1
|
Li M, Lulla AR, Wang Y, Tsavaschidis S, Wang F, Karakas C, Nguyen TD, Bui TN, Pina MA, Chen MK, Mastoraki S, Multani AS, Fowlkes NW, Sahin A, Marshall CG, Hunt KK, Keyomarsi K. Low-Molecular Weight Cyclin E Confers a Vulnerability to PKMYT1 Inhibition in Triple-Negative Breast Cancer. Cancer Res 2024; 84:3864-3880. [PMID: 39186665 PMCID: PMC11567801 DOI: 10.1158/0008-5472.can-23-4130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/11/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Cyclin E is a regulatory subunit of CDK2 that mediates S phase entry and progression. The cleavage of full-length cyclin E (FL-cycE) to low-molecular weight isoforms (LMW-E) dramatically alters substrate specificity, promoting G1-S cell cycle transition and accelerating mitotic exit. Approximately 70% of triple-negative breast cancers (TNBC) express LMW-E, which correlates with poor prognosis. PKMYT1 also plays an important role in mitosis by inhibiting CDK1 to block premature mitotic entry, suggesting it could be a therapeutic target in TNBC expressing LMW-E. In this study, analysis of tumor samples of patients with TNBC revealed that coexpression of LMW-E and PKMYT1-catalyzed CDK1 phosphorylation predicted poor response to neoadjuvant chemotherapy. Compared with FL-cycE, LMW-E specifically upregulates PKMYT1 expression and protein stability, thereby increasing CDK1 phosphorylation. Inhibiting PKMYT1 with the selective inhibitor RP-6306 (lunresertib) elicited LMW-E-dependent antitumor effects, accelerating premature mitotic entry, inhibiting replication fork restart, and enhancing DNA damage, chromosomal breakage, apoptosis, and replication stress. Importantly, TNBC cell line xenografts expressing LMW-E showed greater sensitivity to RP-6306 than tumors with empty vector or FL-cycE. Furthermore, RP-6306 exerted tumor suppressive effects in LMW-E transgenic murine mammary tumors and patient-derived xenografts of LMW-E-high TNBC but not in the LMW-E null models examined in parallel. Lastly, transcriptomic and immune profiling demonstrated that RP-6306 treatment induced interferon responses and T-cell infiltration in the LMW-E-high tumor microenvironment, enhancing the antitumor immune response. These findings highlight the LMW-E/PKMYT1/CDK1 regulatory axis as a promising therapeutic target in TNBC, providing the rationale for further clinical development of PKMYT1 inhibitors in this aggressive breast cancer subtype. Significance: PKMYT1 upregulation and CDK1 phosphorylation in triple-negative breast cancer expressing low-molecular weight cyclin E leads to suboptimal responses to chemotherapy but sensitizes tumors to PKMYT1 inhibitors, proposing a personalized treatment strategy.
Collapse
Affiliation(s)
- Mi Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amriti R. Lulla
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yan Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Fuchenchu Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cansu Karakas
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tuyen D.T. Nguyen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tuyen N. Bui
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marc A. Pina
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mei-Kuang Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sofia Mastoraki
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Asha S. Multani
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Natalie W. Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Aysegul Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Kelly K. Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
2
|
Koutros S, Kiemeney LA, Pal Choudhury P, Milne RL, Lopez de Maturana E, Ye Y, Joseph V, Florez-Vargas O, Dyrskjøt L, Figueroa J, Dutta D, Giles GG, Hildebrandt MAT, Offit K, Kogevinas M, Weiderpass E, McCullough ML, Freedman ND, Albanes D, Kooperberg C, Cortessis VK, Karagas MR, Johnson A, Schwenn MR, Baris D, Furberg H, Bajorin DF, Cussenot O, Cancel-Tassin G, Benhamou S, Kraft P, Porru S, Carta A, Bishop T, Southey MC, Matullo G, Fletcher T, Kumar R, Taylor JA, Lamy P, Prip F, Kalisz M, Weinstein SJ, Hengstler JG, Selinski S, Harland M, Teo M, Kiltie AE, Tardón A, Serra C, Carrato A, García-Closas R, Lloreta J, Schned A, Lenz P, Riboli E, Brennan P, Tjønneland A, Otto T, Ovsiannikov D, Volkert F, Vermeulen SH, Aben KK, Galesloot TE, Turman C, De Vivo I, Giovannucci E, Hunter DJ, Hohensee C, Hunt R, Patel AV, Huang WY, Thorleifsson G, Gago-Dominguez M, Amiano P, Golka K, Stern MC, Yan W, Liu J, Li SA, Katta S, Hutchinson A, Hicks B, Wheeler WA, Purdue MP, McGlynn KA, Kitahara CM, Haiman CA, Greene MH, Rafnar T, Chatterjee N, Chanock SJ, Wu X, Real FX, Silverman DT, Garcia-Closas M, Stefansson K, Prokunina-Olsson L, Malats N, Rothman N. Genome-wide Association Study of Bladder Cancer Reveals New Biological and Translational Insights. Eur Urol 2023; 84:127-137. [PMID: 37210288 PMCID: PMC10330197 DOI: 10.1016/j.eururo.2023.04.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/16/2023] [Accepted: 04/19/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Genomic regions identified by genome-wide association studies (GWAS) for bladder cancer risk provide new insights into etiology. OBJECTIVE To identify new susceptibility variants for bladder cancer in a meta-analysis of new and existing genome-wide genotype data. DESIGN, SETTING, AND PARTICIPANTS Data from 32 studies that includes 13,790 bladder cancer cases and 343,502 controls of European ancestry were used for meta-analysis. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSES Log-additive associations of genetic variants were assessed using logistic regression models. A fixed-effects model was used for meta-analysis of the results. Stratified analyses were conducted to evaluate effect modification by sex and smoking status. A polygenic risk score (PRS) was generated on the basis of known and novel susceptibility variants and tested for interaction with smoking. RESULTS AND LIMITATIONS Multiple novel bladder cancer susceptibility loci (6p.22.3, 7q36.3, 8q21.13, 9p21.3, 10q22.1, 19q13.33) as well as improved signals in three known regions (4p16.3, 5p15.33, 11p15.5) were identified, bringing the number of independent markers at genome-wide significance (p < 5 × 10-8) to 24. The 4p16.3 (FGFR3/TACC3) locus was associated with a stronger risk for women than for men (p-interaction = 0.002). Bladder cancer risk was increased by interactions between smoking status and genetic variants at 8p22 (NAT2; multiplicative p value for interaction [pM-I] = 0.004), 8q21.13 (PAG1; pM-I = 0.01), and 9p21.3 (LOC107987026/MTAP/CDKN2A; pM-I = 0.02). The PRS based on the 24 independent GWAS markers (odds ratio per standard deviation increase 1.49, 95% confidence interval 1.44-1.53), which also showed comparable results in two prospective cohorts (UK Biobank, PLCO trial), revealed an approximately fourfold difference in the lifetime risk of bladder cancer according to the PRS (e.g., 1st vs 10th decile) for both smokers and nonsmokers. CONCLUSIONS We report novel loci associated with risk of bladder cancer that provide clues to its biological underpinnings. Using 24 independent markers, we constructed a PRS to stratify lifetime risk. The PRS combined with smoking history, and other established risk factors, has the potential to inform future screening efforts for bladder cancer. PATIENT SUMMARY We identified new genetic markers that provide biological insights into the genetic causes of bladder cancer. These genetic risk factors combined with lifestyle risk factors, such as smoking, may inform future preventive and screening strategies for bladder cancer.
