1
|
Chen J, Wu C, Yu K, Liu J, Yang J, Li W, Tang X, Shi Y, Xu K, Chen Y, Qin X. Bufalin targets the SRC-3/c-Myc pathway in chemoresistant cells to regulate metastasis induced by chemoresistance in colorectal cancer. J Cancer Res Clin Oncol 2025; 151:71. [PMID: 39921753 PMCID: PMC11807082 DOI: 10.1007/s00432-025-06124-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/26/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Metastasis and chemoresistance are often major challenges in advanced-stage colorectal cancer. Bufalin has a therapeutic effect on both metastasis and drug resistance, but how bufalin affects chemoresistance-mediated metastasis remains unclear. METHODS The role of BU in the inhibition of EMT and angiogenesis induced by chemoresistant cells using wound healing assays, invasion assays, HUVEC tube formation and adhesion assays. Western blot and immunofluorescence were used to explore the potential molecular changes. BU can precisely regulate c-Myc expression by targeting SRC-3 in chemoresistant cells was confirmed by Western blot. In vivo experiments were conducted to validate that both BU and cinobufacini can ameliorate drug resistance-promoted EMT and angiogenic effects. RESULTS Bufalin inhibited resistance-induced epithelial-mesenchymal transition (EMT) and angiogenesis. Targeting of the SRC-3 protein by bufalin reduced the expression level of c-Myc and inhibited the prometastatic effect mediated by chemoresistance, and overexpression of SRC-3 or c-Myc reversed the inhibitory effect of bufalin on chemotherapeutic resistance, promoting metastasis. Moreover, the clinical drug cinobufacini and its main active monomer bufalin reduced liver metastasis of colorectal cancer caused by chemoresistance in vivo. CONCLUSION Bufalin can target the SRC-3/c-Myc signaling pathway to affect the prometastatic effect of chemoresistant cells, suggesting that bufalin may be used as a new adjuvant antimetastatic therapy for colorectal cancer.
Collapse
Affiliation(s)
- Jinbao Chen
- Department of Gastroenterology, Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, China
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Chenqi Wu
- Department of Gastroenterology, Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, China
| | - Kun Yu
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jinpei Liu
- Department of Gastroenterology, Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, China
| | - Jiahua Yang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Wei Li
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Xiaoxia Tang
- Department of Medical Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Yihai Shi
- Department of Gastroenterology, Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, China
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, China.
| | - Yi Chen
- Department of Surgery, Minhang Hospital, Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer(SMHC), Minhan Hosipital and AHS, Fudan University, Shanghai, China.
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 170 Xinsong Rd, Shanghai, 201100, China.
| | - Xiaoyu Qin
- Department of Gastroenterology, Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, China.
| |
Collapse
|
2
|
Wang H, Jia L, Yu H, Tang H, Chi H, Zhang W, Chen J. Mechanism Study of Bufalin Reversal of Drug Resistance by Inhibiting Hypoxic Colon Cancer Cell-Induced Polarization of M2 Macrophages. Integr Cancer Ther 2025; 24:15347354251325806. [PMID: 40071641 PMCID: PMC11898227 DOI: 10.1177/15347354251325806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 01/24/2025] [Accepted: 02/20/2025] [Indexed: 03/15/2025] Open
Abstract
Chemoresistance is still an important factor affecting the efficacy of treatment in colorectal cancer (CRC) patients. Hypoxia is related to poor prognosis and treatment resistance in cancer. Relevant studies have shown that a hypoxic microenvironment can promote the polarization of M2 macrophages and thus promote tumor development. Previous research has found that bufalin has a wide range of antitumor effects, but whether bufalin can reverse tumor resistance by improving the hypoxic tumor microenvironment is still unclear. In present research, it was found that high expression of SRC-3 in CRC cells under hypoxic conditions promoted the polarization of M2 and caused chemotherapy resistance, while bufalin, a monomeric drug used in Chinese medicine, reduced the level of SRC-3 and HIF-1α, thereby reversing chemoresistance. In addition, overexpression of SRC-3 reduced the hypoxia-mitigating effect of bufalin on CRC cells to promote the polarization of M2. Bufalin also inhibits the polarization of M2 caused by hypoxic CRC cells. Therefore, bufalin has the potential to become a new adjuvant therapy that can be further explored in future studies on its treatment of CRC.
Collapse
Affiliation(s)
- Haijing Wang
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linlin Jia
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongjie Yu
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Tang
- Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Huabowen Chi
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Zhang
- Three Gorges University & Yichang Hospital of Traditional Chinese Medicine, Yichang, China
| | - Jinbao Chen
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Tang Y, Luo J, Qin L, Tang C, Qiu C, Li J, Qin L. Network Pharmacology and Molecular Docking-Based Screening of Immunotherapeutic Targets for HuaChanSu Against Breast Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01305-4. [PMID: 39565543 DOI: 10.1007/s12033-024-01305-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/10/2024] [Indexed: 11/21/2024]
Abstract
Breast cancer has emerged as the primary cause of mortality stemming from malignancies among women. HuaChanSu has demonstrated efficacy in suppressing the progression of various malignancies. However, the specific immune targets and pathways influenced by HuaChanSu within mammary tumors remain elusive. This study is designed to uncover potent monomers and pivotal targets associated with HuaChanSu's anti-breast cancer Immunotherapy. The genes pertinent to HuaChanSu and breast cancer were acquired individually from publicly available databases. Interaction analysis using Cytoscape was conducted on common genes to determine the most suitable targets and crucial constituents of HuaChanSu's Immunotherapy against breast cancer. Following this, molecular docking was employed to validate ligand and receptor binding interactions. Lastly, the identified core genes underwent assessment of immune infiltration. The intersection of HuaChanSu and BC targets yielded a total of 49 differentially expressed genes. Bufalin emerged as the most potent constituent in Immunotherapy. Immunoassay data demonstrated significant correlations (r > 0.03, p < 0.05) between S100B, MMP9, FOS, EGFR, KIT, MME, and immune infiltration within BC. Molecular docking further corroborated the effective binding of Bufalin with immune-related genes. Through network pharmacological validation, we propose the extraction of Bufalin, a monomeric constituent of Huachansu, to exert immunomodulatory effects aimed at inhibiting the progression of breast cancer. Most of the target genes (S100B, BIRC5, MMP9, FOS, EGFR, KIT, and MME) are common targets for immunotherapy.
Collapse
Affiliation(s)
- Yujun Tang
- Guangxi Medical University, Nanning, China
| | - Jie Luo
- Guangxi Medical University, Nanning, China
- HengyangMedicaSchool, University of South China, HengYang, China
| | | | | | - Caixin Qiu
- Guangxi Medical University, Nanning, China
| | - Jiehua Li
- Guangxi Medical University, Nanning, China.
| | | |
Collapse
|
4
|
Mhaidly N, Barake N, Trelcat A, Journe F, Saussez S, Descamps G. Bufalin Suppresses Head and Neck Cancer Development by Modulating Immune Responses and Targeting the β-Catenin Signaling Pathway. Cancers (Basel) 2024; 16:2739. [PMID: 39123466 PMCID: PMC11311268 DOI: 10.3390/cancers16152739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Bufalin, a cardiotonic steroid derived from the Chinese toad (Bufo gargarizans), has demonstrated potent anticancer properties across various cancer types, positioning it as a promising therapeutic candidate. However, comprehensive mechanistic studies specific to head and neck cancers have been lacking. Our study aimed to bridge this gap by investigating bufalin's mechanisms of action in head and neck cancer cells. Using several methods, such as Western blotting, immunofluorescence, and flow cytometry, we observed bufalin's dose-dependent reduction in cell viability, disruption of cell membrane integrity, and inhibition of colony formation in both HPV-positive and HPV-negative cell lines. Bufalin induces apoptosis through the modulation of apoptosis-related proteins, mitochondrial function, and reactive oxygen species production. It also arrests the cell cycle at the G2/M phase and attenuates cell migration while affecting epithelial-mesenchymal transition markers and targeting pivotal signaling pathways, including Wnt/β-catenin, EGFR, and NF-κB. Additionally, bufalin exerted immunomodulatory effects by polarizing macrophages toward the M1 phenotype, bolstering antitumor immune responses. These findings underscore bufalin's potential as a multifaceted therapeutic agent against head and neck cancers, targeting essential pathways involved in proliferation, apoptosis, cell cycle regulation, metastasis, and immune modulation. Further research is warranted to validate these mechanisms and optimize bufalin's clinical application.
Collapse
Affiliation(s)
- Nour Mhaidly
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars, 8, 7000 Mons, Belgium; (N.M.); (N.B.); (A.T.); (S.S.)
| | - Noura Barake
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars, 8, 7000 Mons, Belgium; (N.M.); (N.B.); (A.T.); (S.S.)
| | - Anne Trelcat
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars, 8, 7000 Mons, Belgium; (N.M.); (N.B.); (A.T.); (S.S.)
| | - Fabrice Journe
- Laboratory of Clinical and Experimental Oncology (LOCE), Institute Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium;
| | - Sven Saussez
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars, 8, 7000 Mons, Belgium; (N.M.); (N.B.); (A.T.); (S.S.)
| | - Géraldine Descamps
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars, 8, 7000 Mons, Belgium; (N.M.); (N.B.); (A.T.); (S.S.)
| |
Collapse
|
5
|
Shang J, Xia Q, Sun Y, Wang H, Chen J, Li Y, Gao F, Yin P, Yuan Z. Bufalin-Loaded Multifunctional Photothermal Nanoparticles Inhibit the Anaerobic Glycolysis by Targeting SRC-3/HIF-1α Pathway for Improved Mild Photothermal Therapy in CRC. Int J Nanomedicine 2024; 19:7831-7850. [PMID: 39105099 PMCID: PMC11299722 DOI: 10.2147/ijn.s470005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Purpose Compared with traditional photothermal therapy (PTT, >50°C), mild PTT (≤45°C) is a promising strategy for tumor therapy with fewer adverse effects. Unfortunately, its anti-tumor efficacy is hampered by thermoresistance induced by overexpression of heat shock proteins (HSPs). In our previous study, we found bufalin (BU) is a glycolysis inhibitor that depletes HSPs, which is expected to overcome thermotolerance of tumor cells. In this study, BU-loaded multifunctional nanoparticles (NPs) were developed for enhancing the mild PTT of colorectal cancer (CRC). Methods Fe3O4 NPs coated with the polydopamine (PDA) shell modified with polyethylene glycol (PEG) and cyclic arginine-glycyl-aspartic peptide (cRGD) for loading BU (Fe3O4@PDA-PEG-cRGD/BU NPs) were developed. The thermal variations in Fe3O4@PDA-PEG-cRGD/BU NPs solution under different conditions were measured. Glycolysis inhibition was evaluated by measuring the glucose uptake, extracellular lactate, and intracellular adenosine triphosphate (ATP) levels. The cellular cytotoxicity of Fe3O4@PDA-PEG-cRGD/BU NPs was analyzed using a cell counting kit-8 assay, Calcein-AM/PI double staining, and flow cytometry in HCT116 cells. The magnetic resonance imaging (MRI) performance and anti-tumor therapeutic efficacy of Fe3O4@PDA-PEG-cRGD/BU NPs were evaluated in HCT116-tumor bearing mice. Results Fe3O4@PDA-PEG-cRGD/BU NPs had an average diameter of 260.4±3.5 nm, the zeta potential of -23.8±1.6 mV, the drug loading rate of 1.1%, which had good thermal stability, photothermal conversion efficiencies and MRI performance. In addition, the released BU not only killed tumor cells but also interfered with glycolysis by targeting the steroid receptor coactivator 3 (SRC-3)/HIF-1α pathway, preventing intracellular ATP synthesis, and combating HSP-dependent tumor thermoresistance, ultimately strengthening the thermal sensitivity toward mild PTT both in vitro and in vivo. Conclusion This study provides a highly effective strategy for enhancing the therapeutic effects of mild PTT toward tumors.
