1
|
Kromer C, Katz A, Feldmann I, Laux P, Luch A, Tschiche HR. A targeted fluorescent nanosensor for ratiometric pH sensing at the cell surface. Sci Rep 2024; 14:12302. [PMID: 38811698 PMCID: PMC11137054 DOI: 10.1038/s41598-024-62976-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
The correlation between altered extracellular pH and various pathological conditions, including cancer, inflammation and metabolic disorders, is well known. Bulk pH measurements cannot report the extracellular pH value at the cell surface. However, there is a limited number of suitable tools for measuring the extracellular pH of cells with high spatial resolution, and none of them are commonly used in laboratories around the world. In this study, a versatile ratiometric nanosensor for the measurement of extracellular pH was developed. The nanosensor consists of biocompatible polystyrene nanoparticles loaded with the pH-inert reference dye Nile red and is surface functionalized with a pH-responsive fluorescein dye. Equipped with a targeting moiety, the nanosensor can adhere to cell membranes, allowing direct measurement of extracellular pH at the cell surface. The nanosensor exhibits a sensitive ratiometric pH response within the range of 5.5-9.0, with a calculated pKa of 7.47. This range optimally covers the extracellular pH (pHe) of most healthy cells and cells in which the pHe is abnormal, such as cancer cells. In combination with the nanosensors ability to target cell membranes, its high robustness, reversibility and its biocompatibility, the pHe nanosensor proves to be well suited for in-situ measurement of extracellular pH, even over extended time periods. This pH nanosensor has the potential to advance biomedical research by improving our understanding of cellular microenvironments, where extracellular pH plays an important role.
Collapse
Affiliation(s)
- Charlotte Kromer
- Product Materials and Nanotechnology, Department Chemical and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.
| | - Aaron Katz
- Product Materials and Nanotechnology, Department Chemical and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Ines Feldmann
- Material-Microbiome Interactions, Department Materials and the Environment, Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Peter Laux
- Product Materials and Nanotechnology, Department Chemical and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Andreas Luch
- Product Materials and Nanotechnology, Department Chemical and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Harald R Tschiche
- Product Materials and Nanotechnology, Department Chemical and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
2
|
Pinto SMA, Ferreira ARR, Teixeira DSS, Nunes SCC, Batista de Carvalho ALM, Almeida JMS, Garda Z, Pallier A, Pais AACC, Brett CMA, Tóth É, Marques MPM, Pereira MM, Geraldes CFGC. Fluorinated Mn(III)/(II)-Porphyrin with Redox-Responsive 1 H and 19 F Relaxation Properties. Chemistry 2023; 29:e202301442. [PMID: 37606898 DOI: 10.1002/chem.202301442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 08/23/2023]
Abstract
A new fluorinated manganese porphyrin, (Mn-TPP-p-CF3 ) is reported capable of providing, based on the Mn(III)/Mn(II) equilibrium, dual 1 H relaxivity and 19 F NMR response to redox changes. The physical-chemical characterization of both redox states in DMSO-d6 /H2 O evidenced that the 1 H relaxometric and 19 F NMR properties are appropriate for differential redox MRI detection. The Mn(III)-F distance (dMn-F =9.7-10 Å), as assessed by DFT calculations, is well tailored to allow for adequate paramagnetic effect of Mn(III) on 19 F T1 and T2 relaxation times. Mn-TPP-p-CF3 has a reversible Mn(II)/Mn(III) redox potential of 0.574 V vs. NHE in deoxygenated aqueous HEPES/ THF solution. The reduction of Mn(III)-TPP-p-CF3 in the presence of ascorbic acid is slowly, but fully reversed in the presence of air oxygen, as monitored by UV-Vis spectrometry and 19 F NMR. The broad 1 H and 19 F NMR signals of Mn(III)-TPP-p-CF3 disappear in the presence of 1 equivalent ascorbate replaced by a shifted and broadened 19 F NMR signal from Mn(II)-TPP-p-CF3 . Phantom 19 F MR images in DMSO show a MRI signal intensity decrease upon reduction of Mn(III)-TPP-p-CF3 , retrieved upon complete reoxidation in air within ~24 h. 1 H NMRD curves of the Mn(III)/(II)-TPP-p-CF3 chelates in mixed DMSO/water solvent have the typical shape of Mn(II)/Mn(III) porphyrins.
Collapse
Affiliation(s)
- Sara M A Pinto
- University of Coimbra, CQC-IMS, Department of Chemistry, P-3004-535, Coimbra, Portugal
- Coimbra Chemistry Center, University of Coimbra, Rua Larga Largo D. Dinis, 3004-535, Coimbra, Portugal
| | - Ana R R Ferreira
- University of Coimbra, CQC-IMS, Department of Chemistry, P-3004-535, Coimbra, Portugal
- Coimbra Chemistry Center, University of Coimbra, Rua Larga Largo D. Dinis, 3004-535, Coimbra, Portugal
| | - Daniela S S Teixeira
- University of Coimbra, CQC-IMS, Department of Chemistry, P-3004-535, Coimbra, Portugal
- Coimbra Chemistry Center, University of Coimbra, Rua Larga Largo D. Dinis, 3004-535, Coimbra, Portugal
| | - Sandra C C Nunes
- University of Coimbra, CQC-IMS, Department of Chemistry, P-3004-535, Coimbra, Portugal
- Coimbra Chemistry Center, University of Coimbra, Rua Larga Largo D. Dinis, 3004-535, Coimbra, Portugal
| | - Ana L M Batista de Carvalho
- Molecular Physical Chemistry R&D Unit Department of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal
- Department of Life Sciences, Faculty of Science and Technology, Calçada Martim de Freitas, 3000-393, Coimbra, Portugal
| | - Joseany M S Almeida
- University of Coimbra, CQC-IMS, Department of Chemistry, P-3004-535, Coimbra, Portugal
- CEMMPRE, University of Coimbra, Pinhal de Marrocos, 3030-788, Coimbra, Portugal
| | - Zoltan Garda
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d'Orléans, Rue Charles Sadron, 45071, Orléans Cedex 2, France
| | - Agnés Pallier
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d'Orléans, Rue Charles Sadron, 45071, Orléans Cedex 2, France
| | - Alberto A C C Pais
- University of Coimbra, CQC-IMS, Department of Chemistry, P-3004-535, Coimbra, Portugal
- Coimbra Chemistry Center, University of Coimbra, Rua Larga Largo D. Dinis, 3004-535, Coimbra, Portugal
| | - Christopher M A Brett
- University of Coimbra, CQC-IMS, Department of Chemistry, P-3004-535, Coimbra, Portugal
- CEMMPRE, University of Coimbra, Pinhal de Marrocos, 3030-788, Coimbra, Portugal
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d'Orléans, Rue Charles Sadron, 45071, Orléans Cedex 2, France
| | - Maria P M Marques
- Molecular Physical Chemistry R&D Unit Department of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal
- Department of Life Sciences, Faculty of Science and Technology, Calçada Martim de Freitas, 3000-393, Coimbra, Portugal
| | - Mariette M Pereira
- University of Coimbra, CQC-IMS, Department of Chemistry, P-3004-535, Coimbra, Portugal
- Coimbra Chemistry Center, University of Coimbra, Rua Larga Largo D. Dinis, 3004-535, Coimbra, Portugal
| | - Carlos F G C Geraldes
- Coimbra Chemistry Center, University of Coimbra, Rua Larga Largo D. Dinis, 3004-535, Coimbra, Portugal
- Department of Life Sciences, Faculty of Science and Technology, Calçada Martim de Freitas, 3000-393, Coimbra, Portugal
- CIBIT/ICNAS, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| |
Collapse
|
3
|
Using optimal controlled singlet spin order to accurately target molecular signal in MRI and MRS. Sci Rep 2023; 13:2212. [PMID: 36750607 PMCID: PMC9905495 DOI: 10.1038/s41598-023-28425-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) have made great successes in clinical diagnosis, medical research, and neurological science. MRI provides high resolution anatomical images of tissues/organs, and MRS provides information of the functional molecules related to a specific tissue/organ. However, it is difficult for classic MRI/MRS to selectively image/probe a specific metabolite molecule other than the water or fat in tissues/organs. This greatly limits their applications on the study of the molecular mechanism(s) of metabolism and disease. Herein, we report a series of molecularly targeted MRI/MRS methods to target specific molecules. The optimal control method was used to efficiently prepare the singlet spin orders of varied multi-spin systems and in turn greatly expand the choice of the targeted molecules in the molecularly targeted MRI/MRS. Several molecules, such as N-acetyl-L-aspartic acid (NAA), dopamine (DA), and a tripeptide (alanine-glycine-glycine, AGG), have been used as targeted molecules for molecularly targeted MRI and MRS. We show in vivo NAA-targeted 1H MRS spectrum of a human brain. The high-resolution signal of NAA suggests a promising way to study important issues in molecular biology at the molecular level, e.g., measuring the local pH value of tissue in vivo, demonstrating the high potential of such methods in medicine.