Collapse
Affiliation(s)
- Stella Koutros
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
| | - Lambertus A Kiemeney
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Parichoy Pal Choudhury
- Trans-Divisional Research Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA; American Cancer Society, Atlanta, GA, USA
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | - Evangelina Lopez de Maturana
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO) and CIBERONC, Madrid, Spain
| | | | - Vijai Joseph
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Oscar Florez-Vargas
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Lars Dyrskjøt
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jonine Figueroa
- Usher Institute, University of Edinburgh, Edinburgh, UK; Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Diptavo Dutta
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | | | - Kenneth Offit
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | - Neal D Freedman
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Demetrius Albanes
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Victoria K Cortessis
- Department of Population and Public Health Sciences, Epidemiology and Genetics, University of Southern California, Los Angeles, CA, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | | | | | - Dalsu Baris
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Helena Furberg
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dean F Bajorin
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Olivier Cussenot
- Centre de Recherche sur les Pathologies Prostatiques et Urologiques, Paris, France
| | - Geraldine Cancel-Tassin
- Centre de Recherche sur les Pathologies Prostatiques et Urologiques, Paris, France; GRC 5 Predictive Onco-Urology, Sorbonne University, Paris, France
| | - Simone Benhamou
- INSERM U1018, Research Centre on Epidemiology and Population Health, Villejuif, France
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Stefano Porru
- Department of Diagnostics and Public Health, Section of Occupational Medicine, University of Verona, Verona, Italy
| | - Angela Carta
- Department of Diagnostics and Public Health, Section of Occupational Medicine, University of Verona, Verona, Italy
| | - Timothy Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, Australia
| | - Giuseppe Matullo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Tony Fletcher
- London School of Hygiene and Tropical Medicine, London, UK
| | - Rajiv Kumar
- Division of Functional Genome Analysis, German Cancer Research Center, Heidelberg, Germany
| | - Jack A Taylor
- Epidemiology Branch and Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Philippe Lamy
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Frederik Prip
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Mark Kalisz
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO) and CIBERONC, Madrid, Spain
| | - Stephanie J Weinstein
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| | - Silvia Selinski
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| | - Mark Harland
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Mark Teo
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Anne E Kiltie
- Rowett Institute, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Adonina Tardón
- Department of Preventive Medicine, Universidad de Oviedo, ISPA and CIBERESP, Spain
| | - Consol Serra
- Center for Research in Occupational Health, Universitat Pompeu Fabra, Hospital del Mar Medical Research Institut, CIBERESP, Barcelona, Spain
| | - Alfredo Carrato
- Department of Medicine, Alcalá University, IRYCIS, CIBERONC, Madrid, Spain
| | | | - Josep Lloreta
- Hospital del Mar, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alan Schned
- Department of Pathology, Dartmouth Medical School, Hanover, NH, USA
| | - Petra Lenz
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Elio Riboli
- School of Public Health, Imperial College London, London, UK
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | | | - Thomas Otto
- Department of Urology, Rheinland Klinikum, Lukaskrankenhaus, Neuss, Germany
| | | | - Frank Volkert
- Department of Urology, Evangelic Hospital, Paul Gerhardt Foundation, Lutherstadt Wittenberg, Germany
| | - Sita H Vermeulen
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Katja K Aben
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands; Netherlands Comprehensive Cancer Organisation, Utrecht, The Netherlands
| | - Tessel E Galesloot
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Constance Turman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Edward Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - David J Hunter
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Chancellor Hohensee
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Rebecca Hunt
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Alpa V Patel
- Population Science, American Cancer Society, Atlanta, GA, USA
| | - Wen-Yi Huang
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | - Manuela Gago-Dominguez
- Fundación Pública Galega de Medicina Xenómica, Servicio Galego de Saude, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Pilar Amiano
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, San Sebastian, Spain; Biodonostia Health Research Institute, Epidemiology of Chronic and Communicable Diseases Group, San Sebastian, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Klaus Golka
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| | - Mariana C Stern
- Department of Population and Public Health Sciences, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wusheng Yan
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jia Liu
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Shengchao Alfred Li
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Shilpa Katta
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Amy Hutchinson
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Belynda Hicks
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Mark P Purdue
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Katherine A McGlynn
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Christopher A Haiman
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mark H Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | | | - Stephen J Chanock
- Office of the Director, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Xifeng Wu
- Zhejiang University, Hangzhou, China
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO) and CIBERONC, Madrid, Spain; Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | - Debra T Silverman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Montserrat Garcia-Closas
- Trans-Divisional Research Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | - Ludmila Prokunina-Olsson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO) and CIBERONC, Madrid, Spain
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
3
|
Leeming RC, Koutros S, Karagas MR, Baris D, Schwenn M, Johnson A, Zens MS, Schned AR, Rothman N, Silverman DT, Passarelli MN. Diet quality, common genetic polymorphisms, and bladder cancer risk in a New England population-based study. Eur J Nutr 2022; 61:3905-3913. [PMID: 35759030 PMCID: PMC10329807 DOI: 10.1007/s00394-022-02932-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 05/31/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE We examined the interaction between common genetic bladder cancer variants, diet quality, and bladder cancer risk in a population-based case-control study conducted in New England. METHODS At the time of enrollment, 806 bladder cancer cases and 974 controls provided a DNA sample and completed a diet history questionnaire. Diet quality was assessed using the 2010 Alternate Healthy Eating Index (AHEI-2010) score. Single nucleotide polymorphisms (SNPs) reported in genome-wide association studies to be associated with bladder cancer risk were combined into a polygenic risk score and also examined individually for interaction with the AHEI-2010. Adjusted odds ratios (OR) and 95% confidence intervals (CI) were calculated using logistic regression. RESULTS A 1-standard deviation increase in polygenic risk score was associated with higher bladder cancer risk (OR, 1.34; 95% CI 1.21-1.49). Adherence to the AHEI-2010 was not associated with bladder cancer risk (OR, 0.99; 95% CI 0.98-1.00) and the polygenic risk score did not appear to modify the association between the AHEI-2010 and bladder cancer risk. In single-SNP analyses, rs8102137 (bladder cancer risk allele, C) modified the association between the AHEI-2010 total score and bladder cancer risk, with the strongest evidence for the AHEI-2010 long chain fat guideline (OR for TT, 0.92; 95% CI 0.87-0.98; OR for CT, 1.02; 95% CI 0.96-1.08; OR for CC, 1.03; 95% CI 0.93-1.14; p for interaction, 0.02). CONCLUSIONS In conclusion, rs8102137 near the cyclin E1 gene ( CCNE1 ) may be involved in gene-diet interactions for bladder cancer risk.
Collapse
Affiliation(s)
- Reno C Leeming
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, 1 Medical Center Drive, HB 7927, Hanover, Lebanon, NH, 03756, USA
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, 1 Medical Center Drive, HB 7927, Hanover, Lebanon, NH, 03756, USA
| | - Dalsu Baris
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, Bethesda, MD, USA
| | | | | | - Michael S Zens
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, 1 Medical Center Drive, HB 7927, Hanover, Lebanon, NH, 03756, USA
| | - Alan R Schned
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Debra T Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Michael N Passarelli
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, 1 Medical Center Drive, HB 7927, Hanover, Lebanon, NH, 03756, USA.
| |
Collapse
|
4
|
Saddozai UAK, Wang F, Khattak S, Akbar MU, Badar M, Khan NH, Zhang L, Zhu W, Xie L, Li Y, Ji X, Guo X. Define the Two Molecular Subtypes of Epithelioid Malignant Pleural Mesothelioma. Cells 2022; 11:cells11182924. [PMID: 36139498 PMCID: PMC9497219 DOI: 10.3390/cells11182924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a fatal disease of respiratory system. Despite the availability of invasive biomarkers with promising results, there are still significant diagnostic and therapeutic challenges in the treatment of MPM. One of three main mesothelioma cell types, epithelioid mesothelioma makes up approximately 70% of all mesothelioma cases. Different observational findings are under process, but the molecular heterogeneity and pathogenesis of epithelioid malignant pleural mesothelioma (eMPM) are still not well understood. Through molecular analysis, expression profiling data were used to determine the possibility and optimal number of eMPM molecular subtypes. Next, clinicopathological characteristics and different molecular pathways of each subtype were analyzed to prospect the clinical applications and advanced mechanisms of eMPM. In this study, we identified two distinct epithelioid malignant pleural mesothelioma subtypes with distinct gene expression patterns. Subtype I eMPMs were involved in steroid hormone biosynthesis, porphyrin and chlorophyll metabolism, and drug metabolism, while subtype II eMPMs were involved in rational metabolism, tyrosine metabolism, and chemical carcinogenesis pathways. Additionally, we identified potential subtype-specific therapeutic targets, including CCNE1, EPHA3, RNF43, ROS1, and RSPO2 for subtype I and CDKN2A and RET for subtype II. Considering the need for potent diagnostic and therapeutic biomarkers for eMPM, we are anticipating that our findings will help both in exploring underlying mechanisms in the development of eMPM and in designing targeted therapy for eMPM.
