1
|
Yang YM, Kim J, Wang Z, Kim J, Kim SY, Cho GJ, Lee JH, Kim SM, Tsuchiya T, Matsuda M, Pandyarajan V, Pandol SJ, Lewis MS, Gangi A, Noble PW, Jiang D, Merchant A, Posadas EM, Bhowmick NA, Lu SC, You S, Xu AM, Seki E. Metastatic tumor growth in steatotic liver is promoted by HAS2-mediated fibrotic tumor microenvironment. J Clin Invest 2025; 135:e180802. [PMID: 39946200 PMCID: PMC11957696 DOI: 10.1172/jci180802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
Steatotic liver enhances liver metastasis of colorectal cancer (CRC), but this process is not fully understood. Steatotic liver induced by a high-fat diet increases cancer-associated fibroblast (CAF) infiltration and collagen and hyaluronic acid (HA) production. We investigated the role of HA synthase 2 (HAS2) in the fibrotic tumor microenvironment in steatotic liver using Has2ΔHSC mice, in which Has2 is deleted from hepatic stellate cells. Has2ΔHSC mice had reduced steatotic liver-associated metastatic tumor growth of MC38 CRC cells, collagen and HA deposition, and CAF and M2 macrophage infiltration. We found that low-molecular weight HA activates Yes-associated protein (YAP) in cancer cells, which then releases connective tissue growth factor to further activate CAFs for HAS2 expression. Single-cell analyses revealed a link between CAF-derived HAS2 and M2 macrophages and CRC cells through CD44; these cells were associated with exhausted CD8+ T cells via programmed death-ligand 1 and programmed cell death protein 1 (PD-1). HA synthesis inhibitors reduced steatotic liver-associated metastasis of CRC, YAP expression, and CAF and M2 macrophage infiltration, and improved response to anti-PD-1 antibody. In conclusion, steatotic liver modulates a fibrotic tumor microenvironment to enhance metastatic cancer activity through a bidirectional regulation between CAFs and metastatic tumors, enhancing the metastatic potential of CRC in the liver.
Collapse
Affiliation(s)
- Yoon Mee Yang
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Pharmacy
- Multidimensional Genomics Research Center, and
- Innovative Drug Development Research Team for Intractable Diseases (BK21 plus), Kangwon National University, Chuncheon, South Korea
| | - Jieun Kim
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zhijun Wang
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jina Kim
- Samuel Oschin Comprehensive Cancer Institute
- Department of Urology
- Department of Computational Biomedicine, and
| | - So Yeon Kim
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Gyu Jeong Cho
- Department of Pharmacy
- Innovative Drug Development Research Team for Intractable Diseases (BK21 plus), Kangwon National University, Chuncheon, South Korea
| | | | - Sun Myoung Kim
- Department of Pharmacy
- Innovative Drug Development Research Team for Intractable Diseases (BK21 plus), Kangwon National University, Chuncheon, South Korea
| | - Takashi Tsuchiya
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Michitaka Matsuda
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Vijay Pandyarajan
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Stephen J. Pandol
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Michael S. Lewis
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Pathology, Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, California, USA
| | | | - Paul W. Noble
- Department of Medicine and Women’s Guild Lung Institute
| | - Dianhua Jiang
- Department of Medicine and Women’s Guild Lung Institute
| | - Akil Merchant
- Samuel Oschin Comprehensive Cancer Institute
- Division of Hematology and Cellular Therapy, Department of Medicine
| | - Edwin M. Posadas
- Samuel Oschin Comprehensive Cancer Institute
- Division of Medical Oncology, Department of Medicine, and
| | - Neil A. Bhowmick
- Samuel Oschin Comprehensive Cancer Institute
- Division of Medical Oncology, Department of Medicine, and
| | - Shelly C. Lu
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Sungyong You
- Samuel Oschin Comprehensive Cancer Institute
- Department of Urology
- Department of Computational Biomedicine, and
| | - Alexander M. Xu
- Samuel Oschin Comprehensive Cancer Institute
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Samuel Oschin Comprehensive Cancer Institute
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
2
|
