Wen B, Zhang Y, Liang K, Yao J, Ye Y, Hsiao H, Nguyen TK, Park PK, Egranov SD, Hawke DH, Marks JR, Han L, Hung MC, Zhang B, Lin C, Yang L. LncRNAs-directed PTEN enzymatic switch governs epithelial-mesenchymal transition. Cell Res 2019; 29:286-304. [PMID: 30631154 PMCID: PMC6461864 DOI: 10.1038/s41422-018-0134-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023] Open
Abstract
Despite the structural conservation of PTEN with dual-specificity phosphatases, there have been no reports regarding the regulatory mechanisms that underlie this potential dual-phosphatase activity. Here, we report that K27-linked polyubiquitination of PTEN at lysines 66 and 80 switches its phosphoinositide/protein tyrosine phosphatase activity to protein serine/threonine phosphatase activity. Mechanistically, high glucose, TGF-β, CTGF, SHH, and IL-6 induce the expression of a long non-coding RNA, GAEA (Glucose Aroused for EMT Activation), which associates with an RNA-binding E3 ligase, MEX3C, and enhances its enzymatic activity, leading to the K27-linked polyubiquitination of PTEN. The MEX3C-catalyzed PTENK27-polyUb activates its protein serine/threonine phosphatase activity and inhibits its phosphatidylinositol/protein tyrosine phosphatase activity. With this altered enzymatic activity, PTENK27-polyUb dephosphorylates the phosphoserine/threonine residues of TWIST1, SNAI1, and YAP1, leading to accumulation of these master regulators of EMT. Animals with genetic inhibition of PTENK27-polyUb, by a single nucleotide mutation generated using CRISPR/Cas9 (PtenK80R/K80R), exhibit inhibition of EMT markers during mammary gland morphogenesis in pregnancy/lactation and during cutaneous wound healing processes. Our findings illustrate an unexpected paradigm in which the lncRNA-dependent switch in PTEN protein serine/threonine phosphatase activity is important for physiological homeostasis and disease development.
Collapse
Affiliation(s)
- Qingsong Hu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chunlai Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shouyu Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Yajuan Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bo Wen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yanyan Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Institute of Immunology, Third Military Medical University, 400038, Chongqing, China
| | - Ke Liang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGroven Medical School, Houston, TX, 77030, USA
| | - Heidi Hsiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tina K Nguyen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Peter K Park
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sergey D Egranov
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David H Hawke
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jeffrey R Marks
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGroven Medical School, Houston, TX, 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Program in Cancer Biology, Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bing Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Program in Cancer Biology, Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Program in Cancer Biology, Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Asrani K, Sood A, Torres A, Georgess D, Phatak P, Kaur H, Dubin A, Talbot CC, Elhelu L, Ewald AJ, Xiao B, Worley P, Lotan TL. mTORC1 loss impairs epidermal adhesion via TGF-β/Rho kinase activation. J Clin Invest 2017; 127:4001-4017. [PMID: 28945203 DOI: 10.1172/jci92893] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/02/2017] [Indexed: 12/14/2022] Open
Abstract
Despite its central position in oncogenic intracellular signaling networks, the role of mTORC1 in epithelial development has not been studied extensively in vivo. Here, we have used the epidermis as a model system to elucidate the cellular effects and signaling feedback sequelae of mTORC1 loss of function in epithelial tissue. In mice with conditional epidermal loss of the mTORC1 components Rheb or Rptor, mTORC1 loss of function unexpectedly resulted in a profound skin barrier defect with epidermal abrasions, blistering, and early postnatal lethality, due to a thinned epidermis with decreased desmosomal protein expression and incomplete biochemical differentiation. In mice with mTORC1 loss of function, we found that Rho kinase (ROCK) signaling was constitutively activated, resulting in increased cytoskeletal tension and impaired cell-cell adhesion. Inhibition or silencing of ROCK1 was sufficient to rescue keratinocyte adhesion and biochemical differentiation in these mice. mTORC1 loss of function also resulted in marked feedback upregulation of upstream TGF-β signaling, triggering ROCK activity and its downstream effects on desmosomal gene expression. These findings elucidate a role for mTORC1 in the regulation of epithelial barrier formation, cytoskeletal tension, and cell adhesion, underscoring the complexity of signaling feedback following mTORC1 inhibition.
