1
|
Jia Z, Huang Y, Liu J, Liu G, Li J, Xu H, Jiang Y, Zhang S, Wang Y, Chen G, Qiao G, Li Y. Single nucleotide polymorphisms associated with female breast cancer susceptibility in Chinese population. Gene 2023; 884:147676. [PMID: 37524136 DOI: 10.1016/j.gene.2023.147676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/09/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Breast cancer is a complex disease influenced by both external and internal factors, among which genetic factors play a critical role. Single-nucleotide polymorphisms (SNPs) are major contributors to the heritability of breast cancer, and their frequencies vary across ethnic groups. In this study, we aimed to investigate the association between 34 SNPs identified in previous genome-wide association studies (GWAS) and overall breast cancer risk, as well as breast cancer subtypes, in the Chinese female population. To accomplish this, we conducted an extensive association analysis using the high-throughput Sequenom MassARRAY® platform in a case-control study comprising 1848 breast cancer patients and 709 healthy controls. Our analysis, which utilized the SNPassoc package in R based on chi-squared (χ2) test and genetic model analysis, identified significant associations between breast cancer risk and SNP rs12493607 (TGFBR2, risk allele C, OR = 1.28 [1.11-1.47], P = 0.0005), as well as a less conservatively significant association with rs4784227 (CASC16, risk allele T, OR = 1.24 [1.08-1.42], P = 0.0017) and rs2046210 (ESR1, risk allele A, OR = 1.50 [1.16-1.95], P = 0.0016). Furthermore, our stratified analyses revealed that rs12493607 was significantly associated with invasive carcinoma, estrogen receptor (ER)-positive, progesterone receptor (PR)-positive, HER2-negative, and young (aged younger than 45) breast cancer. SNP rs4784227 and rs3803662 (CASC16) were associated with invasive carcinoma and ER-positive breast cancer, while rs2046210 was linked to ductal carcinoma in situ, ER-negative, PR-negative, HER2-positive, and elder (aged more than 45) breast cancers. SNPs rs10484919 (ESR1) and rs1038304 (CCDC170) showed links to HER2-positive breast cancer, and rs616488 (PEX14) with premenopausal breast cancer. In summary, our study shed light on the relationship between SNPs and breast cancer susceptibility within a vast Chinese cohort, supporting the development of polygenetic risk scores for the Chinese population. These findings provide valuable insights into the genetic basis of breast cancer and have important implications for risk prediction, early detection, and personalized treatment of this disease.
Collapse
Affiliation(s)
- Ziqi Jia
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yansong Huang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; School of Clinical Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Jiaqi Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Gang Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiayi Li
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; School of Clinical Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Hengyi Xu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; School of Clinical Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yiwen Jiang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; School of Clinical Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Song Zhang
- Department of Breast Surgery, Yantai Yuhuangding Hospital, The Affiliated Hospital of Qingdao University, Yantai 264000, China
| | - Yidan Wang
- Department of Breast Surgery, Yantai Yuhuangding Hospital, The Affiliated Hospital of Qingdao University, Yantai 264000, China
| | - Gang Chen
- Department of Breast Surgery, Yantai Yuhuangding Hospital, The Affiliated Hospital of Qingdao University, Yantai 264000, China
| | - Guangdong Qiao
- Department of Breast Surgery, Yantai Yuhuangding Hospital, The Affiliated Hospital of Qingdao University, Yantai 264000, China
| | - Yalun Li
- Department of Breast Surgery, Yantai Yuhuangding Hospital, The Affiliated Hospital of Qingdao University, Yantai 264000, China.
| |
Collapse
|
2
|
Rozenberg JM, Buzdin AA, Mohammad T, Rakitina OA, Didych DA, Pleshkan VV, Alekseenko IV. Molecules promoting circulating clusters of cancer cells suggest novel therapeutic targets for treatment of metastatic cancers. Front Immunol 2023; 14:1099921. [PMID: 37006265 PMCID: PMC10050392 DOI: 10.3389/fimmu.2023.1099921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Treatment of metastatic disease remains among the most challenging tasks in oncology. One of the early events that predicts a poor prognosis and precedes the development of metastasis is the occurrence of clusters of cancer cells in the blood flow. Moreover, the presence of heterogeneous clusters of cancerous and noncancerous cells in the circulation is even more dangerous. Review of pathological mechanisms and biological molecules directly involved in the formation and pathogenesis of the heterotypic circulating tumor cell (CTC) clusters revealed their common properties, which include increased adhesiveness, combined epithelial-mesenchymal phenotype, CTC-white blood cell interaction, and polyploidy. Several molecules involved in the heterotypic CTC interactions and their metastatic properties, including IL6R, CXCR4 and EPCAM, are targets of approved or experimental anticancer drugs. Accordingly, analysis of patient survival data from the published literature and public datasets revealed that the expression of several molecules affecting the formation of CTC clusters predicts patient survival in multiple cancer types. Thus, targeting of molecules involved in CTC heterotypic interactions might be a valuable strategy for the treatment of metastatic cancers.
Collapse
Affiliation(s)
- Julian M. Rozenberg
- Laboratory of Translational Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anton A. Buzdin
- Laboratory of Translational Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), Brussels, Belgium
- Group for Genomic Analysis of Cell Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Laboratory for Clinical Genomic Bioinformatics, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Tharaa Mohammad
- Laboratory of Translational Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Olga A. Rakitina
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Dmitry A. Didych
- Laboratory of human genes structure and functions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Victor V. Pleshkan
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Gene oncotherapy sector, Institute of Molecular Genetics of National Research Centre (Kurchatov Institute), Moscow, Russia
| | - Irina V. Alekseenko
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Gene oncotherapy sector, Institute of Molecular Genetics of National Research Centre (Kurchatov Institute), Moscow, Russia
- Laboratory of Epigenetics, Institute of Oncogynecology and Mammology, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| |
Collapse
|
3
|
Babyshkina N, Dronova T, Erdyneeva D, Gervas P, Cherdyntseva N. Role of TGF-β signaling in the mechanisms of tamoxifen resistance. Cytokine Growth Factor Rev 2021; 62:62-69. [PMID: 34635390 DOI: 10.1016/j.cytogfr.2021.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 12/24/2022]
Abstract
The transforming growth factor beta (TGF-β) signaling pathway plays complex role in the regulation of cell proliferation, apoptosis and differentiation in breast cancer. TGF-β activation can lead to multiple cellular responses mediating the drug resistance evolution, including the resistance to antiestrogens. Tamoxifen is the most commonly prescribed antiestrogen that functionally involved in regulation of TGF-β activity. In this review, we focus on the role of TGF-β signaling in the mechanisms of tamoxifen resistance, including its interaction with estrogen receptors alfa (ERα) pathway and breast cancer stem cells (BCSCs). We summarize the current reported data regarding TGF-β signaling components as markers of tamoxifen resistance and review current approaches to overcoming tamoxifen resistance based on studies of TGF-β signaling.