Kashyap VK, Nagesh PKB, Singh AK, Massey A, Darkwah GP, George A, Khan S, Hafeez BB, Zafar N, Kumar S, Sinha N, Yallapu MM, Jaggi M, Chauhan SC. Curcumin attenuates smoking and drinking activated NF-κB/IL-6 inflammatory signaling axis in cervical cancer. Cancer Cell Int 2024; 24:343. [PMID: 39428480 PMCID: PMC11492755 DOI: 10.1186/s12935-024-03513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND High-risk strains of HPV are known to cause cervical cancer. Multiple clinical studies have emphasized that smoking and drinking are critical risk factors for cervical cancer and its high-grade precursors. In this study, we investigated if smoking and/or drinking augment the molecular mechanisms of cervical carcinogenesis and defined a potential therapeutic approach for their attenuation. METHODS The impact of benzo[a]pyrene (B[a]P) and/or ethanol (EtOH) exposure on cervical cancer cells was assessed by measuring changes in their cell migration and invasion characteristics. Expression of HPV16 E6/E7, NF-κB, cytokines, and inflammation mediators was determined using qRT-PCR, immunoblotting, ELISA, luciferase reporter assay, and confocal microscopy. Herein, we used curcumin (Cur), and PLGA nanoparticle formulation of curcumin (PLGA-Cur) and determined effectiveness of free Cur and PLGA-Cur formulation on smoking and drinking activated NF-κB/IL-6 mediated inflammatory signaling pathways using in vitro cervical cancer models. RESULTS Treatments with B[a]P and/or EtOH altered the expression of HPV16 E6/E7 oncogenes and EMT markers in cervical cancer cells; it also enhanced migration and invasion. In addition, B[a]P and/or EtOH exposure promoted inflammation pathways through TNF-α and NF-κB signaling, leading to IL-6 upregulation and activation of VEGF. The molecular effects caused by B[a]P and/or EtOH exposure were effectively attenuated by curcumin (Cur)/PLGA-Cur treatment. CONCLUSIONS These data suggest a molecular link between smoking, drinking, and HPV infectivity in cervical carcinogenesis. In addition, attenuation of these effects by treatment with Cur/PLGA-Cur treatment, implies the role of curcumin in cervical cancer prevention and treatment.
Collapse
Affiliation(s)
- Vivek K Kashyap
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Prashanth K B Nagesh
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Laboratory of Signal Transduction, Memorial Sloan Kettering Cancer Center, New York, 10065, USA
| | - Ajay K Singh
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Andrew Massey
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Godwin P Darkwah
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Aaron George
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
| | - Sheema Khan
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Bilal B Hafeez
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Nadeem Zafar
- Department of Pathology, University of Washington, Seattle, DC, 98195, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Namita Sinha
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Murali M Yallapu
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Meena Jaggi
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Subhash C Chauhan
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA.
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA.
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
3
|
Wang Y, Jia J, Wang F, Fang Y, Yang Y, Zhou Q, Yuan W, Gu X, Hu J, Yang S. Pre-metastatic niche: formation, characteristics and therapeutic implication. Signal Transduct Target Ther 2024; 9:236. [PMID: 39317708 PMCID: PMC11422510 DOI: 10.1038/s41392-024-01937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/29/2024] [Accepted: 07/23/2024] [Indexed: 09/26/2024] Open
Abstract
Distant metastasis is a primary cause of mortality and contributes to poor surgical outcomes in cancer patients. Before the development of organ-specific metastasis, the formation of a pre-metastatic niche is pivotal in promoting the spread of cancer cells. This review delves into the intricate landscape of the pre-metastatic niche, focusing on the roles of tumor-derived secreted factors, extracellular vesicles, and circulating tumor cells in shaping the metastatic niche. The discussion encompasses cellular elements such as macrophages, neutrophils, bone marrow-derived suppressive cells, and T/B cells, in addition to molecular factors like secreted substances from tumors and extracellular vesicles, within the framework of pre-metastatic niche formation. Insights into the temporal mechanisms of pre-metastatic niche formation such as epithelial-mesenchymal transition, immunosuppression, extracellular matrix remodeling, metabolic reprogramming, vascular permeability and angiogenesis are provided. Furthermore, the landscape of pre-metastatic niche in different metastatic organs like lymph nodes, lungs, liver, brain, and bones is elucidated. Therapeutic approaches targeting the cellular and molecular components of pre-metastatic niche, as well as interventions targeting signaling pathways such as the TGF-β, VEGF, and MET pathways, are highlighted. This review aims to enhance our understanding of pre-metastatic niche dynamics and provide insights for developing effective therapeutic strategies to combat tumor metastasis.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Jiachi Jia