Collapse
Affiliation(s)
- Jing Shang
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
| | - Qi Xia
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
| | - Yuji Sun
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
| | - Hongtao Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
| | - Jia Chen
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
| | - Yue Li
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
| | - Feng Gao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, People’s Republic of China
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Zeting Yuan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, People’s Republic of China
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, People’s Republic of China
| |
Collapse
|
6
|
Kaur G, Devi S, Sharma A, Sood P. Pharmacological insights and role of bufalin (bufadienolides) in inflammation modulation: a narrative review. Inflammopharmacology 2024:10.1007/s10787-024-01517-9. [PMID: 39012431 DOI: 10.1007/s10787-024-01517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Bufadienolides, specifically bufalin, have garnered attention for their potential therapeutic application in modulating inflammatory pathways. Bufalin is derived from toad venom and exhibits promising anti-inflammatory properties. Its anti-inflammatory effects have been demonstrated by influencing crucial signaling pathways like NF-B, MAPK, and JAK-STAT, resulting in the inhibition of pro-inflammatory substances like cytokines, chemokines, and adhesion molecules. Bufalin blocks inflammasome activation and reduces oxidative stress, hence increasing its anti-inflammatory properties. Bufalin has shown effectiveness in reducing inflammation-related diseases such as cancer, cardiovascular problems, and autoimmune ailments in preclinical investigations. Furthermore, producing new approaches of medication delivery and combining therapies with bufalin shows potential for improving its effectiveness and reducing adverse effects. This review explores the pharmacological effects and mechanistic approaches of bufalin as an anti-inflammatory agent, which further highlights its potential for therapy and offers the basis for further study on its therapeutic application in inflammation-related disorders.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Chitkara University School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Akhil Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Parul Sood
- Chitkara University School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| |
Collapse
|
7
|
Tang D, Wang H, Deng W, Wang J, Shen D, Wang L, Lu J, Feng Y, Cao S, Li W, Yin P, Xu K, Chen J. Mechanism of bufalin inhibition of colon cancer liver metastasis by regulating M2-type polarization of Kupffer cells induced by highly metastatic colon cancer cells. Apoptosis 2024; 29:635-648. [PMID: 38393643 DOI: 10.1007/s10495-023-01930-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 02/25/2024]
Abstract
Patients with metastatic colorectal cancer often have poor outcomes, primarily due to hepatic metastasis. Colorectal cancer (CRC) cells have the ability to secrete cytokines and other molecules that can remodel the tumor microenvironment, facilitating the spread of cancer to the liver. Kupffer cells (KCs), which are macrophages in the liver, can be polarized to M2 type, thereby promoting the expression of adhesion molecules that aid in tumor metastasis. Our research has shown that huachanshu (with bufalin as the main active monomer) can effectively inhibit CRC metastasis. However, the underlying mechanism still needs to be thoroughly investigated. We have observed that highly metastatic CRC cells have a greater ability to induce M2-type polarization of Kupffer cells, leading to enhanced metastasis. Interestingly, we have found that inhibiting the expression of IL-6, which is highly expressed in the serum, can reverse this phenomenon. Notably, bufalin has been shown to attenuate the M2-type polarization of Kupffer cells induced by highly metastatic Colorectal cancer (mCRC) cells and down-regulate IL-6 expression, ultimately inhibiting tumor metastasis. In this project, our aim is to study how high mCRC cells induce M2-type polarization and how bufalin, via the SRC-3/IL-6 pathway, can inhibit CRC metastasis. This research will provide a theoretical foundation for understanding the anti-CRC effect of bufalin.
Collapse
Affiliation(s)
- Donghao Tang
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China
- Fifth Clinical Medical College, Anhui Medical University, Anhui, 230022, China
| | - Haijing Wang
- Department of Pharmacy, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Wanli Deng
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jie Wang
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China
| | - Dongxiao Shen
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Lu Wang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jiahao Lu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China
- Fifth Clinical Medical College, Anhui Medical University, Anhui, 230022, China
| | - Yuejiao Feng
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China
- Fifth Clinical Medical College, Anhui Medical University, Anhui, 230022, China
| | - Saiya Cao
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Wei Li
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China.
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Jinbao Chen
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
- Department of Medical Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China.
| |
Collapse
|
8
|
Lu D, Chen J, Qin L, Bijou I, Yi P, Li F, Song X, Mackenzie KR, Yu X, Yang B, Chowdhury SR, Korp JD, O’Malley BW, Lonard DM, Wang J. Lead Compound Development of SRC-3 Inhibitors with Improved Pharmacokinetic Properties and Anticancer Efficacy. J Med Chem 2024; 67:5333-5350. [PMID: 38551814 PMCID: PMC11105966 DOI: 10.1021/acs.jmedchem.3c01596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Steroid receptor coactivator 3 (SRC-3) is a critical mediator of many intracellular signaling pathways that are crucial for cancer proliferation and metastasis. In this study, we performed structure-activity relationship exploration and drug-like optimization of the hit compound SI-2, guided by in vitro/in vivo metabolism studies and cytotoxicity assays. Our efforts led to the discovery of two lead compounds, SI-10 and SI-12. Both compounds exhibit potent cytotoxicity against a panel of human cancer cell lines and demonstrate acceptable pharmacokinetic properties. A biotinylated estrogen response element pull-down assay demonstrated that SI-12 could disrupt the recruitment of SRC-3 and p300 in the estrogen receptor complex. Importantly, SI-10 and SI-12 significantly inhibited tumor growth and metastasis in vivo without appreciable acute toxicity. These results demonstrate the potential of SI-10 and SI-12 as drug candidates for cancer therapy, given their potent SRC-3 inhibition and promising pharmacokinetic and toxicity profiles.
Collapse
Affiliation(s)
- Dong Lu
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030
| | - Jianwei Chen
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030
| | - Li Qin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Imani Bijou
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030
| | - Ping Yi
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030
- Department of Biology and Biochemistry, University of Houston, TX 77205
| | - Feng Li
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030
| | - Xianzhou Song
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030
| | - Kevin R. Mackenzie
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030
| | - Xin Yu
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030
| | - Bin Yang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030
| | - Sandipan Roy Chowdhury
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030
| | - James D. Korp
- Department of Chemistry, University of Houston, TX 77204
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Jin Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
9
|
Li X, Xiong H, Mou X, Huang C, Thomas ER, Yu W, Jiang Y, Chen Y. Androgen receptor cofactors: A potential role in understanding prostate cancer. Biomed Pharmacother 2024; 173:116338. [PMID: 38417290 DOI: 10.1016/j.biopha.2024.116338] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024] Open
Abstract
Prostate cancer (PCa) is witnessing a concerning rise in incidence annually, with the androgen receptor (AR) emerging as a pivotal contributor to its growth and progression. Mounting evidence underscores the AR's ability to recruit cofactors, influencing downstream gene transcription and thereby fueling the proliferation and metastasis of PCa cells. Although, clinical strategies involving AR antagonists provide some relief, managing castration resistant prostate cancer (CRPC) remains a formidable challenge. Thus, the need of the hour lies in unearthing new drugs or therapeutic targets to effectively combat PCa. This review encapsulates the pivotal roles played by coactivators and corepressors of AR, notably androgen receptor-associated protein (ARA) and steroid receptor Coactivators (SRC) in PCa. Our data unveils how these cofactors intricately modulate histone modifications, cell cycling, SUMOylation, and apoptosis through their interactions with AR. Among the array of cofactors scrutinised, such as ARA70β, ARA24, ARA160, ARA55, ARA54, PIAS1, PIAS3, SRC1, SRC2, SRC3, PCAF, p300/CBP, MED1, and CARM1, several exhibit upregulation in PCa. Conversely, other cofactors like ARA70α, PIASy, and NCoR/SMRT demonstrate downregulation. This duality underscores the complexity of AR cofactor dynamics in PCa. Based on our findings, we propose that manipulating cofactor regulation to modulate AR function holds promise as a novel therapeutic avenue against advanced PCa. This paradigm shift offers renewed hope in the quest for effective treatments in the face of CRPC's formidable challenges.
Collapse
Affiliation(s)
- Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Haojun Xiong
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xingzhu Mou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Cancan Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | | | - Wenjing Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Yu Jiang
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| | - Yan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
| |
Collapse
|
10
|
Zhang W, Cao X, Wu H, Zhong X, Shi Y, Sun Z. Function of Steroid Receptor Coactivators in T Cells and Cancers: Implications for Cancer Immunotherapy. Crit Rev Immunol 2024; 44:111-126. [PMID: 38848298 PMCID: PMC11902286 DOI: 10.1615/critrevimmunol.2024051613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Steroid receptor coactivator (SRC) family members (SRC1, SRC2 and SRC3) are transcriptional co-regulators. SRCs orchestrate gene transcription by inducing transactivation of nuclear receptors and other transcription factors. Overexpression of SRCs is widely implicated in a range of cancers, especially hormone-related cancers. As coactivators, SRCs regulate multiple metabolic pathways involved in tumor growth, invasion, metastasis, and chemo-resistance. Emerging evidence in recent years suggest that SRCs also regulate maturation, differentiation, and cytotoxicity of T cells by controlling metabolic activities. In this review, we summarize the current understanding of the function of SRCs in T cells as well as cancer cells. Importantly, the controversies of targeting SRCs for cancer immunotherapy as well as possible reconciliation strategies are also discussed.
Collapse
Affiliation(s)
- Wencan Zhang
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Xu Cao
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Hongmin Wu
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Xiancai Zhong
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Yun Shi
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Zuoming Sun
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| |
Collapse
|
11
|
Noberini R, Bonaldi T. Proteomics contributions to epigenetic drug discovery. Proteomics 2023; 23:e2200435. [PMID: 37727062 DOI: 10.1002/pmic.202200435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
The combined activity of epigenetic features, which include histone post-translational modifications, DNA methylation, and nucleosome positioning, regulates gene expression independently from changes in the DNA sequence, defining how the shared genetic information of an organism is used to generate different cell phenotypes. Alterations in epigenetic processes have been linked with a multitude of diseases, including cancer, fueling interest in the discovery of drugs targeting the proteins responsible for writing, erasing, or reading histone and DNA modifications. Mass spectrometry (MS)-based proteomics has emerged as a versatile tool that can assist drug discovery pipelines from target validation, through target deconvolution, to monitoring drug efficacy in vivo. Here, we provide an overview of the contributions of MS-based proteomics to epigenetic drug discovery, describing the main approaches that can be used to support different drug discovery pipelines and highlighting how they contributed to the development and characterization of epigenetic drugs.
Collapse
Affiliation(s)
- Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
12
|
Varisli L, Dancik GM, Tolan V, Vlahopoulos S. Critical Roles of SRC-3 in the Development and Progression of Breast Cancer, Rendering It a Prospective Clinical Target. Cancers (Basel) 2023; 15:5242. [PMID: 37958417 PMCID: PMC10648290 DOI: 10.3390/cancers15215242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Breast cancer (BCa) is the most frequently diagnosed malignant tumor in women and is also one of the leading causes of cancer-related death. Most breast tumors are hormone-dependent and estrogen signaling plays a critical role in promoting the survival and malignant behaviors of these cells. Estrogen signaling involves ligand-activated cytoplasmic estrogen receptors that translocate to the nucleus with various co-regulators, such as steroid receptor co-activator (SRC) family members, and bind to the promoters of target genes and regulate their expression. SRC-3 is a member of this family that interacts with, and enhances, the transcriptional activity of the ligand activated estrogen receptor. Although SRC-3 has important roles in normal homeostasis and developmental processes, it has been shown to be amplified and overexpressed in breast cancer and to promote malignancy. The malignancy-promoting potential of SRC-3 is diverse and involves both promoting malignant behavior of tumor cells and creating a tumor microenvironment that has an immunosuppressive phenotype. SRC-3 also inhibits the recruitment of tumor-infiltrating lymphocytes with effector function and promotes stemness. Furthermore, SRC-3 is also involved in the development of resistance to hormone therapy and immunotherapy during breast cancer treatment. The versatility of SRC-3 in promoting breast cancer malignancy in this way makes it a good target, and methodical targeting of SRC-3 probably will be important for the success of breast cancer treatment.
Collapse
Affiliation(s)
- Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey;
| | - Garrett M. Dancik
- Department of Computer Science, Eastern Connecticut State University, Willimantic, CT 06226, USA;
| | - Veysel Tolan
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey;
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece
| |
Collapse
|
13
|
Staehr C, Aalkjaer C, Matchkov V. The vascular Na,K-ATPase: clinical implications in stroke, migraine, and hypertension. Clin Sci (Lond) 2023; 137:1595-1618. [PMID: 37877226 PMCID: PMC10600256 DOI: 10.1042/cs20220796] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
In the vascular wall, the Na,K-ATPase plays an important role in the control of arterial tone. Through cSrc signaling, it contributes to the modulation of Ca2+ sensitivity in vascular smooth muscle cells. This review focuses on the potential implication of Na,K-ATPase-dependent intracellular signaling pathways in severe vascular disorders; ischemic stroke, familial migraine, and arterial hypertension. We propose similarity in the detrimental Na,K-ATPase-dependent signaling seen in these pathological conditions. The review includes a retrospective proteomics analysis investigating temporal changes after ischemic stroke. The analysis revealed that the expression of Na,K-ATPase α isoforms is down-regulated in the days and weeks following reperfusion, while downstream Na,K-ATPase-dependent cSrc kinase is up-regulated. These results are important since previous studies have linked the Na,K-ATPase-dependent cSrc signaling to futile recanalization and vasospasm after stroke. The review also explores a link between the Na,K-ATPase and migraine with aura, as reduced expression or pharmacological inhibition of the Na,K-ATPase leads to cSrc kinase signaling up-regulation and cerebral hypoperfusion. The review discusses the role of an endogenous cardiotonic steroid-like compound, ouabain, which binds to the Na,K-ATPase and initiates the intracellular cSrc signaling, in the pathophysiology of arterial hypertension. Currently, our understanding of the precise control mechanisms governing the Na,K-ATPase/cSrc kinase regulation in the vascular wall is limited. Understanding the role of vascular Na,K-ATPase signaling is essential for developing targeted treatments for cerebrovascular disorders and hypertension, as the Na,K-ATPase is implicated in the pathogenesis of these conditions and may contribute to their comorbidity.