Collapse
Affiliation(s)
- Umair Ali Khan Saddozai
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Fengling Wang
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Saadullah Khattak
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Muhammad Usman Akbar
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Muhammad Badar
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Nazeer Hussain Khan
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Lu Zhang
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Wan Zhu
- Department of Anesthesia, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Longxiang Xie
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yongqiang Li
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xinying Ji
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Correspondence: (X.J.); (X.G.)
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Correspondence: (X.J.); (X.G.)
| |
Collapse
|
5
|
Assessment of prognostic implication of a panel of oncogenes in bladder cancer and identification of a 3-gene signature associated with recurrence and progression risk in non-muscle-invasive bladder cancer. Sci Rep 2020; 10:16641. [PMID: 33024200 PMCID: PMC7538919 DOI: 10.1038/s41598-020-73642-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
This study evaluated the prognostic value of a panel of 29 oncogenes derived from the analysis of The Cancer Genome Atlas (TCGA data) or from the recent literature on bladder tumors on a well-characterized series of muscle-invasive bladder cancer (MIBC) and non-MIBC (NMIBC) samples and tried to identify molecular prognostic markers. Mutations of HRAS, FGFR3, PIK3CA and TERT were found in 2.9%, 27.2%, 14.9% and 76.7% of tumor samples, respectively. Concerning NMIBC, on multivariate analysis, RXRA and FGFR3 levels were associated with recurrence-free survival (RFS) (p = 0.0022 and p = 0.0069) and RXRA level was associated with progression to muscle-invasive disease (p = 0.0068). We identified a 3-gene molecular signature associated with NMIBC prognosis. FGFR3 overexpression was associated with reduced response to Bacillus Calmette–Guerin treatment (p = 0.037). As regards MIBC, on multivariate analysis, ERCC2 overexpression was associated with RFS (p = 0.0011) and E2F3 and EGFR overexpression were associated with overall survival (p = 0.014 and p = 0.035). RT-PCR findings were confirmed by IHC for FGFR3. Genomic alterations in MIBC revealed in TCGA data also concern NMIBC and seem to be associated with prognosis in terms of recurrence and progression. Correcting these alterations by targeted therapies seems a promising pharmacological approach.
Collapse
|
6
|
Vlachostergios PJ, Faltas BM, Carlo MI, Nassar AH, Alaiwi SA, Sonpavde G. The emerging landscape of germline variants in urothelial carcinoma: Implications for genetic testing. Cancer Treat Res Commun 2020; 23:100165. [PMID: 31982787 DOI: 10.1016/j.ctarc.2020.100165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Urothelial carcinoma (UC) of the bladder and upper tract (ureter, renal pelvis) is one of the most frequently occurring malignancies. While the majority of UC are chemically induced by smoking, accumulating evidence from genetic studies have demonstrated a small, but consistent impact of heritable gene variants and family history of UC on the development of the disease. Beyond the established association between upper tract UC and germline mismatch DNA repair defects as a defining feature of Lynch syndrome, newer investigations focusing on moderate- and high-risk cancer-related gene variants in DNA damage repair and other signaling pathways are expanding our knowledge on the heritable genetic basis of UC, opening new avenues in the breadth of genetic testing and in clinical counseling of these patients. Overcoming existing challenges in the interpretation of uncertain findings and family cascade testing may help expand our testing approach and guidelines. Following the paradigm of other tumor types, such as breast and ovarian cancers, germline genetic testing, particularly when combined with somatic testing, has the potential to directly benefit affected UC patients and their families in the future through therapeutic targeting (i.e. with poly(ADP-ribose)) polymerase inhibitors, immune checkpoint inhibitors) and genetically informed screening/surveillance, respectively.
Collapse
Affiliation(s)
| | - Bishoy M Faltas
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, United States; Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, United States; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Maria I Carlo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Amin H Nassar
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Sarah Abou Alaiwi
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, DANA 1230, Boston, MA 02215, United States
| | - Guru Sonpavde
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, DANA 1230, Boston, MA 02215, United States.
| |
Collapse
|
7
|
Metformin targets a YAP1-TEAD4 complex via AMPKα to regulate CCNE1/2 in bladder cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:376. [PMID: 31455378 PMCID: PMC6712726 DOI: 10.1186/s13046-019-1346-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/24/2019] [Indexed: 12/14/2022]
Abstract
Background Metformin has been reported to function as the anti-tumor inhibiting the growth of different types of cancers, including bladder cancer. But there are few reports on the roles of Yap1, the key molecule of Hippo pathway, in the metformin induced inhibition of bladder cancer (BLCA). We are wondering if the inhibitory effect of metformin on bladder cancer is fulfilled via Yap1 and exploring the related mechanism. Methods MTS and colony formation assays were used to explore the cellular viabilities and proliferation of BLCA cells challenged by metformin at different concentrations, in vitro. Flow Cytometry (FCM) was used to analyze the cell cycle and the cellular apoptosis of the BLCA cells. Western Blot was performed to detect the expressions of AMPKα, Yap1, CCND1, CCNE1/2 and CDK2/4/6 in the metformin-treated BLCA cell lines. RNAi method was used for the related genetic functional analysis. The relationships among Yap1, TEADs and CCNE1/2 were predicted and evaluated using bioinformatics, dual-luciferase reporter and co-immunoprecipitation (Co-IP) assays. For in vivo experiments, a xenograft model was used to investigate the effects of metformin on the proliferation of BLCA cells. And Immunohistochemistry (IHC) assay was performed to assess the expressions of CCNE1/2 and Yap1 proteins in the tumor tissues from the model. Results Metformin could inhibit the proliferation of the BLCA cells via inducing the G1 cell cycle arrest without apoptosis. And metformin upregulated the phosphorylated AMPKα and decreased the expressions of Yap1 and CCND1, CCNE1/2 and CDK4/6. AMPK inhibition by compound C (CC) restored the cell proliferation and the G1 cell cycle arrest induced by metformin, in vivo. Knockdown of YAP1 inhibited the proliferation of BLCA cells and caused the cell cycle arrest at G1 phase by decreasing the expressions of CCNE1/2 and other G1 phase related molecules, which has been restored by the Yap 5SA mutant. Bioinformatics analysis showed that trans-factor TEAD4 was highly expressed and positively associated with the expressions of CCNE1 and CCNE2 in BLCA and only TEAD4 was precipitated by Yap1 in the BLCA cells. Further studies demonstrated that Yap1 positively regulated both CCNE1 and CCNE2 expressions via forming complex with TEAD4. Furthermore, we observed that metformin inhibited the cell proliferation by decreasing the expressions of Yap1 and both CCNE1 and CCNE2 in xenograft model. Conclusions The results of our study reveal a new potential regulatory pathway in which metformin inhibits cell proliferation via AMPKα/Yap1/TEAD4/CCNE1/2 axis in BLCA cells, providing new insights into novel molecular therapeutic targets for BLCA. Electronic supplementary material The online version of this article (10.1186/s13046-019-1346-1) contains supplementary material, which is available to authorized users.
