1
|
Boichuk S, Dunaev P, Galembikova A, Valeeva E. Fibroblast Growth Factor 2 (FGF2) Activates Vascular Endothelial Growth Factor (VEGF) Signaling in Gastrointestinal Stromal Tumors (GIST): An Autocrine Mechanism Contributing to Imatinib Mesylate (IM) Resistance. Cancers (Basel) 2024; 16:3103. [PMID: 39272961 PMCID: PMC11394061 DOI: 10.3390/cancers16173103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
We showed previously that the autocrine activation of the FGFR-mediated pathway in GIST lacking secondary KIT mutations was a result of the inhibition of KIT signaling. We show here that the FGF2/FGFR pathway regulates VEGF-A/VEGFR signaling in IM-resistant GIST cells. Indeed, recombinant FGF2 increased the production of VEGF-A by IM-naive and resistant GIST cells. VEGF-A production was also increased in KIT-inhibited GIST, whereas the neutralization of FGF2 by anti-FGF2 mAb attenuated VEGFR signaling. Of note, BGJ 398, pan FGFR inhibitor, effectively and time-dependently inhibited VEGFR signaling in IM-resistant GIST T-1R cells, thereby revealing the regulatory role of the FGFR pathway in VEGFR signaling for this particular GIST cell line. This also resulted in significant synergy between BGJ 398 and VEGFR inhibitors (i.e., sunitinib and regorafenib) by enhancing their pro-apoptotic and anti-proliferative activities. The high potency of the combined use of VEGFR and FGFR inhibitors in IM-resistant GISTs was revealed by the impressive synergy scores observed for regorafenib or sunitinib and BGJ 398. Moreover, FGFR1/2 and VEGFR1/2 were co-localized in IM-resistant GIST T-1R cells, and the direct interaction between the aforementioned RTKs was confirmed by co-immunoprecipitation. In contrast, IM-resistant GIST 430 cells expressed lower basal levels of FGF2 and VEGF-A. Despite the increased expression VEGFR1 and FGFR1/2 in GIST 430 cells, these RTKs were not co-localized and co-immunoprecipitated. Moreover, no synergy between FGFR and VEGFR inhibitors was observed for the IM-resistant GIST 430 cell line. Collectively, the dual targeting of FGFR and VEGFR pathways in IM-resistant GISTs is not limited to the synergistic anti-angiogenic treatment effects. The dual inhibition of FGFR and VEGFR pathways in IM-resistant GISTs potentiates the proapoptotic and anti-proliferative activities of the corresponding RTKi. Mechanistically, the FGF2-induced activation of the FGFR pathway turns on VEGFR signaling via the overproduction of VEGF-A, induces the interaction between FGFR1/2 and VEGFR1, and thereby renders cancer cells highly sensitive to the dual inhibition of the aforementioned RTKs. Thus, our data uncovers the novel mechanism of the cross-talk between the aforementioned RTKs in IM-resistant GISTs lacking secondary KIT mutations and suggests that the dual blockade of FGFR and VEGFR signaling might be an effective treatment strategy for patients with GIST-acquired IM resistance via KIT-independent mechanisms.
Collapse
Affiliation(s)
- Sergei Boichuk
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia
- Department of Radiotherapy and Radiology, Faculty of Surgery, Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia
- "Biomarker" Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Pavel Dunaev
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia
| | - Aigul Galembikova
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia
| | - Elena Valeeva
- Central Research Laboratory, Kazan State Medical University, Kazan 420012, Russia
| |
Collapse
|
2
|
Liu WZ, Du YQ, Shen Q, Tao KX, Zhang P. Ripretinib for the treatment of advanced, imatinib-resistant gastrointestinal stromal tumors. J Dig Dis 2024; 25:559-563. [PMID: 37706279 PMCID: PMC11718133 DOI: 10.1111/1751-2980.13229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/12/2023] [Indexed: 09/15/2023]
Abstract
Discovery of constitutive activation of KIT/PDGFRA tyrosine kinases in gastrointestinal stromal tumors (GISTs) leads to the development of the targeted drug imatinib. However, the inevitable development of imatinib resistance remains a major issue. Ripretinib is a novel targeted drug that inhibits the activities of a broad spectrum of drug-resistant KIT/PDGFRA mutants. It was approved in 2020 and is currently recommended by major international guidelines as the fourth-line and beyond therapy for advanced GISTs. Emerging evidence shows that ripretinib is superior to sunitinib as a second-line treatment for KIT exon 11-mutated GISTs due to its activity against highly heterogeneous frequently occurring secondary mutations. This review summarizes current data on the use of ripretinib to treat advanced imatinib-resistant GISTs. We also propose future research directions to improve the targeted GIST treatment.
Collapse
Affiliation(s)
- Wei Zhen Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceChina
| | - Yu Qiang Du
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceChina
| | - Qian Shen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceChina
| | - Kai Xiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceChina
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceChina
| |
Collapse
|
3
|
Popoiu TA, Pîrvu CA, Popoiu CM, Iacob ER, Talpai T, Voinea A, Albu RS, Tãban S, Bãlãnoiu LM, Pantea S. Gastrointestinal Stromal Tumors (GISTs) in Pediatric Patients: A Case Report and Literature Review. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1040. [PMID: 39334573 PMCID: PMC11429550 DOI: 10.3390/children11091040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024]
Abstract
Gastrointestinal stromal tumors (GISTs) are rare mesenchymal neoplasms that primarily affect adults, with pediatric cases constituting only 0.5-2.7% of the total. Pediatric GISTs present unique clinical, genetic, and pathological features that distinguish them from adult cases. This literature review aims to elucidate these differences, emphasizing diagnostic and therapeutic challenges. We discuss the resistance of pediatric GISTs to conventional chemotherapy and highlight the importance of surgical intervention, especially in emergency situations involving intra-abdominal bleeding. The review also explores the molecular characteristics of pediatric GISTs, including rare mutations such as quadruple-negative wild-type GIST with an FGF3 gene gain mutation. To illustrate these points, we conclude with a case from our clinic involving a 15-year-old female with multiple CD117-positive gastric GISTs and a quadruple-negative wild-type genetic profile who required urgent surgical intervention following a failed tumor embolization. This case underscores the critical need for early diagnosis and individualized therapeutic strategies combining oncologic and surgical care to improve outcomes in pediatric GIST patients.
Collapse
Affiliation(s)
- Tudor-Alexandru Popoiu
- Department of General Surgery, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department III of Functional Sciences, Discipline of Medical Informatics and Biostatistics, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Cãtãlin-Alexandru Pîrvu
- Department of General Surgery, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Cãlin-Marius Popoiu
- Department of Pediatric Surgery, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Emil Radu Iacob
- Department of Pediatric Surgery, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Tamas Talpai
- Department of General Surgery, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Amalia Voinea
- Department of General Surgery, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Rãzvan-Sorin Albu
- Department of General Surgery, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Sorina Tãban
- Department of Pathology, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Larisa-Mihaela Bãlãnoiu
- Department of General Surgery, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Stelian Pantea
- Department of General Surgery, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
4
|
Yu Y, Yu M, Luo L, Zhang Z, Zeng H, Chen Y, Lin Z, Chen M, Wang W. Molecular characteristics and immune microenvironment of gastrointestinal stromal tumours: targets for therapeutic strategies. Front Oncol 2024; 14:1405727. [PMID: 39070147 PMCID: PMC11272528 DOI: 10.3389/fonc.2024.1405727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
Gastrointestinal stromal tumours (GISTs) are the most common mesenchymal tumours, arising mainly from the interstitial cells of Cajal (ICCs) of the gastrointestinal tract. As radiotherapy and chemotherapy are generally ineffective for GISTs, the current primary treatment is surgical resection. However, surgical resection is not choice for most patients. Therefore, new therapeutic strategies are urgently needed. Targeted therapy, represented by tyrosine kinase inhibitors (TKIs), and immunotherapy, represented by immune checkpoint inhibitor therapies and chimeric antigen receptor T-cell immunotherapy (CAR-T), offer new therapeutic options in GISTs and have shown promising treatment responses. In this review, we summarize the molecular classification and immune microenvironment of GISTs and discuss the corresponding targeted therapy and immunotherapy options. This updated knowledge may provide more options for future therapeutic strategies and applications in GISTs.
Collapse
Affiliation(s)
- Yang Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Mengdie Yu
- Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou, Guangdong, China
| | - Lijie Luo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Zijing Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Haiping Zeng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Yan Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Zeyu Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Mengnan Chen
- Department of Thyroid and Breast Surgery, Baiyun Hospital, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Wei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Gómez-Peregrina D, Cicala CM, Serrano C. Monitoring advanced gastrointestinal stromal tumor with circulating tumor DNA. Curr Opin Oncol 2024; 36:282-290. [PMID: 38726808 DOI: 10.1097/cco.0000000000001040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
PURPOSE OF REVIEW This review explores the role of circulating tumor (ct)DNA as a biomarker for clinical decision-making and monitoring purposes in metastatic gastrointestinal stromal tumor (GIST) patients. We discuss key insights from recent clinical trials and anticipate the future perspectives of ctDNA profiling within the clinical landscape of GIST. RECENT FINDINGS The identification and molecular characterization of KIT/platelet-derived growth factor receptor alpha (PDGFRA) mutations from ctDNA in metastatic GIST is feasible and reliable. Such identification through ctDNA serves as a predictor of clinical outcomes to tyrosine-kinase inhibitors (TKIs) in metastatic patients. Additionally, conjoined ctDNA analysis from clinical trials reveal the evolving mutational landscapes and increase in intratumoral heterogeneity across treatment lines. Together, this data positions ctDNA determination as a valuable tool for monitoring disease progression and guiding therapy in metastatic patients. These collective efforts culminated in the initiation of a ctDNA-based randomized clinical trial in GIST, marking a significant milestone in integrating ctDNA testing into the clinical care of GIST patients. SUMMARY The dynamic field of ctDNA technologies is rapidly evolving and holds significant promise for research. Several trials have successfully validated the clinical utility of ctDNA in metastatic GIST, laying the foundations for its prospective integration into the routine clinical management of GIST patients.
Collapse
Affiliation(s)
- David Gómez-Peregrina
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO)
| | - Carlo Maria Cicala
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO)
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - César Serrano
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO)
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
6
|
Cicala CM, Olivares-Rivas I, Aguirre-Carrillo JA, Serrano C. KIT/PDGFRA inhibitors for the treatment of gastrointestinal stromal tumors: getting to the gist of the problem. Expert Opin Investig Drugs 2024; 33:159-170. [PMID: 38344849 DOI: 10.1080/13543784.2024.2318317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
INTRODUCTION Approximately 90% of gastrointestinal stromal tumors (GISTs) are driven by activating mutations in receptor tyrosine-kinases KIT or PDGFRA. Despite the outstanding results of first-line imatinib in advanced GIST, resistance ultimately occurs mainly through secondary mutations in KIT/PDGFRA. Other tyrosine-kinase inhibitors (TKIs) with a broader spectrum of activity against these mutations are approved after imatinib failure. However, response rates and progression-free survival are drastically lower compared to imatinib. Notably, imatinib also triggers early tolerance adaptation mechanisms, which precede the occurrence of secondary mutations. AREAS COVERED In this review, we outline the current landscape of KIT inhibitors, discuss the novel agents, and present additional biological pathways that may be therapeutically exploitable. EXPERT OPINION The development of broad-spectrum and highly selective TKIs able to induce a sustained KIT/PDGFRA inhibition is the pillar of preclinical and clinical investigation in GIST. However, it is now recognized that the situation is more intricate, with various factors interacting with KIT and PDGFRA, playing a crucial role in the response and resistance to treatments. Future strategies in the management of advanced GIST should integrate driver inhibition with the blockade of other molecules to enhance cell death and establish enduring responses in patients.
Collapse
Affiliation(s)
- Carlo María Cicala
- Sarcoma Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Iván Olivares-Rivas
- Sarcoma Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - César Serrano
- Sarcoma Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
7
|
Zhou S, Abdihamid O, Tan F, Zhou H, Liu H, Li Z, Xiao S, Li B. KIT mutations and expression: current knowledge and new insights for overcoming IM resistance in GIST. Cell Commun Signal 2024; 22:153. [PMID: 38414063 PMCID: PMC10898159 DOI: 10.1186/s12964-023-01411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/25/2023] [Indexed: 02/29/2024] Open
Abstract
Gastrointestinal stromal tumor (GIST) is the most common sarcoma located in gastrointestinal tract and derived from the interstitial cell of Cajal (ICC) lineage. Both ICC and GIST cells highly rely on KIT signal pathway. Clinically, about 80-90% of treatment-naive GIST patients harbor primary KIT mutations, and special KIT-targeted TKI, imatinib (IM) showing dramatic efficacy but resistance invariably occur, 90% of them was due to the second resistance mutations emerging within the KIT gene. Although there are multiple variants of KIT mutant which did not show complete uniform biologic characteristics, most of them have high KIT expression level. Notably, the high expression level of KIT gene is not correlated to its gene amplification. Recently, accumulating evidences strongly indicated that the gene coding, epigenetic regulation, and pre- or post- protein translation of KIT mutants in GIST were quite different from that of wild type (WT) KIT. In this review, we elucidate the biologic mechanism of KIT variants and update the underlying mechanism of the expression of KIT gene, which are exclusively regulated in GIST, providing a promising yet evidence-based therapeutic landscape and possible target for the conquer of IM resistance. Video Abstract.