Collapse
Affiliation(s)
- Christian Staehr
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, Aarhus, Denmark
| | - Christian Aalkjaer
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
- Danish Cardiovascular Academy, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
| | - Vladimir V. Matchkov
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
| |
Collapse
|
14
|
Ye Q, Zhou X, Ren H, Han F, Lin R, Li J. An overview of the past decade of bufalin in the treatment of refractory and drug-resistant cancers: current status, challenges, and future perspectives. Front Pharmacol 2023; 14:1274336. [PMID: 37860119 PMCID: PMC10582727 DOI: 10.3389/fphar.2023.1274336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
Profound progress has been made in cancer treatment in the past three decades. However, drug resistance remains prevalent and a critical challenge. Drug resistance can be attributed to oncogenes mutations, activated defensive mechanisms, ATP-bind cassette transporters overexpression, cancer stem cells, etc. Chinese traditional medicine toad venom has been used for centuries for different diseases, including resistant cancers. Bufalin is one of the bufadienolides in toad venom that has been extensively studied for its potential in refractory and drug-resistant cancer treatments in vitro and in vivo. In this work, we would like to critically review the progress made in the past decade (2013-2022) of bufalin in overcoming drug resistance in cancers. Generally, bufalin shows high potential in killing certain refractory and resistant cancer cells via multiple mechanisms. More importantly, bufalin can work as a chemo-sensitizer that enhances the sensitivity of certain conventional and targeted therapies at low concentrations. In addition, the development of bufalin derivatives was also briefly summarized and discussed. We also analyzed the obstacles and challenges and provided possible solutions for future perspectives. We hope that the collective information may help evoke more effort for more in-depth studies and evaluation of bufalin in both lab and possible clinical trials.
Collapse
Affiliation(s)
- Qingmei Ye
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
| | - Xin Zhou
- The Fifth People’s Hospital of Hainan Province & Affiliated Dermatology Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Han Ren
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Fangxuan Han
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Rong Lin
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Juan Li
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
15
|
Kiliti AJ, Sharif GM, Martin MB, Wellstein A, Riegel AT. AIB1/SRC-3/NCOA3 function in estrogen receptor alpha positive breast cancer. Front Endocrinol (Lausanne) 2023; 14:1250218. [PMID: 37711895 PMCID: PMC10498919 DOI: 10.3389/fendo.2023.1250218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
The estrogen receptor alpha (ERα) is a steroid receptor that is pivotal in the initiation and progression of most breast cancers. ERα regulates gene transcription through recruitment of essential coregulators, including the steroid receptor coactivator AIB1 (Amplified in Breast Cancer 1). AIB1 itself is an oncogene that is overexpressed in a subset of breast cancers and is known to play a role in tumor progression and resistance to endocrine therapy through multiple mechanisms. Here we review the normal and pathological functions of AIB1 in regard to its ERα-dependent and ERα-independent actions, as well as its genomic conservation and protein evolution. We also outline the efforts to target AIB1 in the treatment of breast cancer.
Collapse
Affiliation(s)
- Amber J. Kiliti
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| | - Ghada M. Sharif
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Mary Beth Martin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| | - Anton Wellstein
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Anna T. Riegel
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| |
Collapse
|
16
|
Choi Y, Pollack S. Significant Association of Estrogen Receptor-β Isoforms and Coactivators in Breast Cancer Subtypes. Curr Issues Mol Biol 2023; 45:2533-2548. [PMID: 36975536 PMCID: PMC10047005 DOI: 10.3390/cimb45030166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/22/2023] Open
Abstract
Nuclear receptor coregulators are the principal regulators of Estrogen Receptor (ER)-mediated transcription. ERβ, an ER subtype first identified in 1996, is associated with poor outcomes in breast cancer (BCa) subtypes, and the coexpression of the ERβ1 isoform and AIB-1 and TIF-2 coactivators in BCa-associated myofibroblasts is associated with high-grade BCa. We aimed to identify the specific coactivators that are involved in the progression of ERβ-expressing BCa. ERβ isoforms, coactivators, and prognostic markers were tested using standard immunohistochemistry. AIB-1, TIF-2, NF-kB, p-c-Jun, and/or cyclin D1 were differentially correlated with ERβ isoform expression in the BCa subtypes and subgroups. The coexpression of the ERβ5 and/or ERβ1 isoforms and the coactivators were found to be correlated with a high expression of P53, Ki-67, and Her2/neu and large-sized and/or high-grade tumors in BCa. Our study supports the notion that ERβ isoforms and coactivators seemingly coregulate the proliferation and progression of BCa and may provide insight into the potential therapeutic uses of the coactivators in BCa.
Collapse
Affiliation(s)
- Young Choi
- Department of Pathology, Yale School of Medicine, 434 Pine Grove Lane, Hartsdale, NY 10530, USA
- Correspondence:
| | - Simcha Pollack
- Department of Statistics, St. John’s University, New York, NY 11423, USA
| |
Collapse
|
17
|
Ye Q, Zhou X, Han F, Zheng C. Toad venom-derived bufadienolides and their therapeutic application in prostate cancers: Current status and future directions. Front Chem 2023; 11:1137547. [PMID: 37007051 PMCID: PMC10060886 DOI: 10.3389/fchem.2023.1137547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Cancer is the second leading cause of death worldwide. Specially, the high incidence rate and prevalence of drug resistance have rendered prostate cancer (PCa) a great threat to men’s health. Novel modalities with different structures or mechanisms are in urgent need to overcome these two challenges. Traditional Chinese medicine toad venom-derived agents (TVAs) have shown to possess versatile bioactivities in treating certain diseases including PCa. In this work, we attempted to have an overview of bufadienolides, the major bioactive components in TVAs, in the treatment of PCa in the past decade, including their derivatives developed by medicinal chemists to antagonize certain drawbacks of bufadienolides such as innate toxic effect to normal cells. Generally, bufadienolides can effectively induce apoptosis and suppress PCa cells in-vitro and in-vivo, majorly mediated by regulating certain microRNAs/long non-coding RNAs, or by modulating key pro-survival and pro-metastasis players in PCa. Importantly, critical obstacles and challenges using TVAs will be discussed and possible solutions and future perspectives will also be presented in this review. Further in-depth studies are clearly needed to decipher the mechanisms, e.g., targets and pathways, toxic effects and fully reveal their application. The information collected in this work may help evoke more effects in developing bufadienolides as therapeutic agents in PCa.
Collapse
Affiliation(s)
- Qingmei Ye
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xin Zhou
- The Fifth People’s Hospital of Hainan Province & Affiliated Dermatology Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Fangxuan Han
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Caijuan Zheng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
- *Correspondence: Caijuan Zheng,
| |
Collapse
|
18
|
Gilad Y, Lonard DM, O’Malley BW. Steroid receptor coactivators - their role in immunity. Front Immunol 2022; 13:1079011. [PMID: 36582250 PMCID: PMC9793089 DOI: 10.3389/fimmu.2022.1079011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Steroid Receptor Coactivators (SRCs) are essential regulators of transcription with a wide range of impact on human physiology and pathology. In immunology, SRCs play multiple roles; they are involved in the regulation of nuclear factor-κB (NF-κB), macrophage (MΦ) activity, lymphoid cells proliferation, development and function, to name just a few. The three SRC family members, SRC-1, SRC-2 and SRC-3, can exert their immunological function either in an independent manner or act in synergy with each other. In certain biological contexts, one SRC family member can compensate for lack of activity of another member, while in other cases one SRC can exert a biological function that competes against the function of another family counterpart. In this review we illustrate the diverse biological functionality of the SRCs with regard to their role in immunity. In the light of recent development of SRC small molecule inhibitors and stimulators, we discuss their potential relevance as modulators of the immunological activity of the SRCs for therapeutic purposes.
Collapse
Affiliation(s)
- Yosi Gilad
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States,CoRegen, Inc., Baylor College of Medicine, Houston, TX, United States,*Correspondence: Yosi Gilad, ; David M. Lonard, ; Bert W. O’Malley,
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States,CoRegen, Inc., Baylor College of Medicine, Houston, TX, United States,*Correspondence: Yosi Gilad, ; David M. Lonard, ; Bert W. O’Malley,
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States,CoRegen, Inc., Baylor College of Medicine, Houston, TX, United States,*Correspondence: Yosi Gilad, ; David M. Lonard, ; Bert W. O’Malley,
| |
Collapse
|
19
|
Vinod M, Berthier A, Maréchal X, Gheeraert C, Boutry R, Delhaye S, Annicotte JS, Duez H, Hovasse A, Cianférani S, Montaigne D, Eeckhoute J, Staels B, Lefebvre P. Timed use of digoxin prevents heart ischemia-reperfusion injury through a REV-ERBα-UPS signaling pathway. NATURE CARDIOVASCULAR RESEARCH 2022; 1:990-1005. [PMID: 38229609 PMCID: PMC7615528 DOI: 10.1038/s44161-022-00148-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/16/2022] [Indexed: 01/18/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) induces life-threatening damages to the cardiac tissue and pharmacological means to achieve cardioprotection are sorely needed. MIRI severity varies along the day-night cycle and is molecularly linked to components of the cellular clock including the nuclear receptor REV-ERBα, a transcriptional repressor. Here we show that digoxin administration in mice is cardioprotective when timed to trigger REV-ERBα protein degradation. In cardiomyocytes, digoxin increases REV-ERBα ubiquitinylation and proteasomal degradation, which depend on REV-ERBα ability to bind its natural ligand, heme. Inhibition of the membrane-bound Src tyrosine-kinase partially alleviated digoxin-induced REV-ERBα degradation. In untreated cardiomyocytes, REV-ERBα proteolysis is controlled by known (HUWE1, FBXW7, SIAH2) or novel (CBL, UBE4B) E3 ubiquitin ligases and the proteasome subunit PSMB5. Only SIAH2 and PSMB5 contributed to digoxin-induced degradation of REV-ERBα. Thus, controlling REV-ERBα proteostasis through the ubiquitin-proteasome system is an appealing cardioprotective strategy. Our data support the timed use of clinically-approved cardiotonic steroids in prophylactic cardioprotection.
Collapse
Affiliation(s)
- Manjula Vinod
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Alexandre Berthier
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Xavier Maréchal
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Céline Gheeraert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Raphaёl Boutry
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 – RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France
| | - Stéphane Delhaye
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Jean-Sébastien Annicotte
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 – RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France
| | - Hélène Duez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Agnès Hovasse
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, Université de Strasbourg, CNRS, UMR7178, 25 Rue Becquerel, F-67087 Strasbourg, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, Université de Strasbourg, CNRS, UMR7178, 25 Rue Becquerel, F-67087 Strasbourg, France
| | - David Montaigne
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Jérôme Eeckhoute
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| |
Collapse
|
20
|
Chen W, Zheng W, Liu S, Su Q, Ding K, Zhang Z, Luo P, Zhang Y, Xu J, Yu C, Li W, Huang Z. SRC-3 deficiency prevents atherosclerosis development by decreasing endothelial ICAM-1 expression to attenuate macrophage recruitment. Int J Biol Sci 2022; 18:5978-5993. [PMID: 36263184 PMCID: PMC9576506 DOI: 10.7150/ijbs.74864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/24/2022] [Indexed: 01/12/2023] Open
Abstract
Steroid receptor coactivator 3 (SRC-3) is a member of the p160 SRC family. This factor can interact with multiple nuclear hormone receptors and transcription factors to regulate the expression of their target genes. Although many physiological roles of SRC-3 have been revealed, its role in atherosclerosis is not clear. In this study, we found that SRC-3-/-ApoE-/- mice have reduced atherosclerotic lesions and necrotic areas in their aortas and aortic roots compared with SRC-3+/+ApoE-/- mice after Western diet (WD) feeding for 12 weeks. RNA-Seq and Western blot analyses of the aorta revealed that SRC-3 was required for maintaining the expression of ICAM-1, which was required for macrophage recruitment and atherosclerosis development. siRNA-mediated knockdown of SRC-3 in endothelial cells significantly reduced WD-induced atherosclerotic plaque formation. Additionally, treatment of ApoE-/- mice with SRC-3 inhibitor bufalin prevented atherosclerotic plaque development. SRC-3 deficiency reduced aortic macrophage recruitment. Accordingly, ICAM-1 expression was markedly decreased in the aortas of SRC-3-/-ApoE-/- mice and ApoE-/- mice with endothelial SRC-3 knockdown mediated by AAV9-shSRC-3 virus. Mechanistically, SRC-3 coactivated NF-κB p65 to increase ICAM-1 transcription in endothelial cells. Collectively, these findings demonstrate that inhibiting SRC-3 ameliorates atherosclerosis development, at least in part through suppressing endothelial activation by decreasing endothelial ICAM-1 expression via reducing NF-κB signaling.