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Fuqi Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Yingshuai Fang
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Yabing Yang
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Xiaoming Gu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| | - Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| |
Collapse
|
4
|
Qiu X, Zhou J, Xu H, Li Y, Ma S, Qiao H, Zeng K, Wang Q, Ouyang J, Liu Y, Ding J, Liu Y, Zhang J, Shi M, Liao Y, Liao W, Lin L. Alcohol reshapes a liver premetastatic niche for cancer by extra- and intrahepatic crosstalk-mediated immune evasion. Mol Ther 2023; 31:2662-2680. [PMID: 37469143 PMCID: PMC10492032 DOI: 10.1016/j.ymthe.2023.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023] Open
Abstract
Cancer metastatic organotropism is still a mystery. The liver is known to be susceptible to cancer metastasis and alcoholic injury. However, it is unclear whether and how alcohol facilitates liver metastasis and how to intervene. Here, we show that alcohol preferentially promotes liver metastasis in colon-cancer-bearing mice and post-surgery pancreatic cancer patients. The mechanism is that alcohol triggers an extra- and intrahepatic crosstalk to reshape an immunosuppressive liver microenvironment. In detail, alcohol upregulates extrahepatic IL-6 and hepatocellular IL-6 receptor expression, resulting in hepatocyte STAT3 signaling activation and downstream lipocalin-2 (Lcn2) upregulation. Furthermore, LCN2 promotes T cell-exhaustion neutrophil recruitment and cancer cell epithelial plasticity. In contrast, knocking out hepatocellular Stat3 or systemic Il6 in alcohol-treated mice preserves the liver microenvironment and suppresses liver metastasis. This mechanism is reflected in hepatocellular carcinoma patients, in that alcohol-associated signaling elevation in noncancerous liver tissue indicates adverse prognosis. Accordingly, we discover a novel application for BBI608, a small molecular STAT3 inhibitor that can prevent liver metastasis. BBI608 pretreatment protects the liver and suppresses alcohol-triggered premetastatic niche formation. In conclusion, under extra- and intrahepatic crosstalk, the alcoholic injured liver forms a favorable niche for cancer cell metastasis, while BBI608 is a promising anti-metastatic agent targeting such microenvironments.
Collapse
Affiliation(s)
- Xiaofang Qiu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiaqi Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hong Xu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yongyin Li
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shudong Ma
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hang Qiao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kangxin Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiongqiong Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiahe Ouyang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuanhan Liu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jian Ding
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yantan Liu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Junhao Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yulin Liao
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Li Lin
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
5
|
Kim SK, Lee NH, Son CG. A Review of Herbal Resources Inducing Anti-Liver Metastasis Effects in Gastrointestinal Tumors via Modulation of Tumor Microenvironments in Animal Models. Cancers (Basel) 2023; 15:3415. [PMID: 37444525 DOI: 10.3390/cancers15133415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Liver metastases remain a major obstacle for the management of all types of tumors arising from digestive organs, and the tumor microenvironment has been regarded as an important factor in metastasis. To discover herbal candidates inhibiting the liver metastasis of tumors originating from the digestive system via the modulation of the tumor microenvironment and liver environment, we searched three representative public databases and conducted a systematic review. A total of 21 studies that employed experimental models for pancreatic (9), colon (8), and stomach cancers (4) were selected. The herbal agents included single-herb extracts (5), single compounds (12), and multiherbal decoctions (4). Curcuma longa Linn was most frequently studied for its anti-colon-liver metastatic effects, and its possible mechanisms involved the modulation of tumor microenvironment components such as vascular endothelial cells and immunity in both tumor tissues and circulating cells. The list of herbal agents and their mechanisms produced in this study is helpful for the development of anti-liver metastasis drugs in the future.