Collapse
Affiliation(s)
- Shishan Zhou
- Division of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China, Xiangya road 87
| | - Omar Abdihamid
- Garissa Cancer Center, Garissa County Referral Hospital, Kismayu road, Garissa town, P.O BOX, 29-70100, Kenya
| | - Fengbo Tan
- Division of Surgery, Xiangya Hospital, Central South University, China, Hunan, Changsha
| | - Haiyan Zhou
- Division of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Heli Liu
- Division of Surgery, Xiangya Hospital, Central South University, China, Hunan, Changsha
| | - Zhi Li
- Center for Molecular Medicine of Xiangya Hospital, Collaborative Innovation Center for Cancer Medicine, Central South University, Changsha, Hunan, China, 410008
| | - Sheng Xiao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, 410008, MA, USA
| | - Bin Li
- Division of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China, Xiangya road 87#.
| |
Collapse
|
8
|
Shan KS, Dalal S, Thaw Dar NN, McLish O, Salzberg M, Pico BA. Molecular Targeting of the Fibroblast Growth Factor Receptor Pathway across Various Cancers. Int J Mol Sci 2024; 25:849. [PMID: 38255923 PMCID: PMC10815772 DOI: 10.3390/ijms25020849] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Fibroblast growth factor receptors (FGFRs) are a family of receptor tyrosine kinases that are involved in the regulation of cell proliferation, survival, and development. FGFR alterations including amplifications, fusions, rearrangements, and mutations can result in the downstream activation of tyrosine kinases, leading to tumor development. Targeting these FGFR alterations has shown to be effective in treating cholangiocarcinoma, urothelial carcinoma, and myeloid/lymphoid neoplasms, and there are currently four FGFR inhibitors approved by the Food and Drug Administration (FDA). There have been developments in multiple agents targeting the FGFR pathway, including selective FGFR inhibitors, ligand traps, monoclonal antibodies, and antibody-drug conjugates. However, most of these agents have variable and low responses, with some intolerable toxicities and acquired resistances. This review will summarize previous clinical experiences and current developments in agents targeting the FGFR pathway, and will also discuss future directions for FGFR-targeting agents.
Collapse
Affiliation(s)
- Khine S. Shan
- Memorial Health Care, Division of Hematology and Oncology, Pembroke Pines, FL 33028, USA; (S.D.); (N.N.T.D.); (O.M.); (M.S.)
| | | | | | | | | | | |
Collapse
|
9
|
Zhao J, Faryabi RB. Spatial promoter-enhancer hubs in cancer: organization, regulation, and function. Trends Cancer 2023; 9:1069-1084. [PMID: 37599153 PMCID: PMC10840977 DOI: 10.1016/j.trecan.2023.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023]
Abstract
Transcriptional dysregulation is a hallmark of cancer and can be driven by altered enhancer landscapes. Recent studies in genome organization have revealed that multiple enhancers and promoters can spatially coalesce to form dynamic topological assemblies, known as promoter-enhancer hubs, which strongly correlate with elevated gene expression. In this review, we discuss the structure and complexity of promoter-enhancer hubs recently identified in multiple cancer types. We further discuss underlying mechanisms driving dysregulation of promoter-enhancer hubs and speculate on their functional role in pathogenesis. Understanding the role of promoter-enhancer hubs in transcriptional dysregulation can provide insight into new therapeutic approaches to target these complex features of genome organization.
Collapse
Affiliation(s)
- Jingru Zhao
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Robert B Faryabi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Ruiz-Demoulin S, Trenquier E, Dekkar S, Deshayes S, Boisguérin P, Serrano C, de Santa Barbara P, Faure S. LIX1 Controls MAPK Signaling Reactivation and Contributes to GIST-T1 Cell Resistance to Imatinib. Int J Mol Sci 2023; 24:ijms24087138. [PMID: 37108337 PMCID: PMC10138740 DOI: 10.3390/ijms24087138] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Gastrointestinal stromal tumor (GIST), the most common sarcoma, is mainly caused by an oncogenic mutation in the KIT receptor tyrosine kinase. Targeting KIT using tyrosine kinase inhibitors, such as imatinib and sunitinib, provides substantial benefit; however, in most patients, the disease will eventually progress due to KIT secondary mutations leading to treatment failure. Understanding how GIST cells initially adapt to KIT inhibition should guide the selection of appropriate therapies to overcome the emergence of resistance. Several mechanisms have been broadly implicated in the resistance to imatinib anti-tumoral effects, including the reactivation of MAPK signaling upon KIT/PDGFRA targeted inhibition. This study provides evidence that LImb eXpression 1 (LIX1), a protein we identified as a regulator of the Hippo transducers YAP1 and TAZ, is upregulated upon imatinib or sunitinib treatment. LIX1 silencing in GIST-T1 cells impaired imatinib-induced MAPK signaling reactivation and enhanced imatinib anti-tumor effect. Our findings identified LIX1 as a key regulator of the early adaptative response of GIST cells to targeted therapies.
Collapse
Affiliation(s)
- Salomé Ruiz-Demoulin
- Physiology and Experimental Medicine of the Heart and Muscles (PhyMedExp), University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| | - Eva Trenquier
- Physiology and Experimental Medicine of the Heart and Muscles (PhyMedExp), University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| | - Sanaa Dekkar
- Physiology and Experimental Medicine of the Heart and Muscles (PhyMedExp), University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| | - Sébastien Deshayes
- Physiology and Experimental Medicine of the Heart and Muscles (PhyMedExp), University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| | - Prisca Boisguérin
- Physiology and Experimental Medicine of the Heart and Muscles (PhyMedExp), University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| | - César Serrano
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Pascal de Santa Barbara
- Physiology and Experimental Medicine of the Heart and Muscles (PhyMedExp), University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| | - Sandrine Faure
- Physiology and Experimental Medicine of the Heart and Muscles (PhyMedExp), University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| |
Collapse
|
11
|
Unk M, Jezeršek Novaković B, Novaković S. Molecular Mechanisms of Gastrointestinal Stromal Tumors and Their Impact on Systemic Therapy Decision. Cancers (Basel) 2023; 15:1498. [PMID: 36900287 PMCID: PMC10001062 DOI: 10.3390/cancers15051498] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are soft tissue sarcomas that mostly derive from Cajal cell precursors. They are by far the most common soft tissue sarcomas. Clinically, they present as gastrointestinal malignancies, most often with bleeding, pain, or intestinal obstruction. They are identified using characteristic immunohistochemical staining for CD117 and DOG1. Improved understanding of the molecular biology of these tumors and identification of oncogenic drivers have altered the systemic treatment of primarily disseminated disease, which is becoming increasingly complex. Gain-of-function mutations in KIT or PDGFRA genes represent the driving mutations in more than 90% of all GISTs. These patients exhibit good responses to targeted therapy with tyrosine kinase inhibitors (TKIs). Gastrointestinal stromal tumors lacking the KIT/PDGFRA mutations, however, represent distinct clinico-pathological entities with diverse molecular mechanisms of oncogenesis. In these patients, therapy with TKIs is hardly ever as effective as for KIT/PDGFRA-mutated GISTs. This review provides an outline of current diagnostics aimed at identifying clinically relevant driver alterations and a comprehensive summary of current treatments with targeted therapies for patients with GISTs in both adjuvant and metastatic settings. The role of molecular testing and the selection of the optimal targeted therapy according to the identified oncogenic driver are reviewed and some future directions are proposed.
Collapse
Affiliation(s)
- Mojca Unk
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Division of Medical Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia
| | - Barbara Jezeršek Novaković
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Division of Medical Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia
| | - Srdjan Novaković
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Andrzejewska M, Czarny J, Derwich K. Latest Advances in the Management of Pediatric Gastrointestinal Stromal Tumors. Cancers (Basel) 2022; 14:4989. [PMID: 36291774 PMCID: PMC9599787 DOI: 10.3390/cancers14204989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/21/2022] Open
Abstract
Gastrointestinal stromal tumor is the most common mesenchymal neoplasm of the gastrointestinal tract, usually found in elderly adults. It is infrequent among pediatric patients and usually differs biologically from adult-type diseases presenting mutations of KIT and PDGFR genes. In this population, more frequent is the wild-type GIST possessing SDH, TRK, RAS, NF1 mutations, among others. Both tumor types require individualized treatment with kinase inhibitors that are still being tested in the pediatric population due to the different neoplasm biology. We review the latest updates to the management of pediatric gastrointestinal tumors with a particular focus on the advances in molecular biology of the disease that enables the definition of possible resistance. Emerging treatment with kinase inhibitors that could serve as targeted therapy is discussed, especially with multikinase inhibitors of higher generation, the effectiveness of which has already been confirmed in the adult population.
Collapse
Affiliation(s)
- Marta Andrzejewska
- Faculty of Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland or
| | - Jakub Czarny
- Faculty of Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland or
| | - Katarzyna Derwich
- Department of Pediatric Oncology, Hematology and Transplantology, Institute of Pediatrics, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| |
Collapse
|
13
|
Luo Y, Wu Y, Chang X, Huang B, Luo D, Zhang J, Zhang P, Shi H, Fan J, Nie X. Identification of a novel FGFR2-KIAA1217 fusion in esophageal gastrointestinal stromal tumours: A case report. Front Oncol 2022; 12:884814. [PMID: 35978808 PMCID: PMC9377458 DOI: 10.3389/fonc.2022.884814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/12/2022] [Indexed: 12/02/2022] Open
Abstract
Background Gastrointestinal stromal tumours (GISTs) rarely arise in the esophagus. The clinical course and treatment options for esophageal GISTs are poorly understood because of their rarity. In general, the mutation spectrum of esophageal GISTs resembles that of gastric GISTs. Wild-type (WT) GISTs lacking KIT and PDGFRA gene mutations occasionally occur in adults; primary esophageal GISTs are commonly WT. Case presentation Herein, we report the case of a 41-year-old female patient who presented with a 1-week history of anterior upper chest pain. Chest computed tomography revealed a 3.7 cm × 2.8 cm × 6.7 cm soft tissue mass in the right posterior mediastinum adjacent to the esophagus. The patient underwent thoracoscopic mediastinal tumor resection and was subsequently diagnosed with an esophageal GIST. Neither KIT nor PDGFRA mutations were detected by Sanger sequencing; however, next-generation sequencing (NGS) identified an FGFR2-KIAA1217 gene fusion in the tumor tissue. No relapse was observed in this patient during the 8-month treatment-free follow-up period. Conclusion To the best of our knowledge, this report is the first to describe an FGFR2-KIAA1217 fusion in a patient with a quadruple WT esophageal GIST. When WT KIT/PDGFRA GISTS are suspected, intensive genetic analysis is recommended, and obtaining a better molecular characterization of these tumours might reveal novel therapeutic avenues.
Collapse
Affiliation(s)
- Yuehao Luo
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Wu
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaona Chang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Huang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danju Luo
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiwei Zhang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heshui Shi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Fan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xiu Nie, ; Jun Fan,
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xiu Nie, ; Jun Fan,
| |
Collapse
|
14
|
Gastrointestinal Stromal Tumors Mimicking Gynecologic Disease: Clinicopathological Analysis of 20 Cases. Diagnostics (Basel) 2022; 12:diagnostics12071563. [PMID: 35885469 PMCID: PMC9319443 DOI: 10.3390/diagnostics12071563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 11/29/2022] Open
Abstract
Diagnosis of pelvic gastrointestinal stromal tumors (GISTs) can be challenging because of their nonspecific presentation and similarity to gynecological neoplasms. In this series, we describe the clinicopathological features of 20 GIST cases: 18 patients presented with pelvic mass and/or abdominal pain concerning gynecological disease; 2 patients presented with a posterior rectovaginal mass or an anorectal mass. Total abdominal hysterectomy and/or salpingo-oophorectomy (unilateral or bilateral) were performed in 13 cases. Gross and histological examination revealed that the ovary/ovaries were involved in three cases, the uterus in two cases, the vagina in two cases and the broad ligament in one case. Immunohistochemically, all tumors (20/20, 100%) were diffusely immunoreactive for c-KIT. The tumor cells were also diffusely positive for DOG-1 (10/10, 100%) and displayed focal to diffuse positivity for CD34 (11/12, 92%). Desmin was focally and weakly expressed in 1 of the 14 tested tumors (1/14, 7%), whereas 2 of 8 tumors (2/8, 25%) showed focal SMA positivity. At the molecular level, 7 of 8 (87.5%) GISTs with molecular analysis contained c-KIT mutations with the second and third c-KIT mutations detected in some recurrent tumors. In addition to c-KIT mutation, a pathogenic RB1 mutation was detected in two cases. We extensively discussed these cases focusing on their differential diagnosis described by the submitting pathologists during consultation. Our study emphasizes the importance of precision diagnosis of GISTs. Alertness to this entity in unusual locations, in combination with clinical history, morphological features as well as immunophenotype, is crucial in leading to a definitive classification.