Collapse
Affiliation(s)
- Nataliya Babyshkina
- Department of Molecular Oncology and Immunology, Саncеr Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russian Federation; Siberian State Medical University, Tomsk 634050, Russian Federation.
| | - Tatyana Dronova
- Department of Biology of Tumor Progression, Саncеr Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russian Federation
| | - Daiana Erdyneeva
- Department of Molecular Oncology and Immunology, Саncеr Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russian Federation
| | - Polina Gervas
- Department of Molecular Oncology and Immunology, Саncеr Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russian Federation
| | - Nadejda Cherdyntseva
- Department of Molecular Oncology and Immunology, Саncеr Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russian Federation
| |
Collapse
|
4
|
Dal Berto M, Dos Santos GT, Dos Santos AV, Silva AO, Vargas JE, Alves RJV, Barbisan F, da Cruz IBM, Bica CG. Molecular markers associated with the outcome of tamoxifen treatment in estrogen receptor-positive breast cancer patients: scoping review and in silico analysis. Discov Oncol 2021; 12:37. [PMID: 35201456 PMCID: PMC8777552 DOI: 10.1007/s12672-021-00432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022] Open
Abstract
Tamoxifen (TMX) is used as adjuvant therapy for estrogen receptor-positive (ER+) breast cancer cases due to its affinity and inhibitory effects. However, about 30% of cases show drug resistance, resulting in recurrence and metastasis, the leading causes of death. A literature review can help to elucidate the main cellular processes involved in TMX resistance. A scoping review was performed to find clinical studies investigating the association of expression of molecular markers profiles with long-term outcomes in ER+ patients treated with TMX. In silico analysis was performed to assess the interrelationship among the selected markers, evaluating the joint involvement with the biological processes. Forty-five studies were selected according to the inclusion and exclusion criteria. After clustering and gene ontology analysis, 23 molecular markers were significantly associated, forming three clusters of strong correlation with cell cycle regulation, signal transduction of proliferative stimuli, and hormone response involved in morphogenesis and differentiation of mammary gland. Also, it was found that overexpression of markers in selected clusters is a significant indicator of poor overall survival. The proposed review offered a better understanding of independent data from the literature, revealing an integrative network of markers involved in cellular processes that could modulate the response of TMX. Analysis of these mechanisms and their molecular components could improve the effectiveness of TMX.
Collapse
Affiliation(s)
- Maiquidieli Dal Berto
- Laboratory of Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 245,Sarmento Leite street, Porto Alegre, RS, 90050-170, Brazil
| | - Giovana Tavares Dos Santos
- Laboratory of Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 245,Sarmento Leite street, Porto Alegre, RS, 90050-170, Brazil
| | - Aniúsca Vieira Dos Santos
- Laboratory of Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 245,Sarmento Leite street, Porto Alegre, RS, 90050-170, Brazil
| | - Andrew Oliveira Silva
- Laboratory of Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 245,Sarmento Leite street, Porto Alegre, RS, 90050-170, Brazil
| | - José Eduardo Vargas
- Institute of Biological Sciences, University of Passo Fundo (UPF), 285, Brazil Avenue, Passo Fundo, RS, 99052-900, Brazil
| | - Rafael José Vargas Alves
- Department of Clinical Medicine, Federal University of Health Sciences of Porto Alegre (UFCSPA), 245, Sarmento Leite street, Porto Alegre, RS, 90050-170, Brazil
| | - Fernanda Barbisan
- Graduate Program in Gerontology, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | | | - Claudia Giuliano Bica
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 245, Sarmento Leite street., Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
5
|
Gustafsson A, Garre E, Leiva MC, Salerno S, Ståhlberg A, Landberg G. Patient-derived scaffolds as a drug-testing platform for endocrine therapies in breast cancer. Sci Rep 2021; 11:13334. [PMID: 34172801 PMCID: PMC8233392 DOI: 10.1038/s41598-021-92724-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/08/2021] [Indexed: 12/26/2022] Open
Abstract
Three-dimensional cell culture platforms based on decellularised patient-based microenvironments provide in vivo-like growth conditions allowing cancer cells to interact with intact structures and components of the surrounding tissue. A patient-derived scaffold (PDS) model was therefore evaluated as a testing platform for the endocrine therapies (Z)-4-Hydroxytamoxifen (4OHT) and fulvestrant as well as the CDK4/6-inhibitor palbociclib, monitoring the treatment responses in breast cancer cell lines MCF7 and T47D adapted to the patient-based microenvironments. MCF7 cells growing in PDSs showed increased resistance to 4OHT and fulvestrant treatment (100- and 20-fold) compared to 2D cultures. Quantitative PCR analyses of endocrine treated cancer cells in PDSs revealed upregulation of pluripotency markers further supported by increased self-renewal capacity in sphere formation assays. When comparing different 3D growth platforms including PDS, matrigel, gelatin sponges and 3D-printed hydrogels, 3D based cultures showed slightly varying responses to fulvestrant and palbociclib whereas PDS and matrigel cultures showed more similar gene expression profiles for 4OHT treatment compared to the other platforms. The results support that the PDS technique maximized to provide a multitude of smaller functional PDS replicates from each primary breast cancer, is an up-scalable patient-derived drug-testing platform available for gene expression profiling and downstream functional assays.