Collapse
|
4
|
Jardim-Perassi BV, Irrera P, Lau JYC, Budzevich M, Whelan CJ, Abrahams D, Ruiz E, Ibrahim-Hashim A, Damgaci Erturk S, Longo DL, Pilon-Thomas SA, Gillies RJ. Intraperitoneal Delivery of Iopamidol to Assess Extracellular pH of Orthotopic Pancreatic Tumor Model by CEST-MRI. CONTRAST MEDIA & MOLECULAR IMAGING 2023; 2023:1944970. [PMID: 36704211 PMCID: PMC9836819 DOI: 10.1155/2023/1944970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/05/2022] [Accepted: 12/06/2022] [Indexed: 01/07/2023]
Abstract
The extracellular pH (pHe) of solid tumors is often acidic, as a consequence of the Warburg effect, and an altered metabolic state is often associated with malignancy. It has been shown that acidosis can promote tumor progression; thus, many therapeutic strategies have been adopted against tumor metabolism; one of these involves alkalinization therapies to raise tumor pH to inhibit tumor progression, improve immune surveillance, and overcome resistance to chemotherapies. Chemical exchange saturation transfer-magnetic resonance imaging (CEST-MRI) is a noninvasive technique that can measure pH in vivo using pH-sensitive contrast agents. Iopamidol, an iodinated contrast agent, clinically used for computed tomography (CT), contains amide group protons with pH-dependent exchange rates that can reveal the pHe of the tumor microenvironment. In this study, we optimized intraperitoneal (IP) delivery of iopamidol to facilitate longitudinal assessments of orthotopic pancreatic tumor pHe by CEST-MRI. Following IV-infusion and IP-bolus injections, we compared the two protocols for assessing tumor pH. Time-resolved CT imaging was used to evaluate the uptake of iopamidol in the tumor, revealing that IP-bolus delivered a high amount of contrast agent 40 min postinjection, which was similar to the amounts reached with the IV-infusion protocol. As expected, both IP and IV injection protocols produced comparable measurements of tumor pHe, showing no statistically significant difference between groups (p=0.16). In addition, we showed the ability to conduct longitudinal monitoring of tumor pHe using CEST-MRI with the IP injection protocol, revealing a statistically significant increase in tumor pHe following bicarbonate administration (p < 0.001). In conclusion, this study shows the capability to measure pHe using an IP delivery of iopamidol into orthotopic pancreatic tumors, which is important to conduct longitudinal studies.
Collapse
Affiliation(s)
| | - Pietro Irrera
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Justin Y. C. Lau
- Small Animal Imaging Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Mikalai Budzevich
- Small Animal Imaging Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Christopher J. Whelan
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Biological Sciences, University of Illinois, Chicago, IL, USA
| | | | - Epifanio Ruiz
- Small Animal Imaging Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Arig Ibrahim-Hashim
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sultan Damgaci Erturk
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Dario Livio Longo
- Institute of Biostructures and Bioimages (IBB), National Research Council of Italy (CNR), Turin, Italy
| | - Shari A. Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Robert J. Gillies
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
5
|
Delehedde C, Culcasi M, Ricquebourg E, Cassien M, Siri D, Blaive B, Pietri S, Thétiot-Laurent S. Novel Sterically Crowded and Conformationally Constrained α-Aminophosphonates with a Near-Neutral p Ka as Highly Accurate 31P NMR pH Probes. Application to Subtle pH Gradients Determination in Dictyostelium discoideum Cells. Molecules 2022; 27:molecules27144506. [PMID: 35889385 PMCID: PMC9320275 DOI: 10.3390/molecules27144506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
In order to discover new 31P NMR markers for probing subtle pH changes (<0.2 pH unit) in biological environments, fifteen new conformationally constrained or sterically hindered α-aminophosphonates derived from diethyl(2-methylpyrrolidin-2-yl)phosphonate were synthesized and tested for their pH reporting and cytotoxic properties in vitro. All compounds showed near-neutral pKas (ranging 6.28−6.97), chemical shifts not overlapping those of phosphorus metabolites, and spectroscopic sensitivities (i.e., chemical shifts variation Δδab between the acidic and basic forms) ranging from 9.2−10.7 ppm, being fourfold larger than conventional endogenous markers such as inorganic phosphate. X-ray crystallographic studies combined with predictive empirical relationships and ab initio calculations addressed the inductive and stereochemical effects of substituents linked to the protonated amine function. Satisfactory correlations were established between pKas and both the 2D structure and pyramidalization at phosphorus, showing that steric crowding around the phosphorus is crucial for modulating Δδab. Finally, the hit 31P NMR pH probe 1b bearing an unsubstituted 1,3,2-dioxaphosphorinane ring, which is moderately lipophilic, nontoxic on A549 and NHLF cells, and showing pKa = 6.45 with Δδab = 10.64 ppm, allowed the first clear-cut evidence of trans-sarcolemmal pH gradients in normoxic Dictyostelium discoideum cells with an accuracy of <0.05 pH units.
Collapse
Affiliation(s)
- Caroline Delehedde
- Aix Marseille Univ, CNRS, ICR, UMR 7273, SMBSO, 13397 Marseille, France; (C.D.); (M.C.); (E.R.); (B.B.); (S.P.)
| | - Marcel Culcasi
- Aix Marseille Univ, CNRS, ICR, UMR 7273, SMBSO, 13397 Marseille, France; (C.D.); (M.C.); (E.R.); (B.B.); (S.P.)
| | - Emilie Ricquebourg
- Aix Marseille Univ, CNRS, ICR, UMR 7273, SMBSO, 13397 Marseille, France; (C.D.); (M.C.); (E.R.); (B.B.); (S.P.)
| | - Mathieu Cassien
- Yelen Analytics, 10 Boulevard Tempête, 13820 Ensuès-la-Redonne, France;
| | - Didier Siri
- Aix Marseille Univ, CNRS, ICR, UMR 7273, CT, 13397 Marseille, France;
| | - Bruno Blaive
- Aix Marseille Univ, CNRS, ICR, UMR 7273, SMBSO, 13397 Marseille, France; (C.D.); (M.C.); (E.R.); (B.B.); (S.P.)
| | - Sylvia Pietri
- Aix Marseille Univ, CNRS, ICR, UMR 7273, SMBSO, 13397 Marseille, France; (C.D.); (M.C.); (E.R.); (B.B.); (S.P.)
| | - Sophie Thétiot-Laurent
- Aix Marseille Univ, CNRS, ICR, UMR 7273, SMBSO, 13397 Marseille, France; (C.D.); (M.C.); (E.R.); (B.B.); (S.P.)
- Correspondence: ; Tel.: +33-(0)4-13-94-58-07
| |
Collapse
|
6
|
Impact of Inhibition of the Mitochondrial Pyruvate Carrier on the Tumor Extracellular pH as Measured by CEST-MRI. Cancers (Basel) 2021; 13:cancers13174278. [PMID: 34503089 PMCID: PMC8428345 DOI: 10.3390/cancers13174278] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/22/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
(1) Background: The acidosis of the tumor micro-environment may have profound impact on cancer progression and on the efficacy of treatments. In the present study, we evaluated the impact of a treatment with UK-5099, a mitochondrial pyruvate carrier (MPC) inhibitor on tumor extracellular pH (pHe); (2) Methods: glucose consumption, lactate secretion and extracellular acidification rate (ECAR) were measured in vitro after exposure of cervix cancer SiHa cells and breast cancer 4T1 cells to UK-5099 (10 µM). Mice bearing the 4T1 tumor model were treated daily during four days with UK-5099 (3 mg/kg). The pHe was evaluated in vivo using either chemical exchange saturation transfer (CEST)-MRI with iopamidol as pHe reporter probe or 31P-NMR spectroscopy with 3-aminopropylphosphonate (3-APP). MR protocols were applied before and after 4 days of treatment; (3) Results: glucose consumption, lactate release and ECAR were increased in both cell lines after UK-5099 exposure. CEST-MRI showed a significant decrease in tumor pHe of 0.22 units in UK-5099-treated mice while there was no change over time for mice treated with the vehicle. Parametric images showed a large heterogeneity in response with 16% of voxels shifting to pHe values under 7.0. In contrast, 31P-NMR spectroscopy was unable to detect any significant variation in pHe; (4) Conclusions: MPC inhibition led to a moderate acidification of the extracellular medium in vivo. CEST-MRI provided high resolution parametric images (0.44 µL/voxel) of pHe highlighting the heterogeneity of response within the tumor when exposed to UK-5099.
Collapse
|
7
|
Shaul D, Grieb B, Sapir G, Uppala S, Sosna J, Gomori JM, Katz-Brull R. The metabolic representation of ischemia in rat brain slices: A hyperpolarized 13 C magnetic resonance study. NMR IN BIOMEDICINE 2021; 34:e4509. [PMID: 33774865 DOI: 10.1002/nbm.4509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/15/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
The ischemic penumbra in stroke is not clearly defined by today's available imaging tools. This study aimed to develop a model system and noninvasive biomarkers of ischemic brain tissue for an examination that might potentially be performed in humans, very quickly, in the course of stroke triage. Perfused rat brain slices were used as a model system and 31 P spectroscopy verified that the slices were able to recover from an ischemic insult of about 3.5 min of perfusion arrest. This was indicated as a return to physiological pH and adenosine triphosphate levels. Instantaneous changes in lactate dehydrogenase (LDH) and pyruvate dehydrogenase (PDH) activities were monitored and quantified by the metabolic conversions of hyperpolarized [1-13 C]pyruvate to [1-13 C]lactate and [13 C]bicarbonate, respectively, using 13 C spectroscopy. In a control group (n = 8), hyperpolarized [1-13 C]pyruvate was administered during continuous perfusion of the slices. In the ischemia group (n = 5), the perfusion was arrested 30 s prior to administration of hyperpolarized [1-13 C]pyruvate and perfusion was not resumed throughout the measurement time (approximately 3.5 min). Following about 110 s of the ischemic insult, LDH activity increased by 80.4 ± 13.5% and PDH activity decreased by 47.8 ± 25.3%. In the control group, the mean LDH/PDH ratio was 16.6 ± 3.3, and in the ischemia group, the LDH/PDH ratio reached an average value of 38.7 ± 16.9. The results suggest that monitoring the activity of LDH and PDH, and their relative activities, using hyperpolarized [1-13 C]pyruvate, could serve as an imaging biomarker to characterize the changes in the ischemic penumbra.