Collapse
|
15
|
Schöffski P, Gebreyohannes Y, Van Looy T, Manley P, Growney JD, Squires M, Wozniak A. In Vivo Evaluation of Fibroblast Growth Factor Receptor Inhibition in Mouse Xenograft Models of Gastrointestinal Stromal Tumor. Biomedicines 2022; 10:biomedicines10051135. [PMID: 35625872 PMCID: PMC9138864 DOI: 10.3390/biomedicines10051135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Advanced gastrointestinal stromal tumors (GIST) are typically treated with tyrosine kinase inhibitors, and imatinib is the most commonly used standard of care in first line treatments. The use of this and other tyrosine kinase inhibitors is associated with objective tumor responses and prolongation of progression-free and overall survival, but the treatment of metastatic disease is non-curative due to the selection or acquisition of secondary mutations and the activation of alternative kinase signaling pathways, leading to resistance and disease progression after an initial response. The present preclinical study evaluated the potential use of the fibroblast growth factor receptor inhibitors infigratinib and dovitinib alone or in combination with the mitogen-activated protein kinase inhibitor binimetinib in mouse models of GIST with different sensitivity or resistance to imatinib. Patient- and cell-line-derived GIST xenografts were established by bilateral, subcutaneous transplantation of human GIST tissue in female adult nu/nu NMRI mice. The mice were treated with dovitinib, infigratinib, or binimetinib, either alone or in combination with imatinib. The safety of treated animals was assessed by well-being inspection and body weight measurement. Antitumor effects were assessed by caliper-based tumor measurement. H&E staining and immunohistochemistry were used for assessing anti-mitotic and pro-apoptotic activity of the experimental treatments. Western blotting was used for assessing effects of the agents on kinase signaling pathways. Anti-angiogenic activity was assessed by measuring tumor vessel density. Dovitinib was found to have antitumor efficacy in GIST xenografts characterized by different imatinib resistance patterns. Dovitinib had better efficacy than imatinib (both at standard and increased dose) and was found to be well tolerated. Dovitinib had better efficacy in a KIT exon 9 mutant model, highlighting a role of patient selection in clinical GIST trials with the agent. In a model with KIT exon 11 and 17 mutations, dovitinib induced tumor necrosis, most likely due to anti-angiogenic effects. Additive effects combining dovitinib with binimetinib were limited.
Collapse
Affiliation(s)
- Patrick Schöffski
- Department of General Medical Oncology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
- Research Unit Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; (Y.G.); (T.V.L.); (A.W.)
- Correspondence: ; Tel.: +32-1634-6900
| | - Yemarshet Gebreyohannes
- Research Unit Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; (Y.G.); (T.V.L.); (A.W.)
| | - Thomas Van Looy
- Research Unit Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; (Y.G.); (T.V.L.); (A.W.)
| | - Paul Manley
- Novartis Pharma AG, St. Johann Campus, 4002 Basel, Switzerland; (P.M.); (J.D.G.)
| | - Joseph D. Growney
- Novartis Pharma AG, St. Johann Campus, 4002 Basel, Switzerland; (P.M.); (J.D.G.)
| | - Matthew Squires
- Novartis Pharmaceuticals Corporation, Cambridge, MA 02139, USA;
| | - Agnieszka Wozniak
- Research Unit Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; (Y.G.); (T.V.L.); (A.W.)
| |
Collapse
|
16
|
FGFR3 Nuclear Translocation Contributes to Proliferative Potential and Poor Prognosis in Pancreatic Ductal Adenocarcinoma. Pancreas 2022; 51:476-482. [PMID: 35858182 DOI: 10.1097/mpa.0000000000002056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Fibroblast growth factor receptor 3 (FGFR3) was revealed to have divergent, even opposite roles in different neoplasms. In pancreatic ductal adenocarcinoma (PDAC), its impact on biological behavior and prognosis was not well elucidated. METHODS Fibroblast growth factor receptor 3 was downregulated by RNA interference to explore its impact on cell proliferative proclivity in PDAC cells. Furthermore, tissue microarray-based immunohistochemistry for FGFR3 was performed in 326 patients with PDAC who underwent radical resection, and its clinicopathologic and prognostic implications were then evaluated. RESULTS First, successful FGFR3 knockdown remarkably decreased its expression, cell proliferation, and S-phase ratio in the cell cycle in 2 PDAC cell lines, BxPC-3 and AsPC-1. Meanwhile, alterations in p-Akt, cyclin D1, cyclin B1, and p21 were also observed. Subsequently, high nuclear FGFR3 expression, but not cytoplasmic, was significantly common in tumor tissues and positively associated with N stage and dismal overall survival in the entire cohort. In addition, nuclear FGFR3 expression was also prognostic in 10 of 14 subsets. Univariate and multivariate Cox regression analyses identified nuclear expression of FGFR3 as an independent prognosticator in the entire cohort. CONCLUSIONS Our data showed that FGFR3 nuclear translocation contributes to cell proliferative potential and predicts poor long-term prognosis in PDAC after surgical resection.
Collapse
|
17
|
Liu J, Gao J, Wang A, Jiang Z, Qi S, Qi Z, Liu F, Yu K, Cao J, Chen C, Hu C, Wu H, Wang L, Wang W, Liu Q, Liu J. Nintedanib overcomes drug resistance from upregulation of FGFR signaling and imatinib-induced KIT mutations in gastrointestinal stromal tumors. Mol Oncol 2022; 16:1761-1774. [PMID: 35194937 PMCID: PMC9019892 DOI: 10.1002/1878-0261.13199] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/01/2021] [Accepted: 02/21/2022] [Indexed: 11/25/2022] Open
Abstract
Drug resistance remains a major challenge in the clinical treatment of gastrointestinal stromal tumours (GISTs). While acquired on‐target mutations of mast/stem cell growth factor receptor (KIT) kinase is the major resistance mechanism, activation of alternative signalling pathways may also play a role. Although several second‐ and third‐generation KIT kinase inhibitors have been developed that could overcome some of the KIT mutations conferring resistance, the low clinical responses and narrow safety window have limited their broad application. The present study revealed that nintedanib not only overcame resistance induced by a panel of KIT primary and secondary mutations, but also overcame ERK‐reactivation‐mediated resistance caused by the upregulation of fibroblast growth factor (FGF) activity. In preclinical models of GISTs, nintedanib significantly inhibited the proliferation of imatinib‐resistant cells, including GIST‐5R, GIST‐T1/T670I and GIST patient‐derived primary cells. In addition, it also exhibited dose‐dependent inhibition of ERK phosphorylation upon FGF ligand stimulation. In vivo antitumour activity was also observed in several xenograft GIST models. Considering the well‐documented safety and pharmacokinetic profiles of nintedanib, this finding provides evidence for the repurposing of nintedanib as a new therapy for the treatment of GIST patients with de novo or acquired resistance to imatinib.
Collapse
Affiliation(s)
- Juan Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230036, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Jingjing Gao
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230036, P. R. China
| | - Aoli Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Zongru Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Shuang Qi
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Ziping Qi
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Feiyang Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Kailin Yu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Jiangyan Cao
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230036, P. R. China
| | - Cheng Chen
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Chen Hu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Li Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230036, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, P. R. China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| |
Collapse
|
18
|
Dermawan JK, Vanderbilt CM, Chang JC, Untch BR, Singer S, Chi P, Tap WD, Antonescu CR. FGFR2::TACC2 fusion as a novel KIT-independent mechanism of targeted therapy failure in a multidrug-resistant gastrointestinal stromal tumor. Genes Chromosomes Cancer 2022; 61:412-419. [PMID: 35170141 DOI: 10.1002/gcc.23030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/06/2022] Open
Abstract
Genetic alterations in FGF/FGFR pathway are infrequent in gastrointestinal stromal tumors (GIST), with rare cases of quadruple wildtype GISTs harboring FGFR1 gene fusions and mutations. Additionally, FGF/FGFR overexpression was shown to promote drug resistance to kinase inhibitors in GISTs. However, FGFR gene fusions have not been directly implicated as a mechanism of drug resistance in GISTs. Herein, we report a patient presenting with a primary small bowel spindle cell GIST and concurrent peritoneal and liver metastases displaying an imatinib-sensitive KIT exon 11 in-frame deletion. After an initial 9-month benefit to imatinib, the patient experienced intraabdominal peritoneal recurrence owing to secondary KIT exon 13 missense mutation and FGFR4 amplification. Despite several additional rounds of tyrosine kinase inhibitors (TKI), the patient's disease progressed after 2 years and presented with multiple peritoneal and liver metastases, including one pericolonic mass harboring secondary KIT exon 18 missense mutation, and a concurrent transverse colonic mass with a FGFR2::TACC2 fusion and AKT2 amplification. All tumors, including primary and recurrent masses, harbored an MGA c.7272 T > G (p.Y2424*) nonsense mutation and CDKN2A/CDKN2B/MTAP deletions. The transcolonic mass showed elevated mitotic count (18/10 HPF), as well as significant decrease in CD117 and DOG1 expression, in contrast to all the other resistant nodules that displayed diffuse and strong CD117 and DOG1 immunostaining. The FGFR2::TACC2 fusion resulted from a 742 kb intrachromosomal inversion at the chr10q26.3 locus, leading to a fusion between exons 1-17 of FGFR2 and exons 7-17 TACC2, which preserves the extracellular and protein tyrosine kinase domains of FGFR2. We present the first report of a multi-drug resistant GIST patient who developed an FGFR2 gene fusion as a secondary genetic event to the selective pressure of various TKIs. This case also highlights the heterogeneous escape mechanisms to targeted therapy across various tumor nodules, spanning from both KIT-dependent and KIT-independent off-target activation pathways.
Collapse
Affiliation(s)
- Josephine K Dermawan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Chad M Vanderbilt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jason C Chang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Brian R Untch
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Samuel Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ping Chi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - William D Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
19
|
Yin L, Zhang Y, Zheng L. Analysis of differentially expressed long non‑coding RNAs revealed a pro‑tumor role of MIR205HG in cervical cancer. Mol Med Rep 2021; 25:42. [PMID: 34878159 DOI: 10.3892/mmr.2021.12558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 06/22/2020] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is the fourth most common female malignancy for both incidence and mortality worldwide and is one of the major threats to women's health. The role of long non‑coding RNAs (lncRNAs) in cervical cancer remains largely unknown. In the present study, the differentially expressed lncRNAs in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) tissues were retrieved form The Cancer Genome Atlas (TCGA) and were analyzed. The expression analysis of related genes was performed with GEPIA. The proliferation and migratory and invasive abilities of MIR205HG knockdown CESC cells were analyzed using Cell Counting Kit‑8 and transwell assays. The expression of Ki‑67 and p16 was detected by immunofluorescence. A total of 203 differentially expressed lncRNAs were identified. The results demonstrated that MIR205HG was overexpressed in CESC tissues. Furthermore, the genes related to MIR205HG were enriched in cancer‑related pathways. MIR205HG knockdown significantly decreased the proliferation and migratory and invasive abilities of CESC cells. In addition, silencing of MIR205HG significantly decreased the expression of p16 in C‑33 A cells. The expression of fibroblast growth factor receptor 3, thymidine phosphorylase and GTPase HRas was downregulated in MIR205HG knockdown CESC cells. These findings revealed some potential lncRNA candidates for cervical cancer research and suggested that MIR205HG may have a pro‑tumor role in CESC.