Collapse
Affiliation(s)
- Anna Gustafsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Elena Garre
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Maria Carmen Leiva
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Simona Salerno
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Anders Ståhlberg
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, 41390, Gothenburg, Sweden
- Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, 41390, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 41390, Gothenburg, Sweden
| | - Göran Landberg
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, 41390, Gothenburg, Sweden.
| |
Collapse
|
6
|
Refaat S, Shamaa S, Elkhodary T, Atwan N, Ghazy H, Akl T, Abdelwahab K, Foda AAM, El-Badrawy A, Emarah Z. Prognostic significance of transforming growth factor β receptor II in clinical stage III breast cancer patients - a pilot study. Breast Dis 2021; 40:75-83. [PMID: 33579826 DOI: 10.3233/bd-201009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Transforming growth factor-β (TGFβ) has a dual function in breast cancer, having a tumor suppressor activity in early carcinomas while enhancing tumor metastasis in advanced breast carcinoma. Consequently, the prognostic role of TGFβ and its signaling cascade in breast cancer remain unclear. OBJECTIVE To investigate the relationship between TβRII expression, clinic-pathological characteristics, and prognostic significance of TβRII expression in clinical stage III breast cancer. METHODS Biopsy from the primary tumor was obtained from 30 newly diagnosed clinical stage III breast cancer patients before receiving any therapy. Expression of TβRII, ER, PR, Her2 and Ki-67 was assessed by immunohistochemistry. RESULTS TβRII expression was positive in 66.7% of cases and was significantly associated with advanced nodal stage and distant metastases. After a median follow up of 42.3 months, TβRII was associated with poor disease-free survival and it was an independent factor for predicting the poor outcome for breast cancer patients, especially in node positive tumors, ER/PR positive and Her2-negative tumors. CONCLUSIONS These findings suggest the usage of therapeutic drugs that target TGFβ in advanced breast cancer patients may be effective. Nevertheless, blockage of the tumor promoting and sparing of the tumor suppressor effect of TGFβ pathway should be taken into consideration. We suggest that these therapies might have more benefit in ER and PR positive tumors.
Collapse
Affiliation(s)
- Sherif Refaat
- Medical Oncology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Medical Oncology Unit, Oncology Center, Mansoura University, Mansoura, Egypt
| | - Sameh Shamaa
- Medical Oncology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Medical Oncology Unit, Oncology Center, Mansoura University, Mansoura, Egypt
| | - Tawfik Elkhodary
- Medical Oncology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Medical Oncology Unit, Oncology Center, Mansoura University, Mansoura, Egypt
| | - Nadia Atwan
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Pathology Department, Oncology Center, Mansoura University, Mansoura, Egypt
| | - Hayam Ghazy
- Medical Oncology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Medical Oncology Unit, Oncology Center, Mansoura University, Mansoura, Egypt
| | - Tamer Akl
- Medical Oncology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Medical Oncology Unit, Oncology Center, Mansoura University, Mansoura, Egypt
| | - Khaled Abdelwahab
- Surgery Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Surgical Oncology Unit, Mansoura Oncology Center, Mansoura University, Mansoura, Egypt
| | - Abd AlRahman Mohammad Foda
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Pathology Department, Oncology Center, Mansoura University, Mansoura, Egypt
| | - Adel El-Badrawy
- Radiology Department, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ziad Emarah
- Medical Oncology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Medical Oncology Unit, Oncology Center, Mansoura University, Mansoura, Egypt
| |
Collapse
|
7
|
High expression of TRAF4 predicts poor prognosis in tamoxifen-treated breast cancer and promotes tamoxifen resistance. Anticancer Drugs 2021; 31:558-566. [PMID: 32304412 DOI: 10.1097/cad.0000000000000943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tamoxifen is the main adjuvant endocrine therapeutic agent for patients with estrogen receptor positive breast cancer. However, the resistance to tamoxifen has become a serious clinical challenge and the underlying mechanisms are still poorly understood. TRAF4 is a member of tumor necrosis factor receptor-associated factor family and its role in tamoxifen resistance has not been found. In this study, we aimed to explore the roles of TRAF4 in tamoxifen-treated breast cancer and tamoxifen resistance. Through high-throughput sequencing and differential gene expression analyses, TRAF4 was identified as the research object in this study. The prognosis significance of TRAF4 was studied based on 155 tamoxifen-treated breast cancer patients obtained from Gene Expression Omnibus (GEO) database. We then investigated the TRAF4 expression level in tamoxifen-resistant and the tamoxifen-sensitive breast cancer cell lines with western blot and real-time quantitative PCR. The loss- and gain-of-function assay of TRAF4 in a tamoxifen-resistant cell line was evaluated using colony formation experiments and cell count kit-8 assay. We identified that TRAF4 was overexpressed in tamoxifen-resistant breast cancer cell line and TRAF4 overexpression was associated with worse overall survival (hazard ratio = 2.538, P = 0.017) and cancer-specific survival (hazard ratio = 2.713, P = 0.036) in tamoxifen-treated patients. Knockdown of TRAF4 reversed tamoxifen resistance, while overexpression of TRAF4 increased tamoxifen resistance, which confirmed the role of TRAF4 in tamoxifen resistance. Taken together, our study demonstrated that TRAF4 could be a novel prognostic biomarker for tamoxifen-treated breast cancer patients and a potential therapeutic target for tamoxifen resistance.
Collapse
|
8
|
Molehin D, Rasha F, Rahman RL, Pruitt K. Regulation of aromatase in cancer. Mol Cell Biochem 2021; 476:2449-2464. [PMID: 33599895 DOI: 10.1007/s11010-021-04099-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/04/2021] [Indexed: 12/21/2022]
Abstract
The regulation of aromatase, an enzyme involved in the biosynthesis of estrogen in normal and cancer cells, has been associated with growth factor signaling and immune response modulation. The tissue-specific regulatory roles of these factors are of particular importance as local aromatase expression is strongly linked to cancer development/progression and disease outcomes in patients. Therefore, aromatase has become a chemotherapeutic target and aromatase inhibitors (AIs) are used in the clinic for treating hormone-dependent cancers. Although AIs have shown promising results in the treatment of cancers, the emerging increase in AI-resistance necessitates the development of new and improved targeted therapies. This review discusses the role of tumor and stromal-derived growth factors and immune cell modulators in regulating aromatase. Current single-agent and combination therapies with or without AIs targeting growth factors and immune checkpoints are also discussed. This review highlights recent studies that show new connections between growth factors, mediators of immune response, and aromatase regulation.