Collapse
Affiliation(s)
- David Shaul
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Benjamin Grieb
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
- Department of Psychiatry and Psychotherapy I (Weissenau), Ulm University, Ravensburg, Germany
| | - Gal Sapir
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Sivaranjan Uppala
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Jacob Sosna
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - J Moshe Gomori
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Rachel Katz-Brull
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| |
Collapse
|
8
|
Sapir G, Shaul D, Lev-Cohain N, Sosna J, Gomori MJ, Katz-Brull R. LDH and PDH Activities in the Ischemic Brain and the Effect of Reperfusion-An Ex Vivo MR Study in Rat Brain Slices Using Hyperpolarized [1- 13C]Pyruvate. Metabolites 2021; 11:210. [PMID: 33808434 PMCID: PMC8066106 DOI: 10.3390/metabo11040210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 12/11/2022] Open
Abstract
Ischemic stroke is a leading cause for neurologic disability worldwide, for which reperfusion is the only available treatment. Neuroimaging in stroke guides treatment, and therefore determines the clinical outcome. However, there are currently no imaging biomarkers for the status of the ischemic brain tissue. Such biomarkers could potentially be useful for guiding treatment in patients presenting with ischemic stroke. Hyperpolarized 13C MR of [1-13C]pyruvate is a clinically translatable method used to characterize tissue metabolism non-invasively in a relevant timescale. The aim of this study was to utilize hyperpolarized [1-13C]pyruvate to investigate the metabolic consequences of an ischemic insult immediately during reperfusion and upon recovery of the brain tissue. The rates of lactate dehydrogenase (LDH) and pyruvate dehydrogenase (PDH) were quantified by monitoring the rates of [1-13C]lactate and [13C]bicarbonate production from hyperpolarized [1-13C]pyruvate. 31P NMR of the perfused brain slices showed that this system is suitable for studying ischemia and recovery following reperfusion. This was indicated by the levels of the high-energy phosphates (tissue viability) and the chemical shift of the inorganic phosphate signal (tissue pH). Acidification, which was observed during the ischemic insult, has returned to baseline level following reperfusion. The LDH/PDH activity ratio increased following ischemia, from 47.0 ± 12.7 in the control group (n = 6) to 217.4 ± 121.3 in the ischemia-reperfusion group (n = 6). Following the recovery period (ca. 1.5 h), this value had returned to its pre-ischemia (baseline) level, suggesting the LDH/PDH enzyme activity ratio may be used as a potential indicator for the status of the ischemic and recovering brain.
Collapse
Affiliation(s)
- Gal Sapir
- Department of Radiology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (G.S.); (D.S.); (N.L.-C.); (J.S.); (M.J.G.)
| | - David Shaul
- Department of Radiology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (G.S.); (D.S.); (N.L.-C.); (J.S.); (M.J.G.)
| | - Naama Lev-Cohain
- Department of Radiology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (G.S.); (D.S.); (N.L.-C.); (J.S.); (M.J.G.)
| | - Jacob Sosna
- Department of Radiology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (G.S.); (D.S.); (N.L.-C.); (J.S.); (M.J.G.)
| | - Moshe J. Gomori
- Department of Radiology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (G.S.); (D.S.); (N.L.-C.); (J.S.); (M.J.G.)
| | - Rachel Katz-Brull
- Department of Radiology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (G.S.); (D.S.); (N.L.-C.); (J.S.); (M.J.G.)
- The Wohl Institute for Translational Medicine, Jerusalem 9112001, Israel
| |
Collapse
|
9
|
Miller JJ, Valkovič L, Kerr M, Timm KN, Watson WD, Lau JYC, Tyler A, Rodgers C, Bottomley PA, Heather LC, Tyler DJ. Rapid, B 1 -insensitive, dual-band quasi-adiabatic saturation transfer with optimal control for complete quantification of myocardial ATP flux. Magn Reson Med 2021; 85:2978-2991. [PMID: 33538063 PMCID: PMC7986077 DOI: 10.1002/mrm.28647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/28/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Phosphorus saturation-transfer experiments can quantify metabolic fluxes noninvasively. Typically, the forward flux through the creatine kinase reaction is investigated by observing the decrease in phosphocreatine (PCr) after saturation of γ-ATP. The quantification of total ATP utilization is currently underexplored, as it requires simultaneous saturation of inorganic phosphate ( P i ) and PCr. This is challenging, as currently available saturation pulses reduce the already-low γ-ATP signal present. METHODS Using a hybrid optimal-control and Shinnar-Le Roux method, a quasi-adiabatic RF pulse was designed for the dual saturation of PCr and P i to enable determination of total ATP utilization. The pulses were evaluated in Bloch equation simulations, compared with a conventional hard-cosine DANTE saturation sequence, before being applied to perfused rat hearts at 11.7 T. RESULTS The quasi-adiabatic pulse was insensitive to a >2.5-fold variation in B 1 , producing equivalent saturation with a 53% reduction in delivered pulse power and a 33-fold reduction in spillover at the minimum effective B 1 . This enabled the complete quantification of the synthesis and degradation fluxes for ATP in 30-45 minutes in the perfused rat heart. While the net synthesis flux (4.24 ± 0.8 mM/s, SEM) was not significantly different from degradation flux (6.88 ± 2 mM/s, P = .06) and both measures are consistent with prior work, nonlinear error analysis highlights uncertainties in the Pi -to-ATP measurement that may explain a trend suggesting a possible imbalance. CONCLUSIONS This work demonstrates a novel quasi-adiabatic dual-saturation RF pulse with significantly improved performance that can be used to measure ATP turnover in the heart in vivo.
Collapse
Affiliation(s)
- Jack J Miller
- Department of Physics, University of Oxford, Oxford, UK.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Headington, Oxford, UK.,Health, Aarhus University, Aarhus, Denmark
| | - Ladislav Valkovič
- Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Headington, Oxford, UK.,Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Matthew Kerr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Kerstin N Timm
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - William D Watson
- Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Headington, Oxford, UK
| | - Justin Y C Lau
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Headington, Oxford, UK
| | - Andrew Tyler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Headington, Oxford, UK
| | - Christopher Rodgers
- Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Headington, Oxford, UK.,Wolfson Brain Imaging Centre, University of Cambridge, Oxford, UK
| | - Paul A Bottomley
- Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Headington, Oxford, UK.,Division of MR Research, Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Damian J Tyler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Headington, Oxford, UK
| |
Collapse
|
10
|
Shaul D, Azar A, Sapir G, Uppala S, Nardi-Schreiber A, Gamliel A, Sosna J, Gomori JM, Katz-Brull R. Correlation between lactate dehydrogenase/pyruvate dehydrogenase activities ratio and tissue pH in the perfused mouse heart: A potential noninvasive indicator of cardiac pH provided by hyperpolarized magnetic resonance. NMR IN BIOMEDICINE 2021; 34:e4444. [PMID: 33258527 DOI: 10.1002/nbm.4444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 10/05/2020] [Accepted: 10/24/2020] [Indexed: 06/12/2023]
Abstract
Cardiovascular diseases account for more than 30% of all deaths worldwide and many could be ameliorated with early diagnosis. Current cardiac imaging modalities can assess blood flow, heart anatomy and mechanical function. However, for early diagnosis and improved treatment, further functional biomarkers are needed. One such functional biomarker could be the myocardium pH. Although tissue pH is already determinable via MR techniques, and has been since the early 1990s, it remains elusive to use practically. The objective of this study was to explore the possibility to evaluate cardiac pH noninvasively, using in-cell enzymatic rates of hyperpolarized [1-13 C]pyruvate metabolism (ie, moles of product produced per unit time) determined directly in real time using magnetic resonance spectroscopy in a perfused mouse heart model. As a gold standard for tissue pH we used 31 P spectroscopy and the chemical shift of the inorganic phosphate (Pi) signal. The nonhomogenous pH distribution of the perfused heart was analyzed using a multi-parametric analysis of this signal, thus taking into account the heterogeneous nature of this characteristic. As opposed to the signal ratio of hyperpolarized [13 C]bicarbonate to [13 CO2 ], which has shown correlation to pH in other studies, we investigated here the ratio of two intracellular enzymatic rates: lactate dehydrogenase (LDH) and pyruvate dehydrogenase (PDH), by way of determining the production rates of [1-13 C]lactate and [13 C]bicarbonate, respectively. The enzyme activities determined here are intracellular, while the pH determined using the Pi signal may contain an extracellular component, which could not be ruled out. Nevertheless, we report a strong correlation between the tissue pH and the LDH/PDH activities ratio. This work may pave the way for using the LDH/PDH activities ratio as an indicator of cardiac intracellular pH in vivo, in an MRI examination.