Collapse
Affiliation(s)
- Lu Yin
- Department of Obstetrics and Gynecology, Changning District Maternal and Child Health Care Center, Shanghai 200050, P.R. China
| | - Yi Zhang
- Department of Obstetrics and Gynecology, Changning District Maternal and Child Health Care Center, Shanghai 200050, P.R. China
| | - Leizhen Zheng
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200082, P.R. China
| |
Collapse
|
20
|
Dermawan JK, Rubin BP. Molecular Pathogenesis of Gastrointestinal Stromal Tumor: A Paradigm for Personalized Medicine. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:323-344. [PMID: 34736340 DOI: 10.1146/annurev-pathol-042220-021510] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past three to four decades, the molecular pathogenesis of gastrointestinal stromal tumors (GISTs) has been elucidated in great detail. In this review, we discuss the biological genesis of GISTs, identification of the various primary activating driver mutations (focusing on KIT and PDGFRA), oncogene addiction and targeted therapies with imatinib and other tyrosine kinase inhibitors, and the subsequent characterization of the various mechanisms of drug resistance. We illustrate how GIST has become a quintessential paradigm for personalized medicine. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Josephine K Dermawan
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA; ,
| | - Brian P Rubin
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA; ,
| |
Collapse
|
21
|
Evaluation of Therapeutic Targets in Histological Subtypes of Bladder Cancer. Int J Mol Sci 2021; 22:ijms222111547. [PMID: 34768978 PMCID: PMC8583926 DOI: 10.3390/ijms222111547] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/29/2022] Open
Abstract
Histologically, bladder cancer is a heterogeneous group comprising urothelial carcinoma (UC), squamous cell carcinoma, adenocarcinomas (ACs), urachal carcinomas (UrCs), and small cell neuroendocrine carcinomas (SCCs). However, all bladder cancers have been treated so far uniformly, and targeted therapy options are still limited. Thus, we aimed to determine the protein expression/molecular status of commonly used cancer targets (programmed cell death 1 ligand 1 (PD-L1), mismatch repair (MMR), androgen and estrogen receptors (AR/ER), Nectin-4, tumor-associated calcium signal transducer 2 (Tacstd2, Trop-2), epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), and fibroblast growth factor receptor 3 (FGFR3)) to give first insights into whether patients with SCC, AC/UrCs, and squamous-differentiated carcinomas (Sq-BLCA) of the bladder could be eligible for targeted therapies. In addition, for MMR-deficient tumors, microsatellite instability was analyzed. We completed our own data with molecular data from The Cancer Genome Atlas (TCGA). We present ratios for each drug and cumulative ratios for multiple therapeutic options for each nonurothelial subtype. For example, 58.9% of SCC patients, 33.5% of AC/UrCs patients, and 79.3% of Sq-BLCA patients would be eligible for at least one of the analyzed targets. In conclusion, our findings hold promise for targeted therapeutic approaches in selected patients in the future, as various drugs could be applied according to the biomarker status.
Collapse
|
22
|
Gupta A, Ma S, Che K, Pobbati AV, Rubin BP. Inhibition of PI3K and MAPK pathways along with KIT inhibitors as a strategy to overcome drug resistance in gastrointestinal stromal tumors. PLoS One 2021; 16:e0252689. [PMID: 34324512 PMCID: PMC8320897 DOI: 10.1371/journal.pone.0252689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/20/2021] [Indexed: 01/11/2023] Open
Abstract
Activating mutations in KIT/PDGFRA receptor tyrosine kinases drive gastrointestinal stromal tumors (GIST). KIT/PDGFRA inhibitors, such as imatinib do not evoke an effective cytocidal response, leaving room for quiescence and development of multiple secondary resistance mutations. As the majority of the secondary resistance clones activate PI3K and MAPK pathways, we investigated whether combined targeting of KIT/PI3K/MAPK (KPM) pathways overcomes drug resistance and quiescence in GIST cells. We monitored the proliferation of imatinib-sensitive and-resistant GIST cell lines after treating them with various combinations of drugs to inhibit KPM pathways. Cytocidal response was evaluated through proliferation, apoptosis and colony outgrowth assays. Combined inhibition of KPM signaling pathways using a KPM inhibitor cocktail decreased the survival of drug-resistant GIST cells and dramatically reduced their proliferation. Downstream pathway analysis showed that the residual PI3K/MAPK signaling observed after KIT inhibitor treatment plays a role in mediating quiescence and drug resistance. The KPM inhibitor cocktail with sunitinib or regorafenib effectively induced apoptosis and prevented colony outgrowth after long-term drug removal, suggesting that it can be used as an effective strategy against quiescence and drug resistance in metastatic GIST.
Collapse
Affiliation(s)
- Anu Gupta
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Shuang Ma
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Kepeng Che
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Ajaybabu V. Pobbati
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Brian P. Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| |
Collapse
|
23
|
Napolitano A, Ostler AE, Jones RL, Huang PH. Fibroblast Growth Factor Receptor (FGFR) Signaling in GIST and Soft Tissue Sarcomas. Cells 2021; 10:cells10061533. [PMID: 34204560 PMCID: PMC8235236 DOI: 10.3390/cells10061533] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
Sarcomas are a heterogeneous group of rare malignancies originating from mesenchymal tissues with limited therapeutic options. Recently, alterations in components of the fibroblast growth factor receptor (FGFR) signaling pathway have been identified in a range of different sarcoma subtypes, most notably gastrointestinal stromal tumors, rhabdomyosarcomas, and liposarcomas. These alterations include genetic events such as translocations, mutations, and amplifications as well as transcriptional overexpression. Targeting FGFR has therefore been proposed as a novel potential therapeutic approach, also in light of the clinical activity shown by multi-target tyrosine kinase inhibitors in specific subtypes of sarcomas. Despite promising preclinical evidence, thus far, clinical trials have enrolled very few sarcoma patients and the efficacy of selective FGFR inhibitors appears relatively low. Here, we review the known alterations of the FGFR pathway in sarcoma patients as well as the preclinical and clinical evidence for the use of FGFR inhibitors in these diseases. Finally, we discuss the possible reasons behind the current clinical data and highlight the need for biomarker stratification to select patients more likely to benefit from FGFR targeted therapies.
Collapse
Affiliation(s)
- Andrea Napolitano
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK; (A.N.); (A.E.O.); (R.L.J.)
- Department of Medical Oncology, University Campus Bio-Medico, 00128 Rome, Italy
| | - Alexandra E. Ostler
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK; (A.N.); (A.E.O.); (R.L.J.)
| | - Robin L. Jones
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK; (A.N.); (A.E.O.); (R.L.J.)
- The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Paul H. Huang
- The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Correspondence: ; Tel.: +44-207-153-5554
| |
Collapse
|
24
|
Gupta A, Singh J, García-Valverde A, Serrano C, Flynn DL, Smith BD. Ripretinib and MEK Inhibitors Synergize to Induce Apoptosis in Preclinical Models of GIST and Systemic Mastocytosis. Mol Cancer Ther 2021; 20:1234-1245. [PMID: 33947686 DOI: 10.1158/1535-7163.mct-20-0824] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/10/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022]
Abstract
The majority of gastrointestinal stromal tumors (GIST) harbor constitutively activating mutations in KIT tyrosine kinase. Imatinib, sunitinib, and regorafenib are available as first-, second-, and third-line targeted therapies, respectively, for metastatic or unresectable KIT-driven GIST. Treatment of patients with GIST with KIT kinase inhibitors generally leads to a partial response or stable disease but most patients eventually progress by developing secondary resistance mutations in KIT. Tumor heterogeneity for secondary resistant KIT mutations within the same patient adds further complexity to GIST treatment. Several other mechanisms converge and reactivate the MAPK pathway upon KIT/PDGFRA-targeted inhibition, generating treatment adaptation and impairing cytotoxicity. To address the multiple potential pathways of drug resistance in GIST, the KIT/PDGFRA inhibitor ripretinib was combined with MEK inhibitors in cell lines and mouse models. Ripretinib potently inhibits a broad spectrum of primary and drug-resistant KIT/PDGFRA mutants and is approved by the FDA for the treatment of adult patients with advanced GIST who have received previous treatment with 3 or more kinase inhibitors, including imatinib. Here we show that ripretinib treatment in combination with MEK inhibitors is effective at inducing and enhancing the apoptotic response and preventing growth of resistant colonies in both imatinib-sensitive and -resistant GIST cell lines, even after long-term removal of drugs. The effect was also observed in systemic mastocytosis (SM) cells, wherein the primary drug-resistant KIT D816V is the driver mutation. Our results show that the combination of KIT and MEK inhibition has the potential to induce cytocidal responses in GIST and SM cells.
Collapse
Affiliation(s)
- Anu Gupta
- Deciphera Pharmaceuticals, LLC, Waltham, Massachusetts
| | - Jarnail Singh
- Deciphera Pharmaceuticals, LLC, Waltham, Massachusetts
| | - Alfonso García-Valverde
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - César Serrano
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | | | - Bryan D Smith
- Deciphera Pharmaceuticals, LLC, Waltham, Massachusetts.
| |
Collapse
|
25
|
Zhou C, Du J, Zhao L, Liu W, Zhao T, Liang H, Fang P, Zhang K, Zeng H. GLI1 reduces drug sensitivity by regulating cell cycle through PI3K/AKT/GSK3/CDK pathway in acute myeloid leukemia. Cell Death Dis 2021; 12:231. [PMID: 33658491 PMCID: PMC7930050 DOI: 10.1038/s41419-021-03504-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 01/07/2023]
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy with high incidence and recurrence rates. Gene expression profiling has revealed that transcriptional overexpression of glioma-associated oncogene 1 (GLI1), a vital gene in the Hedgehog (Hh) signaling pathway, occurs in poor-prognosis AML, and high levels of phosphoinositide-3-kinase, regulatory subunit 1 (PIK3R1) and AKT3 predict shorter overall survival in AML patients. In this study, we discovered that GLI1 overexpression promotes cell proliferation and reduces chemotherapy sensitivity in AML cells while knocking down GLI1 has the opposite effect. Moreover, GLI1 promoted cell cycle progression and led to elevated protein levels of cyclins and cyclin-dependent kinases (CDKs) in AML cells. By luciferase assays and co-immunoprecipitation, we demonstrated that the PI3K/AKT pathway is directly activated by GLI1. GLI1 overexpression significantly accelerates tumor growth and upregulated p-AKT, CDK4, and cyclinD3 in vivo. Notably, the GLI1 inhibitor GANT61 and the CDK4/6 inhibitor PD 0332991 had synergistic effects in promoting Ara-c sensitivity in AML cell lines and patient samples. Collectively, our data demonstrate that GLI1 reduces drug sensitivity by regulating cell cycle through the PI3K/AKT/GSK3/CDK pathway, providing a new perspective for involving GLI1 and CDK4/6 inhibitors in relapsed/refractory (RR) patient treatment.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Cell Cycle/drug effects
- Cell Proliferation/drug effects
- Cyclin-Dependent Kinases/antagonists & inhibitors
- Cyclin-Dependent Kinases/metabolism
- Cytarabine/pharmacology
- Drug Resistance, Neoplasm
- Female
- Gene Expression Regulation, Leukemic
- Glycogen Synthase Kinase 3/metabolism
- HEK293 Cells
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Mice, Nude
- Phosphatidylinositol 3-Kinase/metabolism
- Piperazines/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-akt/metabolism
- Pyridines/pharmacology
- Pyrimidines/pharmacology
- Signal Transduction
- THP-1 Cells
- Tumor Burden/drug effects
- U937 Cells
- Xenograft Model Antitumor Assays
- Zinc Finger Protein GLI1/antagonists & inhibitors
- Zinc Finger Protein GLI1/genetics
- Zinc Finger Protein GLI1/metabolism
- Mice
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Juan Du
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Liang Zhao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Wei Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Tianming Zhao
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Hui Liang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Peng Fang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Kaixuan Zhang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hui Zeng
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China.
| |
Collapse
|
26
|
Yue S, Li Y, Chen X, Wang J, Li M, Chen Y, Wu D. FGFR-TKI resistance in cancer: current status and perspectives. J Hematol Oncol 2021; 14:23. [PMID: 33568192 PMCID: PMC7876795 DOI: 10.1186/s13045-021-01040-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Fibroblast growth factor receptors (FGFRs) play key roles in promoting the proliferation, differentiation, and migration of cancer cell. Inactivation of FGFRs by tyrosine kinase inhibitors (TKI) has achieved great success in tumor-targeted therapy. However, resistance to FGFR-TKI has become a concern. Here, we review the mechanisms of FGFR-TKI resistance in cancer, including gatekeeper mutations, alternative signaling pathway activation, lysosome-mediated TKI sequestration, and gene fusion. In addition, we summarize strategies to overcome resistance, including developing covalent inhibitors, developing dual-target inhibitors, adopting combination therapy, and targeting lysosomes, which will facilitate the transition to precision medicine and individualized treatment.
Collapse
Affiliation(s)
- Sitong Yue
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yukun Li
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, University of South China, Hengyang, 421001, China
| | - Xiaojuan Chen
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Juan Wang
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, University of South China, Hengyang, 421001, China
| | - Meixiang Li
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, University of South China, Hengyang, 421001, China
| | - Yongheng Chen
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Daichao Wu
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, University of South China, Hengyang, 421001, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China. .,W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA.
| |
Collapse
|
27
|
Guo C, Ran Q, Sun C, Zhou T, Yang X, Zhang J, Pang S, Xiao Y. Loss of FGFR3 Delays Acute Myeloid Leukemogenesis by Programming Weakly Pathogenic CD117-Positive Leukemia Stem-Like Cells. Front Pharmacol 2021; 11:632809. [PMID: 33584313 PMCID: PMC7879375 DOI: 10.3389/fphar.2020.632809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/21/2020] [Indexed: 11/21/2022] Open
Abstract
Chemotherapeutic patients with leukemia often relapse and produce drug resistance due to the existence of leukemia stem cells (LSCs). Fibroblast growth factor receptor 3 (FGFR3) signaling mediates the drug resistance of LSCs in chronic myeloid leukemia (CML). However, the function of FGFR3 in acute myeloid leukemia (AML) is less understood. Here, we identified that the loss of FGFR3 reprograms MLL-AF9 (MA)-driven murine AML cells into weakly pathogenic CD117-positive leukemia stem-like cells by activating the FGFR1-ERG signaling pathway. FGFR3 deletion significantly inhibits AML cells engraftment in vivo and extends the survival time of leukemic mice. FGFR3 deletion sharply decreased the expression of chemokines and the prolonged survival time in mice receiving FGFR3-deficient MA cells could be neutralized by overexpression of CCL3. Here we firstly found that FGFR3 had a novel regulatory mechanism for the stemness of LSCs in AML, and provided a promising anti-leukemia approach by interrupting FGFR3.