Collapse
Affiliation(s)
- Wenbo Chen
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wuyang Zheng
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shixiao Liu
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qiang Su
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Jiangxi Provincial Clinical Research Center for Vascular Anomalies, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Kangxi Ding
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ziguan Zhang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ping Luo
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yong Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Chundong Yu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.,✉ Corresponding authors: Zhengrong Huang, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China. E-mail or Weihua Li, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China. E-mail or Chundong Yu, State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China. E-mail
| | - Weihua Li
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,✉ Corresponding authors: Zhengrong Huang, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China. E-mail or Weihua Li, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China. E-mail or Chundong Yu, State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China. E-mail
| | - Zhengrong Huang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,✉ Corresponding authors: Zhengrong Huang, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China. E-mail or Weihua Li, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China. E-mail or Chundong Yu, State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China. E-mail
| |
Collapse
|
21
|
Soumoy L, Ghanem GE, Saussez S, Journe F. Bufalin for an innovative therapeutic approach against cancer. Pharmacol Res 2022; 184:106442. [PMID: 36096424 DOI: 10.1016/j.phrs.2022.106442] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022]
Abstract
Bufalin is an endogenous cardiotonic steroid, first discovered in toad venom but also found in the plasma of healthy humans, with anti-tumour activities in different cancer types. The current review is focused on its mechanisms of action and highlights its very large spectrum of effects both in vitro and in vivo. All leads to the conclusion that bufalin mediates its effects by affecting all the hallmarks of cancer and seems restricted to cancer cells avoiding side effects. Bufalin decreases cancer cell proliferation by acting on the cell cycle and inducing different mechanisms of cell death including apoptosis, necroptosis, autophagy and senescence. Bufalin also moderates metastasis formation by blocking migration and invasion as well as angiogenesis and by inducing a phenotype switch towards differentiation and decreasing cancer cell stemness. Regarding its various mechanisms of action in cancer cells, bufalin blocks overactivated signalling pathways and modifies cell metabolism. Moreover, bufalin gained lately a huge interest in the field of drug resistance by both reversing various drug resistance mechanisms and affecting the immune microenvironment. Together, these data support bufalin as a quite promising new anti-cancer drug candidate.
Collapse
Affiliation(s)
- Laura Soumoy
- Laboratory of Human Anatomy & Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000 Mons, Belgium.
| | - Ghanem E Ghanem
- Laboratory of Clinical and Experimental Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium
| | - Sven Saussez
- Laboratory of Human Anatomy & Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000 Mons, Belgium
| | - Fabrice Journe
- Laboratory of Human Anatomy & Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000 Mons, Belgium; Laboratory of Clinical and Experimental Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium.
| |
Collapse
|
22
|
Yu C, Li Y, Chen G, Wu C, Wang X, Zhang Y. Bioactive constituents of animal-derived traditional Chinese medicinal materials for breast cancer: opportunities and challenges. J Zhejiang Univ Sci B 2022; 23:547-563. [PMID: 35794685 PMCID: PMC9264107 DOI: 10.1631/jzus.b2101019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/20/2022] [Indexed: 11/11/2022]
Abstract
Breast cancer is globally the most common invasive cancer in women and remains one of the leading causes of cancer-related deaths. Surgery, radiotherapy, chemotherapy, immunotherapy, and endocrine therapy are currently the main treatments for this cancer type. However, some breast cancer patients are prone to drug resistance related to chemotherapy or immunotherapy, resulting in limited treatment efficacy. Consequently, traditional Chinese medicinal materials (TCMMs) as natural products have become an attractive source of novel drugs. In this review, we summarized the current knowledge on the active components of animal-derived TCMMs, including Ophiocordycepssinensis-derived cordycepin, the aqueous and ethanolic extracts of O.sinensis, norcantharidin (NCTD), Chansu, bee venom, deer antlers, Ostreagigas, and scorpion venom, with reference to marked anti-breast cancer effects due to regulating cell cycle arrest, proliferation, apoptosis, metastasis, and drug resistance. In future studies, the underlying mechanisms for the antitumor effects of these components need to be further investigated by utilizing multi-omics technologies. Furthermore, large-scale clinical trials are necessary to validate the efficacy of bioactive constituents alone or in combination with chemotherapeutic drugs for breast cancer treatment.
Collapse
Affiliation(s)
- Chaochao Yu
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yi Li
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Guopeng Chen
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Chaoyan Wu
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Xiuping Wang
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yingwen Zhang
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
23
|
Yuan Z, Liu C, Sun Y, Li Y, Wu H, Ma S, Shang J, Zhan Y, Yin P, Gao F. Bufalin exacerbates Photodynamic therapy of colorectal cancer by targeting SRC-3/HIF-1α pathway. Int J Pharm 2022; 624:122018. [PMID: 35839982 DOI: 10.1016/j.ijpharm.2022.122018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/28/2022] [Accepted: 07/10/2022] [Indexed: 10/17/2022]
Abstract
Photodynamic therapy (PDT) induces tumour cell death by producing reactive oxygen species (ROS), and hypoxia is one of the main factors that limits its efficiency. In our previous study, bufalin (BU) enhanced photosensitizer mTHPC-mediated PDT therapy in colorectal cancer (CRC) cells, but its mechanism was not elucidated. To explore a strategy for improving the efficacy of PDT, we designed iRGD-modified nanoparticles to co-capsuled mTHPC and BU for simultaneous delivery to the tumour site and explored the underlying mechanism of the synergistic anti-CRC effect. In our study, mTHPC&BU@VES-CSO/TPGS-RGD nanoparticles (T-B@NP) had a particle size of 148.3 ± 2.5 nm and a zeta potential of 22.8 ± 2.0 mV. Specifically, these nanoparticles passively accumulated in tumour cells, and under laser irradiation, mTHPC induced cell apoptosis and death. In addition, the sustained release of BU inhibited HIF-1α and reduced VEGF-mediated angiogenesis by targeting the SRC-3/HIF-1α pathway, which induced a strong PDT effect against CRC. In vivo studies demonstrated that codelivery of the nanoparticles under laser irradiation exhibited a superior antitumour effect (84.2%) and significantly prolonged survival time of mice, with the mechanisms of alleviating hypoxia and inhibiting angiogenesis. In summary, mTHPC and BU codelivery via nanoparticles efficiently enhances the therapeutic effects of PDT by inhibiting the SRC-3/HIF-1α pathway in CRC. This work provides an effective strategy to combat hypoxia-induced tumour resistance and overcome the barriers of PDT treatment.
Collapse
Affiliation(s)
- Zeting Yuan
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, Shanghai, 200237, China; Interventional Cancer Institute of Chinese Integrative Medicine, Shanghai 200062, China; Central Lab, Shanghai 200062, China
| | - Chaolian Liu
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, Shanghai, 200237, China; Interventional Cancer Institute of Chinese Integrative Medicine, Shanghai 200062, China; Central Lab, Shanghai 200062, China
| | - Yuji Sun
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, Shanghai, 200237, China; Shanghai Key Laboratory of Functional Materials Chemistry, Shanghai, 200237, China; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yue Li
- Interventional Cancer Institute of Chinese Integrative Medicine, Shanghai 200062, China; Central Lab, Shanghai 200062, China
| | - Honglei Wu
- Interventional Cancer Institute of Chinese Integrative Medicine, Shanghai 200062, China; Central Lab, Shanghai 200062, China
| | - Shuli Ma
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, Shanghai, 200237, China; Interventional Cancer Institute of Chinese Integrative Medicine, Shanghai 200062, China; Central Lab, Shanghai 200062, China
| | - Jing Shang
- Interventional Cancer Institute of Chinese Integrative Medicine, Shanghai 200062, China; Central Lab, Shanghai 200062, China
| | - Yueping Zhan
- Interventional Cancer Institute of Chinese Integrative Medicine, Shanghai 200062, China; Central Lab, Shanghai 200062, China
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Shanghai 200062, China; Central Lab, Shanghai 200062, China; Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Feng Gao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, Shanghai, 200237, China; Shanghai Key Laboratory of Functional Materials Chemistry, Shanghai, 200237, China; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
24
|
NCOA3, a new player in melanoma susceptibility and a therapeutic target. Cancer Gene Ther 2022; 29:399-401. [PMID: 35322161 PMCID: PMC9117460 DOI: 10.1038/s41417-022-00449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/12/2022] [Accepted: 02/24/2022] [Indexed: 02/02/2023]
|
25
|
Guo P, Chen Q, Peng K, Xie J, Liu J, Ren W, Tong Z, Li M, Xu J, Zhang Y, Yu C, Mo P. Nuclear receptor coactivator SRC-1 promotes colorectal cancer progression through enhancing GLI2-mediated Hedgehog signaling. Oncogene 2022; 41:2846-2859. [PMID: 35418691 DOI: 10.1038/s41388-022-02308-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/20/2023]
Abstract
Overexpression of nuclear coactivator steroid receptor coactivator 1 (SRC-1) and aberrant activation of the Hedgehog (Hh) signaling pathway are associated with various tumorigenesis; however, the significance of SRC-1 in colorectal cancer (CRC) and its contribution to the activation of Hh signaling are unclear. Here, we identified a conserved Hh signaling signature positively correlated with SRC-1 expression in CRC based on TCGA database; SRC-1 deficiency significantly inhibited the proliferation, survival, migration, invasion, and tumorigenesis of both human and mouse CRC cells, and SRC-1 knockout significantly suppressed azoxymethane/dextran sodium sulfate (AOM/DSS)-induced CRC in mice. Mechanistically, SRC-1 promoted the expression of GLI family zinc finger 2 (GLI2), a major downstream transcription factor of Hh pathway, and cooperated with GLI2 to enhance multiple Hh-regulated oncogene expression, including Cyclin D1, Bcl-2, and Slug. Pharmacological blockages of SRC-1 and Hh signaling retarded CRC progression in human CRC cell xenograft mouse model. Together, our studies uncover an SRC-1/GLI2-regulated Hh signaling looping axis that promotes CRC tumorigenesis, offering an attractive strategy for CRC treatment.
Collapse
Affiliation(s)
- Peng Guo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qiang Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Kesong Peng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.,Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200433, China
| | - Jianyuan Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Junjia Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.,National Institute for Data Science in Health and Medicine Engineering, Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Wenjing Ren
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhangwei Tong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ming Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Yongyou Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China. .,National Institute for Data Science in Health and Medicine Engineering, Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Chundong Yu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Pingli Mo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
26
|
Sampath V, Horesh N, Sasi B, Zannadeh H, Pogodin I, Singh SV, Deutsch J, Lichtstein D. Synthesis and Biological Evaluation of Novel Bufalin Derivatives. Int J Mol Sci 2022; 23:ijms23074007. [PMID: 35409366 PMCID: PMC8999407 DOI: 10.3390/ijms23074007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022] Open
Abstract
Bufalin and other cardiac steroids (CS) have been used for centuries for the treatment of congestive heart failure, arrhythmias, and other maladies. However, toxicity and the small therapeutic window of this family of steroids limit their use. Therefore, attempts to synthesize a potent, but less toxic, CS are of major importance. In the present study, two novel bufalin derivatives were synthesized and some of their pharmacological properties were characterized. The reaction of bufalin with Ishikawa's reagent resulted in the production of two novel bufalin derivatives: bufalin 2,3-ene and bufalin 3,4-ene. The compounds were purified with TLC and HPLC and their structure was verified with UV, NMR, and MS analyses. The biological activities of these compounds were evaluated by testing their ability to inhibit the Na+, K+-ATPase activity of the brain microsomal fraction to induce cytotoxic activity against the NCI-60 human tumor cell line panel and non-cancer human cells, and to increase the force of contraction of quail embryonic heart muscle cells in culture. The two steroids exhibited biological activities similar to those of other CS in the tested experimental systems, but with reduced cytotoxicity, advocating their development as drugs for the treatment of heart failure and arrhythmias.