Collapse
Affiliation(s)
- David Shaul
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Assad Azar
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Gal Sapir
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Sivaranjan Uppala
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Atara Nardi-Schreiber
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Ayelet Gamliel
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Jacob Sosna
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - J Moshe Gomori
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Rachel Katz-Brull
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| |
Collapse
|
11
|
Tumor Microenvironment Biosensors for Hyperpolarized Carbon-13 Magnetic Resonance Spectroscopy. Mol Imaging Biol 2021; 23:323-334. [PMID: 33415679 DOI: 10.1007/s11307-020-01570-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/12/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
Hyperpolarization (HP) of a carbon-13 molecule via dynamic nuclear polarization (DNP) involves polarization at low temperature, followed by a dissolution procedure producing a solution with highly polarized spins at room temperature. This dissolution DNP method significantly increases the signal-to-noise ratio (SNR) of nuclear magnetic resonance (NMR) over 10,000-fold and facilitates the use of magnetic resonance spectroscopy (MRS) to image not only metabolism but also the extracellular microenvironment. The extracellular tumor microenvironment (TME) closely interacts with tumor cells and stimulates their growth and metastasis. Thus, the ability to detect pathological changes in the TME is pivotal for the detection and study of cancers. This review highlights the potential use of MRS to study features of the TME-elevated export of lactate, reduced interstitial pH, imbalanced redox equilibrium, and altered metal homeostasis. The promising outcomes of both in vitro and in vivo assays suggest that DNP-MRS may be a useful technique to study aspects of the TME. With continued improvements, this tool has the potential to study the TME and provide guidance for accurate patient stratification and precise personal therapy. Graphical Abstract.
Collapse
|
12
|
Anemone A, Consolino L, Conti L, Irrera P, Hsu MY, Villano D, Dastrù W, Porporato PE, Cavallo F, Longo DL. Tumour acidosis evaluated in vivo by MRI-CEST pH imaging reveals breast cancer metastatic potential. Br J Cancer 2021; 124:207-216. [PMID: 33257841 PMCID: PMC7782702 DOI: 10.1038/s41416-020-01173-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/07/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Tumour acidosis is considered to play a central role in promoting cancer invasion and migration, but few studies have investigated in vivo how tumour pH correlates with cancer invasion. This study aims to determine in vivo whether tumour acidity is associated with cancer metastatic potential. METHODS Breast cancer cell lines with different metastatic potentials have been characterised for several markers of aggressiveness and invasiveness. Murine tumour models have been developed and assessed for lung metastases and tumour acidosis has been assessed in vivo by a magnetic resonance imaging-based chemical exchange saturation transfer (CEST) pH imaging approach. RESULTS The higher metastatic potential of 4T1 and TS/A primary tumours, in comparison to the less aggressive TUBO and BALB-neuT ones, was confirmed by the highest expression of cancer cell stem markers (CD44+CD24-), highlighting their propensity to migrate and invade, coinciding with the measurement obtained by in vitro assays. MRI-CEST pH imaging successfully discriminated the more aggressive 4T1 and TS/A tumours that displayed a more acidic pH. Moreover, the observed higher tumour acidity was significantly correlated with an increased number of lung metastases. CONCLUSIONS The findings of this study indicate that the extracellular acidification is associated with the metastatic potential.
Collapse
Affiliation(s)
- Annasofia Anemone
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Via Nizza 52, Torino, Italy
| | - Lorena Consolino
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Via Nizza 52, Torino, Italy
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino, Italy
| | - Pietro Irrera
- University of Campania "Luigi Vanvitelli", Viale Abramo Lincoln, 5, Caserta, Italy
| | - Myriam Y Hsu
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Via Nizza 52, Torino, Italy
| | - Daisy Villano
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Via Nizza 52, Torino, Italy
| | - Walter Dastrù
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Via Nizza 52, Torino, Italy
| | - Paolo E Porporato
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino, Italy
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Via Nizza 52, Torino, Italy.
| |
Collapse
|
13
|
Lutz NW, Bernard M. Contactless Thermometry by MRI and MRS: Advanced Methods for Thermotherapy and Biomaterials. iScience 2020; 23:101561. [PMID: 32954229 PMCID: PMC7489251 DOI: 10.1016/j.isci.2020.101561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Control of temperature variation is of primordial importance in particular areas of biomedicine. In this context, medical treatments such as hyperthermia and cryotherapy, and also the development and use of hydrogel-based biomaterials, are of particular concern. To enable accurate temperature measurement without perturbing or even destroying the biological tissue or material to be monitored, contactless thermometry methods are preferred. Among these, the most suitable are based on magnetic resonance imaging and spectroscopy (MRI, MRS). Here, we address the latest developments in this field as well as their current and anticipated practical applications. We highlight recent progress aimed at rendering MR thermometry faster and more reproducible, versatile, and sophisticated and provide our perspective on how these new techniques broaden the range of applications in medical treatments and biomaterial development by enabling insight into finer details of thermal behavior. Thus, these methods facilitate optimization of clinical and industrial heating and cooling protocols.
Collapse
Affiliation(s)
- Norbert W. Lutz
- Aix-Marseille University, CNRS, CRMBM, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Monique Bernard
- Aix-Marseille University, CNRS, CRMBM, 27 Bd Jean Moulin, 13005 Marseille, France
| |
Collapse
|
14
|
Anemone A, Consolino L, Arena F, Capozza M, Longo DL. Imaging tumor acidosis: a survey of the available techniques for mapping in vivo tumor pH. Cancer Metastasis Rev 2020; 38:25-49. [PMID: 30762162 PMCID: PMC6647493 DOI: 10.1007/s10555-019-09782-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cancer cells are characterized by a metabolic shift in cellular energy production, orchestrated by the transcription factor HIF-1α, from mitochondrial oxidative phosphorylation to increased glycolysis, regardless of oxygen availability (Warburg effect). The constitutive upregulation of glycolysis leads to an overproduction of acidic metabolic products, resulting in enhanced acidification of the extracellular pH (pHe ~ 6.5), which is a salient feature of the tumor microenvironment. Despite the importance of pH and tumor acidosis, there is currently no established clinical tool available to image the spatial distribution of tumor pHe. The purpose of this review is to describe various imaging modalities for measuring intracellular and extracellular tumor pH. For each technique, we will discuss main advantages and limitations, pH accuracy and sensitivity of the applied pH-responsive probes and potential translatability to the clinic. Particular attention is devoted to methods that can provide pH measurements at high spatial resolution useful to address the task of tumor heterogeneity and to studies that explored tumor pH imaging for assessing treatment response to anticancer therapies.
Collapse
Affiliation(s)
- Annasofia Anemone
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin, Italy
| | - Lorena Consolino
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin, Italy
| | - Francesca Arena
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Via Nizza 52, Turin, Italy.,Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Ribes 5, Colleretto Giacosa, Italy
| | - Martina Capozza
- Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Ribes 5, Colleretto Giacosa, Italy
| | - Dario Livio Longo
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin, Italy. .,Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Via Nizza 52, Turin, Italy.
| |
Collapse
|
15
|
Lutz NW, Bernard M. Multiparametric statistical quantification of pH heterogeneity by 1 H MRS and MRSI of extracellular pH markers: Proof of principle. NMR IN BIOMEDICINE 2019; 32:e4134. [PMID: 31313874 DOI: 10.1002/nbm.4134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/14/2019] [Accepted: 06/02/2019] [Indexed: 06/10/2023]
Abstract
Acid production and transport in numerous biological tissues and medical conditions are active areas of research. Heterogeneity of pH within a given homogeneous-appearing tissue volume has been reported, but none of the conventional methods currently available for measuring tissue pH provides quantitative parameters describing the frequency of occurrence of pH values within such a volume. We have previously presented a multiparametric noninvasive in vivo approach, providing at least 10 different statistical descriptors of pH heterogeneity based on a novel type of line shape analysis developed for pH-sensitive 31 P MRS resonances. However, this method suffers from lack of sensitivity, thus making rapid and spatially resolved measurements difficult. We present here the proof of principle of a new, more sensitive approach to statistical characterization of extracellular pH heterogeneity based on 1 H MRS, with the potential of being combined with spatial resolution. We experimentally study a range of test solutions of a reporter molecule that has previously been shown to possess a 1 H MRS resonance whose chemical shift varies with pH, including when injected intravenously into experimental animals (imidazole ethoxycarbonylpropionic acid, [IEPA]). Statistical pH heterogeneity descriptors are determined for phantoms mimicking tissue pH heterogeneity. To this end, the pH-sensitive 1 H MRS resonance is transformed into a pH curve. Subsequently, the digital points of this pH profile are used to build a histogram using dedicated algorithms. The following descriptors are computed from this histogram: weighted mean pH and median pH, pH standard deviation, pH range, pH mode(s), pH kurtosis, pH skewness and pH entropy. Our new method is also validated by analyzing previously published in vivo MRSI spectra. The proof of principle provided in this work should form the basis of further in vivo studies in physiology and medicine, eg in cancer research, but also in other fields such as kidney and muscle research.