Collapse
Affiliation(s)
- Chen Guo
- Department of Biotechnology, Guangdong Medical University, Dongguan, China.,Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Qiuju Ran
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Chun Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Tingting Zhou
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Xi Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Jizhou Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Shifeng Pang
- Department of Biotechnology, Guangdong Medical University, Dongguan, China
| | - Yechen Xiao
- Department of Biotechnology, Guangdong Medical University, Dongguan, China.,Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| |
Collapse
|
28
|
Italiano A. New insights into the clinical management of advanced gastrointestinal stromal tumors. Expert Opin Pharmacother 2020; 22:439-447. [PMID: 33307872 DOI: 10.1080/14656566.2020.1828346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION 90% of gastrointestinal stromal tumors (GISTs) harbor an activating mutation in the KIT or PDGFRα oncogene, and these are known to confer imatinib sensitivity. AREAS COVERED The author reviews the data regarding the current management of GIST, mechanisms of resistance to imatinib, and new drugs currently in clinical development and provides his unique perspectives on the subject matter. EXPERT OPINION Several studies have shown that the response to imatinib in GIST patients mainly depends on the mutational status of KIT or PDGFRα. Moreover, most, if not all, patients treated with imatinib for advanced GIST will develop a secondary progressive disease under the treatment. In most cases, such progressions are the result of acquired resistance due to the occurrence of secondary c-KIT mutations, especially in GISTs with primary exon 11 mutations. Sunitinib and regorafenib are inhibitors of multiple tyrosine kinases, including KIT, PDGFRα, PDGFRβ, and VEGFRs, and are approved for the management of imatinib- and imatinib/sunitinib-refractory GIST patients, respectively. Clearly, better knowledge of the molecular mechanisms underlying the resistance to imatinib as well as the development of a new class of broad-spectrum tyrosine kinase inhibitors such as avapritinib and ripretinib will provide new individualized therapeutic strategies for GIST patients.
Collapse
|
29
|
Zhao Y, Feng F, Guo QH, Wang YP, Zhao R. Role of succinate dehydrogenase deficiency and oncometabolites in gastrointestinal stromal tumors. World J Gastroenterol 2020; 26:5074-5089. [PMID: 32982110 PMCID: PMC7495036 DOI: 10.3748/wjg.v26.i34.5074] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/14/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. At the molecular level, GISTs can be categorized into two groups based on the causative oncogenic mutations. Approximately 85% of GISTs are caused by gain-of-function mutations in the tyrosine kinase receptor KIT or platelet-derived growth factor receptor alpha (PDGFRA). The remaining GISTs, referred to as wild-type (WT) GISTs, are often deficient in succinate dehydrogenase complex (SDH), a key metabolic enzyme complex in the tricarboxylic acid (TCA) cycle and electron transport chain. SDH deficiency leads to the accumulation of succinate, a metabolite produced by the TCA cycle. Succinate inhibits α-ketoglutarate-dependent dioxygenase family enzymes, which comprise approximately 60 members and regulate key aspects of tumorigenesis such as DNA and histone demethylation, hypoxia responses, and m6A mRNA modification. For this reason, succinate and metabolites with similar structures, such as D-2-hydroxyglutarate and fumarate, are considered oncometabolites. In this article, we review recent advances in the understanding of how metabolic enzyme mutations and oncometabolites drive human cancer with an emphasis on SDH mutations and succinate in WT GISTs.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Gastroenterology, the First Hospital of Lanzhou University, Key Laboratory for Gastrointestinal Disease of Gansu Province, Lanzhou 730000, Gansu Province, China
| | - Fei Feng
- Department of Ultrasound, the First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Qing-Hong Guo
- Department of Gastroenterology, the First Hospital of Lanzhou University, Key Laboratory for Gastrointestinal Disease of Gansu Province, Lanzhou 730000, Gansu Province, China
| | - Yu-Ping Wang
- Department of Gastroenterology, the First Hospital of Lanzhou University, Key Laboratory for Gastrointestinal Disease of Gansu Province, Lanzhou 730000, Gansu Province, China
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, School of Medicine, the University of Alabama at Birmingham, Birmingham, AL 35294, United States
| |
Collapse
|
30
|
Luo H, Zhang T, Cheng P, Li D, Ogorodniitchouk O, Lahmamssi C, Wang G, Lan M. Therapeutic implications of fibroblast growth factor receptor inhibitors in a combination regimen for solid tumors. Oncol Lett 2020; 20:2525-2536. [PMID: 32782571 DOI: 10.3892/ol.2020.11858] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
A number of novel drugs targeting the fibroblast growth factor receptor (FGFR) signaling pathway have been developed, including mostly tyrosine kinase inhibitors, selective inhibitors or monoclonal antibodies. Multiple preclinical and clinical studies have been conducted worldwide to ascertain their effects on diverse solid tumors. Drugs, such as lenvatinib, dovitinib and other non-specific FGFR inhibitors, widely used in clinical practice, have been approved by the Food and Drug Administration for cancer therapy, although the majority of drugs remain in preclinical tests or clinical research. The resistance to a single agent for FGFR inhibition with synthetic lethal action may be overcome by a combination of therapeutic approaches and FGFR inhibitors, which could also enhance the sensitivity to other therapeutics. Therefore, the aim of the present review is to describe the pharmacological characteristics of FGFR inhibitors that may be combined with other therapeutic agents and the preclinical data supporting their combination. Additionally, their clinical implications and the remaining challenges for FGFR inhibitor combination regimens are discussed.
Collapse
Affiliation(s)
- Hong Luo
- Department of Oncology, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Tao Zhang
- Department of Oncology, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Peng Cheng
- Department of Oncology, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Dong Li
- Department of Oncology, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | | | - Chaimaa Lahmamssi
- Institut de Cancérologie Lucien Neuwirth, 42270 Saint Priest en Jarez, France
| | - Ge Wang
- Cancer Center, Institute of Surgical Research, Third Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, P.R. China
| | - Meiling Lan
- Cancer Center, The Third Affiliated Hospital of Chongqing Medical University (Jie Er Hospital), Chongqing 401120, P.R. China
| |
Collapse
|
31
|
Inhibition of FGF2-Mediated Signaling in GIST-Promising Approach for Overcoming Resistance to Imatinib. Cancers (Basel) 2020; 12:cancers12061674. [PMID: 32599808 PMCID: PMC7352302 DOI: 10.3390/cancers12061674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
Inhibition of KIT-signaling is a major molecular target for gastrointestinal stromal tumor (GIST) therapy, and imatinib mesylate (IM) is known as the most effective first-line treatment option for patients with advanced, unresectable, and/or metastatic GISTs. We show here for the first time that the inhibition of KIT-signaling in GISTs induces profound changes in the cellular secretome, leading to the release of multiple chemokines, including FGF-2. IM increased migration, invasion, and colony formation of IM-resistant GISTs in an FGF2-dependent manner, whereas the use of blocking anti-FGF2 antibodies or BGJ398, a selective FGFR inhibitor, abolished these effects, thus suggesting that the activation of FGF2-mediated signaling could serve as a compensatory mechanism of KIT-signaling inhibited in GISTs. Conversely, FGF-2 rescued the growth of IM-naive GISTs treated by IM and protected them from IM-induced apoptosis, consistent with the possible involvement of FGF-2 in tumor response to IM-based therapy. Indeed, increased FGF-2 levels in serum and tumor specimens were found in IM-treated mice bearing IM-resistant GIST xenografts, whereas BGJ398 used in combination with IM effectively inhibited their growth. Similarly, increased FGF-2 expression in tumor specimens from IM-treated patients revealed the activation of FGF2-signaling in GISTs in vivo. Collectively, the continuation of IM-based therapy for IM-resistant GISTs might facilitate disease progression by promoting the malignant behavior of tumors in an FGF2-dependent manner. This provides a rationale to evaluate the effectiveness of the inhibitors of FGF-signaling for IM-resistant GISTs.
Collapse
|
32
|
Astolfi A, Pantaleo MA, Indio V, Urbini M, Nannini M. The Emerging Role of the FGF/FGFR Pathway in Gastrointestinal Stromal Tumor. Int J Mol Sci 2020; 21:E3313. [PMID: 32392832 PMCID: PMC7246647 DOI: 10.3390/ijms21093313] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022] Open
Abstract
Gastrointestinal stromal tumors (GIST) are rare neoplasms of mesenchymal origin arising in the gastrointestinal tract. The vast majority are characterized by mutually exclusive activating mutations in KIT or Platelet-derived growth factor alpha (PDGFRA) receptors, or less frequently by succinate dehydrogenase complex (SDH) or NF1 inactivation, with very rare cases harboring mutant BRAF or RAS alleles. Approximately 5% of GISTs lack any of such mutations and are called quadruple wild-type (WT) GISTs. Recently, deregulated Fibroblast Growth Factor (FGF)/FGF-receptor (FGFR) signaling emerged as a relevant pathway driving oncogenic activity in different molecular subgroups of GISTs. This review summarizes all the current evidences supporting the key role of the FGF/FGFR pathway activation in GISTs, whereby either activating mutations, oncogenic gene fusions, or autocrine/paracrine signaling have been detected in quadruple WT, SDH-deficient, or KIT-mutant GISTs.
Collapse
Affiliation(s)
- Annalisa Astolfi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Maria Abbondanza Pantaleo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy
| | - Valentina Indio
- “Giorgio Prodi” Cancer Research Center, University of Bologna, 40138 Bologna, Italy;
| | - Milena Urbini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| | - Margherita Nannini
- Medical Oncology Unit, S.Orsola-Malpighi University Hospital, 40138 Bologna, Italy;
| |
Collapse
|
33
|
Tétu P, Delyon J, André J, Reger de Moura C, Sabbah M, Ghanem GE, Battistella M, Mourah S, Lebbé C, Dumaz N. FGF2 Induces Resistance to Nilotinib through MAPK Pathway Activation in KIT Mutated Melanoma. Cancers (Basel) 2020; 12:cancers12051062. [PMID: 32344828 PMCID: PMC7281633 DOI: 10.3390/cancers12051062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
KIT is a bona fide oncogene in a subset of melanoma and, ex vivo, KIT inhibitors are very efficient at killing KIT-mutant melanoma cell lines. However, KIT-mutant melanoma tumors tend to show a de novo resistance in most cases and a limited duration of response when response is achieved. We performed pharmacodynamic studies on patients with KIT-mutated melanoma treated with nilotinib, which suggested that the FGF2 axis may be a mechanism of resistance in this subset of melanoma. Using several melanoma cell lines, which are dependent on oncogenic KIT, we showed that although KIT inhibition markedly decreased cell viability in melanoma cell lines with distinct KIT mutations, this effect was lessened in the presence of FGF2 due to inhibition of BIM expression by MAPK pathway activation. Addition of a MEK inhibitor reversed the FGF2-driven resistance for all KIT mutants. We confirmed the expression of FGF2 and activation of MEK-ERK in melanoma patients using in situ data from a clinical trial. Therefore, the combined inhibition of KIT with FGFR or MEK may be a next-step effective clinical strategy in KIT-mutant melanoma.