Collapse
Affiliation(s)
- Deborah Molehin
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Fahmida Rasha
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Kevin Pruitt
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA. .,Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430-6591, USA.
| |
Collapse
|
9
|
Daniyal A, Santoso I, Gunawan NHP, Barliana MI, Abdulah R. Genetic Influences in Breast Cancer Drug Resistance. BREAST CANCER (DOVE MEDICAL PRESS) 2021; 13:59-85. [PMID: 33603458 PMCID: PMC7882715 DOI: 10.2147/bctt.s284453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022]
Abstract
Breast cancer is the most common cancer in adult women aged 20 to 50 years. The therapeutic regimens that are commonly recommended to treat breast cancer are human epidermal growth factor receptor 2 (HER2) targeted therapy, endocrine therapy, and systemic chemotherapy. The selection of pharmacotherapy is based on the characteristics of the tumor and its hormone receptor status, specifically, the presence of HER2, progesterone receptors, and estrogen receptors. Breast cancer pharmacotherapy often gives different results in various populations, which may cause therapeutic failure. Different types of congenital drug resistance in individuals can cause this. Genetic polymorphism is a factor in the occurrence of congenital drug resistance. This review explores the relationship between genetic polymorphisms and resistance to breast cancer therapy. It considers studies published from 2010 to 2020 concerning the relationship of genetic polymorphisms and breast cancer therapy. Several gene polymorphisms are found to be related to longer overall survival, worse relapse-free survival, higher pathological complete response, and increased disease-free survival in breast cancer patients. The presence of these gene polymorphisms can be considered in the treatment of breast cancer in order to shape personalized therapy to yield better results.
Collapse
Affiliation(s)
- Adhitiya Daniyal
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Ivana Santoso
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Nadira Hasna Putri Gunawan
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Melisa Intan Barliana
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
10
|
Song XQ, Liu RP, Wang SQ, Li Z, Ma ZY, Zhang R, Xie CZ, Qiao X, Xu JY. Anticancer Melatplatin Prodrugs: High Effect and Low Toxicity, MT1-ER-Target and Immune Response In Vivo. J Med Chem 2020; 63:6096-6106. [PMID: 32401032 DOI: 10.1021/acs.jmedchem.0c00343] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multitargeted therapy could rectify various oncogenic pathways to block tumorigenesis and progression. The combination of endocrine-, immune-, and chemotherapy might exert a highly synergistic effect against certain tumors. Herein, a series of smart Pt(IV) prodrugs 3-6, named Melatplatin, were rationally designed not only to multitarget DNA, MT1, and estrogen receptor (ER) but also to activate immune response. Melatplatin, conjugating first-line chemotherapeutic Pt drugs with human endogenous melatonin (MT), significantly enhanced drug efficacy especially in ER high-expression (ER+) cells, among which 3 presented the most potent cytotoxicity toward ER+ MCF-7 with nanomolar IC50 values 100-fold lower than cisplatin. Melatplatin could bind well to melatonin receptor (MT1) according to molecular docking. Besides, 3 evidently increased intracellular accumulation and DNA damage, upregulated γH2AX and P53, and silenced NF-κB to induce massive apoptosis. Most strikingly, 3 effectively inhibited tumor growth and attenuated systemic toxicity compared to cisplatin in vivo, promoting lymphocyte proliferation in spleen to achieve immune modulation.
Collapse
Affiliation(s)
- Xue-Qing Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Rui-Ping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Shu-Qing Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zhe Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zhong-Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Ran Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Cheng-Zhi Xie
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xin Qiao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jing-Yuan Xu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
11
|
Identification and Analysis of Estrogen Receptor α Promoting Tamoxifen Resistance-Related lncRNAs. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9031723. [PMID: 32420379 PMCID: PMC7204353 DOI: 10.1155/2020/9031723] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/14/2020] [Indexed: 12/27/2022]
Abstract
70-75% breast cancer patients are estrogen receptor alpha positive (ERα+), and the antiestrogen drug tamoxifen has been used for the past three decades. However, in 20-30% of these patients, tamoxifen therapy fails due to intrinsic or acquired resistance. A previous study has showed ERα signaling still exerts significant roles in the development of tamoxifen resistance and several lncRNAs have been demonstrated important roles in tamoxifen resistance. But ERα directly regulated and tamoxifen resistance related lncRNAs remain to be discovered. We reanalyze the published ERα chromatin immunoprecipitation-seq (ChIP-seq) and RNA-seq data of tamoxifen-sensitive (MCF-7/WT) and tamoxifen-resistant (MCF-7/TamR) breast cancer cells. We demonstrate that there are differential ERα recruitment events and the differentials may alert the expression profile in MCF-7/WT and MCF-7/TamR cells. Furthermore, we make an overlap of the ERα binding lncRNAs and differentially expressed lncRNAs and get 49 ERα positively regulated lncRNAs. Among these lncRNAs, the expression levels of AC117383.1, AC144450.1, RP11-15H20.6, and ATXN1-AS1 are negatively correlated with the survival probability of breast cancer patients and ELOVL2-AS1, PCOLCE-AS1, ITGA9-AS1, and FLNB-AS1 are positively correlated. These lncRNAs may be potential diagnosis or prognosis markers of tamoxifen resistance.