Collapse
|
8
|
Xiao L, Hong L, Zheng W. Motor Neuron and Pancreas Homeobox 1 (MNX1) Is Involved in Promoting Squamous Cervical Cancer Proliferation via Regulating Cyclin E. Med Sci Monit 2019; 25:6304-6312. [PMID: 31436258 PMCID: PMC6716296 DOI: 10.12659/msm.914233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Cervical cancer is one of the most lethal gynecologic malignancies worldwide. The objective of this study was to assess the role of MNX1 in cervical cancer and its underlying mechanisms. Material/Methods The expression of motor neuron and pancreas homeobox 1 (MNX1) in immortal epithelial cervical cell line ECT, cervical cancer cell HeLa, and SiHa and cervical cancer, as well as in adjacent noncancer tissues, was detected and analyzed. CCK-8 and colony formation assays were performed to evaluate the effects of MNX1 overexpression on cervical cancer cell proliferation. Transwell assay was used to detect migration and invasion after MNX1 knockdown or overexpression. Real-time PCR and Western blotting were used to examine MNX1 and cell cycle regulator expression. Results Data from our study indicated that MNX1 was upregulated both in cervical cancer cell lines and cervical cancer tissues. The high levels of MNX1 are related to advanced stages and lymph nodes metastasis. The overexpression of MNX1 promoted cervical cancer cells proliferation, migration, and invasion. Moreover, MNX1 upregulated 2 critical cell cycle regulators, CCNE1 and CCNE2. Conclusions These findings reveal MNX1 as a novel oncogene of cervical cancer and indicate MNX1 is a promising therapeutic and prognostic biomarker.
Collapse
Affiliation(s)
- Li Xiao
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland).,Department of Obstetrics and Gynaecology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei, China (mainland)
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Wenfei Zheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| |
Collapse
|
9
|
Yuan Z, Zhong L, Liu D, Yao J, Liu J, Zhong P, Yao S, Zhao Y, Li L, Chen M, Liu L, Liu B. MiR-15b regulates cell differentiation and survival by targeting CCNE1 in APL cell lines. Cell Signal 2019; 60:57-64. [PMID: 30965092 DOI: 10.1016/j.cellsig.2019.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/21/2019] [Accepted: 04/05/2019] [Indexed: 01/19/2023]
Abstract
MicroRNAs have been shown to be involved in various cell processes, including proliferation, apoptosis and differentiation. However, little is known about their function in granulopoiesis. In the present study, overexpression and knockdown experiments revealed that miR-15b was required to block the proliferation of NB4 and HL60 cells and induce them differentiated to granulocyte lineage. Moreover, we identified CCNE1 as a direct target of miR-15b, and demonstrated that CCNE1 was involved in cell differentiation and proliferation in acute promyelocytic leukemia cells. In addition, we demonstrated a novel pathway in which miR-15b regulated cells arrested in the G0/G1 phase and promoted terminal differentiation of cells by targeting CCNE1, which could modulate the cell cycle effort pRb in APL cells. These events blocked cell proliferation and promoted granulocyte differentiation. In conclusion, our data highlighted, for the first time, the important role of miR-15b in myeloid differentiation and suggested the potential role of miR-15b in cancer therapy.
Collapse
Affiliation(s)
- Zhen Yuan
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China; Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Dongdong Liu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China; Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Juanjuan Yao
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Junmei Liu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Pengqiang Zhong
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Shifei Yao
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Yi Zhao
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Lianwen Li
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Min Chen
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Lu Liu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China; Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Beizhong Liu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China; Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
10
|
Caruso JA, Duong MT, Carey JPW, Hunt KK, Keyomarsi K. Low-Molecular-Weight Cyclin E in Human Cancer: Cellular Consequences and Opportunities for Targeted Therapies. Cancer Res 2018; 78:5481-5491. [PMID: 30194068 PMCID: PMC6168358 DOI: 10.1158/0008-5472.can-18-1235] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/18/2018] [Accepted: 07/18/2018] [Indexed: 01/03/2023]
Abstract
Cyclin E, a regulatory subunit of cyclin-dependent kinase 2 (CDK2), is central to the initiation of DNA replication at the G1/S checkpoint. Tight temporal control of cyclin E is essential to the coordination of cell-cycle processes and the maintenance of genome integrity. Overexpression of cyclin E in human tumors was first observed in the 1990s and led to the identification of oncogenic roles for deregulated cyclin E in experimental models. A decade later, low-molecular-weight cyclin E (LMW-E) isoforms were observed in aggressive tumor subtypes. Compared with full-length cyclin E, LMW-E hyperactivates CDK2 through increased complex stability and resistance to the endogenous inhibitors p21CIP1 and p27KIP1 LMW-E is predominantly generated by neutrophil elastase-mediated proteolytic cleavage, which eliminates the N-terminal cyclin E nuclear localization signal and promotes cyclin E's accumulation in the cytoplasm. Compared with full-length cyclin E, the aberrant localization and unique stereochemistry of LMW-E dramatically alters the substrate specificity and selectivity of CDK2, increasing tumorigenicity in experimental models. Cytoplasmic LMW-E, which can be assessed by IHC, is prognostic of poor survival and predicts resistance to standard therapies in patients with cancer. These patients may benefit from therapeutic modalities targeting the altered biochemistry of LMW-E or its associated vulnerabilities. Cancer Res; 78(19); 5481-91. ©2018 AACR.
Collapse
Affiliation(s)
- Joseph A Caruso
- Department of Pathology, University of California, San Francisco, San Francisco, California.
| | | | - Jason P W Carey
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kelly K Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
11
|
Chen M, Wu R, Li G, Liu C, Tan L, Xiao K, Ye Y, Qin Z. Motor neuron and pancreas homeobox 1/HLXB9 promotes sustained proliferation in bladder cancer by upregulating CCNE1/2. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:154. [PMID: 30012177 PMCID: PMC6048799 DOI: 10.1186/s13046-018-0829-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/05/2018] [Indexed: 11/29/2022]
Abstract
Background Uncontrolled proliferation is thought to be the most fundamental characteristic of cancer. Detailed knowledge of cancer cell proliferation mechanisms would not only benefit understanding of cancer progression, but may also provide new clues for developing novel therapeutic strategies. Methods In vitro function of MNX1 (Motor neuron and pancreas homeobox 1) in bladder cancer cell was evaluated using MTT assay, colony formation assay, and bromodeoxyuridine incorporation assay. Real-time PCR and western blotting were performed to detect MNX1 and CCNE1/2 expressions. In vivo tumor growth was conducted in BALB/c-nu mice. Results We reported that MNX1 is responsible for sustaining bladder cancer cell proliferation. Abnormal MNX1 upregulation in bladder cancer cell lines and 167 human tissue specimens; high MNX1 expression levels correlated significantly with shorter 5-year overall and relapse-free survival in the bladder cancer patients. Furthermore, MNX1 overexpression accelerated bladder cancer cell proliferation and tumorigenicity both in vitro and in vivo, whereas MNX1 downregulation arrested it. In addition, MNX1 transcriptionally upregulated CCNE1 and CCNE2 by directly bounding to their promoters, which promoted G1–S transition in the bladder cancer cells. Conclusion These findings reveal an oncogenic role and novel regulatory mechanism of MNX1 in bladder cancer progression and suggest that MNX1 is a potential prognostic biomarker and therapeutic target. Electronic supplementary material The online version of this article (10.1186/s13046-018-0829-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mingkun Chen
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Rongpei Wu
- Department of Urology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Gang Li
- Department of Urology, Guangzhou Red Cross Hospital, The Affiliated Hospital of Medical College of Ji-Nan University, Guangzhou, 510220, Guangdong, China
| | - Cundong Liu
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Lei Tan
- Department of Urology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China
| | - Kanghua Xiao
- Department of Urology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China
| | - Yunlin Ye
- Department of Urology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China. .,Department of Urology, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China.
| | - Zike Qin
- Department of Urology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China. .,Department of Urology, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China.