Collapse
Affiliation(s)
- Pauline Tétu
- INSERM, U976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010 Paris, France
- Département de Dermatologie, Hôpital Saint Louis, AP-HP, F-75010 Paris, France
| | - Julie Delyon
- INSERM, U976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010 Paris, France
- Département de Dermatologie, Hôpital Saint Louis, AP-HP, F-75010 Paris, France
| | - Jocelyne André
- INSERM, U976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010 Paris, France
- Institut de Recherche Saint Louis (IRSL), Université de Paris, F-75010 Paris, France
| | - Coralie Reger de Moura
- INSERM, U976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010 Paris, France
- Institut de Recherche Saint Louis (IRSL), Université de Paris, F-75010 Paris, France
- Département de Pharmacogénomique, Hôpital Saint Louis, AP-HP, F-75010 Paris, France
| | - Malak Sabbah
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger-Bordet 1, 1000 Brussels, Belgium
| | - Ghanem E Ghanem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger-Bordet 1, 1000 Brussels, Belgium
| | - Maxime Battistella
- INSERM, U976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010 Paris, France
- Institut de Recherche Saint Louis (IRSL), Université de Paris, F-75010 Paris, France
- Département de Pathologie, Hôpital Saint Louis, AP-HP, F-75010 Paris, France
| | - Samia Mourah
- INSERM, U976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010 Paris, France
- Institut de Recherche Saint Louis (IRSL), Université de Paris, F-75010 Paris, France
- Département de Pharmacogénomique, Hôpital Saint Louis, AP-HP, F-75010 Paris, France
| | - Céleste Lebbé
- INSERM, U976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010 Paris, France
- Département de Dermatologie, Hôpital Saint Louis, AP-HP, F-75010 Paris, France
- Institut de Recherche Saint Louis (IRSL), Université de Paris, F-75010 Paris, France
| | - Nicolas Dumaz
- INSERM, U976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010 Paris, France
- Institut de Recherche Saint Louis (IRSL), Université de Paris, F-75010 Paris, France
- Correspondence: ; Tel.: +33-01-53-72-20-85
| |
Collapse
|
34
|
Chen W, Li Z, Liu H, Jiang S, Wang G, Sun L, Li J, Wang X, Yu S, Huang J, Dong Y. MicroRNA-30a targets BECLIN-1 to inactivate autophagy and sensitizes gastrointestinal stromal tumor cells to imatinib. Cell Death Dis 2020; 11:198. [PMID: 32251287 PMCID: PMC7090062 DOI: 10.1038/s41419-020-2390-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/19/2022]
Abstract
Gastrointestinal stromal tumors (GISTs), the most widespread type of sarcoma, contain driver gene mutations predominantly of receptor tyrosine kinase and platelet-derived growth factor receptor alpha. However, the inevitable development of resistance to imatinib (IM) cannot be fully attributed to secondary driver gene mutations. In this study, we investigated the role of microRNA-30a in sensitization of GIST cells to IM in vivo and in vitro. Higher levels of miR-30a were detected in GIST-T1 cells, which were more sensitive to IM than GIST-882 cells. IM treatment also reduced miR-30a levels, indicating the possible role of miR-30a in GIST IM resistance. Subsequently, miR-30a was confirmed to be an IM sensitizer via a mechanism that was attributed to its involvement in the regulation of cell autophagy. The interaction of miR-30a and autophagy in IM treated GIST cells was found to be linked by beclin-1. Beclin-1 knockdown increased IM sensitivity in GIST cell lines. Finally, miR-30a was confirmed to enhance IM sensitivity of GIST cells in mouse tumor models. Our study provides evidence for the possible role of miR-30a in the emergence of secondary IM resistance in GIST patients, indicating a promising target for overcoming this chemoresistance.
Collapse
Affiliation(s)
- Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, 310012, Hangzhou, Zhejiang, China.,Department of Medical Oncology, Tongde Hospital of Zhejiang Province, 310012, Hangzhou, Zhejiang, China
| | - Zhouqi Li
- Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Hao Liu
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, 310012, Hangzhou, Zhejiang, China.,Department of Medical Oncology, Tongde Hospital of Zhejiang Province, 310012, Hangzhou, Zhejiang, China
| | - Sujing Jiang
- Department of Radiation and Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, No.2 Fuxue Lane, 325000, Wenzhou, China
| | - Guannan Wang
- Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Lifeng Sun
- Department of Surgery Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Jun Li
- Department of Surgery Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Xiaochen Wang
- Department of Surgery Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Shaojun Yu
- Department of Surgery Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Jianjin Huang
- Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Ying Dong
- Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 310009, Hangzhou, China.
| |
Collapse
|
35
|
DNA and RNA sequencing identified a novel oncogene VPS35 in liver hepatocellular carcinoma. Oncogene 2020; 39:3229-3244. [PMID: 32071398 DOI: 10.1038/s41388-020-1215-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 01/04/2023]
Abstract
Liver hepatocellular carcinoma (LIHC) is the second leading cause of cancer mortality worldwide. Although cancer driver genes identified so far have been considered to be saturated or nearly saturated, challenges remain in discovering novel genes underlying carcinogenesis due to significant tumor heterogeneity. Here, in a small cohort of hepatitis B virus (HBV)-associated LIHC, we investigated the transcriptional patterns of tumor-mutated alleles using both whole-exome and RNA sequencing data. A graph clustering of the transcribed tumor-mutated alleles characterized overlapped functional clusters, and thus prioritized potentially novel oncogenes. We validated the function of the potentially novel oncogenes in vitro and in vivo. We showed that a component of the retromer complex-the vacuolar protein sorting-associated protein 35 (VPS35)-promoted the proliferation of hepatoma cell through the PI3K/AKT signaling pathway. In VPS35-knockout hepatoma cells, a significantly reduced distribution of membrane fibroblast growth factor receptor 3 (FGFR3) demonstrated the effects of VPS35 on sorting and trafficking of transmembrane receptor. This study provides insight into the roles of the retromer complex on carcinogenesis and has important implications for the development of personalized therapeutic strategies for LIHC.
Collapse
|
36
|
Zhou Y, Wu C, Lu G, Hu Z, Chen Q, Du X. FGF/FGFR signaling pathway involved resistance in various cancer types. J Cancer 2020; 11:2000-2007. [PMID: 32127928 PMCID: PMC7052940 DOI: 10.7150/jca.40531] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/04/2020] [Indexed: 12/16/2022] Open
Abstract
Resistance becomes major clinical issue in cancer treatment, which strongly limits patients to benefit from oncotherapy. Growing evidences have been indicative of the critical role of fibroblast growth factor (FGF)/receptor (FGFR) signaling played in resistance to oncotherapy. In this review we discussed the underlying mechanisms of FGF/FGFR signaling mediated resistance to chemotherapy, radiotherapy and target therapy in various cancers. Meanwhile, we summarized the reported mechanism of FGF/FGFR inhibitors resistance in cancers.
Collapse
Affiliation(s)
- Yangyang Zhou
- Department of Rheumatology and Immunology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chengyu Wu
- Department of Rheumatology and Immunology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Guangrong Lu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical, Wenzhou, Zhejiang 325000, China)
| | - Zijing Hu
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qiuxiang Chen
- Department of Ultrasonic Imaging, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaojing Du
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
37
|
Inhibition of FGFR2-Signaling Attenuates a Homology-Mediated DNA Repair in GIST and Sensitizes Them to DNA-Topoisomerase II Inhibitors. Int J Mol Sci 2020; 21:ijms21010352. [PMID: 31948066 PMCID: PMC6982350 DOI: 10.3390/ijms21010352] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/28/2019] [Accepted: 01/03/2020] [Indexed: 01/30/2023] Open
Abstract
Deregulation of receptor tyrosine kinase (RTK)-signaling is frequently observed in many human malignancies, making activated RTKs the promising therapeutic targets. In particular, activated RTK-signaling has a strong impact on tumor resistance to various DNA damaging agents, e.g., ionizing radiation and chemotherapeutic drugs. We showed recently that fibroblast growth factor receptor (FGFR)-signaling might be hyperactivated in imatinib (IM)-resistant gastrointestinal stromal tumors (GIST) and inhibition of this pathway sensitized tumor cells to the low doses of chemotherapeutic agents, such as topoisomerase II inhibitors. Here, we report that inhibition of FGFR-signaling in GISTs attenuates the repair of DNA double-strand breaks (DSBs), which was evidenced by the delay in γ-H2AX decline after doxorubicin (Dox)-induced DNA damage. A single-cell gel electrophoresis (Comet assay) data showed an increase of tail moment in Dox-treated GIST cells cultured in presence of BGJ398, a selective FGFR1-4 inhibitor, thereby revealing the attenuated DNA repair. By utilizing GFP-based reporter constructs to assess the efficiency of DSBs repair via homologous recombination (HR) and non-homologous end-joining (NHEJ), we found for the first time that FGFR inhibition in GISTs attenuated the homology-mediated DNA repair. Of note, FGFR inhibition/depletion did not reduce the number of BrdU and phospho-RPA foci in Dox-treated cells, suggesting that inhibition of FGFR-signaling has no impact on the processing of DSBs. In contrast, the number of Dox-induced Rad51 foci were decreased when FGFR2-mediated signaling was interrupted/inhibited by siRNA FGFR2 or BGJ398. Moreover, Rad51 and -H2AX foci were mislocalized in FGFR-inhibited GIST and the amount of Rad51 was substantially decreased in -H2AX-immunoprecipitated complexes, thereby illustrating the defect of Rad51 recombinase loading to the Dox-induced DSBs. Finally, as a result of the impaired homology-mediated DNA repair, the increased numbers of hypodiploid (i.e., apoptotic) cells were observed in FGFR2-inhibited GISTs after Dox treatment. Collectively, our data illustrates for the first time that inhibition of FGF-signaling in IM-resistant GIST interferes with the efficiency of DDR signaling and attenuates the homology-mediated DNA repair, thus providing the molecular mechanism of GIST’s sensitization to DNA damaging agents, e.g., DNA-topoisomerase II inhibitors.
Collapse
|
38
|
Deb B, George IA, Sharma J, Kumar P. Phosphoproteomics Profiling to Identify Altered Signaling Pathways and Kinase-Targeted Cancer Therapies. Methods Mol Biol 2020; 2051:241-264. [PMID: 31552632 DOI: 10.1007/978-1-4939-9744-2_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Phosphorylation is one of the most extensively studied posttranslational modifications (PTM), which regulates cellular functions like cell growth, differentiation, apoptosis, and cell signaling. Kinase families cover a wide number of oncoproteins and are strongly associated with cancer. Identification of driver kinases is an intense area of cancer research. Thus, kinases serve as the potential target to improve the efficacy of targeted therapies. Mass spectrometry-based phosphoproteomic approach has paved the way to the identification of a large number of altered phosphorylation events in proteins and signaling cascades that may lead to oncogenic processes in a cell. Alterations in signaling pathways result in the activation of oncogenic processes predominantly regulated by kinases and phosphatases. Therefore, drugs such as kinase inhibitors, which target dysregulated pathways, represent a promising area for cancer therapy.
Collapse
Affiliation(s)
- Barnali Deb
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Irene A George
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Jyoti Sharma
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, India. .,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India.
| |
Collapse
|
39
|
Hemming ML, Heinrich MC, Bauer S, George S. Translational insights into gastrointestinal stromal tumor and current clinical advances. Ann Oncol 2019; 29:2037-2045. [PMID: 30101284 DOI: 10.1093/annonc/mdy309] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Gastrointestinal stromal tumor (GIST) is the most common soft tissue sarcoma of the gastrointestinal tract and, in the vast majority of cases, is characterized by activating mutations in KIT or, less commonly, PDGFRA. Mutations in these type III receptor tyrosine kinases (RTKs) account for over 85% of GIST cases, and the majority of KIT primary mutations respond to treatment with the tyrosine kinase inhibitor (TKI) imatinib. However, drug resistance develops over time, most commonly due to secondary kinase mutations. Sunitinib and regorafenib are approved for the treatment of imatinib-resistant GIST in the second and third lines, respectively. However, resistance to these agents also develops and new therapeutic options are needed. In addition, a small number of GISTs harbor primary activating mutations that are resistant to currently available TKIs, highlighting an additional unmet medical need. Several novel and selective TKIs that overcome known mechanisms of resistance in GIST have been developed and show promise in early clinical trials. Additional emerging targeted therapies in GIST include modulation of cellular signaling pathways downstream of KIT, antibodies targeting KIT and PDGFRA and immune checkpoint inhibitors. These advancements highlight the rapid evolution in the understanding of this malignancy and provide perspective on the encouraging horizon of current and forthcoming therapeutic strategies for GIST.
Collapse
Affiliation(s)
- M L Hemming
- Department of Medical Oncology, Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - M C Heinrich
- VA Health Care System and Knight Cancer Institute, Oregon Health and Science University, Oregon, USA
| | - S Bauer
- Sarcoma Center, Western German Cancer Center and German Cancer Consortium (DKTK), Essen, Germany
| | - S George
- Department of Medical Oncology, Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA.
| |
Collapse
|
40
|
Flavahan WA, Drier Y, Johnstone SE, Hemming ML, Tarjan DR, Hegazi E, Shareef SJ, Javed NM, Raut CP, Eschle BK, Gokhale PC, Hornick JL, Sicinska ET, Demetri GD, Bernstein BE. Altered chromosomal topology drives oncogenic programs in SDH-deficient GISTs. Nature 2019; 575:229-233. [PMID: 31666694 PMCID: PMC6913936 DOI: 10.1038/s41586-019-1668-3] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 09/10/2019] [Indexed: 12/22/2022]
Abstract
Epigenetic aberrations are widespread in cancer, yet the underlying
mechanisms and causality remain poorly understood1-3.