Collapse
Affiliation(s)
- Sul-Ki Kim
- Liver and Immunology Research Center, Collage of Korean Medicine, Daejeon University, Daejeon 35235, Republic of Korea
| | - Nam-Hun Lee
- East-West Cancer Center, Cheonan Korean Medicine Hospital, Daejeon University, Cheonan 31099, Republic of Korea
| | - Chang-Gue Son
- Liver and Immunology Research Center, Collage of Korean Medicine, Daejeon University, Daejeon 35235, Republic of Korea
| |
Collapse
|
6
|
Sapkota R, Zakaria J, Glenn E, Richard H, Rimawi A, Tobi M, McVicker B. Alcohol Use and the Risk of Colorectal Liver Metastasis: A Systematic Mapping Review. BIOLOGY 2023; 12:257. [PMID: 36829534 PMCID: PMC9953220 DOI: 10.3390/biology12020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
The consumption of alcohol has long been associated with the development of liver disease as well as cancers including colorectal cancer (CRC). Leading healthcare concerns include the prevalent use of alcohol and the high burden of CRC mortality. Many CRC deaths are attributed to the development of colorectal liver metastasis (CRLM) as the liver is the foremost site of CRC spread. However, an association has not been defined for the role of alcohol intake and related liver injury with the development of CRLM. Here, a mapping review of recent research was undertaken to evaluate the relationship between alcohol consumption and the risk of CRLM. The literature search revealed 14 articles meeting the inclusion criteria that included patient database analyses and preclinical studies. Most of the human data analyses found alcohol use independently associates with worse CRC outcomes. The preclinical evaluations identified several pathways involved in the alcohol-mediated promotion of CRLM burden and CRC cell metastatic behavior. The limited number of studies identified exposes a significant need for more prospective analyses to define the role of alcohol intake and advanced CRC as well as the translation of preclinical research to fully characterize targetable mechanisms for the generation of new therapeutic options.
Collapse
Affiliation(s)
- Roshan Sapkota
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Joseph Zakaria
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Emily Glenn
- McGoogan Health Sciences Library, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Heather Richard
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ahmad Rimawi
- Department of Internal Medicine, Southern Illinois University, Springfield, IL 62702, USA
| | - Martin Tobi
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| | - Benita McVicker
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| |
Collapse
|
7
|
Lee SB, Hwang SJ, Son CG. CGX, a standardized herbal syrup, inhibits colon-liver metastasis by regulating the hepatic microenvironments in a splenic injection mouse model. Front Pharmacol 2022; 13:906752. [PMID: 36105183 PMCID: PMC9465806 DOI: 10.3389/fphar.2022.906752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Colon-liver metastasis is observed in approximately 50% of patients with colorectal cancer and is a critical risk factor for a low survival rate. Several clinical studies have reported that colon-liver metastasis is accelerated by pathological hepatic microenvironments such as hepatic steatosis or fibrosis. Chunggan syrup (CGX), a standardized 13-herbal mixture, has been prescribed to patients with chronic liver diseases, including fatty liver, inflammation and fibrotic change, based on preclinical and clinical evidence. Aim of the study: In the present study, we investigated anti-liver metastatic the effects of CGX in a murine colon carcinoma (MC38)-splenic injection mouse model. Materials and methods: C57BL/6N mice were administered with CGX (100, 200 or 400 mg/kg) for 14 days before or after MC38-splenic injection under normal and high-fat diet (HFD) fed conditions. Also, above experiment was repeated without MC38-splenic injection to explore underlying mechanism. Results: The number of tumor nodules and liver weight with tumors were sup-pressed by preadministration of CGX in both normal and HFD fed mice. Regarding its mechanisms, we found that CGX administration significantly activated epithelial-cadherin (E-cadherin), but decreased vascular endothelial-cadherin (VE-cadherin) in hepatic tissues under MC38-free conditions. In addition, CGX administration significantly reduced hepatic steatosis, via modulation of lipolytic and lipogenic molecules, including activated adenosine monophosphate activated protein kinase (AMPK) and peroxisome proliferator activated receptor-alpha (PPARα). Conclusion: The present data indicate that CGX exerts an anti-colon-liver metastatic property via modulation of hepatic lipid related microenvironments.