Collapse
|
12
|
Phosphorylation independent eIF4E translational reprogramming of selective mRNAs determines tamoxifen resistance in breast cancer. Oncogene 2020; 39:3206-3217. [PMID: 32066877 PMCID: PMC7142019 DOI: 10.1038/s41388-020-1210-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 11/12/2022]
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) selectively promotes translation of mRNAs with atypically long and structured 5′-UTRs and has been implicated in drug resistance. Through genome-wide transcriptome and translatome analysis we revealed eIF4E overexpression could promote cellular activities mediated by ERα and FOXM1 signalling pathways. Whilst eIF4E overexpression could enhance the translation of both ERα and FOXM1, it also led to enhanced transcription of FOXM1. Polysome fractionation experiments confirmed eIF4E could modulate the translation of ERα and FOXM1 mRNA. The enhancement of FOXM1 transcription was contingent upon the presence of ERα, and it was the high levels of FOXM1 that conferred Tamoxifen resistance. Furthermore, tamoxifen resistance was conferred by phosphorylation independent eIF4E overexpression. Immunohistochemistry on 134 estrogen receptor (ER+) primary breast cancer samples confirmed that high eIF4E expression was significantly associated with increased ERα and FOXM1, and significantly associated with tamoxifen resistance. Our study uncovers a novel mechanism whereby phosphorylation independent eIF4E translational reprogramming in governing the protein synthesis of ERα and FOXM1 contributes to anti-estrogen insensitivity in ER+ breast cancer. In eIF4E overexpressing breast cancer, the increased ERα protein expression in turn enhances FOXM1 transcription, which together with its increased translation regulated by eIF4E, contributes to tamoxifen resistance. Coupled with eIF4E translational regulation, our study highlights an important mechanism conferring tamoxifen resistance via both ERα dependent and independent pathways.
Collapse
|
13
|
Adhikari A, Mandal P, Biswas S, Giri A, Gupta A, Bhattacharya A. Comparison of histopathological grading and staging of breast cancer with p53-positive and transforming growth factor-beta receptor 2-negative immunohistochemical marker expression cases. CANCER TRANSLATIONAL MEDICINE 2020. [DOI: 10.4103/ctm.ctm_4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
Harris KL, Myers MB, McKim KL, Elespuru RK, Parsons BL. Rationale and Roadmap for Developing Panels of Hotspot Cancer Driver Gene Mutations as Biomarkers of Cancer Risk. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:152-175. [PMID: 31469467 PMCID: PMC6973253 DOI: 10.1002/em.22326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 05/24/2023]
Abstract
Cancer driver mutations (CDMs) are necessary and causal for carcinogenesis and have advantages as reporters of carcinogenic risk. However, little progress has been made toward developing measurements of CDMs as biomarkers for use in cancer risk assessment. Impediments for using a CDM-based metric to inform cancer risk include the complexity and stochastic nature of carcinogenesis, technical difficulty in quantifying low-frequency CDMs, and lack of established relationships between cancer driver mutant fractions and tumor incidence. Through literature review and database analyses, this review identifies the most promising targets to investigate as biomarkers of cancer risk. Mutational hotspots were discerned within the 20 most mutated genes across the 10 deadliest cancers. Forty genes were identified that encompass 108 mutational hotspot codons overrepresented in the COSMIC database; 424 different mutations within these hotspot codons account for approximately 63,000 tumors and their prevalence across tumor types is described. The review summarizes literature on the prevalence of CDMs in normal tissues and suggests such mutations are direct and indirect substrates for chemical carcinogenesis, which occurs in a spatially stochastic manner. Evidence that hotspot CDMs (hCDMs) frequently occur as tumor subpopulations is presented, indicating COSMIC data may underestimate mutation prevalence. Analyses of online databases show that genes containing hCDMs are enriched in functions related to intercellular communication. In its totality, the review provides a roadmap for the development of tissue-specific, CDM-based biomarkers of carcinogenic potential, comprised of batteries of hCDMs and can be measured by error-correct next-generation sequencing. Environ. Mol. Mutagen. 61:152-175, 2020. Published 2019. This article is a U.S. Government work and is in the public domain in the USA. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Kelly L. Harris
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research, US Food and Drug AdministrationJeffersonArkansas
| | - Meagan B. Myers
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research, US Food and Drug AdministrationJeffersonArkansas
| | - Karen L. McKim
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research, US Food and Drug AdministrationJeffersonArkansas
| | - Rosalie K. Elespuru
- Division of Biology, Chemistry and Materials ScienceCDRH/OSEL, US Food and Drug AdministrationSilver SpringMaryland
| | - Barbara L. Parsons
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research, US Food and Drug AdministrationJeffersonArkansas
| |
Collapse
|
15
|
Transforming growth factor beta receptor II (TGFBR2) promoter region polymorphism in Brazilian breast cancer patients: association with susceptibility, clinicopathological features, and interaction with TGFB1 haplotypes. Breast Cancer Res Treat 2019; 178:207-219. [PMID: 31364002 DOI: 10.1007/s10549-019-05370-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Transforming growth factor beta (TGFβ) has paradoxical effects in breast cancer (BC), inhibiting initial tumors while promoting aggressive ones. A polymorphism on TGFBR2 promoter region (G-875A, rs3087465) increases TGFβ type II receptor expression and is protective against cancer. Previously, we have shown that TGFB1 variants have subtype-specific roles in BC. This work sought to investigate the association between TGFBR2 and susceptibility and clinicopathological features in BC subgroups. METHODS TGFBR2 G-875A was analyzed through PCR-RFLP in 388 BC patients and 405 neoplasia-free women. Case-control analyses as well as interaction with TGFB1 haplotypes previously associated with BC were tested through age-adjusted logistic regression. Correlations between G-875A and clinicopathological parameters were assessed through Kendall's Tau-b test. All statistical tests were two-tailed (α = 0.05). RESULTS TGFBR2 G-875A was protective against BC in additive, genotypic, and dominant models. In subgroup-stratified analyses, these effects were greater in hormonal receptor-positive and luminal-A tumors, but were not significant in other subgroups. Logistic models including TGFB1 variants showed that in luminal-A tumors, G-875A retained its significance while TGFB1 haplotype showed a trend towards significance; otherwise, in HER2+ tumors TGFB1 variants remained significant while TGFBR2 showed a trend for association. There was no interaction between these genes. In correlation analyses, G-875A positively correlated with histopathological grade in total sample, and a trend towards significance was observed in triple-negative BCs. CONCLUSION These results indicate that G-875A is a protective factor against BC, especially from luminal-A subtype, but may promote anaplasia in established tumors, consistent with TGFβ signaling roles in BC.