A subset of gastrointestinal stromal tumors (GISTs) lack canonical kinase
mutations but instead have succinate dehydrogenase (SDH)-deficiency and global
DNA hyper-methylation4,5. Here we associate this hyper-methylation
with changes in genome topology that activate oncogenic programs. To investigate
epigenetic alterations systematically, we mapped DNA methylation, CTCF
insulators, enhancers, and chromosome topology in KIT-mutant,
PDGFRA-mutant, and SDH-deficient GISTs. Although these
respective subtypes shared similar enhancer landscapes, we identified hundreds
of putative insulators where DNA methylation replaced CTCF binding in
SDH-deficient GISTs. We focused on a disrupted insulator that normally
partitions a core GIST super-enhancer from the FGF4 oncogene.
Recurrent loss of this insulator alters locus topology in SDH-deficient GISTs,
allowing aberrant physical interaction between enhancer and oncogene.
CRISPR-mediated excision of the corresponding CTCF motifs in an SDH-intact GIST
model disrupted the boundary and strongly up-regulated FGF4
expression. We also identified a second recurrent insulator loss event near the
KIT oncogene, which is also highly expressed across
SDH-deficient GISTs. Finally, we established a patient-derived xenograft (PDX)
from an SDH-deficient GIST that faithfully maintains the epigenetics of the
parental tumor, including hyper-methylation and insulator defects. This PDX
model is highly sensitive to FGF receptor (FGFR) inhibitor, and more so to
combined FGFR and KIT inhibition, validating the functional significance of the
underlying epigenetic lesions. Our study reveals how epigenetic alterations can
drive oncogenic programs in the absence of canonical kinase mutations, with
implications for mechanistic targeting of aberrant pathways in cancers.
Collapse
Affiliation(s)
- William A Flavahan
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yotam Drier
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel.
| | - Sarah E Johnstone
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew L Hemming
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School Boston, Boston, MA, USA
| | - Daniel R Tarjan
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Esmat Hegazi
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sarah J Shareef
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nauman M Javed
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Chandrajit P Raut
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Benjamin K Eschle
- Experimental Therapeutics Core, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Prafulla C Gokhale
- Experimental Therapeutics Core, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ewa T Sicinska
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - George D Demetri
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School Boston, Boston, MA, USA. .,Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA.
| | - Bradley E Bernstein
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
41
|
Inhibition of fibroblast growth factor receptor-signaling sensitizes imatinib-resistant gastrointestinal stromal tumors to low doses of topoisomerase II inhibitors. Anticancer Drugs 2019; 29:549-559. [PMID: 29697413 DOI: 10.1097/cad.0000000000000637] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The acquired resistance of gastrointestinal stromal tumors (GISTs) to the targeted-based therapy remains the driving force to identify the novel approaches that are capable of increasing the sensitivity of GISTs to the current therapeutic regimens. Our present data show that BGJ398, a selective fibroblast growth factor receptor (FGFR) inhibitor, sensitizes imatinib (IM)-resistant GIST cells with receptor tyrosine kinase (RTK) switch (loss of c-KIT/gain of pFGFR2a) to the low doses of topoisomerase II inhibitors - doxorubicin (Dox) and etoposide (Eto). Mechanistically, pretreatment of IM-resistant GIST cells with BGJ398 for 12 h markedly enhanced proapoptotic and growth-suppressive effects of Dox (or Eto). Indeed, a significant cleavage of PARP and caspase-3 was observed in GIST cells treated with a combination of FGFR and topoisomerase II inhibitor. In contrast, no signs of apoptosis were detected in IM-resistant GIST cells treated with BGJ398, whereas the low doses of Dox (Eto) exerted the minor proapoptotic effects on GISTs. The mechanism of BGJ398-induced sensitization of GIST to topoisomerase II inhibitors might be because of attenuation of DNA damage signaling and repair. Indeed, we observed a marked decrease in Rad51 expression in GIST cells treated with BGJ398 together with Dox. Similar results were obtained when an overexpressed pFGFR2a was knocked down by corresponding siRNA before Dox (Eto) exposure. Moreover, FGFR inhibition/depletion caused a loss of Rad51 foci in Dox-treated GIST cells, suggesting that FGFR-signaling plays an important regulatory role in homology-mediated DNA repair. Our data show that combined therapy (RTKs inhibitors supplemented with low doses of topoisomerase II inhibitors) might be effective for unresectable and metastatic forms of GISTs. In case of resistance to IM because of RTKs switch indicated above, FGFR inhibitors (e.g. BGJ398) might be potentially useful because of their ability to sensitize tumor cells to topoisomerase II inhibitors and induce tumor cell apoptosis by targeting DNA double-strand breaks repair.
Collapse
|
42
|
Abstract
Receptor tyrosine kinases (RTKs) play important roles in cell growth, motility, differentiation, and survival. These single-pass membrane proteins are grouped into subfamilies based on the similarity of their extracellular domains. They are generally thought to be activated by ligand binding, which promotes homodimerization and then autophosphorylation in trans. However, RTK interactions are more complicated, as RTKs can interact in the absence of ligand and heterodimerize within and across subfamilies. Here, we review the known cross-subfamily RTK heterointeractions and their possible biological implications, as well as the methodologies which have been used to study them. Moreover, we demonstrate how thermodynamic models can be used to study RTKs and to explain many of the complicated biological effects which have been described in the literature. Finally, we discuss the concept of the RTK interactome: a putative, extensive network of interactions between the RTKs. This RTK interactome can produce unique signaling outputs; can amplify, inhibit, and modify signaling; and can allow for signaling backups. The existence of the RTK interactome could provide an explanation for the irreproducibility of experimental data from different studies and for the failure of some RTK inhibitors to produce the desired therapeutic effects. We argue that a deeper knowledge of RTK interactome thermodynamics can lead to a better understanding of fundamental RTK signaling processes in health and disease. We further argue that there is a need for quantitative, thermodynamic studies that probe the strengths of the interactions between RTKs and their ligands and between different RTKs.
Collapse
Affiliation(s)
- Michael D. Paul
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| |
Collapse
|
43
|
Urbini M, Indio V, Tarantino G, Ravegnini G, Angelini S, Nannini M, Saponara M, Santini D, Ceccarelli C, Fiorentino M, Vincenzi B, Fumagalli E, Casali PG, Grignani G, Pession A, Ardizzoni A, Astolfi A, Pantaleo MA. Gain of FGF4 is a frequent event in KIT/PDGFRA/SDH/RAS-P WT GIST. Genes Chromosomes Cancer 2019; 58:636-642. [PMID: 30887595 PMCID: PMC6619263 DOI: 10.1002/gcc.22753] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 01/22/2023] Open
Abstract
Gastrointestinal stromal tumors (GIST) lacking mutations in KIT/PDGFRA or RAS pathways and retaining an intact SDH complex are usually referred to as KIT/PDGFRA/SDH/RAS‐P WT GIST or more simply quadruple WT GIST (~5% of all GIST). Despite efforts made, no recurrent genetic event in quadruple WT GIST has been identified so far. To further investigate this disease, we performed high throughput copy number analysis on quadruple WT GIST specimens identifying a recurrent focal gain in band 11q13.3 (involving FGF3/FGF4) in 6/8 cases. This event was not found in the other molecular GIST subgroups. FGF3/FGF4 duplication was associated with high expression of FGF4, both at mRNA and protein level, a growth factor normally not expressed in adult tissues or in KIT/PDGFRA‐mutated GIST. FGFR1 was found to be the predominant FGF receptor expressed and phosphorylation of AKT was detected, suggesting that a FGF4‐FGFR1 autocrine loop could stimulate downstream signaling in quadruple WT GIST. Together with the recent reports of quadruple WT cases carrying FGFR1 activating alterations, these findings strengthen the hypothesis of a potential involvement of FGFR pathway deregulation in quadruple WT GIST, which may represent a rationale for novel therapeutic approaches.
Collapse
Affiliation(s)
- Milena Urbini
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Valentina Indio
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Giuseppe Tarantino
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Gloria Ravegnini
- Department of Pharmacy and Biotechnology, FaBit; University of Bologna, Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, FaBit; University of Bologna, Bologna, Italy
| | - Margherita Nannini
- Department of Specialized, Experimental and Diagnostic Medicine, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Maristella Saponara
- Department of Specialized, Experimental and Diagnostic Medicine, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Donatella Santini
- Pathology Unit, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Claudio Ceccarelli
- Pathology Unit, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Michelangelo Fiorentino
- Laboratory of Oncological and Transplant Molecular Pathology-Pathology Unit, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Bruno Vincenzi
- Department of Medical Oncology, University Campus Bio-Medico, Rome, Italy
| | - Elena Fumagalli
- Medical Oncology Unit 2, Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Giovanni Casali
- Medical Oncology Unit 2, Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Grignani
- Sarcoma Unit, Candiolo Cancer Institute - FPO, IRCCS, Candiolo, Italy
| | - Andrea Pession
- Department of Medical and Surgical Sciences, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Andrea Ardizzoni
- Division of Medical Oncology, S.Orsola-Malpighi Hospital, Bologna, Italy
| | - Annalisa Astolfi
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Maria Abbondanza Pantaleo
- Department of Specialized, Experimental and Diagnostic Medicine, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
44
|
Javidi-Sharifi N, Martinez J, English I, Joshi SK, Scopim-Ribeiro R, Viola SK, Edwards DK, Agarwal A, Lopez C, Jorgens D, Tyner JW, Druker BJ, Traer E. FGF2-FGFR1 signaling regulates release of Leukemia-Protective exosomes from bone marrow stromal cells. eLife 2019; 8:e40033. [PMID: 30720426 PMCID: PMC6363389 DOI: 10.7554/elife.40033] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/16/2019] [Indexed: 12/21/2022] Open
Abstract
Protective signaling from the leukemia microenvironment leads to leukemia cell persistence, development of resistance, and disease relapse. Here, we demonstrate that fibroblast growth factor 2 (FGF2) from bone marrow stromal cells is secreted in exosomes, which are subsequently endocytosed by leukemia cells, and protect leukemia cells from tyrosine kinase inhibitors (TKIs). Expression of FGF2 and its receptor, FGFR1, are both increased in a subset of stromal cell lines and primary AML stroma; and increased FGF2/FGFR1 signaling is associated with increased exosome secretion. FGFR inhibition (or gene silencing) interrupts stromal autocrine growth and significantly decreases secretion of FGF2-containing exosomes, resulting in less stromal protection of leukemia cells. Likewise, Fgf2 -/- mice transplanted with retroviral BCR-ABL leukemia survive significantly longer than their +/+ counterparts when treated with TKI. Thus, inhibition of FGFR can modulate stromal function, reduce exosome secretion, and may be a therapeutic option to overcome resistance to TKIs. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
| | - Jacqueline Martinez
- Knight Cancer InstituteOregon Health & Science UniversityPortlandUnited States
| | - Isabel English
- Knight Cancer InstituteOregon Health & Science UniversityPortlandUnited States
| | - Sunil K Joshi
- Knight Cancer InstituteOregon Health & Science UniversityPortlandUnited States
| | | | - Shelton K Viola
- Knight Cancer InstituteOregon Health & Science UniversityPortlandUnited States
| | - David K Edwards
- Knight Cancer InstituteOregon Health & Science UniversityPortlandUnited States
| | - Anupriya Agarwal
- Knight Cancer InstituteOregon Health & Science UniversityPortlandUnited States
- Division of Hematology and Medical OncologyOregon Health & Science UniversityPortlandUnited States
| | - Claudia Lopez
- Knight Cancer InstituteOregon Health & Science UniversityPortlandUnited States
- Center for Spatial Systems BiomedicineOregon Health & Science UniversityPortlandUnited States
| | - Danielle Jorgens
- Knight Cancer InstituteOregon Health & Science UniversityPortlandUnited States
- Center for Spatial Systems BiomedicineOregon Health & Science UniversityPortlandUnited States
| | - Jeffrey W Tyner
- Knight Cancer InstituteOregon Health & Science UniversityPortlandUnited States
- Department of Cell, Developmental & Cancer BiologyOregon Health & Science UniversityPortlandUnited States
| | - Brian J Druker
- Knight Cancer InstituteOregon Health & Science UniversityPortlandUnited States
- Division of Hematology and Medical OncologyOregon Health & Science UniversityPortlandUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Elie Traer
- Knight Cancer InstituteOregon Health & Science UniversityPortlandUnited States
- Division of Hematology and Medical OncologyOregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
45
|
Rezaei Z, Sebzari A, Kordi-Tamandani DM, Dastjerdi K. Involvement of the Dysregulation of miR-23b-3p, miR-195-5p, miR-656-5p, and miR-340-5p in Trastuzumab Resistance of HER2-Positive Breast Cancer Cells and System Biology Approach to Predict Their Targets Involved in Resistance. DNA Cell Biol 2019; 38:184-192. [PMID: 30702337 DOI: 10.1089/dna.2018.4427] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Resistance to trastuzumab has become a limiting factor for therapeutic efficacy of human epidermal growth factor 2 (HER2)-positive breast cancer. Different expression levels of miRNAs in cancer cells have been associated with poor prognosis and response to chemotherapy. The aim of this study was to evaluate miRNAs that were thought to be associated with HER2-positive breast cancer chemoresistance. In this study, the relative expression of candidate miRNAs to U6 RNA was evaluated in trastuzumab-resistant and trastuzumab-sensitive cells using relative real-time PCR. Our results demonstrated that miR-23b-3p, miR-195-5p, miR-656-5p, and miR-340-5p were significantly dysregulated. For the first time in this study, these miRNAs were identified to be involved in trastuzumab resistance. TargetScan and miRDB were then used for predicting the potential targets of the candidate miRNAs. Our results also revealed that the predicted potential targets of these miRNAs were strongly associated with drug resistance pathways. As a relative expression of candidate miRNAs was statistically different in trastuzumab-resistant and trastuzumab-sensitive cells, their potential targets were involved in drug resistance pathways. We strongly hypothesized the dysregulation of miRNAs as a possible mechanism of trastuzumab resistance. We also assumed that the strategic manipulation of these regulatory networks might be a possible therapeutic strategy to improve the results of chemotherapy for this resistance. However, more research is needed to evaluate the role of these miRNAs in the acquisition of trastuzumab resistance.