Collapse
|
8
|
Wang X, Jia M, Mao Y, Jia Z, Liu H, Yang G, Wang S, Sun B, Zhang H. Very-light alcohol consumption suppresses breast tumor progression in a mouse model. Food Funct 2022; 13:3391-3404. [PMID: 35230367 DOI: 10.1039/d1fo02089g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The relationship between alcohol consumption and cancer has no consistent results both in epidemiological studies and animal models. The inaccuracy of alcohol consumption dosage in the experimental design maybe leads to inconsistent results and makes the researchers ignore the effect of very-light alcohol consumption on cancer. To determine the effects of very-light alcohol consumption on cancer, in this study, the manner of gavage was used to control the alcohol consumption accurately. The impacts of age and time of drinking on cancer progression were also evaluated in this study. Here, we find that a certain range of alcohol consumption (from 0.5% w/v to 2.0% w/v) can suppress tumor development in the breast metastasis mouse model by controlling the alcohol consumption dosage accurately. RNA sequencing analyses were performed in primary tumors and related metastases from the NC group and 1.0% w/v group. The results of primary tumors and related metastases indicated that chronic very-light alcohol consumption downregulates breast tumor-associated oncogenes in primary tumors and regulates the immune system and metabolic system in metastatic carcinoma. To provide the public with drinking recommendations, eight commercial alcohol types were investigated at a dosage of 1.0% w/v. Two types of commercial alcohol, red wine (made in France, brand 1) and baijiu (made in China, brand 1), exerted excellent primary tumor and metastasis inhibitory effects. The untargeted metabolomic analysis of commercial alcohol by liquid chromatography-tandem mass spectrometry indicated that baijiu (brand 1) and baijiu (brand 2) exhibited a difference in compositions that can lead to their different anti-cancer effects. These results indicated that a certain range of very light alcohol dosages might have a potential human-cancer inhibition effect.
Collapse
Affiliation(s)
- Xiuxiu Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Min Jia
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Yifei Mao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Zhenzhen Jia
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Huilin Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Shuo Wang
- School of Medicine, Nankai University, Tianjin 300457, China.
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
9
|
Sun J, Tang Q, Zhang J, Chen G, Peng J, Chen L. Possible Immunotherapeutic Strategies Based on Carcinogen-Dependent Subgroup Classification for Oral Cancer. Front Mol Biosci 2021; 8:717038. [PMID: 34497832 PMCID: PMC8419237 DOI: 10.3389/fmolb.2021.717038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
The oral cavity serves as an open local organ of the human body, exposed to multiple external factors from the outside environment. Coincidentally, initiation and development of oral cancer are attributed to many external factors, such as smoking and drinking, to a great extent. This phenomenon was partly explained by the genetic abnormalities traditionally induced by carcinogens. However, more and more attention has been attracted to the influence of carcinogens on the local immune status. On the other hand, immune heterogeneity of cancer patients is a huge obstacle for enhancing the clinical efficacy of tumor immunotherapy. Thus, in this review, we try to summarize the current opinions about variant genetic changes and multiple immune alterations induced by different oral cancer carcinogens and discuss the prospects of targeted immunotherapeutic strategies based on specific immune abnormalities caused by different carcinogens, as a predictive way to improve clinical outcomes of immunotherapy-treated oral cancer patients.
Collapse
Affiliation(s)
- Jiwei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Junyuan Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jinfeng Peng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
10
|
Johnson CH, Golla JP, Dioletis E, Singh S, Ishii M, Charkoftaki G, Thompson DC, Vasiliou V. Molecular Mechanisms of Alcohol-Induced Colorectal Carcinogenesis. Cancers (Basel) 2021; 13:4404. [PMID: 34503214 PMCID: PMC8431530 DOI: 10.3390/cancers13174404] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/30/2022] Open
Abstract
The etiology of colorectal cancer (CRC) is complex. Approximately, 10% of individuals with CRC have predisposing germline mutations that lead to familial cancer syndromes, whereas most CRC patients have sporadic cancer resulting from a combination of environmental and genetic risk factors. It has become increasingly clear that chronic alcohol consumption is associated with the development of sporadic CRC; however, the exact mechanisms by which alcohol contributes to colorectal carcinogenesis are largely unknown. Several proposed mechanisms from studies in CRC models suggest that alcohol metabolites and/or enzymes associated with alcohol metabolism alter cellular redox balance, cause DNA damage, and epigenetic dysregulation. In addition, alcohol metabolites can cause a dysbiotic colorectal microbiome and intestinal permeability, resulting in bacterial translocation, inflammation, and immunosuppression. All of these effects can increase the risk of developing CRC. This review aims to outline some of the most significant and recent findings on the mechanisms of alcohol in colorectal carcinogenesis. We examine the effect of alcohol on the generation of reactive oxygen species, the development of genotoxic stress, modulation of one-carbon metabolism, disruption of the microbiome, and immunosuppression.