| |
Collapse
|
12
|
Dudek AM, Vermeulen SH, Kolev D, Grotenhuis AJ, Kiemeney LALM, Verhaegh GW. Identification of an enhancer region within the TP63/LEPREL1 locus containing genetic variants associated with bladder cancer risk. Cell Oncol (Dordr) 2018; 41:555-568. [PMID: 29956121 PMCID: PMC6153957 DOI: 10.1007/s13402-018-0393-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2018] [Indexed: 12/24/2022] Open
Abstract
Purpose Genome-wide association studies (GWAS) have led to the identification of a bladder cancer susceptibility variant (rs710521) in a non-coding intergenic region between the TP63 and LEPREL1 genes on chromosome 3q28, suggesting a role in the transcriptional regulation of these genes. In this study, we aimed to functionally characterize the 3q28 bladder cancer risk locus. Methods Fine-mapping was performed by focusing on the region surrounding rs710521, and variants were prioritized for further experiments using ENCODE regulatory data. The enhancer activity of the identified region was evaluated using dual-luciferase assays. CRISPR/Cas9-mediated deletion of the enhancer region was performed and the effect of this deletion on cell proliferation and gene expression levels was evaluated using CellTiter-Glo and RT-qPCR, respectively. Results Fine-mapping of the GWAS signal region led to the identification of twenty SNPs that showed a stronger association with bladder cancer risk than rs710521. Using publicly available data on regulatory elements and sequences, an enhancer region containing the bladder cancer risk variants was identified. Through reporter assays, we found that the presence of the enhancer region significantly increased ΔNTP63 promoter activity in bladder cancer-derived cell lines. CRISPR/Cas9-mediated deletion of the enhancer region reduced the viability of bladder cancer cells by decreasing the expression of ΔNTP63 and p63 target genes. Conclusions Taken together, our data show that bladder cancer risk-associated variants on chromosome 3q28 are located in an active enhancer region. Further characterization of the allele-specific activity of the identified enhancer and its target genes may lead to the identification of novel signaling pathways involved in bladder carcinogenesis. Electronic supplementary material The online version of this article (10.1007/s13402-018-0393-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aleksandra M Dudek
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Sita H Vermeulen
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dimitar Kolev
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anne J Grotenhuis
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lambertus A L M Kiemeney
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerald W Verhaegh
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
13
|
RIPK4 promotes bladder urothelial carcinoma cell aggressiveness by upregulating VEGF-A through the NF-κB pathway. Br J Cancer 2018; 118:1617-1627. [PMID: 29867225 PMCID: PMC6008479 DOI: 10.1038/s41416-018-0116-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/06/2018] [Accepted: 04/19/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Constitutively activated nuclear factor kappa B (NF-κB) signalling plays vital roles in bladder urothelial carcinoma (BC) progression. We investigate the effect of receptor-interacting protein kinase 4 (RIPK4) on NF-κB activation and BC progression. METHODS The expression of RIPK4 was examined in 25 cryopreserved paired bladder samples and 112 paraffin BC specimens. In vivo and in vitro assays were performed to validate effect of RIPK4 on NF-κB pathway-mediated BC progression. RESULTS High expression of RIPK4 was observed in BC tissues and was an independent predictor for poor overall survival. Up or downregulating the expression of RIPK4 enhanced or inhibited, respectively, the migration and invasion of BC cells in vitro and in vivo. Mechanistically, RIPK4 promoted K63-linked polyubiquitination of tumour necrosis factor receptor-associated factor 2 (TRAF2), receptor-interacting protein (RIP) and NF-κB essential modulator (NEMO). RIPK4 also promoted nuclear localisation of NF-κB-p65, and maintained activation of NF-κB substantially, leading to upregulation of VEGF-A, ultimately promoting BC cell aggressiveness. CONCLUSIONS Our data highlighted the molecular aetiology and clinical significance of RIPK4 in BC: upregulation of RIPK4 contributes to NF-κB activation, and upregulates VEGF-A, and BC progression. Targeting RIPK4 might represent a new therapeutic strategy to improve survival for patients with BC.
Collapse
|
14
|
de Maturana EL, Rava M, Anumudu C, Sáez O, Alonso D, Malats N. Bladder Cancer Genetic Susceptibility. A Systematic Review. Bladder Cancer 2018; 4:215-226. [PMID: 29732392 PMCID: PMC5929300 DOI: 10.3233/blc-170159] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background: The variant/gene candidate approach to explore bladder cancer (BC) genetic susceptibility has been applied in many studies with significant findings reported. However, results are not always conclusive due to the lack of replication by subsequent studies. Objectives: To identify all epidemiological investigations on the genetic associations with BC risk, to quantify the likely magnitude of the associations by applying metaanalysis methodology and to assess whether there is a potential for publication/reporting bias. Methods: To address our aims, we have catalogued all genetic association studies published in the field of BC risk since 2000. Furthermore, we metaanalysed all polymorphisms with data available from at least three independent case-control studies with subjects of Caucasian origin analyzed under the same mode of inheritance. Results: The characterization of the genetic susceptibility of BC is composed of 28 variants, GWAS contributing most of them. Most of the significant variants associated with BC risk are located in genes belonging to chemical carcinogenesis, DNA repair, and cell cycle pathways. Causal relationship was also provided by functional analysis for GSTM1-null, NAT2-slow, APOBEC-rs1014971, CCNE1-rs8102137, SLC14A1-rs10775480, PSCA-rs2294008, UGT1A-rs1189203, and TP63-rs35592567. Conclusions: Genetic susceptibility of BC is still poorly defined, with GWAS contributing most of the strongest evidence. The systematic review did not provide evidence of further genetic associations. The potential public health translation of the existing knowledge on genetic susceptibility on BC is still limited.
Collapse
Affiliation(s)
| | - Marta Rava
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), and CIBERONC, Spain
| | - Chiaka Anumudu
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), and CIBERONC, Spain
| | - Olga Sáez
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), and CIBERONC, Spain
| | - Dolores Alonso
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), and CIBERONC, Spain
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), and CIBERONC, Spain
| |
Collapse
|
15
|
Fang D, Huang S, Su SB. Cyclin E1-CDK 2, a potential anticancer target. Aging (Albany NY) 2018; 8:571-2. [PMID: 27085092 PMCID: PMC4925813 DOI: 10.18632/aging.100946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/14/2016] [Indexed: 11/25/2022]
Affiliation(s)
- Dongdong Fang
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuang Huang
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shi-Bing Su
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
16
|
Liu J, Gu Z, Tang Y, Hao J, Zhang C, Yang X. Tumour-suppressive microRNA-424-5p directly targets CCNE1 as potential prognostic markers in epithelial ovarian cancer. Cell Cycle 2018; 17:309-318. [PMID: 29228869 DOI: 10.1080/15384101.2017.1407894] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
An accumulated evidence supports that MicroRNAs (miRNAs) have shown a prominent role in pathological processes and different tumor onset. However, to date, the potential functional roles and molecular mechanisms by how microRNA-424-5p(miR-424-5p) affects cancer cell proliferation are greatly unclear, especially in epithelial ovarian cancer(EOC).In this study, we demonstrated that miR-424-5p was significantly down-regulated in EOC tissues and cell lines. The level of miR-424-5p was negatively correlated with tumor size, TNM stage, pathological grade, lymphatic metastasis of EOC. Restoring miR-424-5p expression in EOC cells dramatically suppressed cell proliferation and caused an accumulation of cells in G1 phase, and thus contributed to better prognosis of EOC patients. Mechanistically, miR-424-5p inhibits CCNE1 expression through targeting CCNE1 3'UTR, and subsequent arrest cell cycle in G1/G0 phase by inhibiting E2F1-pRb pathway. This study revealed functional and mechanistic links between miR-424-5p and CCNE1 in the progression of EOC and provide an important insight into that miR-424-5p may serve as a therapeutic target in EOC.