Collapse
|
16
|
Lutz NW, Bernard M. A method for multiparametric statistical quantification of the heterogeneity of free Na + concentration by 19 F MR spectroscopy: Proof of principle in silico and in vitro. NMR IN BIOMEDICINE 2019; 32:e4117. [PMID: 31297903 DOI: 10.1002/nbm.4117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/01/2019] [Accepted: 04/23/2019] [Indexed: 06/10/2023]
Abstract
Sodium(I) (Na+ ) is one of the most important cations in mammalian tissues. Since Na+ plays a key role in basic cell function, noninvasive methods for measuring intracellular concentrations of free sodium ions in biological tissue have been developed on the basis of 19 F NMR spectroscopy. However, intracellular Na+ levels are often not uniform throughout a tissue volume (or voxel) being measured. In such cases, [Na+ ] heterogeneity is not reflected in results obtained by the classical technique, and may even result in biased average values. For this reason, we have designed an approach for quantifying [Na+ ] heterogeneity. First, the 19 F MRS resonance from FCrown-1 serving as a "Na+ probe" is transformed into a [Na+ ] curve. Then the digital points of the resulting [Na+ ] profile are used to construct a histogram with specially developed algorithms. From each [Na+ ] histogram, at least eight quantitative parameters describing the underlying statistical [Na+ ] distribution were computed: weighted median, weighted mean, standard deviation, range, mode(s), kurtosis, skewness, and entropy. In addition to our new paradigm, we present a first validation based on (i) computer simulations and (ii) experimentally obtained 19 F MR spectra of model solutions. This basic proof of principle warrants future in vivo experiments, in particular because of its ability to provide quantitative information complementary to that made available by commonly used 23 Na MRI: (i) multiparametric statistical characterization of [Na+ ] distributions; (ii) total [Na+ ] heterogeneity analysis not intrinsically limited by the size of any MRI voxels; and (iii) analysis of unequivocally intracellular [Na+ ], as opposed to measurement of a combination of intra- and extracellular [Na+ ].
Collapse
Affiliation(s)
- Norbert W Lutz
- School of Medicine, CRMBM, Aix-Marseille University, Marseille, France
| | - Monique Bernard
- School of Medicine, CRMBM, Aix-Marseille University, Marseille, France
| |
Collapse
|
17
|
Pinto SM, Tomé V, Calvete MJ, Castro MMC, Tóth É, Geraldes CF. Metal-based redox-responsive MRI contrast agents. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Hong SM, Lee YK, Park I, Kwon SM, Min S, Yoon G. Lactic acidosis caused by repressed lactate dehydrogenase subunit B expression down-regulates mitochondrial oxidative phosphorylation via the pyruvate dehydrogenase (PDH)-PDH kinase axis. J Biol Chem 2019; 294:7810-7820. [PMID: 30923124 DOI: 10.1074/jbc.ra118.006095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 03/21/2019] [Indexed: 01/12/2023] Open
Abstract
Aerobic glycolysis and mitochondrial dysfunction are key metabolic features of cancer cells, but their interplay during cancer development remains unclear. We previously reported that human hepatoma cells with mitochondrial defects exhibit down-regulated lactate dehydrogenase subunit B (LDHB) expression. Here, using several molecular and biochemical assays and informatics analyses, we investigated how LDHB suppression regulates mitochondrial respiratory activity and contributes to liver cancer progression. We found that transcriptional LDHB down-regulation is an upstream event during suppressed oxidative phosphorylation. We also observed that LDHB knockdown increases inhibitory phosphorylation of pyruvate dehydrogenase (PDH) via lactate-mediated PDH kinase (PDK) activation and thereby attenuates oxidative phosphorylation activity. Interestingly, monocarboxylate transporter 1 was the major lactate transporter in hepatoma cells, and its expression was essential for PDH phosphorylation by modulating intracellular lactate levels. Finally, bioinformatics analysis of the hepatocellular carcinoma cohort from The Cancer Genome Atlas revealed that a low LDHB/LDHA ratio is statistically significantly associated with poor prognostic outcomes. A low ratio was also associated with a significant enrichment in glycolysis genes and negatively correlated with PDK1 and 2 expression, supporting a close link between LDHB suppression and the PDK-PDH axis. These results suggest that LDHB suppression is a key mechanism that enhances glycolysis and is critically involved in the maintenance and propagation of mitochondrial dysfunction via lactate release in liver cancer progression.
Collapse
Affiliation(s)
- Sun Mi Hong
- From the Departments of Biochemistry and.,Biomedical Sciences (BK21 Plus), Ajou University School of Medicine, Suwon 16499, Korea
| | | | - Imkyong Park
- From the Departments of Biochemistry and.,Biomedical Sciences (BK21 Plus), Ajou University School of Medicine, Suwon 16499, Korea
| | | | - Seongki Min
- From the Departments of Biochemistry and.,Biomedical Sciences (BK21 Plus), Ajou University School of Medicine, Suwon 16499, Korea
| | - Gyesoon Yoon
- From the Departments of Biochemistry and .,Biomedical Sciences (BK21 Plus), Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
19
|
Cox N, Kuemmerle R, Millard P, Cahoreau E, François JM, Parrou JL, Lippens G. Integrated pH Measurement during Reaction Monitoring with Dual-Reception 1H- 31P NMR Spectroscopy. Anal Chem 2019; 91:3959-3963. [PMID: 30767511 DOI: 10.1021/acs.analchem.8b05147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Simultaneous detection of 1H and 31P NMR signals through a dual-detection scheme with two receivers allows monitoring of both the signals of a molecule and the pH of the solution through the resonance of the inorganic phosphate. We evaluate here the method in terms of sensitivity and ease of implementation and show that the additional information obtained without any loss of information or increase in measuring time can be of practical importance in a number of biochemical systems.
Collapse
Affiliation(s)
- Neil Cox
- LISBP , Université de Toulouse, CNRS, INRA, INSA , 135 avenue de Rangueil , 31077 Toulouse CEDEX 04, France
| | - Rainer Kuemmerle
- Bruker Biospin AG , Industriestrasse 26 , 8117 Faellanden , Switzerland
| | - Pierre Millard
- LISBP , Université de Toulouse, CNRS, INRA, INSA , 135 avenue de Rangueil , 31077 Toulouse CEDEX 04, France
| | - Edern Cahoreau
- LISBP , Université de Toulouse, CNRS, INRA, INSA , 135 avenue de Rangueil , 31077 Toulouse CEDEX 04, France
| | - Jean-Marie François
- LISBP , Université de Toulouse, CNRS, INRA, INSA , 135 avenue de Rangueil , 31077 Toulouse CEDEX 04, France
| | - Jean-Luc Parrou
- LISBP , Université de Toulouse, CNRS, INRA, INSA , 135 avenue de Rangueil , 31077 Toulouse CEDEX 04, France
| | - Guy Lippens
- LISBP , Université de Toulouse, CNRS, INRA, INSA , 135 avenue de Rangueil , 31077 Toulouse CEDEX 04, France
| |
Collapse
|
20
|
Pinto SMA, Calvete MJF, Ghica ME, Soler S, Gallardo I, Pallier A, Laranjo MB, Cardoso AMS, Castro MMCA, Brett CMA, Pereira MM, Tóth É, Geraldes CFGC. A biocompatible redox MRI probe based on a Mn(ii)/Mn(iii) porphyrin. Dalton Trans 2019; 48:3249-3262. [DOI: 10.1039/c8dt04775h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A water-soluble fluorinated MnIII/II porphyrin responds reversibly to ascorbate redox state as a turn-on MRI probe.
Collapse
|
21
|
Lutz NW, Bernard M. Multiparametric quantification of the heterogeneity of free Ca 2+ concentration by 19F MR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 297:96-107. [PMID: 30380459 DOI: 10.1016/j.jmr.2018.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
For biological tissue that is heterogeneous with respect to free intracellular Ca2+ concentration ([Ca2+]i), the lineshape of the 19F MRS resonance of injected [Ca2+]-sensitive 4-FBAPTA or BAPTA-FF reflects the statistical distribution of [Ca2+]i values. While conventional 19F MRS of these fluorinated Ca2+ reporter molecules only provides one [Ca2+]i value per spectrum, our specially designed lineshape analysis reveals at least eight quantitative statistical parameters (descriptors) characterizing the [Ca2+]i distribution within the observed tissue volume. To this end, the [Ca2+]-sensitive 19F MRS resonance is transformed into a [Ca2+]i curve. Subsequently, the digital points of this [Ca2+]i profile are used to build a histogram using dedicated algorithms. The following statistical descriptors are computed from this histogram: weighted mean and median, standard deviation, range, mode(s), kurtosis, skewness, and entropy. Our new method is thoroughly validated through in silico and experimental models. The potential of combining statistical [Ca2+] information with spatial resolution is demonstrated by simulated statistical CSI maps. This proof of principle should form the basis of future in vivo studies in physiology and medicine, notably in heart and muscle research.