Collapse
|
16
|
Tarfiei GA, Shadboorestan A, Montazeri H, Rahmanian N, Tavosi G, Ghahremani MH. GDF15 induced apoptosis and cytotoxicity in A549 cells depends on TGFBR2 expression. Cell Biochem Funct 2019; 37:320-330. [PMID: 31172564 DOI: 10.1002/cbf.3391] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/30/2022]
Abstract
GDF15 plays a paradoxical role during carcinogenesis; it inhibits tumour growth in the early stages and promotes tumour cell proliferation in the late stages of cancer. Besides, GDF15 can induce apoptosis in some cancer cells including A549 but not in some others. Moreover, as a potential receptor for GDF15, TGFBR2 is inactivated during carcinogenesis in many types of cancers, and it is not present in cells with no GDF15 induced apoptosis. Thus, we tested whether GDF15 overexpression and/or TGFBR2 silencing can affect the GDF15 induced apoptosis in A549 cells. The full and mature forms of GDF15 were cloned and overexpressed in A549 cells. The TGFBR2 was silenced using specific siRNA and confirmed by real-time PCR. Results indicated that overexpression of full and mature forms of GDF15 as well as TGFBR2 knocked down reduced A549 cell viability in 24 and 48 hours. Flow cytometric analysis of annexin V/PI indicated induction of apoptosis in A549 cells by overexpression of GDF15 or silencing TGFBR2. Interestingly, the silencing of TGFBR2 inhibited the GDF15 induced cytotoxicity and apoptosis in A549 cells. Overexpression of GDF15 activated caspase-9 and caspase-3 and inhibited ERK1/2 and p38 phosphorylation in A549 cells. TGFBR2 knocked down inhibited GDF15 effects on caspases, ERK1/2, and p38MAPK activation. Our results indicated that the effect of GDF15 on apoptosis and activation of MAPK in A549 cells depends on TGFBR2 expression. These findings may point to mechanisms in which GDF15 exerts dual effect during carcinogenesis with regard to TGFBR2 expression. SIGNIFICANCE OF THE STUDY: GDF15 plays a tumour suppressor or promotor roles during carcinogenesis. The expression of GDF15 induced cytotoxicity, apoptosis, and inhibition of MAPK in A549 cells. All these effects were blocked by silencing TGFBR2 expression. These findings may point to mechanisms in which GDF15 exerts dual effect during carcinogenesis with regard to TGFBR2 expression.
Collapse
Affiliation(s)
- Ghorban Ali Tarfiei
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Shadboorestan
- Department of Pharmacology -Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Montazeri
- School of Pharmacy-International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Narges Rahmanian
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Tavosi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology -Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
TGF-βRII Knock-down in Pancreatic Cancer Cells Promotes Tumor Growth and Gemcitabine Resistance. Importance of STAT3 Phosphorylation on S727. Cancers (Basel) 2018; 10:cancers10080254. [PMID: 30065235 PMCID: PMC6116183 DOI: 10.3390/cancers10080254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 01/05/2023] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is one of the most deadly cancers in the Western world because of a lack of early diagnostic markers and efficient therapeutics. At the time of diagnosis, more than 80% of patients have metastasis or locally advanced cancer and are therefore not eligible for surgical resection. Pancreatic cancer cells also harbour a high resistance to chemotherapeutic drugs such as gemcitabine that is one of the main palliative treatments for PDAC. Proteins involved in TGF-β signaling pathway (SMAD4 or TGF-βRII) are frequently mutated in PDAC (50–80%). TGF-β signalling pathway plays antagonistic roles during carcinogenesis by initially inhibiting epithelial growth and later promoting the progression of advanced tumors and thus emerged as both tumor suppressor and oncogenic pathways. In order to decipher the role of TGF-β in pancreatic carcinogenesis and chemoresistance, we generated CAPAN-1 and CAPAN-2 cell lines knocked down for TGF-βRII (first actor of TGF-β signaling). The impact on biological properties of these TGF-βRII-KD cells was studied both in vitro and in vivo. We show that TGF-βRII silencing alters tumor growth and migration as well as resistance to gemcitabine. TGF-βRII silencing also leads to S727 STAT3 and S63 c-Jun phosphorylation, decrease of MRP3 and increase of MRP4 ABC transporter expression and induction of a partial EMT phenotype. These markers associated with TGF-β signaling pathways may thus appear as potent therapeutic tools to better treat/manage pancreatic cancer.
Collapse
|
18
|
Maximov PY, Abderrahman B, Curpan RF, Hawsawi YM, Fan P, Jordan VC. A unifying biology of sex steroid-induced apoptosis in prostate and breast cancers. Endocr Relat Cancer 2018; 25:R83-R113. [PMID: 29162647 PMCID: PMC5771961 DOI: 10.1530/erc-17-0416] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 12/13/2022]
Abstract
Prostate and breast cancer are the two cancers with the highest incidence in men and women, respectively. Here, we focus on the known biology of acquired resistance to antihormone therapy of prostate and breast cancer and compare laboratory and clinical similarities in the evolution of the disease. Laboratory studies and clinical observations in prostate and breast cancer demonstrate that cell selection pathways occur during acquired resistance to antihormonal therapy. Following sex steroid deprivation, both prostate and breast cancer models show an initial increased acquired sensitivity to the growth potential of sex steroids. Subsequently, prostate and breast cancer cells either become dependent upon the antihormone treatment or grow spontaneously in the absence of hormones. Paradoxically, the physiologic sex steroids now kill a proportion of selected, but vulnerable, resistant tumor cells. The sex steroid receptor complex triggers apoptosis. We draw parallels between acquired resistance in prostate and breast cancer to sex steroid deprivation. Clinical observations and patient trials confirm the veracity of the laboratory studies. We consider therapeutic strategies to increase response rates in clinical trials of metastatic disease that can subsequently be applied as a preemptive salvage adjuvant therapy. The goal of future advances is to enhance response rates and deploy a safe strategy earlier in the treatment plan to save lives. The introduction of a simple evidence-based enhanced adjuvant therapy as a global healthcare strategy has the potential to control recurrence, reduce hospitalization, reduce healthcare costs and maintain a healthier population that contributes to society.