Collapse
Affiliation(s)
- Jingjing Liu
- a Department of Obstetrics and Gynecology , Qilu Hospital of Shandong University , Jinan , China.,b Department of Obstetrics and Gynecology , Yantai Affiliated Hospital of Bin Zhou Medical University , Yantai , China
| | - Zhenpeng Gu
- c Department of Obstetrics and Gynecology , Binzhou Medical University Hospital , Binzhou , China
| | - Yujie Tang
- a Department of Obstetrics and Gynecology , Qilu Hospital of Shandong University , Jinan , China.,d Department of Obstetrics and Gynecology , Center Hospital of ZiBo , Zibo , China
| | - Junmei Hao
- e Department of Pathology , Yantai Affiliated Hospital of Bin Zhou Medical University , Yantai , China
| | - Cuiping Zhang
- e Department of Pathology , Yantai Affiliated Hospital of Bin Zhou Medical University , Yantai , China
| | - Xingsheng Yang
- a Department of Obstetrics and Gynecology , Qilu Hospital of Shandong University , Jinan , China
| |
Collapse
|
17
|
Bioinformatic identification of prognostic signature defined by copy number alteration and expression of CCNE1 in non-muscle invasive bladder cancer. Exp Mol Med 2017; 49:e282. [PMID: 28082741 PMCID: PMC5291834 DOI: 10.1038/emm.2016.120] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 12/17/2022] Open
Abstract
Non-muscle invasive bladder cancer (NMIBC) patients frequently fail to respond to treatment and experience disease progression because of their clinical and biological diversity. In this study, we identify a prognostic molecular signature for predicting the heterogeneity of NMIBC by using an integrative analysis of copy number and gene expression data. We analyzed the copy number and gene expression profiles of 404 patients with bladder cancer obtained from The Cancer Genome Atlas (TCGA) consortium. Of the 14 molecules with significant copy number alterations that were previously reported, 13 were significantly correlated with copy number and expression changes. Prognostic gene sets based on the 13 genes were developed, and their prognostic values were verified in three independent patient cohorts (n=501). Among them, a signature of CCNE1 and its coexpressed genes was significantly associated with disease progression and validated in the independent cohorts. The CCNE1 signature was an independent risk factor based on the result of a multivariate analysis (hazard ratio=6.849, 95% confidence interval=1.613–29.092, P=0.009). Finally, gene network and upstream regulator analyses revealed that NMIBC progression is potentially mediated by CCND1-CCNE1-SP1 pathways. The prognostic molecular signature defined by copy number and expression changes of CCNE1 suggests a novel diagnostic tool for predicting the likelihood of NMIBC progression.
Collapse
|
18
|
Pattison JM, Posternak V, Cole MD. Transcription Factor KLF5 Binds a Cyclin E1 Polymorphic Intronic Enhancer to Confer Increased Bladder Cancer Risk. Mol Cancer Res 2016; 14:1078-1086. [PMID: 27514407 DOI: 10.1158/1541-7786.mcr-16-0123] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/04/2016] [Accepted: 07/28/2016] [Indexed: 12/24/2022]
Abstract
It is well established that environmental toxins, such as exposure to arsenic, are risk factors in the development of urinary bladder cancer, yet recent genome-wide association studies (GWAS) provide compelling evidence that there is a strong genetic component associated with disease predisposition. A single-nucleotide polymorphism (SNP), rs8102137, was identified on chromosome 19q12, residing 6 kb upstream of the important cell-cycle regulator and proto-oncogene, Cyclin E1 (CCNE1). However, the functional role of this variant in bladder cancer predisposition has been unclear because it lies within a non-coding region of the genome. Here, it is demonstrated that bladder cancer cells heterozygous for this SNP exhibit biased allelic expression of CCNE1 with 1.5-fold more transcription occurring from the risk allele. Furthermore, using chromatin immunoprecipitation assays, a novel enhancer element was identified within the first intron of CCNE1 that binds Kruppel-like Factor 5 (KLF5), a known transcriptional activator in bladder cancer. Moreover, the data reveal that the presence of rs200996365, a SNP in high-linkage disequilibrium with rs8102137 residing in the center of a KLF5 motif, alters KLF5 binding to this genomic region. Through luciferase assays and CRISPR-Cas9 genome editing, a novel polymorphic intronic regulatory element controlling CCNE1 transcription is characterized. These studies uncover how a cancer-associated polymorphism mechanistically contributes to an increased predisposition for bladder cancer development. IMPLICATIONS A polymorphic KLF5 binding site near the CCNE1 gene explains genetic risk identified through GWAS. Mol Cancer Res; 14(11); 1078-86. ©2016 AACR.
Collapse
Affiliation(s)
- Jillian M Pattison
- Department of Genetics, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, New Hampshire
| | - Valeriya Posternak
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, New Hampshire
| | - Michael D Cole
- Department of Genetics, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, New Hampshire. .,Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, New Hampshire
| |
Collapse
|
19
|
Verma M. Genome-wide association studies and epigenome-wide association studies go together in cancer control. Future Oncol 2016; 12:1645-64. [PMID: 27079684 PMCID: PMC5551540 DOI: 10.2217/fon-2015-0035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/22/2016] [Indexed: 02/07/2023] Open
Abstract
Completion of the human genome a decade ago laid the foundation for: using genetic information in assessing risk to identify individuals and populations that are likely to develop cancer, and designing treatments based on a person's genetic profiling (precision medicine). Genome-wide association studies (GWAS) completed during the past few years have identified risk-associated single nucleotide polymorphisms that can be used as screening tools in epidemiologic studies of a variety of tumor types. This led to the conduct of epigenome-wide association studies (EWAS). This article discusses the current status, challenges and research opportunities in GWAS and EWAS. Information gained from GWAS and EWAS has potential applications in cancer control and treatment.
Collapse
Affiliation(s)
- Mukesh Verma
- Methods & Technologies Branch, Epidemiology & Genomics Research Program, Division of Cancer Control & Population Sciences, National Cancer Institute (NCI), NIH, 9609 Medical Center Drive, Suite 4E102, Rockville, MD 20850, USA
| |
Collapse
|
20
|
Figueroa JD, Middlebrooks CD, Banday AR, Ye Y, Garcia-Closas M, Chatterjee N, Koutros S, Kiemeney LA, Rafnar T, Bishop T, Furberg H, Matullo G, Golka K, Gago-Dominguez M, Taylor JA, Fletcher T, Siddiq A, Cortessis VK, Kooperberg C, Cussenot O, Benhamou S, Prescott J, Porru S, Dinney CP, Malats N, Baris D, Purdue MP, Jacobs EJ, Albanes D, Wang Z, Chung CC, Vermeulen SH, Aben KK, Galesloot TE, Thorleifsson G, Sulem P, Stefansson K, Kiltie AE, Harland M, Teo M, Offit K, Vijai J, Bajorin D, Kopp R, Fiorito G, Guarrera S, Sacerdote C, Selinski S, Hengstler JG, Gerullis H, Ovsiannikov D, Blaszkewicz M, Castelao JE, Calaza M, Martinez ME, Cordeiro P, Xu Z, Panduri V, Kumar R, Gurzau E, Koppova K, Bueno-De-Mesquita HB, Ljungberg B, Clavel-Chapelon F, Weiderpass E, Krogh V, Dorronsoro M, Travis RC, Tjønneland A, Brennan P, Chang-Claude J, Riboli E, Conti D, Stern MC, Pike MC, Van Den Berg D, Yuan JM, Hohensee C, Jeppson RP, Cancel-Tassin G, Roupret M, Comperat E, Turman C, De Vivo I, Giovannucci E, Hunter DJ, Kraft P, Lindstrom S, Carta A, Pavanello S, Arici C, Mastrangelo G, Kamat AM, Zhang L, Gong Y, Pu X, Hutchinson A, Burdett L, Wheeler WA, Karagas MR, et alFigueroa JD, Middlebrooks CD, Banday AR, Ye Y, Garcia-Closas M, Chatterjee N, Koutros S, Kiemeney LA, Rafnar T, Bishop T, Furberg H, Matullo G, Golka K, Gago-Dominguez M, Taylor JA, Fletcher T, Siddiq A, Cortessis VK, Kooperberg C, Cussenot O, Benhamou S, Prescott J, Porru S, Dinney CP, Malats N, Baris D, Purdue MP, Jacobs EJ, Albanes D, Wang Z, Chung CC, Vermeulen SH, Aben KK, Galesloot TE, Thorleifsson G, Sulem P, Stefansson K, Kiltie AE, Harland M, Teo M, Offit K, Vijai J, Bajorin D, Kopp R, Fiorito G, Guarrera S, Sacerdote C, Selinski S, Hengstler JG, Gerullis H, Ovsiannikov D, Blaszkewicz M, Castelao JE, Calaza M, Martinez ME, Cordeiro P, Xu Z, Panduri V, Kumar R, Gurzau E, Koppova K, Bueno-De-Mesquita HB, Ljungberg B, Clavel-Chapelon F, Weiderpass E, Krogh V, Dorronsoro M, Travis RC, Tjønneland A, Brennan P, Chang-Claude J, Riboli E, Conti D, Stern MC, Pike MC, Van Den Berg D, Yuan JM, Hohensee C, Jeppson RP, Cancel-Tassin G, Roupret M, Comperat E, Turman C, De Vivo I, Giovannucci E, Hunter DJ, Kraft P, Lindstrom S, Carta A, Pavanello S, Arici C, Mastrangelo G, Kamat AM, Zhang L, Gong Y, Pu X, Hutchinson A, Burdett L, Wheeler WA, Karagas MR, Johnson A, Schned A, Monawar Hosain GM, Schwenn M, Kogevinas M, Tardón A, Serra C, Carrato A, García-Closas R, Lloreta J, Andriole G, Grubb R, Black A, Diver WR, Gapstur SM, Weinstein S, Virtamo J, Haiman CA, Landi MT, Caporaso NE, Fraumeni JF, Vineis P, Wu X, Chanock SJ, Silverman DT, Prokunina-Olsson L, Rothman N. Identification of a novel susceptibility locus at 13q34 and refinement of the 20p12.2 region as a multi-signal locus associated with bladder cancer risk in individuals of European ancestry. Hum Mol Genet 2016; 25:1203-14. [PMID: 26732427 PMCID: PMC4817084 DOI: 10.1093/hmg/ddv492] [Show More Authors] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/12/2015] [Accepted: 11/26/2015] [Indexed: 12/21/2022] Open