Collapse
Affiliation(s)
- Norbert W Lutz
- Aix-Marseille Univ, School of Medicine, CRMBM, 27 Bd Jean Moulin, F-13005 Marseille, France.
| | - Monique Bernard
- Aix-Marseille Univ, School of Medicine, CRMBM, 27 Bd Jean Moulin, F-13005 Marseille, France.
| |
Collapse
|
22
|
Lutz NW, Bernard M. Multiparametric quantification of heterogeneity of metal ion concentrations, as demonstrated for [Mg 2+] by way of 31P MRS. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 294:71-82. [PMID: 30015125 DOI: 10.1016/j.jmr.2018.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/18/2018] [Accepted: 06/30/2018] [Indexed: 06/08/2023]
Abstract
Magnesium(II) is the second most abundant intracellular cation in mammals. Non-invasive 31P MRS is currently used to measure intracellular free Mg2+ levels in studies of magnesium deficiency disorders. However, this technique only provides one [Mg2+] value for a given tissue volume (or voxel), based on the chemical shift of the ATP-β (or NTP-β) resonance. We present here an approach for quantifying tissue heterogeneity in regard to [Mg2+], by way of multiple 31P MRS-derived descriptors characterizing the statistical intra-volume distribution of free [Mg2+] values. Our novel paradigm exploits the fact that the lineshape of the ATP-β 31P MRS resonance reflects the statistical distribution of [Mg2+] values within the observed volume (or voxel). Appropriate lineshape analysis reveals multiple quantitative statistical parameters (descriptors) characterizing the [Mg2+] distribution. First, the ATP-β 31P MRS resonance is transformed into a [Mg2+] curve that is used to construct a histogram with our specially developed algorithms. From this histogram, at least eight [Mg2+] descriptors are computed: weighted mean concentration and median concentration, standard deviation of concentration, range of concentration, concentration mode(s), concentration kurtosis, concentration skewness, and concentration entropy. Comprehensive evaluation based on in silico and experimental models demonstrates the validity of this new method. This basic feasibility study should open new avenues for future in vivo studies in physiology and medicine.
Collapse
Affiliation(s)
- Norbert W Lutz
- Aix-Marseille Univ, School of Medicine, CRMBM, 27 Bd Jean Moulin, F-13005 Marseille, France.
| | - Monique Bernard
- Aix-Marseille Univ, School of Medicine, CRMBM, 27 Bd Jean Moulin, F-13005 Marseille, France.
| |
Collapse
|
23
|
Affiliation(s)
- KowsalyaDevi Pavuluri
- Russell H. Morgan Department of Radiology and Radiological Science; Johns Hopkins University School of Medicine; Baltimore, Maryland 21205 United States
| | - Michael T. McMahon
- Russell H. Morgan Department of Radiology and Radiological Science; Johns Hopkins University School of Medicine; Baltimore, Maryland 21205 United States
- F. M. Kirby Research Center for Functional Brain Imaging; Kennedy Krieger Research Institute; Baltimore, Maryland 21205 United States
| |
Collapse
|
24
|
Multiparametric quantification of thermal heterogeneity within aqueous materials by water 1H NMR spectroscopy: Paradigms and algorithms. PLoS One 2017; 12:e0178431. [PMID: 28552959 PMCID: PMC5446178 DOI: 10.1371/journal.pone.0178431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 05/12/2017] [Indexed: 11/24/2022] Open
Abstract
Processes involving heat generation and dissipation play an important role in the performance of numerous materials. The behavior of (semi-)aqueous materials such as hydrogels during production and application, but also properties of biological tissue in disease and therapy (e.g., hyperthermia) critically depend on heat regulation. However, currently available thermometry methods do not provide quantitative parameters characterizing the overall temperature distribution within a volume of soft matter. To this end, we present here a new paradigm enabling accurate, contactless quantification of thermal heterogeneity based on the line shape of a water proton nuclear magnetic resonance (1H NMR) spectrum. First, the 1H NMR resonance from water serving as a "temperature probe" is transformed into a temperature curve. Then, the digital points of this temperature profile are used to construct a histogram by way of specifically developed algorithms. We demonstrate that from this histogram, at least eight quantitative parameters describing the underlying statistical temperature distribution can be computed: weighted median, weighted mean, standard deviation, range, mode(s), kurtosis, skewness, and entropy. All mathematical transformations and calculations are performed using specifically programmed EXCEL spreadsheets. Our new paradigm is helpful in detailed investigations of thermal heterogeneity, including dynamic characteristics of heat exchange at sub-second temporal resolution.
Collapse
|
25
|
Krupkova O, Ferguson SJ, Wuertz-Kozak K. Stability of (−)-epigallocatechin gallate and its activity in liquid formulations and delivery systems. J Nutr Biochem 2016; 37:1-12. [DOI: 10.1016/j.jnutbio.2016.01.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/20/2016] [Accepted: 01/28/2016] [Indexed: 12/24/2022]
|
26
|
Longo DL, Bartoli A, Consolino L, Bardini P, Arena F, Schwaiger M, Aime S. In Vivo Imaging of Tumor Metabolism and Acidosis by Combining PET and MRI-CEST pH Imaging. Cancer Res 2016; 76:6463-6470. [PMID: 27651313 DOI: 10.1158/0008-5472.can-16-0825] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/13/2016] [Accepted: 08/15/2016] [Indexed: 11/16/2022]
Abstract
The vast majority of cancers exhibit increased glucose uptake and glycolysis regardless of oxygen availability. This metabolic shift leads to an enhanced production of lactic acid that decreases extracellular pH (pHe), a hallmark of the tumor microenvironment. In this way, dysregulated tumor pHe and upregulated glucose metabolism are linked tightly and their relative assessment may be useful to gain understanding of the underlying biology. Here we investigated noninvasively the in vivo correlation between tumor 18F-FDG uptake and extracellular pH values in a murine model of HER2+ breast cancer. Tumor extracellular pH and perfusion were assessed by acquiring MRI-CEST (chemical exchange saturation transfer) images on a 3T scanner after intravenous administration of a pH-responsive contrast agent (iopamidol). Static PET images were recorded immediately after MRI acquisitions to quantify the extent of 18F-FDG uptake. We demonstrated the occurrence of tumor pHe changes that report on acidification of the interstitial fluid caused by an accelerated glycolysis. Combined PET and MRI-CEST images reported complementary spatial information of the altered glucose metabolism. Notably, a significant inverse correlation was found between extracellular tumor pH and 18F-FDG uptake, as a high 18F-FDG uptake corresponds to lower extracellular pH values. These results show how merging the information from 18F-FDG-uptake and extracellular pH measurements can improve characterization of the tumor microenvironment. Cancer Res; 76(22); 6463-70. ©2016 AACR.
Collapse
Affiliation(s)
- Dario L Longo
- Institute of Biostructure and Bioimaging (CNR) c/o Molecular Biotechnologies Center, Torino, Italy.,Molecular Imaging Center, University of Torino, Torino, Italy
| | - Antonietta Bartoli
- Molecular Imaging Center, University of Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Lorena Consolino
- Molecular Imaging Center, University of Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Paola Bardini
- Molecular Imaging Center, University of Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Francesca Arena
- Molecular Imaging Center, University of Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Markus Schwaiger
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universitat Munchen, Munich, Germany
| | - Silvio Aime
- Molecular Imaging Center, University of Torino, Torino, Italy. .,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
27
|
Marchiq I, Albrengues J, Granja S, Gaggioli C, Pouysségur J, Simon MP. Knock out of the BASIGIN/CD147 chaperone of lactate/H+ symporters disproves its pro-tumour action via extracellular matrix metalloproteases (MMPs) induction. Oncotarget 2016; 6:24636-48. [PMID: 26284589 PMCID: PMC4694784 DOI: 10.18632/oncotarget.4323] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 04/30/2015] [Indexed: 01/09/2023] Open
Abstract
BASIGIN/CD147/EMMPRIN is a multifunctional transmembrane glycoprotein strongly expressed in tumours. BASIGIN controls tumour metabolism, particularly glycolysis by facilitating lactic acid export through the two monocarboxylate transporters MCT1 and hypoxia-inducible MCT4. However, before being recognized as a co-carrier of MCTs, BASIGIN was described as an inducer of extracellular matrix metalloproteases (MMPs). Early on, a model emerged in which, tumour cells use the extracellular domain of BASIGIN to recognize and stimulate neighbouring fibroblasts to produce MMPs. However, this model has remained hypothetical since a direct link between BASIGIN and MMPs production has not yet been clearly established. To validate the BASIGIN/MMP hypothesis, we developed BASIGIN knockouts in three human tumour cell lines derived from glioma, colon, and lung adenocarcinoma. By using co-culture experiments of either human or mouse fibroblasts and tumour cell lines we showed, contrary to what has been abundantly published, that the disruption of BASIGIN in tumour cells and in MEFs has no action on the production of MMPs. Our findings do not support the notion that the pro-tumoural action of BASIGIN is mediated via induction of MMPs. Therefore, we propose that to date, the strongest pro-tumoural action of BASIGIN is mediated through the control of fermentative glycolysis.