Collapse
Affiliation(s)
| | | | | | - Dan Georgess
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pornima Phatak
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | | | | | | | | | - Andrew J Ewald
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Oncology, and
| | - Bo Xiao
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Paul Worley
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tamara L Lotan
- Department of Pathology and.,Department of Oncology, and
| |
Collapse
|
6
|
Pappas K, Xu J, Zairis S, Resnick-Silverman L, Abate F, Steinbach N, Ozturk S, Saal LH, Su T, Cheung P, Schmidt H, Aaronson S, Hibshoosh H, Manfredi J, Rabadan R, Parsons R. p53 Maintains Baseline Expression of Multiple Tumor Suppressor Genes. Mol Cancer Res 2017; 15:1051-1062. [PMID: 28483946 DOI: 10.1158/1541-7786.mcr-17-0089] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/21/2017] [Accepted: 05/02/2017] [Indexed: 02/07/2023]
Abstract
TP53 is the most commonly mutated tumor suppressor gene and its mutation drives tumorigenesis. Using ChIP-seq for p53 in the absence of acute cell stress, we found that wild-type but not mutant p53 binds and activates numerous tumor suppressor genes, including PTEN, STK11(LKB1), miR-34a, KDM6A(UTX), FOXO1, PHLDA3, and TNFRSF10B through consensus binding sites in enhancers and promoters. Depletion of p53 reduced expression of these target genes, and analysis across 18 tumor types showed that mutation of TP53 associated with reduced expression of many of these genes. Regarding PTEN, p53 activated expression of a luciferase reporter gene containing the p53-consensus site in the PTEN enhancer, and homozygous deletion of this region in cells decreased PTEN expression and increased growth and transformation. These findings show that p53 maintains expression of a team of tumor suppressor genes that may together with the stress-induced targets mediate the ability of p53 to suppress cancer development. p53 mutations selected during tumor initiation and progression, thus, inactivate multiple tumor suppressor genes in parallel, which could account for the high frequency of p53 mutations in cancer.Implications: In this study, we investigate the activities of p53 under normal low-stress conditions and discover that p53 is capable of maintaining the expression of a group of important tumor suppressor genes at baseline, many of which are haploinsufficient, which could contribute to p53-mediated tumor suppression. Mol Cancer Res; 15(8); 1051-62. ©2017 AACR.
Collapse
Affiliation(s)
- Kyrie Pappas
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Pharmacology, Columbia University Medical Center, New York, New York
| | - Jia Xu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sakellarios Zairis
- Department of Systems Biology, Columbia University Medical Center, New York, New York
| | - Lois Resnick-Silverman
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Francesco Abate
- Department of Systems Biology, Columbia University Medical Center, New York, New York.,Department of Biomedical Informatics, Columbia University Medical Center, New York, New York
| | - Nicole Steinbach
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Arts and Sciences, Columbia University Medical Center, New York, New York
| | - Sait Ozturk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lao H Saal
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden.,Lund University Cancer Center, Lund, Sweden.,CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden
| | - Tao Su
- Department of Pathology, Columbia University Medical Center, New York, New York
| | - Pamela Cheung
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hank Schmidt
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Dubin Breast Center, The Mount Sinai Hospital, New York, New York.,Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Stuart Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hanina Hibshoosh
- Department of Pathology, Columbia University Medical Center, New York, New York
| | - James Manfredi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Raul Rabadan
- Department of Systems Biology, Columbia University Medical Center, New York, New York.,Department of Biomedical Informatics, Columbia University Medical Center, New York, New York
| | - Ramon Parsons
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York. .,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