Collapse
Affiliation(s)
- VishnuPriya Sampath
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (V.S.); (N.H.); (B.S.); (H.Z.); (I.P.)
| | - Noa Horesh
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (V.S.); (N.H.); (B.S.); (H.Z.); (I.P.)
| | - Ben Sasi
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (V.S.); (N.H.); (B.S.); (H.Z.); (I.P.)
| | - Hiba Zannadeh
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (V.S.); (N.H.); (B.S.); (H.Z.); (I.P.)
| | - Ilana Pogodin
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (V.S.); (N.H.); (B.S.); (H.Z.); (I.P.)
| | - Shiv Vardan Singh
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India;
| | - Joseph Deutsch
- Department of Medicinal Chemistry, Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
- Correspondence: (J.D.); (D.L.)
| | - David Lichtstein
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (V.S.); (N.H.); (B.S.); (H.Z.); (I.P.)
- Correspondence: (J.D.); (D.L.)
| |
Collapse
|
27
|
El-Mallakh RS, Sampath VP, Horesh N, Lichtstein D. Endogenous Cardiac Steroids in Bipolar Disorder: State of the Art. Int J Mol Sci 2022; 23:ijms23031846. [PMID: 35163766 PMCID: PMC8836531 DOI: 10.3390/ijms23031846] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
Bipolar disorder (BD) is a severe psychiatric illness with a poor prognosis and problematic, suboptimal, treatments. Treatments, borne of an understanding of the pathoetiologic mechanisms, need to be developed in order to improve outcomes. Dysregulation of cationic homeostasis is the most reproducible aspect of BD pathophysiology. Correction of ionic balance is the universal mechanism of action of all mood stabilizing medications. Endogenous sodium pump modulators (collectively known as endogenous cardiac steroids, ECS) are steroids which are synthesized in and released from the adrenal gland and brain. These compounds, by activating or inhibiting Na+, K+-ATPase activity and activating intracellular signaling cascades, have numerous effects on cell survival, vascular tone homeostasis, inflammation, and neuronal activity. For the past twenty years we have addressed the hypothesis that the Na+, K+-ATPase-ECS system may be involved in the etiology of BD. This is a focused review that presents a comprehensive model pertaining to the role of ECS in the etiology of BD. We propose that alterations in ECS metabolism in the brain cause numerous biochemical changes that underlie brain dysfunction and mood symptoms. This is based on both animal models and translational human results. There are data that demonstrate that excess ECS induce abnormal mood and activity in animals, while a specific removal of ECS with antibodies normalizes mood. There are also data indicating that circulating levels of ECS are lower in manic individuals, and that patients with BD are unable to upregulate synthesis of ECS under conditions that increase their elaboration in non-psychiatric controls. There is strong evidence for the involvement of ion dysregulation and ECS function in bipolar illness. Additional research is required to fully characterize these abnormalities and define future clinical directions.
Collapse
Affiliation(s)
- Rif S. El-Mallakh
- Mood Disorders Research Program, Depression Center, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Correspondence: (R.S.E.-M.); (D.L.)
| | - Vishnu Priya Sampath
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research, Israel-Canada, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel; (V.P.S.); (N.H.)
| | - Noa Horesh
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research, Israel-Canada, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel; (V.P.S.); (N.H.)
| | - David Lichtstein
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research, Israel-Canada, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel; (V.P.S.); (N.H.)
- Correspondence: (R.S.E.-M.); (D.L.)
| |
Collapse
|
28
|
Jia C, Guo Y, Wu FG. Chemodynamic Therapy via Fenton and Fenton-Like Nanomaterials: Strategies and Recent Advances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103868. [PMID: 34729913 DOI: 10.1002/smll.202103868] [Citation(s) in RCA: 293] [Impact Index Per Article: 97.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Chemodynamic therapy (CDT), a novel cancer therapeutic strategy defined as the treatment using Fenton or Fenton-like reaction to produce •OH in the tumor region, was first proposed by Bu, Shi, and co-workers in 2016. Recently, with the rapid development of Fenton and Fenton-like nanomaterials, CDT has attracted tremendous attention because of its unique advantages: 1) It is tumor-selective with low side effects; 2) the CDT process does not depend on external field stimulation; 3) it can modulate the hypoxic and immunosuppressive tumor microenvironment; 4) the treatment cost of CDT is low. In addition to the Fe-involved CDT strategies, the Fenton-like reaction-mediated CDT strategies have also been proposed, which are based on many other metal elements including copper, manganese, cobalt, titanium, vanadium, palladium, silver, molybdenum, ruthenium, tungsten, cerium, and zinc. Moreover, CDT has been combined with other therapies like chemotherapy, radiotherapy, phototherapy, sonodynamic therapy, and immunotherapy for achieving enhanced anticancer effects. Besides, there have also been studies that extend the application of CDT to the antibacterial field. This review introduces the latest advancements in the nanomaterials-involved CDT from 2018 to the present and proposes the current limitations as well as future research directions in the related field.
Collapse
Affiliation(s)
- Chenyang Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| |
Collapse
|
29
|
Altwegg KA, Vadlamudi RK. Role of estrogen receptor coregulators in endocrine resistant breast cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:385-400. [PMID: 34528025 PMCID: PMC8439438 DOI: 10.37349/etat.2021.00052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Breast cancer (BC) is the most ubiquitous cancer in women. Approximately 70–80% of BC diagnoses are positive for estrogen receptor (ER) alpha (ERα). The steroid hormone estrogen [17β-estradiol (E2)] plays a vital role both in the initiation and progression of BC. The E2-ERα mediated actions involve genomic signaling and non-genomic signaling. The specificity and magnitude of ERα signaling are mediated by interactions between ERα and several coregulator proteins called coactivators or corepressors. Alterations in the levels of coregulators are common during BC progression and they enhance ligand-dependent and ligand-independent ERα signaling which drives BC growth, progression, and endocrine therapy resistance. Many ERα coregulator proteins function as scaffolding proteins and some have intrinsic or associated enzymatic activities, thus the targeting of coregulators for blocking BC progression is a challenging task. Emerging data from in vitro and in vivo studies suggest that targeting coregulators to inhibit BC progression to therapy resistance is feasible. This review explores the current state of ERα coregulator signaling and the utility of targeting the ERα coregulator axis in treating advanced BC.
Collapse
Affiliation(s)
- Kristin A Altwegg
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
30
|
Zhang Y, Yuan B, Bian B, Zhao H, Kiyomi A, Hayashi H, Iwatani Y, Sugiura M, Takagi N. Cytotoxic Effects of Hellebrigenin and Arenobufagin Against Human Breast Cancer Cells. Front Oncol 2021; 11:711220. [PMID: 34513690 PMCID: PMC8427765 DOI: 10.3389/fonc.2021.711220] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Development of new therapeutic strategies for breast cancer is urgently needed due to the sustained emergence of drug resistance, tumor recurrence and metastasis. To gain a novel insight into therapeutic approaches to fight against breast cancer, the cytocidal effects of hellebrigenin (Helle) and arenobufagin (Areno) were investigated in human estrogen receptor (ER)-positive breast cancer cell line MCF-7 and triple-negative breast cancer cell line MDA-MB-231. Helle exhibited more potent cytotoxicity than Areno in both cancer cells, and MCF-7 cells were more susceptible to both drugs in comparison with MDA-MB-231 cells. Apoptotic-like morphological characteristics, along with the downregulation of the expression level of Bcl-2 and Bcl-xL and the upregulation of the expression level of Bad, were observed in Helle-treated MCF-7 cells. Helle also caused the activation of caspase-8, caspase-9, along with the cleavage of poly(ADP-ribose) polymerase in MCF-7 cells. Helle-mediated necrosis-like phenotype, as evidenced by the increased propidium iodide (PI)-positive cells was further observed. G2/M cell cycle arrest was also induced by Helle in the cells. Upregulation of the expression level of p21 and downregulation of the expression level of cyclin D1, cyclin E1, cdc25C and survivin were observed in MCF-7 cells treated with Helle and occurred in parallel with G2/M arrest. Autophagy was triggered in MCF-7 cells and the addition of wortmannin or 3-MA, two well-known autophagy inhibitors, slightly but significantly rescued the cells. Furthermore, similar alterations of some key molecules associated with the aforementioned biological phenomena were observed in MDA-MB-231 cells. Intriguingly, the numbers of PI-positive cells in Helle-treated MCF-7 cells were significantly reduced by wortmannin and 3-MA, respectively. In addition, Helle-triggered G2/M arrest was significantly corrected by wortmannin, suggesting autophagy induction contributed to Helle-induced cytotoxicity of breast cancer cells by modulating necrosis and cell cycle arrest. Collectively, our results suggested potential usefulness of both Helle and Areno in developing therapeutic strategies to treat patients with different types of breast cancer, especially ER-positive breast cancer.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Applied Biochemistry, Tokyo University of Pharmacy & Life Sciences, Hachioji, Japan.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Yuan
- Laboratory of Pharmacology, School of Pharmacy, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Japan
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Anna Kiyomi
- Department of Drug Safety and Risk Management, Tokyo University of Pharmacy & Life Sciences, Hachioji, Japan
| | - Hideki Hayashi
- Department of Applied Biochemistry, Tokyo University of Pharmacy & Life Sciences, Hachioji, Japan
| | - Yui Iwatani
- Department of Applied Biochemistry, Tokyo University of Pharmacy & Life Sciences, Hachioji, Japan
| | - Munetoshi Sugiura
- Department of Drug Safety and Risk Management, Tokyo University of Pharmacy & Life Sciences, Hachioji, Japan
| | - Norio Takagi
- Department of Applied Biochemistry, Tokyo University of Pharmacy & Life Sciences, Hachioji, Japan
| |
Collapse
|
31
|
L’Hôte V, Courbeyrette R, Pinna G, Cintrat J, Le Pavec G, Delaunay‐Moisan A, Mann C, Thuret J. Ouabain and chloroquine trigger senolysis of BRAF-V600E-induced senescent cells by targeting autophagy. Aging Cell 2021; 20:e13447. [PMID: 34355491 PMCID: PMC8564827 DOI: 10.1111/acel.13447] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/05/2021] [Accepted: 07/11/2021] [Indexed: 01/10/2023] Open
Abstract
The expression of BRAF‐V600E triggers oncogene‐induced senescence in normal cells and is implicated in the development of several cancers including melanoma. Here, we report that cardioglycosides such as ouabain are potent senolytics in BRAF senescence. Sensitization by ATP1A1 knockdown and protection by supplemental potassium showed that senolysis by ouabain was mediated by the Na,K‐ATPase pump. Both ion transport inhibition and signal transduction result from cardioglycosides binding to Na,K‐ATPase. An inhibitor of the pump that does not trigger signaling was not senolytic despite blocking ion transport, demonstrating that signal transduction is required for senolysis. Ouabain triggered the activation of Src, p38, Akt, and Erk in BRAF‐senescent cells, and signaling inhibitors prevented cell death. The expression of BRAF‐V600E increased ER stress and autophagy in BRAF‐senescent cells and sensitized the cell to senolysis by ouabain. Ouabain inhibited autophagy flux, which was restored by signaling inhibitors. Consequently, we identified autophagy inhibitor chloroquine as a novel senolytic in BRAF senescence based on the mode of action of cardioglycosides. Our work underlies the interest of characterizing the mechanisms of senolytics to discover novel compounds and identifies the endoplasmic reticulum stress‐autophagy tandem as a new vulnerability in BRAF senescence that can be exploited for the development of further senolytic strategies.
Collapse
Affiliation(s)
- Valentin L’Hôte
- Université Paris‐Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette Cedex France
| | - Régis Courbeyrette
- Université Paris‐Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette Cedex France
| | - Guillaume Pinna
- Université Paris‐Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette Cedex France
| | - Jean‐Christophe Cintrat
- Université Paris‐Saclay CEA INRAE Département Médicaments et Technologies pour la Santé (DMTS) SCBM Gif‐sur‐Yvette France
| | - Gwenaëlle Le Pavec
- Université Paris‐Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette Cedex France
| | - Agnès Delaunay‐Moisan
- Université Paris‐Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette Cedex France
| | - Carl Mann
- Université Paris‐Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette Cedex France
| | - Jean‐Yves Thuret
- Université Paris‐Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette Cedex France
| |
Collapse
|
32
|
Gu R, Zhang Q. Effects of low-dose bufalin combined with hydroxycamptothecin on human castration-resistant prostate cancer xenografts in nude mice. Exp Ther Med 2021; 22:1015. [PMID: 34373701 PMCID: PMC8343571 DOI: 10.3892/etm.2021.10447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 12/11/2019] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer is the most prevalent tumor found in men worldwide. Despite the efficiency of primary endocrine prostate cancer therapies, more efficient drugs are needed to tackle the most advanced and resistant forms of this condition. The present study investigated the antitumor effects of low-dose bufalin combined with hydroxycamptothecin on castration-resistant prostate cancer (CRPC) in mice, as well as the possible mechanisms of apoptosis induction. CRPC xenograft tumors were generated in mice and, subsequently, mice received appropriate doses of bufalin, hydroxycamptothecin or a combination of the two drugs. Tumors from each treatment group were removed, and the tumor volume, weight and inhibition rate of each group was determined. Hematoxylin and eosin staining was performed for pathological analysis and TUNEL staining was used to assess the level of apoptosis in the xenografts. Immunohistochemistry was used for the analysis of proliferating cell nuclear antigen expression and the expression of Bax, Bcl-XL, p53, programmed cell death 4 (PDCD4), phosphorylated (p)-AKT and glycogen synthase kinase (GSK)-3β was determined by western blotting. Treatment with bufalin significantly (P<0.05) reduced tumor volumes compared with the negative control group, reducing tumor volumes to lower levels when combined with hydroxycampothecin. The combination of bufalin (0.6 or 0.8 mg/kg) and hydroxycampothecin significantly (P<0.05) induced higher levels of cell apoptosis compared with the administration of bufalin or hydroxycampothecin alone. The combination of bufalin and hydroxycampothecin also increased the expression of apoptosis-related proteins Bax, p53, PDCD4 and GSK-3β, and decreased the expression of Bcl-XL and p-AKT compared with a single drug treatment. The present study suggested that the combination of bufalin and hydroxycampothecin improved the inhibitory effects of both drugs on CRPC tumors in vivo, potentially via the regulation of the PI3K/AKT/GSK-3β and p53-dependent apoptosis signaling pathways.