Abstract
Candidate gene and genome-wide association studies (GWAS) have identified 15 independent genomic regions associated with bladder cancer risk. In search for additional susceptibility variants, we followed up on four promising single-nucleotide polymorphisms (SNPs) that had not achieved genome-wide significance in 6911 cases and 11 814 controls (rs6104690, rs4510656, rs5003154 and rs4907479, P < 1 × 10(-6)), using additional data from existing GWAS datasets and targeted genotyping for studies that did not have GWAS data. In a combined analysis, which included data on up to 15 058 cases and 286 270 controls, two SNPs achieved genome-wide statistical significance: rs6104690 in a gene desert at 20p12.2 (P = 2.19 × 10(-11)) and rs4907479 within the MCF2L gene at 13q34 (P = 3.3 × 10(-10)). Imputation and fine-mapping analyses were performed in these two regions for a subset of 5551 bladder cancer cases and 10 242 controls. Analyses at the 13q34 region suggest a single signal marked by rs4907479. In contrast, we detected two signals in the 20p12.2 region-the first signal is marked by rs6104690, and the second signal is marked by two moderately correlated SNPs (r(2) = 0.53), rs6108803 and the previously reported rs62185668. The second 20p12.2 signal is more strongly associated with the risk of muscle-invasive (T2-T4 stage) compared with non-muscle-invasive (Ta, T1 stage) bladder cancer (case-case P ≤ 0.02 for both rs62185668 and rs6108803). Functional analyses are needed to explore the biological mechanisms underlying these novel genetic associations with risk for bladder cancer.
Collapse
Affiliation(s)
- Jonine D Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA, Usher Institute of Population Health Sciences and Informatics, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK,
| | - Candace D Middlebrooks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - A Rouf Banday
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Yuanqing Ye
- Department of Epidemiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Montserrat Garcia-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA, Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Nilanjan Chatterjee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Lambertus A Kiemeney
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | - Giuseppe Matullo
- Department of Medical Sciences, University of Turin, Turin, Italy, Human Genetics Foundation, Turin, Italy
| | - Klaus Golka
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, Galician Foundation of Genomic Medicine, Servicio Galego de Saude (SERGAS), Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, NC, USA
| | - Tony Fletcher
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Victoria K Cortessis
- Department of Preventive Medicine, USC Keck School of Medicine, Department of Obstetrics and Gynecology, Norris Comprehensive Cancer Center, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Olivier Cussenot
- Department of Urology, Tenon, Centre de Recherche sur les Pathologies Prostatiques, Paris, France, UPMC Univ Paris 06, GRC n°5, ONCOTYPE-URO, Paris, France
| | - Simone Benhamou
- Institut national de la sante et de la recherche medicale, U946, Foundation Jean Dausset Centre d'Etude du Polymorphisme Humain (CEPH), Paris, France, Centre National de la Receherche Scientifique, UMR8200, Institut Gustave-Roussy, Villejuif, France
| | - Jennifer Prescott
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA, Department of Epidemiology
| | - Stefano Porru
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Colin P Dinney
- Department of Urology, MD Anderson Cancer Center, Houston, TX, USA
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Dalsu Baris
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mark P Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Eric J Jacobs
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Zhaoming Wang
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, MD, USA
| | - Charles C Chung
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA, Department of Urology, MD Anderson Cancer Center, Houston, TX, USA
| | - Sita H Vermeulen
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Katja K Aben
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tessel E Galesloot
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Anne E Kiltie
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| | | | - Mark Teo
- Radiotherapy Research Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | | | | | - Dean Bajorin
- Genitourinary Oncology Service, Division of Solid Tumor Oncology, Department of Medicine
| | - Ryan Kopp
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giovanni Fiorito
- Department of Medical Sciences, University of Turin, Turin, Italy, Human Genetics Foundation, Turin, Italy
| | - Simonetta Guarrera
- Department of Medical Sciences, University of Turin, Turin, Italy, Human Genetics Foundation, Turin, Italy
| | | | - Silvia Selinski
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Holger Gerullis
- University Hospital for Urology, Klinikum Oldenburg, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany, Department of Urology, Lukasklinik Neuss, Germany
| | | | - Meinolf Blaszkewicz
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Jose Esteban Castelao
- Oncology and Genetics Unit, Complejo Hospitalario, Instituto de Investigacion Biomedica (IBI) Orense-Pontevedra-Vigo, Xerencia de Xestion Integrada de Vigo-SERGAS, Vigo, Spain
| | - Manuel Calaza
- Genomic Medicine Group, Galician Foundation of Genomic Medicine, Servicio Galego de Saude (SERGAS), Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Galicia, Spain
| | - Maria Elena Martinez
- Department of Family Medicine and Public Health, Moores Cancer Center, University of California San Diego, San Diego, CA, USA
| | - Patricia Cordeiro
- Department of Urology, Complejo Hospitalario, University of Santiago de Compostela, Servicio Galego de Saude (SERGAS), Santiago de Compostela, Spain
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS)
| | - Vijayalakshmi Panduri
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, NC, USA
| | - Rajiv Kumar
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg; University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - H Bas Bueno-De-Mesquita
- School of Public Health, Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands, Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Börje Ljungberg
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umea University, Umea, Sweden
| | - Françoise Clavel-Chapelon
- Inserm, Centre for research in Epidemiology and Population Health (CESP), U1018, Nutrition, Hormones and Women's Health team, Villejuif F-94805, France, Université Paris Sud, UMRS 1018, Villejuif F-94805, France, Institut Gustave Roussy, Villejuif F-94805, France
| | - Elisabete Weiderpass
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway, Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway, Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland
| | - Vittorio Krogh
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Miren Dorronsoro
- Health Department, BioDonostia Research Institute, Basque Region, Spain, Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Ruth C Travis
- Cancer Epidemiology Unit, University of Oxford, Oxford, UK
| | | | - Paul Brennan
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg; University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - David Conti
- School of Public Health, Department of Obstetrics and Gynecology
| | - Marianna C Stern
- School of Public Health, Department of Obstetrics and Gynecology
| | | | | | - Jian-Min Yuan
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Chancellor Hohensee
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rebecca P Jeppson
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Geraldine Cancel-Tassin
- Centre de Recherche sur les Pathologies Prostatiques, Paris, France, UPMC Univ Paris 06, GRC n°5, ONCOTYPE-URO, Paris, France
| | - Morgan Roupret
- Department of Urology, Pitié-Salpétrière, Centre de Recherche sur les Pathologies Prostatiques, Paris, France, UPMC Univ Paris 06, GRC n°5, ONCOTYPE-URO, Paris, France
| | - Eva Comperat
- Department of Pathology, Pitié-Salpétrière, Assistance-Publique Hôpitaux de Paris (APHP), Paris, France, Centre de Recherche sur les Pathologies Prostatiques, Paris, France, UPMC Univ Paris 06, GRC n°5, ONCOTYPE-URO, Paris, France