7
|
Lu Z, Wang J, Zheng Y, Yang S, Liu M, Chen X, Wang C, Hou G. Wild-type phosphatase and tensin homolog deleted on chromosome 10 improved the sensitivity of cells to rapamycin through regulating phosphorylation of Akt in esophageal squamous cell carcinoma. Dis Esophagus 2017; 30:1-8. [PMID: 26725440 DOI: 10.1111/dote.12448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most frequently diagnosed cancers in China, but the etiology and mode of carcinogenesis of this disease remain poorly understood. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN), as a negative regulator of Akt/mTOR pathway, frequently mutates or is inactive in many cancers. Although mTOR has been thought a promising cancer therapeutic target, the sensitivity of tumor cells to rapamycin was still to be revaluated. In this study, we measured the effects of rapamycin on cell proliferation and phosphorylation of Akt in ESCC cells with varying degrees of differentiation. And then, the relationship between PTEN status and the sensitivity of cells to rapamycin was investigated in EC9706 cells with or without wild-type PTEN in vitro and in vivo. The results demonstrated ESCC cells with poor differentiation were insensitive to rapamycin of high concentration and rapamycin obviously promoted the phosphorylation of Akt in these cells, but it had no obvious effects on p-Akt in cells with well differentiation. Also, we showed that wild-type PTEN improved the sensitivity of poor differentiation cells to rapamycin through inhibiting phosphorylation of Akt in vitro and in vivo. This study explored the possible molecular mechanism of some ESCC cells insensitive to rapamycin and provided a measure for treating ESCC patients with PTEN inactivation using mTOR inhibitors.
Collapse
Affiliation(s)
- Z Lu
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Zhengzhou University, China
| | - J Wang
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Zhengzhou University, China
| | - Y Zheng
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Zhengzhou University, China
| | - S Yang
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Zhengzhou University, China
| | - M Liu
- Oncology Department, People's Hospital of Henan Province, China
| | - X Chen
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Zhengzhou University, China
| | - C Wang
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Zhengzhou University, China.,New Drug Research and Development Centre of Zhengzhou University, Zhengzhou, China
| | - G Hou
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Zhengzhou University, China.,New Drug Research and Development Centre of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Cuyàs E, Martin-Castillo B, Corominas-Faja B, Massaguer A, Bosch-Barrera J, Menendez JA. Anti-protozoal and anti-bacterial antibiotics that inhibit protein synthesis kill cancer subtypes enriched for stem cell-like properties. Cell Cycle 2016; 14:3527-32. [PMID: 25970790 PMCID: PMC4825717 DOI: 10.1080/15384101.2015.1044173] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Key players in translational regulation such as ribosomes might represent powerful, but hitherto largely unexplored, targets to eliminate drug-refractory cancer stem cells (CSCs). A recent study by the Lisanti group has documented how puromycin, an old antibiotic derived from Streptomyces alboniger that inhibits ribosomal protein translation, can efficiently suppress CSC states in tumorspheres and monolayer cultures. We have used a closely related approach based on Biolog Phenotype Microarrays (PM), which contain tens of lyophilized antimicrobial drugs, to assess the chemosensitivity profiles of breast cancer cell lines enriched for stem cell-like properties. Antibiotics directly targeting active sites of the ribosome including emetine, puromycin and cycloheximide, inhibitors of ribosome biogenesis such as dactinomycin, ribotoxic stress agents such as daunorubicin, and indirect inhibitors of protein synthesis such as acriflavine, had the largest cytotoxic impact against claudin-low and basal-like breast cancer cells. Thus, biologically aggressive, treatment-resistant breast cancer subtypes enriched for stem cell-like properties exhibit exacerbated chemosensitivities to anti-protozoal and anti-bacterial antibiotics targeting protein synthesis. These results suggest that old/existing microbicides might be repurposed not only as new cancer therapeutics, but also might provide the tools and molecular understanding needed to develop second-generation inhibitors of ribosomal translation to eradicate CSC traits in tumor tissues.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- a Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology (ICO) ; Girona; Catalonia , Spain.,b Girona Biomedical Research Institute (IDIBGI) ; Girona, Catalonia , Spain