Collapse
Affiliation(s)
- Renze Gu
- Department of Urology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Qingchuan Zhang
- Department of Urology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| |
Collapse
|
33
|
Kumavath R, Paul S, Pavithran H, Paul MK, Ghosh P, Barh D, Azevedo V. Emergence of Cardiac Glycosides as Potential Drugs: Current and Future Scope for Cancer Therapeutics. Biomolecules 2021; 11:1275. [PMID: 34572488 PMCID: PMC8465509 DOI: 10.3390/biom11091275] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/24/2022] Open
Abstract
Cardiac glycosides are natural sterols and constitute a group of secondary metabolites isolated from plants and animals. These cardiotonic agents are well recognized and accepted in the treatment of various cardiac diseases as they can increase the rate of cardiac contractions by acting on the cellular sodium potassium ATPase pump. However, a growing number of recent efforts were focused on exploring the antitumor and antiviral potential of these compounds. Several reports suggest their antitumor properties and hence, today cardiac glycosides (CG) represent the most diversified naturally derived compounds strongly recommended for the treatment of various cancers. Mutated or dysregulated transcription factors have also gained prominence as potential therapeutic targets that can be selectively targeted. Thus, we have explored the recent advances in CGs mediated cancer scope and have considered various signaling pathways, molecular aberration, transcription factors (TFs), and oncogenic genes to highlight potential therapeutic targets in cancer management.
Collapse
Affiliation(s)
- Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (P.O) Kasaragod, Kerala 671320, India;
| | - Sayan Paul
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu 627012, India;
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India
| | - Honey Pavithran
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (P.O) Kasaragod, Kerala 671320, India;
| | - Manash K. Paul
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA;
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Debmalya Barh
- Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur 721172, India;
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-001, Brazil;
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-001, Brazil;
| |
Collapse
|
34
|
Qin L, Chen J, Lu D, Jain P, Yu Y, Cardenas D, Peng X, Yu X, Xu J, Wang J, O’ Malley BW, Lonard DM. Development of improved SRC-3 inhibitors as breast cancer therapeutic agents. Endocr Relat Cancer 2021; 28:657-670. [PMID: 34310341 PMCID: PMC8404148 DOI: 10.1530/erc-20-0402] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/26/2021] [Indexed: 11/08/2022]
Abstract
Steroid receptor coactivators (SRCs) possess specific and distinct oncogenic roles in the initiation of cancer and in its progression to a more aggressive disease. These coactivators interact with nuclear receptors and other transcription factors to boost transcription of multiple genes, which potentiate cancer cell proliferation, migration, invasion, tumor angiogenesis and epithelial-mesenchymal transition (EMT). Targeting SRCs using small molecule inhibitors (SMIs) is a promising approach to control cancer progression and metastasis. By high-throughput screening analysis, we recently identified SI-2 as a potent SRC SMI. To develop therapeutic agents, SI-10 and SI-12, the SI-2 analogs are synthesized that incorporate the addition of F atoms to the SI-2 chemical structure. As a result, these analogs exhibit a significantly prolonged plasma half-life, minimal toxicity and improved hERG activity. Biological functional analysis showed that SI-10 and SI-12 treatment (5-50 nM) can significantly inhibit viability, migration and invasion of breast cancer cells in vitro and repress the growth of breast cancer PDX organoids. Treatment of mice with 10 mg/kg/day of either SI-10 or SI-12 was sufficient to repress the growth of xenograft tumors derived from MDA-MB-231 and LM2 cells. Furthermore, in spontaneous and experimental metastasis mouse models developed from MDA-MB-231 and LM2 cells, respectively, SI-10 and SI-12 effectively inhibited the progression of breast cancer lung metastasis. These results demonstrate that SI-10 and SI-12 are promising therapeutic agents and are specifically effective in blocking tumor metastasis, a key point in tumor progression to a more lethal state that results in patient mortality in the majority of cases.
Collapse
Affiliation(s)
- Li Qin
- Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030 USA
| | - Jianwei Chen
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030 USA
| | - Dong Lu
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030 USA
| | - Prashi Jain
- Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030 USA
| | - Yang Yu
- Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030 USA
| | - David Cardenas
- Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030 USA
| | - Xiaohui Peng
- Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030 USA
| | - Xiaobin Yu
- Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030 USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030 USA
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030 USA
| | - Bert W. O’ Malley
- Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030 USA
| | - David M. Lonard
- Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030 USA
- Corresponding Author: David M. Lonard ()
| |
Collapse
|
35
|
Meng Z, Wang X, Zhang D, Lan Z, Cai X, Bian C, Zhang J. Steroid receptor coactivator-1: The central intermediator linking multiple signals and functions in the brain and spinal cord. Genes Dis 2021; 9:1281-1289. [PMID: 35873031 PMCID: PMC9293692 DOI: 10.1016/j.gendis.2021.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/31/2021] [Accepted: 06/21/2021] [Indexed: 11/28/2022] Open
Abstract
The effects of steroid hormones are believed to be mediated by their nuclear receptors (NRs). The p160 coactivator family, including steroid receptor coactivator-1 (SRC-1), 2 and 3, has been shown to physically interact with NRs to enhance their transactivational activities. Among which SRC-1 has been predominantly localized in the central nervous system including brain and spinal cord. It is not only localized in neurons but also detectable in neuroglial cells (mainly localized in the nuclei but also detectable in the extra-nuclear components). Although the expression of SRC-1 is regulated by many steroids, it is also regulated by some non-steroidal factors such as injury, sound and light. Functionally, SRC-1 has been implied in normal function such as development and ageing, learning and memory, central regulation on reproductive behaviors, motor and food intake. Pathologically, SRC-1 may play a role in the regulation of neuropsychiatric disorders (including stress, depression, anxiety, and autism spectrum disorder), metabolite homeostasis and obesity as well as tumorigenesis. Under most conditions, the related mechanisms are far from elucidation; although it may regulate spatial memory through Rictor/mTORC2-actin polymerization related synaptic plasticity. Several inhibitors and stimulator of SRC-1 have shown anti-cancer potentials, but whether these small molecules could be used to modulate ageing and central disorder related neuropathology remain unclear. Therefore, to elucidate when and how SRC-1 is turned on and off under different stimuli is very interesting and great challenge for neuroscientists.
Collapse
Affiliation(s)
- Zhaoyou Meng
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
| | - Xiaoya Wang
- Department of Neurosurgery, Nanchong Central Hospital, the Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, PR China
| | - Dongmei Zhang
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing 400038, PR China
| | - Zhen Lan
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
| | - Xiaoxia Cai
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
- School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Chen Bian
- School of Psychology, Amy Medical University, Chongqing 400038, PR China
- Corresponding author.
| | - Jiqiang Zhang
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
- Corresponding author.
| |
Collapse
|
36
|
Liu Y, Yang H, Liu X, Gu H, Li Y, Sun C. Protein acetylation: a novel modus of obesity regulation. J Mol Med (Berl) 2021; 99:1221-1235. [PMID: 34061242 DOI: 10.1007/s00109-021-02082-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/09/2021] [Accepted: 04/21/2021] [Indexed: 11/27/2022]
Abstract
Obesity is a chronic epidemic disease worldwide which has become one of the important public health issues. It is a process that excessive accumulation of adipose tissue caused by long-term energy intake exceeding energy expenditure. So far, the prevention and treatment strategies of obesity on individuals and population have not been successful in the long term. Acetylation is one of the most common ways of protein post-translational modification (PTM). It exists on thousands of non-histone proteins in almost every cell chamber. It has many influences on protein levels and metabolome levels, which is involved in a variety of metabolic reactions, including sugar metabolism, tricarboxylic acid cycle, and fatty acid metabolism, which are closely related to biological activities. Studies have shown that protein acetylation levels are dynamically regulated by lysine acetyltransferases (KATs) and lysine deacetylases (KDACs). Protein acetylation modifies protein-protein and protein-DNA interactions and regulates the activity of enzymes or cytokines which is related to obesity in order to participate in the occurrence and treatment of obesity-related metabolic diseases. Therefore, we speculated that acetylation was likely to become effective means of controlling obesity in the future. In consequence, this review focuses on the mechanisms of protein acetylation controlled obesity, to provide theoretical basis for controlling obesity and curing obesity-related diseases, which is a significance for regulating obesity in the future. This review will focus on the role of protein acetylation in controlling obesity.
Collapse
Affiliation(s)
- Yuexia Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hong Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xuanchen Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huihui Gu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yizhou Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chao Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
37
|
Bufalin targets the SRC-3/MIF pathway in chemoresistant cells to regulate M2 macrophage polarization in colorectal cancer. Cancer Lett 2021; 513:63-74. [PMID: 34000344 DOI: 10.1016/j.canlet.2021.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/23/2022]
Abstract
M2-polarized macrophages are one of critical factors in tumour chemoresistance. An increasing number of studies have shown that M2 macrophage polarization can be promoted by chemoresistance. A large number of evidences indicate that Bufalin has significant antitumour effect, previous studies have found that Bufalin can reduce the polarization of M2 macrophages to play an anti-tumour effect in vivo, but the mechanism remains unclear. In our study, we found that Bufalin reduced the polarization of M2 macrophages induced by chemoresistant cells both in vivo and in vitro; however, Bufalin had no obvious direct effect on M2 macrophage polarization. Furthermore, we demonstrated that Bufalin targeted the SRC-3 protein to reduce MIF release in chemoresistant cells in order to regulate the polarization of M2 macrophages. More interestingly, we also found that Cinobufacini, Bufalin is its main active monomer, which its could regulate the polarization of M2 macrophages to enhance the anti-tumour effect of oxaliplatin in vivo and in the clinic. Overall, this study provides a theoretical basis for the clinical application of drugs containing Bufalin as the main active ingredient in combination with established chemotherapy for the treatment of colorectal cancer.
Collapse
|
38
|
Quo vadis Cardiac Glycoside Research? Toxins (Basel) 2021; 13:toxins13050344. [PMID: 34064873 PMCID: PMC8151307 DOI: 10.3390/toxins13050344] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/16/2022] Open
Abstract
Cardiac glycosides (CGs), toxins well-known for numerous human and cattle poisoning, are natural compounds, the biosynthesis of which occurs in various plants and animals as a self-protective mechanism to prevent grazing and predation. Interestingly, some insect species can take advantage of the CG’s toxicity and by absorbing them, they are also protected from predation. The mechanism of action of CG’s toxicity is inhibition of Na+/K+-ATPase (the sodium-potassium pump, NKA), which disrupts the ionic homeostasis leading to elevated Ca2+ concentration resulting in cell death. Thus, NKA serves as a molecular target for CGs (although it is not the only one) and even though CGs are toxic for humans and some animals, they can also be used as remedies for various diseases, such as cardiovascular ones, and possibly cancer. Although the anticancer mechanism of CGs has not been fully elucidated, yet, it is thought to be connected with the second role of NKA being a receptor that can induce several cell signaling cascades and even serve as a growth factor and, thus, inhibit cancer cell proliferation at low nontoxic concentrations. These growth inhibitory effects are often observed only in cancer cells, thereby, offering a possibility for CGs to be repositioned for cancer treatment serving not only as chemotherapeutic agents but also as immunogenic cell death triggers. Therefore, here, we report on CG’s chemical structures, production optimization, and biological activity with possible use in cancer therapy, as well as, discuss their antiviral potential which was discovered quite recently. Special attention has been devoted to digitoxin, digoxin, and ouabain.