Collapse
Affiliation(s)
- Caroline H. Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520, USA; (C.H.J.); (J.P.G.); (E.D.); (S.S.); (M.I.); (G.C.); (D.C.T.)
| | - Jaya Prakash Golla
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520, USA; (C.H.J.); (J.P.G.); (E.D.); (S.S.); (M.I.); (G.C.); (D.C.T.)
| | - Evangelos Dioletis
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520, USA; (C.H.J.); (J.P.G.); (E.D.); (S.S.); (M.I.); (G.C.); (D.C.T.)
| | - Surendra Singh
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520, USA; (C.H.J.); (J.P.G.); (E.D.); (S.S.); (M.I.); (G.C.); (D.C.T.)
| | - Momoko Ishii
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520, USA; (C.H.J.); (J.P.G.); (E.D.); (S.S.); (M.I.); (G.C.); (D.C.T.)
| | - Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520, USA; (C.H.J.); (J.P.G.); (E.D.); (S.S.); (M.I.); (G.C.); (D.C.T.)
| | - David C. Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520, USA; (C.H.J.); (J.P.G.); (E.D.); (S.S.); (M.I.); (G.C.); (D.C.T.)
- Department of Clinical Pharmacy, School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520, USA; (C.H.J.); (J.P.G.); (E.D.); (S.S.); (M.I.); (G.C.); (D.C.T.)
| |
Collapse
|
11
|
Chen D, Yan Y, Wang X, Li S, Liu Y, Yu D, He Y, Deng R, Liu Y, Xu M, Luo J, Gao H, Wang S. Chronic alcohol exposure promotes HCC stemness and metastasis through β-catenin/miR-22-3p/TET2 axis. Aging (Albany NY) 2021; 13:14433-14455. [PMID: 34019487 PMCID: PMC8202861 DOI: 10.18632/aging.203059] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/13/2021] [Indexed: 04/16/2023]
Abstract
Hepatocellular Carcinoma (HCC) patients usually have a high rate of relapse and metastasis. Alcohol, a risk factor for HCC, promotes the aggressiveness of HCC. However, the basic mechanism is still unclear. We used HCC cells and an orthotopic liver tumor model of HCC-LM3 cells for BALB/C nude mice to study the mechanism of alcohol-induced HCC progression. We showed that chronic alcohol exposure promoted HCC cells metastasis and pulmonary nodules formation. First, we identified miR-22-3p as an oncogene in HCC, which promoted HCC cells stemness, tumor growth, and metastasis. Further, we found that miR-22-3p directly targeted TET2 in HCC. TET2, a dioxygenase involved in cytosine demethylation, has pleiotropic roles in hematopoietic stem cells self-renewal. In clinic HCC specimen, TET2 expression was not only decreased by alcohol consumption, but also inversely correlated with miR-22-3p levels. Then, we demonstrated that TET2 depletion promoted HCC cells stemness, tumor growth and metastasis. Furthermore, we identified that β-catenin was an upstream activator of miR-22-3p. In conclusion, this study suggests that chronic alcohol exposure promotes HCC progression and β-catenin/miR-22-3p/TET2 regulatory axis plays an important role in alcohol-promoted HCC malignancy.
Collapse
Affiliation(s)
- Danlei Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yan Yan
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Xinyi Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
- Department of Pulmonary Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Fengtai, Beijing 100071, China
| | - Suzhi Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yan Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Dandan Yu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yongjing He
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Ruiqing Deng
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yakun Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Hongjun Gao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
- Department of Pulmonary Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Fengtai, Beijing 100071, China
| | - Siying Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| |
Collapse
|
12
|
Zhao GX, Xu YY, Weng SQ, Zhang S, Chen Y, Shen XZ, Dong L, Chen S. CAPS1 promotes colorectal cancer metastasis via Snail mediated epithelial mesenchymal transformation. Oncogene 2019; 38:4574-4589. [PMID: 30742066 DOI: 10.1038/s41388-019-0740-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/26/2018] [Accepted: 01/15/2019] [Indexed: 01/02/2023]
Abstract
Colorectal cancer (CRC) is a common gastrointestinal cancer with high mortality rate mostly due to metastasis. Ca2+-dependent activator protein for secretion 1 (CAPS1) was originally identified as a soluble factor that reconstitutes Ca2+-dependent secretion. In this study, we discovered a novel role of CAPS1 in CRC metastasis. CAPS1 is frequently up-regulated in CRC tissues. Increased CAPS1 expression is associated with frequent metastasis and poor prognosis of CRC patients. Overexpression of CAPS1 promotes CRC cell migration and invasion in vitro, as well as liver metastasis in vivo, without affecting cell proliferation. CAPS1 induces epithelial-mesenchymal transition (EMT), including decreased E-cadherin and ZO-1, epithelial marker expression, and increased N-cadherin and Snail, mesenchymal marker expression. Snail knockdown reversed CAPS1-induced EMT, cell migration and invasion. This result indicates that Snail is required for CAPS1-mediated EMT process and metastasis in CRC. Furthermore, CAPS1 can bind with Septin2 and p85 (subunit of PI3K). LY294002 and wortmanin, PI3K/Akt inhibitors, can abolish CAPS1-induced increase of Akt/GSK3β activity, as well as increase of Snail protein level. Taken together, CAPS1 promotes colorectal cancer metastasis through PI3K/Akt/GSK3β/Snail signal pathway-mediated EMT process.