| | - Begoña Martin-Castillo
- b Girona Biomedical Research Institute (IDIBGI) ; Girona, Catalonia , Spain.,c Unit of Clinical Research ; Catalan Institute of Oncology (ICO) ; Girona, Catalonia , Spain
| | - Bruna Corominas-Faja
- a Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology (ICO) ; Girona; Catalonia , Spain.,b Girona Biomedical Research Institute (IDIBGI) ; Girona, Catalonia , Spain
| | - Anna Massaguer
- d Biochemistry and Molecular Biology Unit ; Department of Biology; University of Girona ; Girona, Catalonia , Spain
| | - Joaquim Bosch-Barrera
- b Girona Biomedical Research Institute (IDIBGI) ; Girona, Catalonia , Spain.,e Medical Oncology Department ; Catalan Institute of Oncology (ICO) ; Girona, Catalonia , Spain
| | - Javier A Menendez
- a Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology (ICO) ; Girona; Catalonia , Spain.,b Girona Biomedical Research Institute (IDIBGI) ; Girona, Catalonia , Spain
| |
Collapse
|
9
|
Shore AN, Chang CH, Kwon OJ, Weston MC, Zhang M, Xin L, Rosen JM. PTEN is required to maintain luminal epithelial homeostasis and integrity in the adult mammary gland. Dev Biol 2015; 409:202-217. [PMID: 26526198 DOI: 10.1016/j.ydbio.2015.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/28/2015] [Accepted: 10/20/2015] [Indexed: 12/17/2022]
Abstract
In the mammary gland, PTEN loss in luminal and basal epithelial cells results in differentiation defects and enhanced proliferation, leading to the formation of tumors with basal epithelial characteristics. In breast cancer, PTEN loss is associated with a hormone receptor-negative, basal-like subtype that is thought to originate in a luminal epithelial cell. Here, we show that luminal-specific PTEN loss results in distinct effects on epithelial homeostasis and mammary tumor formation. Luminal PTEN loss increased proliferation of hormone receptor-negative cells, thereby decreasing the percentage of hormone receptor-positive cells. Moreover, luminal PTEN loss led to misoriented cell divisions and mislocalization of cells to the intraluminal space of mammary ducts. Despite their elevated levels of activated AKT, Pten-null intraluminal cells showed increased levels of apoptosis. One year after Pten deletion, the ducts had cleared and no palpable mammary tumors were detected. These data establish PTEN as a critical regulator of luminal epithelial homeostasis and integrity in the adult mammary gland, and further show that luminal PTEN loss alone is not sufficient to promote the progression of mammary tumorigenesis.
Collapse
Affiliation(s)
- Amy N Shore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | - Chi-Hsuan Chang
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Oh-Joon Kwon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Matthew C Weston
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mei Zhang
- Department of Developmental Biology, University of Pittsburg, Pittsburg, PA 15213, USA
| | - Li Xin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
10
|
Eritja N, Santacana M, Maiques O, Gonzalez-Tallada X, Dolcet X, Matias-Guiu X. Modeling glands with PTEN deficient cells and microscopic methods for assessing PTEN loss: endometrial cancer as a model. Methods 2014; 77-78:31-40. [PMID: 25461816 DOI: 10.1016/j.ymeth.2014.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 01/30/2023] Open
Abstract
PTEN is an important tumor suppressor gene. Interpreting PTEN deficiency in the appropriate microscopic context of cancer may be important to understand its role in tumor development and progression. This may be particularly relevant in heterogeneous tumors. Here, we discuss the usefulness of 3D cultures in understanding the consequences of PTEN inactivation in tissue architecture. Afterwards, we discuss the role of immunohistochemistry and fluorescent in situ hybridization in assessing PTEN loss in tumors. In this review, endometrial carcinoma is used as a model.