Collapse
|
39
|
SRC-3, a Steroid Receptor Coactivator: Implication in Cancer. Int J Mol Sci 2021; 22:ijms22094760. [PMID: 33946224 PMCID: PMC8124743 DOI: 10.3390/ijms22094760] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Steroid receptor coactivator-3 (SRC-3), also known as amplified in breast cancer 1 (AIB1), is a member of the SRC family. SRC-3 regulates not only the transcriptional activity of nuclear receptors but also many other transcription factors. Besides the essential role of SRC-3 in physiological functions, it also acts as an oncogene to promote multiple aspects of cancer. This review updates the important progress of SRC-3 in carcinogenesis and summarizes its mode of action, which provides clues for cancer therapy.
Collapse
|
40
|
Li FJ, Hu JH, Ren X, Zhou CM, Liu Q, Zhang YQ. Toad venom: A comprehensive review of chemical constituents, anticancer activities, and mechanisms. Arch Pharm (Weinheim) 2021; 354:e2100060. [PMID: 33887066 DOI: 10.1002/ardp.202100060] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 12/31/2022]
Abstract
Toad venom, a traditional natural medicine, has been used for hundreds of years in China for treating different diseases. Many studies have been performed to elucidate the cardiotonic and analgesic activities of toad venom. Until the last decade, an increasing number of studies have documented that toad venom is a source of lead compound(s) for the development of potential cancer treatment drugs. Research has shown that toad venom contains 96 types of bufadienolide monomers and 23 types of indole alkaloids, such as bufalin, cinobufagin, arenobufagin, and resibufogenin, which exhibit a wide range of anticancer activities in vitro and, in particular, in vivo for a range of cancers. The main antitumor mechanisms are likely to be apoptosis or/and autophagy induction, cell cycle arrest, cell metastasis suppression, reversal of drug resistance, or growth inhibition of cancer cells. This review summarizes the chemical constituents of toad venom, analyzing their anticancer activities and molecular mechanisms for cancer treatments. We also outline the importance of further studies regarding the material basis and anticancer mechanisms of toad venom.
Collapse
Affiliation(s)
- Fang-Jie Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing-Hong Hu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, China
| | - Xin Ren
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cheng-Mei Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, China
| | - Yong-Qing Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
41
|
de Semir D, Bezrookove V, Nosrati M, Dar AA, Miller JR, Leong SP, Kim KB, Liao W, Soroceanu L, McAllister S, Debs RJ, Schadendorf D, Leachman SA, Cleaver JE, Kashani-Sabet M. Nuclear Receptor Coactivator NCOA3 Regulates UV Radiation-Induced DNA Damage and Melanoma Susceptibility. Cancer Res 2021; 81:2956-2969. [PMID: 33766890 DOI: 10.1158/0008-5472.can-20-3450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/10/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022]
Abstract
Melanoma occurs as a consequence of inherited susceptibility to the disease and exposure to UV radiation (UVR) and is characterized by uncontrolled cellular proliferation and a high mutational load. The precise mechanisms by which UVR contributes to the development of melanoma remain poorly understood. Here we show that activation of nuclear receptor coactivator 3 (NCOA3) promotes melanomagenesis through regulation of UVR sensitivity, cell-cycle progression, and circumvention of the DNA damage response (DDR). Downregulation of NCOA3 expression, either by genetic silencing or small-molecule inhibition, significantly suppressed melanoma proliferation in melanoma cell lines and patient-derived xenografts. NCOA3 silencing suppressed expression of xeroderma pigmentosum C and increased melanoma cell sensitivity to UVR. Suppression of NCOA3 expression led to activation of DDR effectors and reduced expression of cyclin B1, resulting in G2-M arrest and mitotic catastrophe. A SNP in NCOA3 (T960T) reduced NCOA3 protein expression and was associated with decreased melanoma risk, given a significantly lower prevalence in a familial melanoma cohort than in a control cohort without cancer. Overexpression of wild-type NCOA3 promoted melanocyte survival following UVR and was accompanied by increased levels of UVR-induced DNA damage, both of which were attenuated by overexpression of NCOA3 (T960T). These results describe NCOA3-regulated pathways by which melanoma can develop, with germline NCOA3 polymorphisms enabling enhanced melanocyte survival in the setting of UVR exposure, despite an increased mutational burden. They also identify NCOA3 as a novel therapeutic target for melanoma. SIGNIFICANCE: This study explores NCOA3 as a regulator of the DDR and a therapeutic target in melanoma, where activation of NCOA3 contributes to melanoma development following exposure to ultraviolet light.
Collapse
Affiliation(s)
- David de Semir
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, California.,California Pacific Medical Center Research Institute, San Francisco, California
| | - Vladimir Bezrookove
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, California.,California Pacific Medical Center Research Institute, San Francisco, California
| | - Mehdi Nosrati
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, California.,California Pacific Medical Center Research Institute, San Francisco, California
| | - Altaf A Dar
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, California.,California Pacific Medical Center Research Institute, San Francisco, California
| | - James R Miller
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, California.,California Pacific Medical Center Research Institute, San Francisco, California
| | - Stanley P Leong
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, California.,California Pacific Medical Center Research Institute, San Francisco, California
| | - Kevin B Kim
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, California.,California Pacific Medical Center Research Institute, San Francisco, California
| | - Wilson Liao
- Department of Dermatology, University of California San Francisco, San Francisco, California
| | - Liliana Soroceanu
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Sean McAllister
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Robert J Debs
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Dirk Schadendorf
- Department of Dermatology, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Sancy A Leachman
- Department of Dermatology and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - James E Cleaver
- Department of Dermatology, University of California San Francisco, San Francisco, California
| | - Mohammed Kashani-Sabet
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, California. .,California Pacific Medical Center Research Institute, San Francisco, California
| |
Collapse
|
42
|
Deng LJ, Lei YH, Quan JY, Li BJ, Zhang DM, Tian HY, Chen Y, Zhang EX, Chen L, Ye WC, Ning WM, Yu LZ, Liu JS. 1β-OH-arenobufagin induces mitochondrial apoptosis in hepatocellular carcinoma through the suppression of mTOR signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113443. [PMID: 33022344 DOI: 10.1016/j.jep.2020.113443] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chansu, dried secretions from Bufonidae, has long been used for cancer treatment as a traditional Chinese medicine. In searching for effective anti-hepatoma agents from Chansu, our preliminary drug screening found that a bufadienolide, namely 1β-hydroxyl-arenobufagin (1β-OH-ABF), displays anti-hepatoma activities. However, the anti-hepatoma effects and molecular mechanisms of 1β-OH-ABF have not been defined. AIM OF THE STUDY To evaluate the anti-hepatoma activity of 1β-OH-ABF against liver cancer Hep3B and HepG2 cells in vitro and in vivo, as well as explore the underlying mechanisms. MATERIALS AND METHODS The anti-proliferative effects of 1β-OH-ABF on liver cancer Hep3B, HepG2, HuH7, SK-HEP-1 and normal hepatocyte LO2 cells were examined by MTT assay and colony formation assay. Hoechst 33258 staining and Annexin V-FITC/PI staining assay were used to analyze apoptosis induced by 1β-OH-ABF. The collapse of the mitochondrial membrane potential (ΔΨm) was detected by JC-1 staining assay. Western blotting was used to examine the expression levels of targeted proteins. The role of mTOR in 1β-OH-ABF-induced apoptosis was investigated using small interfering RNA (siRNA) transfection. Zebrafish xenograft model was established to evaluate the anti-hepatoma effects of 1β-OH-ABF in vivo. RESULTS We found that 1β-OH-ABF inhibits the proliferation of Hep3B, HepG2, HuH7, SK-HEP-1 cells but has little cytotoxicity towards LO2 cells. 1β-OH-ABF induces mitochondria dysfunction and triggers mitochondria apoptotic pathway, which is accompanied by the loss of ΔΨm, upregulation and translocation of Bax, as well as cleavages of caspase-9, caspase-3 and PARP. Mechanistically, 1β-OH-ABF markedly decreases the expression level of p-AKT/AKT and p-mTOR (Ser2248 and Ser2481)/mTOR in a time-dependent manner. Inhibition of mTOR by siRNA strengthens 1β-OH-ABF-mediated apoptosis. Critically, 1β-OH-ABF shows a marked in vivo anti-hepatoma effect on human Hep3B cell xenografts in zebrafish model. CONCLUSION 1β-OH-ABF induces mitochondrial apoptosis through the suppression of mTOR signaling in vitro and in vivo, indicating that 1β-OH-ABF may serve as a potential agent for the treatment of liver cancer.
Collapse
Affiliation(s)
- Li-Juan Deng
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510630, China.
| | - Yu-He Lei
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518000, China.
| | - Jing-Yu Quan
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Bao-Jing Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China.
| | - Dong-Mei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510630, China.
| | - Hai-Yan Tian
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510630, China.
| | - Ye Chen
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510630, China.
| | - En-Xin Zhang
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518000, China.
| | - Lei Chen
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518000, China.
| | - Wen-Cai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510630, China.
| | - Wei-Min Ning
- Dongguan Hospital of Traditional Chinese Medicine, Dongguan, 523808, China.
| | - Lin-Zhong Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Jun-Shan Liu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
43
|
Gong M, Wang X, Mu L, Wang Y, Pan J, Yuan X, Zhou H, Xing J, Wang R, Sun J, Liu Q, Zhang X, Wang L, Chen Y, Pei Y, Li S, Liu L, Zhao Y, Yuan Y. Steroid receptor coactivator-1 enhances the stemness of glioblastoma by activating long noncoding RNA XIST/miR-152/KLF4 pathway. Cancer Sci 2021; 112:604-618. [PMID: 33090636 PMCID: PMC7894023 DOI: 10.1111/cas.14685] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) recurrence is attributed to the presence of therapy-resistant glioblastoma stem cells. Steroid receptor coactivator-1 (SRC-1) acts as an oncogenic regulator in many human tumors. The relationship between SRC-1 and GBM has not yet been studied. Herein, we investigate the role of SRC-1 in GBM. In this study, we found that SRC-1 expression is positively correlated with grades of glioma and inversely correlated with glioma patient's prognosis. Steroid receptor coactivator-1 promotes the proliferation, migration, and tumor growth of GBM cells. Notably, SRC-1 knockdown suppresses the stemness of GBM cells. Mechanistically, long noncoding RNA X-inactive specific transcript (XIST) is regulated by SRC-1 at the posttranscriptional level and mediates the function of SRC-1 in promoting stemness-like properties of GBM. Steroid receptor coactivator-1 can promote the expression of Kruppel-like factor 4 (KLF4) through the XIST/microRNA (miR)-152 axis. Additionally, arenobufagin and bufalin, SRC small molecule inhibitors, can reduce the proliferation and stemness of GBM cells. This study reveals SRC-1 promotes the stemness of GBM by activating the long noncoding RNA XIST/miR-152/KLF4 pathway and provides novel markers for diagnosis and therapy of GBM.
Collapse
Affiliation(s)
- Miaomiao Gong
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Xun Wang
- Department of NeurosurgeryThe Third People’s Hospital of DalianDalianChina
| | - Lin Mu
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Yueyue Wang
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Jinjin Pan
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Xiaocheng Yuan
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Haoran Zhou
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Jinshan Xing
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Rui Wang
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Jian Sun
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Qiwang Liu
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Xiya Zhang
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Lin Wang
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Yiying Chen
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Yandong Pei
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Shao Li
- College of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Liang Liu
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| | - Yongshun Zhao
- The First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Yuhui Yuan
- The Second Affiliated HospitalInstitute of Cancer Stem CellDalian Medical UniversityDalianChina
| |
Collapse
|
44
|
Blatt EB, Kopplin N, Kumar S, Mu P, Conzen SD, Raj GV. Overcoming oncogene addiction in breast and prostate cancers: a comparative mechanistic overview. Endocr Relat Cancer 2021; 28:R31-R46. [PMID: 33263560 PMCID: PMC8218927 DOI: 10.1530/erc-20-0272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) and breast cancer (BCa) are both hormone-dependent cancers that require the androgen receptor (AR) and estrogen receptor (ER, ESR1) for growth and proliferation, respectively. Endocrine therapies that target these nuclear receptors (NRs) provide significant clinical benefit for metastatic patients. However, these therapeutic strategies are seldom curative and therapy resistance is prevalent. Because the vast majority of therapy-resistant PCa and BCa remain dependent on the augmented activity of their primary NR driver, common mechanisms of resistance involve enhanced NR signaling through overexpression, mutation, or alternative splicing of the receptor, coregulator alterations, and increased intracrine hormonal synthesis. In addition, a significant subset of endocrine therapy-resistant tumors become independent of their primary NR and switch to alternative NR or transcriptional drivers. While these hormone-dependent cancers generally employ similar mechanisms of endocrine therapy resistance, distinct differences between the two tumor types have been observed. In this review, we compare and contrast the most frequent mechanisms of antiandrogen and antiestrogen resistance, and provide potential therapeutic strategies for targeting both advanced PCa and BCa.