Collapse
Affiliation(s)
- Guang-Xi Zhao
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.,Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ying-Ying Xu
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Shu-Qiang Weng
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
| | - Si Zhang
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ying Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xi-Zhong Shen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
| | - She Chen
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
13
|
Guo Y, Wu R, Gaspar JM, Sargsyan D, Su ZY, Zhang C, Gao L, Cheng D, Li W, Wang C, Yin R, Fang M, Verzi MP, Hart RP, Kong AN. DNA methylome and transcriptome alterations and cancer prevention by curcumin in colitis-accelerated colon cancer in mice. Carcinogenesis 2019; 39:669-680. [PMID: 29547900 DOI: 10.1093/carcin/bgy043] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/12/2018] [Indexed: 12/17/2022] Open
Abstract
Inflammation is highly associated with colon carcinogenesis. Epigenetic mechanisms could play an important role in the initiation and progression of colon cancer. Curcumin, a dietary phytochemical, shows promising effects in suppressing colitis-associated colon cancer in azoxymethane-dextran sulfate sodium (AOM-DSS) mice. However, the potential epigenetic mechanisms of curcumin in colon cancer remain unknown. In this study, the anticancer effect of curcumin in suppressing colon cancer in an 18-week AOM-DSS colon cancer mouse model was confirmed. We identified lists of differentially expressed and differentially methylated genes in pairwise comparisons and several pathways involved in the potential anticancer effect of curcumin. These pathways include LPS/IL-1-mediated inhibition of RXR function, Nrf2-mediated oxidative stress response, production of NO and ROS in macrophages and IL-6 signaling. Among these genes, Tnf stood out with decreased DNA CpG methylation of Tnf in the AOM-DSS group and reversal of the AOM-DSS induced Tnf demethylation by curcumin. These observations in Tnf methylation correlated with increased and decreased Tnf expression in RNA-seq. The functional role of DNA methylation of Tnf was further confirmed by in vitro luciferase transcriptional activity assay. In addition, the DNA methylation level in a group of inflammatory genes was decreased in the AOM+DSS group but restored by curcumin and was validated by pyrosequencing. This study shows for the first time epigenomic changes in DNA CpG methylation in the inflammatory response from colitis-associated colon cancer and the reversal of their CpG methylation changes by curcumin. Future clinical epigenetic studies with curcumin in inflammation-associated colon cancer would be warranted.
Collapse
Affiliation(s)
- Yue Guo
- Graduate Program in Pharmaceutical Science, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - John M Gaspar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Zheng-Yuan Su
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, Taiwan
| | - Chengyue Zhang
- Graduate Program in Pharmaceutical Science, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Linbo Gao
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David Cheng
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Wenji Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Chao Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ran Yin
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Mingzhu Fang
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Michael P Verzi
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
14
|
Chen D, Yu D, Wang X, Liu Y, He Y, Deng R, Jiang Y, Zhang F, Liu Y, Xu M, Li J, Luo J, Wang S. Epithelial to mesenchymal transition is involved in ethanol promoted hepatocellular carcinoma cells metastasis and stemness. Mol Carcinog 2018; 57:1358-1370. [PMID: 30295962 DOI: 10.1002/mc.22850] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/04/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022]
Abstract
Hepatocellular Carcinoma (HCC) is a malignant tumor with high rate of relapse and metastasis. Ethanol is a well-known risk factor for HCC; it promotes the progression and aggressiveness of HCC. However, the underlying mechanism remains unclear. In clinic studies, we showed that alcohol consumption is positively correlated with TNM stage and vessel invasion; HCC patients with chronic drinking history had faster progression rate and poorer prognosis compared to non-drinkers. In experimental models, ethanol exposure enhanced the metastasis, and invasion of HCC cells. Ethanol exposure increased cancer stem cells (CSC) population and enhanced stemness of HCC cells in vitro and in vivo. Mechanically, we found that ethanol exposure induced epithelial to mesenchymal transition (EMT) through activating Wnt/β-catenin signaling pathway in HCC cells. We further demonstrated that β-catenin siRNA or salinomycin (an inhibitor of Wnt/β-catenin pathway) partially rescued ethanol-induced EMT. In conclusion, this study suggested that ethanol exposure promotes the metastasis and stemness of HCC cells by inducing EMT.