Collapse
Affiliation(s)
- Núria Eritja
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida, Spain
| | - Maria Santacana
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida, Spain
| | - Oscar Maiques
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida, Spain
| | - Xavier Gonzalez-Tallada
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida, Spain
| | - Xavier Dolcet
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida, Spain
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida, Spain.
| |
Collapse
|
11
|
Kocher BA, White LS, Piwnica-Worms D. DAPK3 suppresses acini morphogenesis and is required for mouse development. Mol Cancer Res 2014; 13:358-67. [PMID: 25304685 DOI: 10.1158/1541-7786.mcr-14-0333] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Death-associated protein kinase (DAPK3) is a serine/threonine kinase involved in various signaling pathways important to tissue homeostasis and mammalian biology. Considered to be a putative tumor suppressor, the molecular mechanism by which DAPK3 exerts its suppressive function is not fully understood and the field lacks an appropriate mouse model. To address these gaps, an in vitro three-dimensional tumorigenesis model was used and a constitutive DAPK3-knockout mouse was generated. In the 3D morphogenesis model, loss of DAPK3 through lentiviral-mediated knockdown enlarged acinar size by accelerated acini proliferation and apoptosis while maintaining acini polarity. Depletion of DAPK3 enhanced growth factor-dependent mTOR activation and, furthermore, enlarged DAPK3 acini structures were uniquely sensitive to low doses of rapamycin. Simultaneous knockdown of RAPTOR, a key mTORC1 component, reversed the augmented acinar size in DAPK3-depleted structures indicating an epistatic interaction. Using a validated gene trap strategy to generate a constitutive DAPK3-knockout mouse, it was demonstrated that DAPK3 is vital for early mouse development. The Dapk3 promoter exhibits spatiotemporal activity in developing mice and is actively expressed in normal breast epithelia of adult mice. Importantly, reduction of DAPK3 expression correlates with the development of ductal carcinoma in situ (DCIS) and more aggressive breast cancer as observed in the Oncomine database of clinical breast cancer specimens. IMPLICATIONS Novel cellular and mouse modeling studies of DAPK3 shed light on its tumor-suppressive mechanisms and provide direct evidence that DAPK3 has relevance in early development.
Collapse
Affiliation(s)
- Brandon A Kocher
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Lynn S White
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - David Piwnica-Worms
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri. Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
12
|
Frank SB, Miranti CK. Disruption of prostate epithelial differentiation pathways and prostate cancer development. Front Oncol 2013; 3:273. [PMID: 24199173 PMCID: PMC3813973 DOI: 10.3389/fonc.2013.00273] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/18/2013] [Indexed: 12/14/2022] Open
Abstract
One of the foremost problems in the prostate cancer (PCa) field is the inability to distinguish aggressive from indolent disease, which leads to difficult prognoses and thousands of unnecessary surgeries. This limitation stems from the fact that the mechanisms of tumorigenesis in the prostate are poorly understood. Some genetic alterations are commonly reported in prostate tumors, including upregulation of Myc, fusion of Ets genes to androgen-regulated promoters, and loss of Pten. However, the specific roles of these aberrations in tumor initiation and progression are poorly understood. Likewise, the cell of origin for PCa remains controversial and may be linked to the aggressive potential of the tumor. One important clue is that prostate tumors co-express basal and luminal protein markers that are restricted to their distinct cell types in normal tissue. Prostate epithelium contains layer-specific stem cells as well as rare bipotent cells, which can differentiate into basal or luminal cells. We hypothesize that the primary oncogenic cell of origin is a transient-differentiating bipotent cell. Such a cell must maintain tight temporal and spatial control of differentiation pathways, thus increasing its susceptibility for oncogenic disruption. In support of this hypothesis, many of the pathways known to be involved in prostate differentiation can be linked to genes commonly altered in PCa. In this article, we review what is known about important differentiation pathways (Myc, p38MAPK, Notch, PI3K/Pten) in the prostate and how their misregulation could lead to oncogenesis. Better understanding of normal differentiation will offer new insights into tumor initiation and may help explain the functional significance of common genetic alterations seen in PCa. Additionally, this understanding could lead to new methods for classifying prostate tumors based on their differentiation status and may aid in identifying more aggressive tumors.
Collapse
Affiliation(s)
- Sander B Frank
- Laboratory of Integrin Signaling and Tumorigenesis, Van Andel Research Institute , Grand Rapids, MI , USA ; Genetics Graduate Program, Michigan State University , East Lansing, MI , USA
| | | |
Collapse
|