Collapse
Affiliation(s)
- Eliot B Blatt
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Noa Kopplin
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shourya Kumar
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ping Mu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Suzanne D Conzen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ganesh V Raj
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
45
|
Yu Z, Feng H, Zhuo Y, Li M, Zhu X, Huang L, Zhang X, Zhou Z, Zheng C, Jiang Y, Le F, Yu DY, Cheng AS, Sun X, Gao Y. Bufalin inhibits hepatitis B virus-associated hepatocellular carcinoma development through androgen receptor dephosphorylation and cell cycle-related kinase degradation. Cell Oncol (Dordr) 2020; 43:1129-1145. [PMID: 32623699 DOI: 10.1007/s13402-020-00546-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2020] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC), which has a male predominance, lacks effective therapeutic options. Previously, the cardiac glycoside analogue bufalin has been found to inhibit HBV infection and HCC development. As yet, however, its molecular role in HBV-associated HCC has remained obscure. METHODS Colony formation and soft agar assays, xenograft and orthotopic mouse models and HBV X protein (HBx) transgenic mice with exposure to diethylnitrosamine were used to evaluate the effect of bufalin on HBV-associated HCC growth and tumorigenicity. HBx-induced oncogenic signaling regulated by bufalin was assessed using PCR array, chromatin immunoprecipitation, site-directed mutagenesis, luciferase reporter, transcription and protein expression assays. Synergistic HCC therapeutic effects were examined using combinations of bufalin and sorafenib. RESULTS We found that bufalin exerted a more profound effect on inhibiting the proliferation of HBV-associated HCC cells than of non HBV-associated HCC cells. Bufalin significantly inhibited HBx-induced malignant transfromation in vitro and tumorigenicity in vivo. Androgen receptor (AR) signaling was found to be a target of bufalin resistance to HBV-associated hepatocarcinogenesis. We also found that bufalin induced both AR dephosphorylation and cell cycle-related kinase (CCRK) degradation to inhibit β-catenin/TCF signaling, which subsequently led to cell cycle arrest via cyclin D1 down-regulation and p21 up-regulation, resulting in HCC regression. Furthermore, we found that bufalin reduced > 60% diethylnitrosamine-induced hepatocarcinogenesis in HBx transgenic mice, and improved the sensitivity of refractory HBV-associated HCC cells to sorafenib treatment. CONCLUSION Our results indicate that bufalin acts as a potential anti-HCC therapeutic candidate to block HBx-induced AR/CCRK/β-catenin signaling by targeting AR and CCRK, which may provide a novel strategy for the treatment of HBV-associated HCC.
Collapse
Affiliation(s)
- Zhuo Yu
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China.
| | - Hai Feng
- Department of pharmacology, School of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Yunhui Zhuo
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China
| | - Man Li
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xiaojun Zhu
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China
| | - Lingying Huang
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China
| | - Xin Zhang
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Zhenhua Zhou
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Chao Zheng
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China
| | - Yun Jiang
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China
| | - Fan Le
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China
| | - Dae-Yeul Yu
- Disease Model Research Laboratory, Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, Republic of Korea
| | - Alfred Szelok Cheng
- School of Biomedical Sciences, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Xuehua Sun
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China.
| | - Yueqiu Gao
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China. .,Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
46
|
Ayogu JI, Odoh AS. Prospects and Therapeutic Applications of Cardiac Glycosides in Cancer Remediation. ACS COMBINATORIAL SCIENCE 2020; 22:543-553. [PMID: 32786321 DOI: 10.1021/acscombsci.0c00082] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Active metabolites from natural sources are the predominant molecular targets in numerous biological studies owing to their appropriate compatibility with biological systems and desirable selective toxicities. Thus, their potential for therapeutic development could span a broad scope of disease areas, including pathological and neurological dysfunctions. Cardiac glycosides are a unique class of specialized metabolites that have been extensively applied as therapeutic agents for the treatment of numerous heart conditions, and more recently, they have also been explored as probable antitumor agents. They are a class of naturally derived compounds that bind to and inhibit Na+/K+-ATPase. This study presents cardiac glycosides and their analogues with highlights on their applications, challenges, and prospects as lead compounds for cancer treatment.
Collapse
Affiliation(s)
- Jude I. Ayogu
- Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka 410001, Nigeria
- Department of Chemistry, School of Physical and Chemical Science, University of Canterbury, Christchurch 8041, New Zealand
| | - Amaechi S. Odoh
- Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
47
|
Acetyl-bufalin shows potent efficacy against non-small-cell lung cancer by targeting the CDK9/STAT3 signalling pathway. Br J Cancer 2020; 124:645-657. [PMID: 33122847 PMCID: PMC7851395 DOI: 10.1038/s41416-020-01135-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/04/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cyclin-dependent kinase 9 (CDK9) is a promising prognostic marker and therapeutic target in cancers. Bufalin is an effective anti-tumour agent; however, the clinical application of bufalin is limited due to its high toxicity. Acetyl-bufalin, the bufalin prodrug, was designed and synthesised with higher efficiency and lower toxicity. METHODS Three non-small-cell lung cancer (NSCLC) cell lines, a xenograft model and a patient-derived xenograft (PDX) model were used to examine the effects of acetyl-bufalin. CDK9/STAT3 involvement was investigated by knockdown with siRNA, proteome microarray assay, western blot analysis and co-immunoprecipitation experiments. Acute toxicity test and pharmacokinetics (PK) study were conducted to assess the safety and PK. The human NSCLC tissues were analysed to verify high CDK9 expression. RESULTS We showed that CDK9 induced NSCLC cell proliferation and that this effect was associated with STAT3 activation, specifically an increase in STAT3 phosphorylation and transcription factor activity. Acetyl-bufalin is an effective and safety inhibitor of the CDK9/STAT3 pathway, leading to the impediment of various oncogenic processes in NSCLC. Molecular docking and high-throughput proteomics platform analysis uncovered acetyl-bufalin directly binds to CDK9. Consequently, acetyl-bufalin impaired the complex formation of CDK9 and STAT3, decreased the expressions of P-STAT3, and transcribed target genes such as cyclin B1, CDC2, MCL-1, Survivin, VEGF, BCL2, and it upregulated the expression levels of BAX and caspase-3 activity. Acetyl-bufalin inhibited tumour growth in NSCLC xenograft and PDX models. CONCLUSIONS Acetyl-bufalin is a novel blocker of the CDK9/STAT3 pathway thus may have potential in therapy of NSCLC and other cancers.
Collapse
|
48
|
Pan L, Nie L, Yao S, Bi A, Ye Y, Wu Y, Tan Z, Wu Z. Bufalin exerts antitumor effects in neuroblastoma via the induction of reactive oxygen species‑mediated apoptosis by targeting the electron transport chain. Int J Mol Med 2020; 46:2137-2149. [PMID: 33125107 PMCID: PMC7595673 DOI: 10.3892/ijmm.2020.4745] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
The prognosis of high-risk neuroblastoma remains poor. Clinical first-line drugs for treating neuroblastoma have been developed over the previous half-century; however, progress in the identification of new drugs with high efficiency is required. Bufalin, one of the major components of extracts obtained from the venom of the Chinese toad Bufo gargarizans, which is used to treat heart failure in Asian Pacific countries, has been reported to be a potential drug against multiple types of tumor; however, the detailed mechanisms underlying its antitumor activities remain unclear, largely due to lack of knowledge regarding its targets. In the present study, bufalin was revealed to exhibit potent antitumor effects against neuroblastoma, both in vitro and in vivo, using cell proliferation, colony formation, Transwell migration and flow cytometry assays, as well as a nude mouse subcutaneous xenograft model. Moreover, a chemically modified bufalin probe was designed to identify the potential targets of bufalin in neuroblastoma via chemical proteomics. With this strategy, it was revealed that the electron transport chain (ETC) on the inner membrane of mitochondria may contain potential targets for bufalin, and that bufalin-induced mitochondrial-dependent apoptosis may be caused by disruption of the ETC. Collectively, the present study suggests that bufalin may a promising drug for chemotherapy against neuroblastoma, and provides a foundation for further studies into the antitumor mechanisms of bufalin.
Collapse
Affiliation(s)
- Lijia Pan
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, P.R. China
| | - Litong Nie
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sheng Yao
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Aiwei Bi
- State Key Laboratory of Drug Research and Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Yang Ye
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Yeming Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, P.R. China
| | - Zhen Tan
- State Key Laboratory of Drug Research and Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Zhixiang Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, P.R. China
| |
Collapse
|
49
|
Geng X, Wang F, Tian D, Huang L, Streator E, Zhu J, Kurihara H, He R, Yao X, Zhang Y, Tang J. Cardiac glycosides inhibit cancer through Na/K-ATPase-dependent cell death induction. Biochem Pharmacol 2020; 182:114226. [PMID: 32976831 DOI: 10.1016/j.bcp.2020.114226] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
Successful drug repurposing relies on the understanding of molecular mechanisms of the target compound. Cardiac glycosides have demonstrated potent anticancer activities; however, the pharmacological mechanisms underlying their anticancer effects remained elusive, which has restricted their further development in cancer treatment. A bottleneck is the lack of comprehensive understanding about genes and signaling pathways that are altered at the early stage of drug treatment, which is key to understand how they inhibit cancer. To address this issue, we first investigated the anticancer effects of a panel of 68 naturally isolated cardiac glycosides. Our results illustrate critical structure activity relationship of these compounds on cancer cell survival. We confirmed the anticancer effect of cardiac glycoside in mouse tumor xenografts. Through RNA sequencing, quantitative PCR and immunoblotting, we show that cardiac glycoside first activated autophagy and then induced apoptosis. Further activating autophagy by rapamycin or inhibiting apoptosis by caspase inhibitor mitigated cardiac glycoside-induced cell death, whereas inhibiting autophagy by RNA interference-mediated depletion of critical autophagy genes enhanced cell death. While depletion of Na/K-ATPase, the protein target of cardiac glycosides, by RNA interference inhibited both autophagy activation and apoptosis induction by cardiac glycoside, expression of human, but not rodent Na/K-ATPase, increased cell sensitivity to cardiac glycoside. In conclusion, our analyses reveal sequential activation of autophagy and apoptosis during early stages of cardiac glycoside treatment and indicate the importance of Na/K-ATPase in their anticancer effects.
Collapse
Affiliation(s)
- Xinran Geng
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Fangfang Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Danmei Tian
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Lihua Huang
- International Academic Support & Delivery Unit, BGI Genomics, Co., Ltd., Shenzhen 518083, People's Republic of China
| | - Evan Streator
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jingjing Zhu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Hiroshi Kurihara
- Anti-Stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Rongrong He
- Anti-Stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Xinsheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Youwei Zhang
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Jinshan Tang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China.
| |
Collapse
|
50
|
Capatina AL, Lagos D, Brackenbury WJ. Targeting Ion Channels for Cancer Treatment: Current Progress and Future Challenges. Rev Physiol Biochem Pharmacol 2020; 183:1-43. [PMID: 32865696 DOI: 10.1007/112_2020_46] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ion channels are key regulators of cancer cell pathophysiology. They contribute to a variety of processes such as maintenance of cellular osmolarity and membrane potential, motility (via interactions with the cytoskeleton), invasion, signal transduction, transcriptional activity and cell cycle progression, leading to tumour progression and metastasis. Ion channels thus represent promising targets for cancer therapy. Ion channels are attractive targets because many of them are expressed at the plasma membrane and a broad range of existing inhibitors are already in clinical use for other indications. However, many of the ion channels identified in cancer cells are also active in healthy normal cells, so there is a risk that certain blockers may have off-target effects on normal physiological function. This review describes recent research advances into ion channel inhibitors as anticancer therapeutics. A growing body of evidence suggests that a range of existing and novel Na+, K+, Ca2+ and Cl- channel inhibitors may be effective for suppressing cancer cell proliferation, migration and invasion, as well as enhancing apoptosis, leading to suppression of tumour growth and metastasis, either alone or in combination with standard-of-care therapies. The majority of evidence to date is based on preclinical in vitro and in vivo studies, although there are several examples of ion channel-targeting strategies now reaching early phase clinical trials. Given the strong links between ion channel function and regulation of tumour growth, metastasis and chemotherapy resistance, it is likely that further work in this area will facilitate the development of new therapeutic approaches which will reach the clinic in the future.
Collapse
Affiliation(s)
| | - Dimitris Lagos
- Hull York Medical School, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - William J Brackenbury
- Department of Biology, University of York, York, UK.
- York Biomedical Research Institute, University of York, York, UK.
| |
Collapse
|