Collapse
Affiliation(s)
- Ibtissam Marchiq
- INSERM, CNRS, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia Antipolis, Centre Antoine Lacassagne, Nice, France
| | - Jean Albrengues
- INSERM, CNRS, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia Antipolis, Medical School, Nice, France
| | - Sara Granja
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus of Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Cédric Gaggioli
- INSERM, CNRS, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia Antipolis, Medical School, Nice, France
| | - Jacques Pouysségur
- INSERM, CNRS, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia Antipolis, Centre Antoine Lacassagne, Nice, France.,Centre Scientifique de Monaco (CSM), Quai Antoine Ier MC, France
| | - Marie-Pierre Simon
- INSERM, CNRS, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia Antipolis, Centre Antoine Lacassagne, Nice, France
| |
Collapse
|
28
|
Som A, Raliya R, Tian L, Akers W, Ippolito JE, Singamaneni S, Biswas P, Achilefu S. Monodispersed calcium carbonate nanoparticles modulate local pH and inhibit tumor growth in vivo. NANOSCALE 2016; 8:12639-12647. [PMID: 26745389 PMCID: PMC4919221 DOI: 10.1039/c5nr06162h] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The acidic extracellular environment of tumors potentiates their aggressiveness and metastasis, but few methods exist to selectively modulate the extracellular pH (pHe) environment of tumors. Transient flushing of biological systems with alkaline fluids or proton pump inhibitors is impractical and nonselective. Here we report a nanoparticles-based strategy to intentionally modulate the pHe in tumors. Biochemical simulations indicate that the dissolution of calcium carbonate nanoparticles (nano-CaCO3) in vivo increases pH asymptotically to 7.4. We developed two independent facile methods to synthesize monodisperse non-doped vaterite nano-CaCO3 with distinct size range between 20 and 300 nm. Using murine models of cancer, we demonstrate that the selective accumulation of nano-CaCO3 in tumors increases tumor pH over time. The associated induction of tumor growth stasis is putatively interpreted as a pHe increase. This study establishes an approach to prepare nano-CaCO3 over a wide particle size range, a formulation that stabilizes the nanomaterials in aqueous solutions, and a pH-sensitive nano-platform capable of modulating the acidic environment of cancer for potential therapeutic benefits.
Collapse
Affiliation(s)
- Avik Som
- Departments of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Akhenblit PJ, Hanke NT, Gill A, Persky DO, Howison CM, Pagel MD, Baker AF. Assessing Metabolic Changes in Response to mTOR Inhibition in a Mantle Cell Lymphoma Xenograft Model Using AcidoCEST MRI. Mol Imaging 2016; 15:15/0/1536012116645439. [PMID: 27140422 PMCID: PMC4878391 DOI: 10.1177/1536012116645439] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 02/23/2016] [Indexed: 01/16/2023] Open
Abstract
AcidoCEST magnetic resonance imaging (MRI) has previously been shown to measure tumor extracellular pH (pHe) with excellent accuracy and precision. This study investigated the ability of acidoCEST MRI to monitor changes in tumor pHe in response to therapy. To perform this study, we used the Granta 519 human mantle cell lymphoma cell line, which is an aggressive B-cell malignancy that demonstrates activation of the phosphatidylinositol-3-kinase/Akt/mammalian target of rapamycin (mTOR) pathway. We performed in vitro and in vivo studies using the Granta 519 cell line to investigate the efficacy and associated changes induced by the mTOR inhibitor, everolimus (RAD001). AcidoCEST MRI studies showed a statistically significant increase in tumor pHe of 0.10 pH unit within 1 day of initiating treatment, which foreshadowed a decrease in tumor growth of the Granta 519 xenograft model. AcidoCEST MRI then measured a decrease in tumor pHe 7 days after initiating treatment, which foreshadowed a return to normal tumor growth rate. Therefore, this study is a strong example that acidoCEST MRI can be used to measure tumor pHe that may serve as a marker for therapeutic efficacy of anticancer therapies.
Collapse
Affiliation(s)
- Paul J Akhenblit
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Neale T Hanke
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Alexander Gill
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Daniel O Persky
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | | | - Mark D Pagel
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Amanda F Baker
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
30
|
Abstract
Hypoxia is a common finding in advanced human tumors and is often associated with metastatic dissemination and poor prognosis. Cancer cells adapt to hypoxia by utilizing physiological adaptation pathways that promote a switch from oxidative to glycolytic metabolism. This promotes the conversion of glucose into lactate while limiting its transformation into acetyl coenzyme A (acetyl-CoA). The uptake of glucose and the glycolytic flux are increased under hypoxic conditions, mostly owing to the upregulation of genes encoding glucose transporters and glycolytic enzymes, a process that depends on hypoxia-inducible factor 1 (HIF-1). The reduced delivery of acetyl-CoA to the tricarboxylic acid cycle leads to a switch from glucose to glutamine as the major substrate for fatty acid synthesis in hypoxic cells. In addition, hypoxia induces (1) the HIF-1-dependent expression of BCL2/adenovirus E1B 19-kDa interacting protein 3 (BNIP3) and BNIP3-like (BNIP3L), which trigger mitochondrial autophagy, thereby decreasing the oxidative metabolism of both fatty acids and glucose, and (2) the expression of the sodium-hydrogen exchanger NHE1, which maintains an alkaline intracellular pH. Here, we present a compendium of methods to study hypoxia-induced metabolic alterations.
Collapse
|
31
|
Jiang W, Lumata L, Chen W, Zhang S, Kovacs Z, Sherry AD, Khemtong C. Hyperpolarized 15N-pyridine derivatives as pH-sensitive MRI agents. Sci Rep 2015; 5:9104. [PMID: 25774436 PMCID: PMC4360734 DOI: 10.1038/srep09104] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/19/2015] [Indexed: 01/02/2023] Open
Abstract
Highly sensitive MR imaging agents that can accurately and rapidly monitor changes in pH would have diagnostic and prognostic value for many diseases. Here, we report an investigation of hyperpolarized 15N-pyridine derivatives as ultrasensitive pH-sensitive imaging probes. These molecules are easily polarized to high levels using standard dynamic nuclear polarization (DNP) techniques and their 15N chemical shifts were found to be highly sensitive to pH. These probes displayed sharp 15N resonances and large differences in chemical shifts (Δδ >90 ppm) between their free base and protonated forms. These favorable features make these agents highly suitable candidates for the detection of small changes in tissue pH near physiological values.
Collapse
Affiliation(s)
- Weina Jiang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Lloyd Lumata
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Wei Chen
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Shanrong Zhang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Zoltan Kovacs
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - A Dean Sherry
- 1] Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA [2] Department of Chemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75083, USA
| | - Chalermchai Khemtong
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
32
|
Chen LQ, Pagel MD. Evaluating pH in the Extracellular Tumor Microenvironment Using CEST MRI and Other Imaging Methods. ADVANCES IN RADIOLOGY 2015; 2015:206405. [PMID: 27761517 PMCID: PMC5066878 DOI: 10.1155/2015/206405] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tumor acidosis is a consequence of altered metabolism, which can lead to chemoresistance and can be a target of alkalinizing therapies. Noninvasive measurements of the extracellular pH (pHe) of the tumor microenvironment can improve diagnoses and treatment decisions. A variety of noninvasive imaging methods have been developed for measuring tumor pHe. This review provides a detailed description of the advantages and limitations of each method, providing many examples from previous research reports. A substantial emphasis is placed on methods that use MR spectroscopy and MR imaging, including recently developed methods that use chemical exchange saturation transfer MRI that combines some advantages of MR spectroscopy and imaging. Together, this review provides a comprehensive overview of methods for measuring tumor pHe, which may facilitate additional creative approaches in this research field.
Collapse
Affiliation(s)
- Liu Qi Chen
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Mark D. Pagel
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA
- Department of Medical Imaging, University of Arizona, Tucson, AZ 85724, USA
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
33
|
Pettersen EO, Ebbesen P, Gieling RG, Williams KJ, Dubois L, Lambin P, Ward C, Meehan J, Kunkler IH, Langdon SP, Ree AH, Flatmark K, Lyng H, Calzada MJ, Peso LD, Landazuri MO, Görlach A, Flamm H, Kieninger J, Urban G, Weltin A, Singleton DC, Haider S, Buffa FM, Harris AL, Scozzafava A, Supuran CT, Moser I, Jobst G, Busk M, Toustrup K, Overgaard J, Alsner J, Pouyssegur J, Chiche J, Mazure N, Marchiq I, Parks S, Ahmed A, Ashcroft M, Pastorekova S, Cao Y, Rouschop KM, Wouters BG, Koritzinsky M, Mujcic H, Cojocari D. Targeting tumour hypoxia to prevent cancer metastasis. From biology, biosensing and technology to drug development: the METOXIA consortium. J Enzyme Inhib Med Chem 2014; 30:689-721. [PMID: 25347767 DOI: 10.3109/14756366.2014.966704] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/15/2014] [Indexed: 01/06/2023] Open
Abstract
The hypoxic areas of solid cancers represent a negative prognostic factor irrespective of which treatment modality is chosen for the patient. Still, after almost 80 years of focus on the problems created by hypoxia in solid tumours, we still largely lack methods to deal efficiently with these treatment-resistant cells. The consequences of this lack may be serious for many patients: Not only is there a negative correlation between the hypoxic fraction in tumours and the outcome of radiotherapy as well as many types of chemotherapy, a correlation has been shown between the hypoxic fraction in tumours and cancer metastasis. Thus, on a fundamental basis the great variety of problems related to hypoxia in cancer treatment has to do with the broad range of functions oxygen (and lack of oxygen) have in cells and tissues. Therefore, activation-deactivation of oxygen-regulated cascades related to metabolism or external signalling are important areas for the identification of mechanisms as potential targets for hypoxia-specific treatment. Also the chemistry related to reactive oxygen radicals (ROS) and the biological handling of ROS are part of the problem complex. The problem is further complicated by the great variety in oxygen concentrations found in tissues. For tumour hypoxia to be used as a marker for individualisation of treatment there is a need for non-invasive methods to measure oxygen routinely in patient tumours. A large-scale collaborative EU-financed project 2009-2014 denoted METOXIA has studied all the mentioned aspects of hypoxia with the aim of selecting potential targets for new hypoxia-specific therapy and develop the first stage of tests for this therapy. A new non-invasive PET-imaging method based on the 2-nitroimidazole [(18)F]-HX4 was found to be promising in a clinical trial on NSCLC patients. New preclinical models for testing of the metastatic potential of cells were developed, both in vitro (2D as well as 3D models) and in mice (orthotopic grafting). Low density quantitative real-time polymerase chain reaction (qPCR)-based assays were developed measuring multiple hypoxia-responsive markers in parallel to identify tumour hypoxia-related patterns of gene expression. As possible targets for new therapy two main regulatory cascades were prioritised: The hypoxia-inducible-factor (HIF)-regulated cascades operating at moderate to weak hypoxia (<1% O(2)), and the unfolded protein response (UPR) activated by endoplasmatic reticulum (ER) stress and operating at more severe hypoxia (<0.2%). The prioritised targets were the HIF-regulated proteins carbonic anhydrase IX (CAIX), the lactate transporter MCT4 and the PERK/eIF2α/ATF4-arm of the UPR. The METOXIA project has developed patented compounds targeting CAIX with a preclinical documented effect. Since hypoxia-specific treatments alone are not curative they will have to be combined with traditional anti-cancer therapy to eradicate the aerobic cancer cell population as well.