Collapse
Affiliation(s)
- Philipp Y Maximov
- Department of Breast Medical OncologyMD Anderson Cancer Centre, Houston, Texas, USA
| | - Balkees Abderrahman
- Department of Breast Medical OncologyMD Anderson Cancer Centre, Houston, Texas, USA
| | | | - Yousef M Hawsawi
- Department of GeneticsKing Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Ping Fan
- Department of Breast Medical OncologyMD Anderson Cancer Centre, Houston, Texas, USA
| | - V Craig Jordan
- Department of Breast Medical OncologyMD Anderson Cancer Centre, Houston, Texas, USA
| |
Collapse
|
19
|
Castillo E, Leon J, Mazzei G, Abolhassani N, Haruyama N, Saito T, Saido T, Hokama M, Iwaki T, Ohara T, Ninomiya T, Kiyohara Y, Sakumi K, LaFerla FM, Nakabeppu Y. Comparative profiling of cortical gene expression in Alzheimer's disease patients and mouse models demonstrates a link between amyloidosis and neuroinflammation. Sci Rep 2017; 7:17762. [PMID: 29259249 PMCID: PMC5736730 DOI: 10.1038/s41598-017-17999-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 12/05/2017] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by accumulation of amyloid β (Aβ) and neurofibrillary tangles. Oxidative stress and inflammation are considered to play an important role in the development and progression of AD. However, the extent to which these events contribute to the Aβ pathologies remains unclear. We performed inter-species comparative gene expression profiling between AD patient brains and the App NL-G-F/NL-G-F and 3xTg-AD-H mouse models. Genes commonly altered in App NL-G-F/NL-G-F and human AD cortices correlated with the inflammatory response or immunological disease. Among them, expression of AD-related genes (C4a/C4b, Cd74, Ctss, Gfap, Nfe2l2, Phyhd1, S100b, Tf, Tgfbr2, and Vim) was increased in the App NL-G-F/NL-G-F cortex as Aβ amyloidosis progressed with exacerbated gliosis, while genes commonly altered in the 3xTg-AD-H and human AD cortices correlated with neurological disease. The App NL-G-F/NL-G-F cortex also had altered expression of genes (Abi3, Apoe, Bin2, Cd33, Ctsc, Dock2, Fcer1g, Frmd6, Hck, Inpp5D, Ly86, Plcg2, Trem2, Tyrobp) defined as risk factors for AD by genome-wide association study or identified as genetic nodes in late-onset AD. These results suggest a strong correlation between cortical Aβ amyloidosis and the neuroinflammatory response and provide a better understanding of the involvement of gender effects in the development of AD.
Collapse
Affiliation(s)
- Erika Castillo
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Julio Leon
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Guianfranco Mazzei
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Nona Abolhassani
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Naoki Haruyama
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Masaaki Hokama
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Neurosurgery, Japan Community Health Care Organization Kyushu Hospital, Kitakyushu, 806-8501, Japan
| | - Toru Iwaki
- Department of Neuropathology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomoyuki Ohara
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Toshiharu Ninomiya
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yutaka Kiyohara
- Hisayama Research Institute for Lifestyle Diseases, Hisayama, Fukuoka, Japan
| | - Kunihiko Sakumi
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Frank M LaFerla
- Department of Neurobiology and Behavior, University of California, Irvine, CA, 92697, USA
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
20
|
Concomitant underexpression of TGFBR2 and overexpression of hTERT are associated with poor prognosis in cervical cancer. Sci Rep 2017; 7:41670. [PMID: 28195144 PMCID: PMC5307321 DOI: 10.1038/srep41670] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/28/2016] [Indexed: 12/26/2022] Open
Abstract
The human telomerase reverse transcriptase (hTERT) is highly expressed in a variety of tumors. The transforming growth factor beta receptor type II (TGFBR2) is a downstream protein of transforming growth factor beta (TGF-β) which suppresses telomerase activity. However, the relevance of survival to the expression of TGFBR2, hTERT or TGFBR2/hTERT has not been previously investigated in cervical cancer tissues. Our study showed that patients with low level of TGFBR2 were associated with poor prognosis (HR = 1.704, P = 0.021), but no significant relevance between hTERT expression and survival (HR = 1.390, P = 0.181). However, a combination of low level of TGFBR2 and high level of hTERT was associated with a worse survival (HR = 1.892, P = 0.020), which had higher impact of hazard ratio (HR) on the overall survival (OS) than the low TGFBR2 expression alone. Knockdown of TGFBR2 expression by shRNA in Hela cells increased cell proliferation, cell invasion, G1/S transition and telomere homeostasis but decreased cell apoptosis. Overexpressing TGFBR2 and inhibiting hTERT suppressed Hela cell growth. These results would lead us to further explore whether a phenotype of TGFBR2low/hTERThigh could be considered as a predictor of poor prognosis, and whether simultaneous use of TGFBR2 agonist and hTERT inhibitor could be developed as a therapeutic strategy.
Collapse
|
21
|
Hachim IY, Hachim MY, López-Ozuna VM, Ali S, Lebrun JJ. A dual prognostic role for the TGFβ receptors in human breast cancer. Hum Pathol 2016; 57:140-151. [PMID: 27445263 DOI: 10.1016/j.humpath.2016.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/16/2016] [Accepted: 07/02/2016] [Indexed: 01/12/2023]
Abstract
The transforming growth factor-β (TGFβ) plays a dual role in breast cancer, acting as a tumor suppressor in early carcinomas while promoting tumor metastasis in more advanced breast carcinoma. As a result, the prognostic role of TGFβ and its signaling components in breast cancer remains unclear. Here we evaluated the expression levels of TGFβ signaling receptors TβRII and TβRI using human breast cancer tissue microarrays and a large publicly available gene profiling database in relation to various clinicopathological parameters. Our results indicate that breast cancer tissues express lower TβRII and TβRI protein levels compared with normal breast tissue. In contrast to TβRI expression, TβRII mRNA expression levels were also significantly downregulated in invasive breast cancer compared with normal breast tissue (4.18-fold downregulation, P=9.3×10-115). Interestingly, within the cancer cases analyzed, our results revealed a direct correlation between high TβRII and TβRI expression levels and classic poor prognostic clinicopathological parameters, including larger tumor size, advanced tumor stage, and poorly differentiated tumors. Next, we examined TGFβ receptors' expression in relation to breast cancer molecular subtypes. Importantly, our results revealed that whereas expression of TGFβ receptors in luminal A and triple-negative breast cancer showed no correlation with patient outcome, their expression in luminal B and HER2 subtypes showed significant association with favorable patient outcome. Together, these results indicate that although TGFβ receptors are downregulated in breast cancer, their expression in tumors is an indicator of aggressive breast cancer phenotype. Moreover, the relation between TGFβ pathway and patient outcome is breast cancer subtype dependent.