Collapse
Affiliation(s)
- Zohreh Rezaei
- 1 Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| | - Ahmadreza Sebzari
- 2 Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Kazem Dastjerdi
- 2 Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.,3 Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
46
|
Perrault DP, Lee GK, Park SY, Lee S, Choi D, Jung E, Seong YJ, Park EK, Sung C, Yu R, Bouz A, Pourmoussa A, Kim SJ, Hong YK, Wong AK. Small Peptide Modulation of Fibroblast Growth Factor Receptor 3-Dependent Postnatal Lymphangiogenesis. Lymphat Res Biol 2019; 17:19-29. [PMID: 30648916 DOI: 10.1089/lrb.2018.0035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The fibroblast growth factor receptor (FGFR) family includes transmembrane receptors involved in a wide range of developmental and postdevelopmental biologic processes as well as a wide range of human diseases. In particular, FGFR3 has been implicated in the mechanism by which 9-cis retinoic acid (9-cisRA) induces lymphangiogenesis and improves lymphedema. The purpose of this study was to validate the efficacy of a novel small peptide FGFR3 inhibitor, peptide P3 (VSPPLTLGQLLS), and to elucidate the role of FGFR3 in 9-cisRA-induced lymphangiogenesis using this peptide. METHODS AND RESULTS Peptide P3 effectively inhibited FGFR3 phosphorylation. In vitro, peptide P3-mediated FGFR3 inhibition did not decrease lymphatic endothelial cell (LEC) proliferation, migration, or tubule formation. However, peptide P3-mediated FGFR3 inhibition did block 9-cisRA-stimulated LEC proliferation, migration, and tubule formation. In vivo, peptide P3-mediated FGFR3 inhibition was sufficient to inhibit 9-cisRA-induced tracheal lymphangiogenesis. CONCLUSION FGFR3 does not appear to be essential to nonpromoted LEC proliferation, migration, and tubule formation. However, FGFR3 may play a key role in LEC proliferation, migration, tubule formation, and postnatal in vivo lymphangiogenesis when pharmacologically induced by 9-cisRA. P3 may have the potential to be used as a precise regulatory control element for 9-cisRA-mediated lymphangiogenesis.
Collapse
Affiliation(s)
- David P Perrault
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Gene K Lee
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Sun Young Park
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Sunju Lee
- 2 Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Dongwon Choi
- 2 Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Eunson Jung
- 2 Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Young Jin Seong
- 2 Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Eun Kyung Park
- 2 Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Cynthia Sung
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Roy Yu
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Antoun Bouz
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Austin Pourmoussa
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Soo Jung Kim
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Young-Kwon Hong
- 2 Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Alex K Wong
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
47
|
Yao Y, Zhou D, Shi D, Zhang H, Zhan S, Shao X, Sun K, Sun L, Wu G, Tian K, Zhu X, He S. GLI1 overexpression promotes gastric cancer cell proliferation and migration and induces drug resistance by combining with the AKT-mTOR pathway. Biomed Pharmacother 2019; 111:993-1004. [PMID: 30841479 DOI: 10.1016/j.biopha.2019.01.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/05/2019] [Accepted: 01/06/2019] [Indexed: 02/07/2023] Open
Abstract
Hedgehog (HH) pathway significantly affected the pathogenesis of Gastric cancer (GC), but the multiple uncanonical HH pathways that are mediated by Zinc Finger protein GLI1 (GLI1) are still unclear. In the present work, we evaluated GLI1 and p-AKT expression in GC using immunohistochemistry (IHC) analysis. GLI1 and AKT specific shRNA was transfected into GC cell lines to investigate the cross-regulation between HH pathway and AKT-mTOR pathway. The effect of GLI1 and p-AKT on proliferation, migration, and drug resistance were examined. Moreover, a mouse xenograft model of GC was established to verify the role of GLI1 and p-AKT in promoting drug sensitivity in vivo. Our results suggested the clinicopathological factors and prognosis by the differential expression of GLI1 and p-AKT in GC patients. GLI1 was activated by the AKT-mTOR pathway. Co-expression of GLI1 and p-AKT was associated with cell viability, migration, and drug resistance and indicated a poor prognosis in GC patients. Agents targeted against both GLI1 and p-AKT may reverse drug-resistance and achieve better inhibition than agents targeted against a single molecule. There was a significant correlation between the high expression of GLI1 and p-AKT in GC. Additionally, our study confirmed the activity of the AKT-mTOR-GLI1 axis, which provided a new viable field for GC treatment.
Collapse
Affiliation(s)
- Yizhou Yao
- Departments of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Diyuan Zhou
- Departments of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Dongtao Shi
- Departments of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Hui Zhang
- Departments of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, PR China; Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, PR China
| | - Shenghua Zhan
- Departments of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Xinyu Shao
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215006, PR China
| | - Kang Sun
- Department of General Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, PR China
| | - Liang Sun
- Departments of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Guangting Wu
- Departments of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Kangjun Tian
- Departments of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Xinguo Zhu
- Departments of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, PR China.
| | - Songbing He
- Departments of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, PR China.
| |
Collapse
|
48
|
Boichuk S, Galembikova A, Dunaev P, Micheeva E, Valeeva E, Novikova M, Khromova N, Kopnin P. Targeting of FGF-Signaling Re-Sensitizes Gastrointestinal Stromal Tumors (GIST) to Imatinib In Vitro and In Vivo. Molecules 2018; 23:E2643. [PMID: 30326595 PMCID: PMC6222839 DOI: 10.3390/molecules23102643] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/04/2018] [Accepted: 10/11/2018] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of the fibroblast growth factor (FGF)/fibroblast growth factor receptor (FGFR) signaling pathway is frequently observed in multiple human malignancies, and thus, therapeutic strategies targeting FGFs and FGFRs in human cancer are being extensively explored. We observed the activation of the FGF/FGFR-signaling pathway in imatinib (IM)-resistant gastrointestinal stromal tumor (GIST) cells. Furthermore, we found that the activation of FGFR signaling has a significant impact on IM resistance in GISTs in vitro. Next, we tested the efficacy of BGJ398, a potent and selective FGFR1⁻3 inhibitor, in xenograft models of GISTs exhibiting secondary IM resistance due to receptor-tyrosine kinase (RTK) switch (loss of c-KIT/gain of FGFR2a). Five to eight-week-old female nu/nu mice were subcutaneously inoculated into the flank areas with GIST T-1R cells. Mice were randomized as control (untreated), IM, BGJ398, or a combination and treated orally for 12 days. IM had a moderate effect on tumor size, thus revealing GIST resistance to IM. Similarly, a minor regression in tumor size was observed in BGJ398-treated mice. Strikingly, a 90% decrease in tumor size was observed in mice treated with a combination of IM and BGJ398. Treatment with BGJ398 and IM also induced major histopathologic changes according to a previously defined histopathologic response score and resulted in massive myxoid degeneration. This was associated with increased intratumoral apoptosis as detected by immunohistochemical staining for cleaved caspase-3 on day 5 of the treatment. Furthermore, treatment with BGJ398 and IM significantly reduced the proliferative activity of tumor cells as measured by positivity for Ki-67 staining. In conclusion, inhibition of FGFR signaling substantially inhibited the growth of IM-resistant GISTs in vitro and showed potent antitumor activity in an IM-resistant GIST model via the inhibition of proliferation, tumor growth, and the induction of apoptosis, thereby suggesting that patients with advanced and metastatic GISTs exhibiting IM resistance might benefit from therapeutic inhibition of FGFR signaling.
Collapse
Affiliation(s)
- Sergei Boichuk
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia.
| | - Aigul Galembikova
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia.
| | - Pavel Dunaev
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia.
| | - Ekaterina Micheeva
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia.
| | - Elena Valeeva
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia.
| | - Maria Novikova
- N.N. Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia.
| | - Natalya Khromova
- N.N. Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia.
| | - Pavel Kopnin
- N.N. Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia.
| |
Collapse
|
49
|
Klug LR, Bannon AE, Javidi-Sharifi N, Town A, Fleming WH, VanSlyke JK, Musil LS, Fletcher JA, Tyner JW, Heinrich MC. LMTK3 is essential for oncogenic KIT expression in KIT-mutant GIST and melanoma. Oncogene 2018; 38:1200-1210. [PMID: 30242244 PMCID: PMC6365197 DOI: 10.1038/s41388-018-0508-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/01/2018] [Accepted: 08/29/2018] [Indexed: 12/18/2022]
Abstract
Certain cancers, including gastrointestinal stromal tumor (GIST) and subsets of melanoma, are caused by somatic KIT mutations that result in KIT receptor tyrosine kinase constitutive activity, which drives proliferation. The treatment of KIT-mutant GIST has been revolutionized with the advent of KIT-directed cancer therapies. KIT tyrosine kinase inhibitors (TKI) are superior to conventional chemotherapy in their ability to control advanced KIT-mutant disease. However, these therapies have a limited duration of activity due to drug-resistant secondary KIT mutations that arise (or that are selected for) during KIT TKI treatment. To overcome the problem of KIT TKI resistance, we sought to identify novel therapeutic targets in KIT-mutant GIST and melanoma cells using a human tyrosine kinome siRNA screen. From this screen, we identified lemur tyrosine kinase 3 (LMTK3) and herein describe its role as a novel KIT regulator in KIT-mutant GIST and melanoma cells. We find that LMTK3 regulated the translation rate of KIT, such that loss of LMTK3 reduced total KIT, and thus KIT downstream signaling in cancer cells. Silencing of LMTK3 decreased cell viability and increased cell death in KIT-dependent, but not KIT-independent GIST and melanoma cell lines. Notably, LMTK3 silencing reduced viability of all KIT-mutant cell lines tested, even those with drug-resistant KIT secondary mutations. Furthermore, targeting of LMTK3 with siRNA delayed KIT-dependent GIST growth in a xenograft model. Our data suggest the potential of LMTK3 as a target for treatment of patients with KIT-mutant cancer, particularly after failure of KIT TKIs.
Collapse
Affiliation(s)
- Lillian R Klug
- Portland VA Health Care System, Portland, OR, USA. .,Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA. .,Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR, USA.
| | - Amber E Bannon
- Portland VA Health Care System, Portland, OR, USA.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.,Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR, USA
| | - Nathalie Javidi-Sharifi
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.,Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR, USA
| | - Ajia Town
- Portland VA Health Care System, Portland, OR, USA.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.,Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR, USA
| | - William H Fleming
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.,Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR, USA.,Department of Pediatrics, Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR, USA
| | - Judy K VanSlyke
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR, USA
| | - Linda S Musil
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR, USA
| | - Jonathan A Fletcher
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Department of Pediatrics, Brigham and Women's Hospital, Boston, MA, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.,Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR, USA
| | - Michael C Heinrich
- Portland VA Health Care System, Portland, OR, USA.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.,Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
50
|
Recent developments and advances of FGFR as a potential target in cancer. Future Med Chem 2018; 10:2109-2126. [DOI: 10.4155/fmc-2018-0103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
FGFs and their receptors (FGFRs) are critical for many biologic processes, including angiogenesis, wound healing and tissue regeneration. Aberrations in FGFR signaling are common in cancer, making FGFRs a promising target in antitumor studies. To date, many FGFR inhibitors are being detected in clinical studies, and resistance to some inhibitors has emerged. Understanding the mechanisms of resistance is a fundamental step for further implementation of targeted therapies. In this review, we will describe the basic knowledge regarding FGF/FGFR signaling and categorize the clinical FGFR inhibitors. The mechanisms of resistance to FGFR inhibitors and corresponding strategies of overcoming drug resistance will also be discussed.
Collapse
|