| | | | - Immaculata De Vivo
- Norris Comprehensive Cancer Center, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Edward Giovannucci
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA, Department of Epidemiology, Department of Nutrition
| | - David J Hunter
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA, Department of Epidemiology, Department of Nutrition, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Peter Kraft
- Department of Epidemiology, Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | | | - Angela Carta
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Sofia Pavanello
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Cecilia Arici
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Giuseppe Mastrangelo
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Ashish M Kamat
- Department of Urology, MD Anderson Cancer Center, Houston, TX, USA
| | - Liren Zhang
- Department of Epidemiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Yilei Gong
- Department of Epidemiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Xia Pu
- Department of Epidemiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Amy Hutchinson
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, MD, USA
| | - Laurie Burdett
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, MD, USA
| | | | | | | | - Alan Schned
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | | | | | - Manolis Kogevinas
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain, Municipal Institute of Medical Research, (IMIM-Hospital del Mar), Barcelona, Spain, National School of Public Health, Athens, Greece
| | - Adonina Tardón
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | - Consol Serra
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain, Municipal Institute of Medical Research, (IMIM-Hospital del Mar), Barcelona, Spain, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Reina García-Closas
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Spain
| | - Josep Lloreta
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Gerald Andriole
- Division of Urologic Surgery, Washington University School of Medicine, Saint Louis, MO, USA and
| | - Robert Grubb
- Division of Urologic Surgery, Washington University School of Medicine, Saint Louis, MO, USA and
| | - Amanda Black
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - W Ryan Diver
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, USA
| | - Susan M Gapstur
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, USA
| | - Stephanie Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jarmo Virtamo
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | | | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Joseph F Fraumeni
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Paolo Vineis
- Human Genetics Foundation, Turin, Italy, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Xifeng Wu
- Department of Epidemiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Debra T Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
21
|
Kim SH, Ho JN, Jin H, Lee SC, Lee SE, Hong SK, Lee JW, Lee ES, Byun SS. Upregulated expression of BCL2, MCM7, and CCNE1 indicate cisplatin-resistance in the set of two human bladder cancer cell lines: T24 cisplatin sensitive and T24R2 cisplatin resistant bladder cancer cell lines. Investig Clin Urol 2016; 57:63-72. [PMID: 26966728 PMCID: PMC4778756 DOI: 10.4111/icu.2016.57.1.63] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/16/2015] [Indexed: 12/27/2022] Open
Abstract
Purpose The mechanism of resistance to cisplatin during treatment of bladder cancer (BC) has been a subject of intense investigation in clinical research. This study aims to identify candidate genes associated with resistance to cisplatin, in order to understand the resistance mechanism of BC cells to the drug, by combining the use of microarray profiling, quantitative reverse transcription-polymerase chain reaction (RT-PCR), and Western blot analyses. Materials and Methods The cisplatin sensitive human BC cell line (T24) and the cisplatin resistant BC cell line, T24R2, were used for microarray analysis to determine the differential expression of genes that are significant in cisplatin resistance. Candidate upregulated genes belonging to three well-known cancer-related KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways (p53 tumor suppressor, apoptosis, and cell cycle) were selected from the microarray data. These candidate genes, differentially expressed in T24 and T24R2, were then confirmed by quantitative RT-PCR and western blot. A fold change ≥2 with a p-value <0.05 was considered significant. Results A total of 18 significantly upregulated genes were detected in the three selected cancer-related pathways in both microarray and RT-PCR analyses. These genes were PRKAR2A, PRKAR2B, CYCS, BCL2, BIRC3, DFFB, CASP6, CDK6, CCNE1, STEAP3, MCM7, ORC2, ORC5, ANAPC1, and ANAPC7, CDC7, CDC27, and SKP1. Western blot analyses also confirmed the upregulation of BCL2, MCM7, and CCNE1 at the protein level, indicating their crucial association with cisplatin resistance. Conclusions The BCL2, MCM7, and CCNE1 genes might play distinctive roles in cisplatin resistance in BC.
Collapse
Affiliation(s)
- Sung Han Kim
- Department of Urology, National Cancer Center, Goyang, Korea
| | - Jin-Nyoung Ho
- Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam, Korea.; Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hyunjin Jin
- Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam, Korea.; Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sang Chul Lee
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sang Eun Lee
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sung-Kyu Hong
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jeong Woo Lee
- Department of Urology, Seoul National University Hospital, Seoul, Korea
| | - Eun-Sik Lee
- Department of Urology, Seoul National University Hospital, Seoul, Korea
| | - Seok-Soo Byun
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
22
|
Rouprêt M. Smoking Status Is Not Sufficient to Accurately Target Patients Who Would Benefit from Screening for Bladder and Kidney Cancer. Eur Urol Focus 2015; 1:52-53. [DOI: 10.1016/j.euf.2014.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 10/23/2022]
|
23
|
Matsushita R, Seki N, Chiyomaru T, Inoguchi S, Ishihara T, Goto Y, Nishikawa R, Mataki H, Tatarano S, Itesako T, Nakagawa M, Enokida H. Tumour-suppressive microRNA-144-5p directly targets CCNE1/2 as potential prognostic markers in bladder cancer. Br J Cancer 2015; 113:282-9. [PMID: 26057453 PMCID: PMC4506384 DOI: 10.1038/bjc.2015.195] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/30/2015] [Accepted: 05/06/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Analysis of a microRNA (miRNA) expression signature of bladder cancer (BC) by deep-sequencing revealed that clustered miRNAs microRNA (miR)-451a, miR-144-3p, and miR-144-5p were significantly downregulated in BC tissues. We hypothesised that these miRNAs function as tumour suppressors in BC. The aim of this study was to investigate the functional roles of these miRNAs and their modulation of cancer networks in BC cells. METHODS The functional studies of BC cells were performed using transfection of mature miRNAs. Genome-wide gene expression analysis, in silico analysis, and dual-luciferase reporter assays were applied to identify miRNA targets. The association between miR-144-5p levels and expression of the target genes was determined, and overall patient survival as a function of target gene expression was estimated by the Kaplan-Meier method. RESULTS Gain-of-function studies showed that miR-144-5p significantly inhibited cell proliferation by BC cells. Four cell cycle-related genes (CCNE1, CCNE2, CDC25A, and PKMYT1) were identified as direct targets of miR-144-5p. The patients with high CCNE1 or CCNE2 expression had lower overall survival probabilities than those with low expression (P=0.025 and P=0.032). CONCLUSION miR-144-5p functions as tumour suppressor in BC cells. CCNE1 and CCNE2 were directly regulated by miR-144-5p and might be good prognostic markers for survival of BC patients.
Collapse
Affiliation(s)
- R Matsushita
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | - N Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - T Chiyomaru
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | - S Inoguchi
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | - T Ishihara
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | - Y Goto
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - R Nishikawa
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - H Mataki
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | - S Tatarano
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | - T Itesako
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | - M Nakagawa
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | - H Enokida
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| |
Collapse
|