Collapse
Affiliation(s)
- Ibrahim Y Hachim
- Division of Hematology, Cancer Research Program, Research Institute of the McGill University Health Centre, McGill University Montreal, Quebec H4A 3J1, Canada.
| | - Mahmood Y Hachim
- Division of Medical Oncology, Department of Medicine, Cancer Research Program, Research Institute of the McGill University Health Centre, McGill University Montreal, Quebec H4A 3J1, Canada.
| | - Vanessa M López-Ozuna
- Division of Hematology, Cancer Research Program, Research Institute of the McGill University Health Centre, McGill University Montreal, Quebec H4A 3J1, Canada.
| | - Suhad Ali
- Division of Hematology, Cancer Research Program, Research Institute of the McGill University Health Centre, McGill University Montreal, Quebec H4A 3J1, Canada.
| | - Jean-Jacques Lebrun
- Division of Hematology, Cancer Research Program, Research Institute of the McGill University Health Centre, McGill University Montreal, Quebec H4A 3J1, Canada; Division of Medical Oncology, Department of Medicine, Cancer Research Program, Research Institute of the McGill University Health Centre, McGill University Montreal, Quebec H4A 3J1, Canada.
| |
Collapse
|
22
|
Li K, Kang H, Wang Y, Hai T, Rong G, Sun H. Letrozole-induced functional changes in carcinoma-associated fibroblasts and their influence on breast cancer cell biology. Med Oncol 2016; 33:64. [PMID: 27235140 DOI: 10.1007/s12032-016-0779-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 05/17/2016] [Indexed: 12/15/2022]
Abstract
Accumulating evidence suggests that carcinoma-associated fibroblasts (CAFs) influence the efficacy of endocrine therapy. Aromatase inhibitors inhibit the growth of breast tumors by inhibiting the synthesis of estrogen. However, it remains unknown whether the aromatase inhibitor letrozole has an additional impact on CAFs, which further influence the efficacy of endocrine therapy. Primary CAFs were isolated from primary estrogen receptor-positive human breast tumors. Estrogen-deprived culture medium was used to exclude the influence of steroids. In co-culture, primary cultured CAFs increased MCF7 cell adhesion, invasion, migration and proliferation, and letrozole treatment inhibited these increases, except for the increase in proliferation. In total, 258 up-regulated genes and 47 down-regulated genes with an absolute fold change >2 were identified in CAFs co-cultured with MCF7 cell after letrozole treatment. One up-regulated genes (POSTN) and seven down-regulated genes (CCL2, CCL5, CXCL1, IL-8, CXCL5, LEP and NGF) were further validated by real-time PCR. The changes in CCL2 and CXCL1 expression were further confirmed using an automated microscopic imaging-based, high content analysis platform. Although the results need further functional validation, this study is the first to describe the differential tumor-promoting phenotype of CAFs induced by letrozole and the associated gene expression alterations. Most importantly, our data revealed that down-regulation of several secreted factors (CCL2, CCL5, CXCL1 etc.) in CAFs might be partially responsible for the efficacy of letrozole.
Collapse
Affiliation(s)
- Kaifu Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Hua Kang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China.
| | - Yajun Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Tao Hai
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Guohua Rong
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Haichen Sun
- Surgery Lab, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
23
|
Little PJ, Hollenberg MD, Kamato D, Thomas W, Chen J, Wang T, Zheng W, Osman N. Integrating the GPCR transactivation-dependent and biased signalling paradigms in the context of PAR1 signalling. Br J Pharmacol 2016; 173:2992-3000. [PMID: 26624252 DOI: 10.1111/bph.13398] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 10/07/2015] [Accepted: 11/29/2015] [Indexed: 12/22/2022] Open
Abstract
Classically, receptor-mediated signalling was conceived as a linear process involving one agonist, a variety of potential targets within a receptor family (e.g. α- and β-adrenoceptors) and a second messenger (e.g. cAMP)-triggered response. If distinct responses were stimulated by the same receptor in different tissues (e.g. lipolysis in adipocytes vs. increased beating rate in the heart caused by adrenaline), the differences were attributed to different second messenger targets in the different tissues. It is now realized that an individual receptor can couple to multiple effectors (different G proteins and different β-arrestins), even in the same cell, to drive very distinct responses. Furthermore, tailored agonists can mould the receptor conformation to activate one signal pathway versus another by a process termed 'biased signalling'. Complicating issues further, we now know that activating one receptor can rapidly trigger the local release of agonists for a second receptor via a process termed 'transactivation'. Thus, the end response can represent a cooperative signalling process involving two or more receptors linked by transactivation. This overview, with a focus on the GPCR, protease-activated receptor-1, integrates both of these processes to predict the complex array of responses that can arise when biased receptor signalling also involves the receptor transactivation process. The therapeutic implications of this signalling matrix are also briefly discussed. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- P J Little
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia. .,School of Medical Sciences and Diabetes Complications Group, Health Innovations Research Institute, RMIT University, Bundoora, VIC, Australia. .,Xinhua College of Sun Yat-sen University, Guangzhou, China.
| | - M D Hollenberg
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - D Kamato
- School of Medical Sciences and Diabetes Complications Group, Health Innovations Research Institute, RMIT University, Bundoora, VIC, Australia
| | - W Thomas
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - J Chen
- Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - T Wang
- Xinhua College of Sun Yat-sen University, Guangzhou, China.,Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - W Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou, China
| | - N Osman
- School of Medical Sciences and Diabetes Complications Group, Health Innovations Research Institute, RMIT University, Bundoora, VIC, Australia.,Department of Immunology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|