Collapse
|
34
|
Gale EM, Mukherjee S, Liu C, Loving GS, Caravan P. Structure-redox-relaxivity relationships for redox responsive manganese-based magnetic resonance imaging probes. Inorg Chem 2014; 53:10748-61. [PMID: 25226090 PMCID: PMC4186673 DOI: 10.1021/ic502005u] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Indexed: 12/11/2022]
Abstract
A library of 10 Mn-containing complexes capable of switching reversibly between the Mn(II) and Mn(III) oxidation states was prepared and evaluated for potential usage as MRI reporters of tissue redox activity. We synthesized N-(2-hydroxybenzyl)-N,N',N'-ethylenediaminetriacetic acid (HBET) and N-(2-hydroxybenzyl-N,N',N'-trans-1,2-cyclohexylenediaminetriacetic acid (CyHBET) ligands functionalized (-H, -OMe, -NO2) at the 5-position of the aromatic ring. The Mn(II) complexes of all ligands and the Mn(III) complexes of the 5-H and 5-NO2 functionalized ligands were synthesized and isolated, but the Mn(III) complexes with the 5-OMe functionalized ligands were unstable. (1)H relaxivity of the 10 isolable complexes was measured at pH 7.4 and 37 °C, 1.4 T. Thermodynamic stability, pH-dependent complex speciation, hydration state, water exchange kinetics of the Mn(II) complexes, and pseudo-first order reduction kinetics of the Mn(III) complexes were studied using a combination of pH-potentiometry, UV-vis spectroscopy, and (1)H and (17)O NMR measurements. The effects of ligand structural and electronic modifications on the Mn(II/III) redox couple were studied by cyclic voltammetry. The Mn(II) complexes are potent relaxation agents as compared to the corresponding Mn(III) species with [Mn(II)(CyHBET)(H2O)](2-) exhibiting a 7.5-fold higher relaxivity (3.3 mM(-1) s(-1)) than the oxidized form (0.4 mM(-1) s(-1)). At pH 7.4, Mn(II) exists as a mixture of fully deprotonated (ML) and monoprotonated (HML) complexes and Mn(II) complex stability decreases as the ligands become more electron-releasing (pMn for 10 μM [Mn(II)(CyHBET-R')(H2O)](2-) decreases from 7.6 to 6.2 as R' goes from -NO2 to -OMe, respectively). HML speciation increases as the electron-releasing nature of the phenolato-O donor increases. The presence of a water coligand is maintained upon conversion from HML to ML, but the water exchange rate of ML is faster by up to 2 orders of magnitude (k(ex)(310) for H[Mn(II)(CyHBET)(H2O)](-) and [Mn(II)(CyHBET)(H2O)](2-) are 1.2 × 10(8) and 1.0 × 10(10) s(-1), respectively). The Mn(II/III) redox potential can be tuned over a range of 0.30 V (E(1/2) = 0.27-0.57 V) through electronic modifications to the 5-substituent of the aromatic ligand component. However, care must be taken in tuning the ligand electronics to avoid Mn(III)-ligand autoredox. Taken together, these results serve to establish criteria for optimizing Mn(III) versus Mn(II) relaxivity differentials, complex stability, and Mn(II/III) redox potential.
Collapse
Affiliation(s)
| | | | - Cynthia Liu
- The Athinoula
A. Martinos Center for Biomedical Imaging, Department of Radiology,
Massachusetts General Hospital, Harvard
Medical School, 149 Thirteenth
Street, Suite 2301, Charlestown, Massachusetts 02129, United States
| | - Galen S. Loving
- The Athinoula
A. Martinos Center for Biomedical Imaging, Department of Radiology,
Massachusetts General Hospital, Harvard
Medical School, 149 Thirteenth
Street, Suite 2301, Charlestown, Massachusetts 02129, United States
| | - Peter Caravan
- The Athinoula
A. Martinos Center for Biomedical Imaging, Department of Radiology,
Massachusetts General Hospital, Harvard
Medical School, 149 Thirteenth
Street, Suite 2301, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
35
|
Pilot study of Iopamidol-based quantitative pH imaging on a clinical 3T MR scanner. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2014; 27:477-85. [DOI: 10.1007/s10334-014-0433-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 12/22/2022]
|
36
|
Harguindey S, Arranz JL, Polo Orozco JD, Rauch C, Fais S, Cardone RA, Reshkin SJ. Cariporide and other new and powerful NHE1 inhibitors as potentially selective anticancer drugs--an integral molecular/biochemical/metabolic/clinical approach after one hundred years of cancer research. J Transl Med 2013; 11:282. [PMID: 24195657 PMCID: PMC3826530 DOI: 10.1186/1479-5876-11-282] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/25/2013] [Indexed: 02/04/2023] Open
Abstract
In recent years an increasing number of publications have emphasized the growing importance of hydrogen ion dynamics in modern cancer research, from etiopathogenesis and treatment. A proton [H+]-related mechanism underlying the initiation and progression of the neoplastic process has been recently described by different research groups as a new paradigm in which all cancer cells and tissues, regardless of their origin and genetic background, have a pivotal energetic and homeostatic disturbance of their metabolism that is completely different from all normal tissues: an aberrant regulation of hydrogen ion dynamics leading to a reversal of the pH gradient in cancer cells and tissues (↑pHi/↓pHe, or “proton reversal”). Tumor cells survive their hostile microenvironment due to membrane-bound proton pumps and transporters, and their main defensive strategy is to never allow internal acidification because that could lead to their death through apoptosis. In this context, one of the primary and best studied regulators of both pHi and pHe in tumors is the Na+/H+ exchanger isoform 1 (NHE1). An elevated NHE1 activity can be correlated with both an increase in cell pH and a decrease in the extracellular pH of tumors, and such proton reversal is associated with the origin, local growth, activation and further progression of the metastatic process. Consequently, NHE1 pharmaceutical inhibition by new and potent NHE1 inhibitors represents a potential and highly selective target in anticancer therapy. Cariporide, being one of the better studied specific and powerful NHE1 inhibitors, has proven to be well tolerated by humans in the cardiological context, however some side-effects, mainly related to drug accumulation and cerebrovascular complications were reported. Thus, cariporide could become a new, slightly toxic and effective anticancer agent in different human malignancies.
Collapse
Affiliation(s)
- Salvador Harguindey
- Instituto de Biología Clínica y Metabolismo (IBCM), Postas 13-01004, Vitoria, Spain.
| | | | | | | | | | | | | |
Collapse
|
37
|
Correction: Quantitative In Vivo Characterization of Intracellular and Extracellular pH Profiles in Heterogeneous Tumors: A Novel Method Enabling Multiparametric pH Analysis. Cancer Res 2013. [DOI: 10.1158/0008-5472.can-13-2314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Abstract
Intense interest in the 'Warburg effect' has been revived by the discovery that hypoxia-inducible factor 1 (HIF1) reprogrammes pyruvate oxidation to lactic acid conversion; lactic acid is the end product of fermentative glycolysis. The most aggressive and invasive cancers, which are often hypoxic, rely on exacerbated glycolysis to meet the increased demand for ATP and biosynthetic precursors and also rely on robust pH-regulating systems to combat the excessive generation of lactic and carbonic acids. In this Review, we present the key pH-regulating systems and synthesize recent advances in strategies that combine the disruption of pH control with bioenergetic mechanisms. We discuss the possibility of exploiting, in rapidly growing tumours, acute cell death by 'metabolic catastrophe'.
Collapse
Affiliation(s)
- Scott K Parks
- Institute for Research on Cancer and Aging of Nice (IRCAN), Equipe Labellisée LNCC, University of Nice-Sophia Antipolis, Centre National de la Recherche Scientifique, INSERM, Centre A. Lacassagne, Nice 06189, France
| | | | | |
Collapse
|