Collapse
MESH Headings
- Alcohol Drinking
- Animals
- Anti-Infective Agents, Local/pharmacology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Epithelial-Mesenchymal Transition/drug effects
- Ethanol/pharmacology
- Female
- Hep G2 Cells
- Humans
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Mice, Inbred C57BL
- Mice, Nude
- Middle Aged
- Neoplasm Metastasis
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Danlei Chen
- Schoolof Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Dandan Yu
- Schoolof Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Xinyi Wang
- Schoolof Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Yan Liu
- Schoolof Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P. R. China
| | - Yongjing He
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P. R. China
| | - Ruiqing Deng
- Schoolof Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P. R. China
| | - Yu Jiang
- Schoolof Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Fengyun Zhang
- Schoolof Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Yakun Liu
- Schoolof Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, College of Medicine, Lexington, Kentucky
| | - Jiabin Li
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P. R. China
| | - Jia Luo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, College of Medicine, Lexington, Kentucky
| | - Siying Wang
- Schoolof Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, P. R. China
| |
Collapse
|
15
|
Ramadori P, Cubero FJ, Liedtke C, Trautwein C, Nevzorova YA. Alcohol and Hepatocellular Carcinoma: Adding Fuel to the Flame. Cancers (Basel) 2017; 9:cancers9100130. [PMID: 28946672 PMCID: PMC5664069 DOI: 10.3390/cancers9100130] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023] Open
Abstract
Primary tumors of the liver represent the fifth most common type of cancer in the world and the third leading cause of cancer-related death. Case-control studies from different countries report that chronic ethanol consumption is associated with an approximately 2-fold increased odds ratio for hepatocellular carcinoma (HCC). Despite the substantial epidemiologic data in humans demonstrating that chronic alcohol consumption is a major risk factor for HCC development, the pathways causing alcohol-induced liver cancer are poorly understood. In this overview, we summarize the epidemiological evidence for the association between alcohol and liver cancer, review the genetic, oncogenic, and epigenetic factors that drive HCC development synergistically with ethanol intake and discuss the essential molecular and metabolic pathways involved in alcohol-induced liver tumorigenesis.
Collapse
Affiliation(s)
- Pierluigi Ramadori
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany.
| | - Francisco Javier Cubero
- Department of Immunology, Complutense University School of Medicine, Madrid 28040, Spain.
- 13 de Octubre Health Research Institute (imas12), Madrid 28041, Spain.
| | - Christian Liedtke
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany.
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany.
| | - Yulia A Nevzorova
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany.
- Department of Animal Physiology II, Faculty of Biology, Complutense University, Madrid 28040, Spain.
| |
Collapse
|
16
|
Kleist B, Bagdonas M, Oommen P, Schoenhardt I, Levermann J, Poetsch M. The association between clinical outcome and CD8 + lymphocytic infiltration in advanced stages of colorectal cancer differs by latent virus infection in tumour tissue. Histopathology 2017; 72:201-215. [PMID: 28746988 DOI: 10.1111/his.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 07/24/2017] [Indexed: 11/29/2022]
Abstract
AIMS In the near future, an immunoscore based on the quantification of lymphocytic populations can be expected as a fundamental supplement of colorectal cancer (CRC) classification. This study explored whether latent viral infection has an influence on prognostically relevant host immunity in CRC. METHODS AND RESULTS CD8+ lymphocytic infiltration in three tumour compartments of 121 CRC was compared with clinical data and occurrence of latent infection with herpes simplex virus (HSV1, HSV2), cytomegalovirus (CMV), human papillomavirus (HPV16 and HPV18) in the tumour tissue, which was determined by polymerase chain reaction (PCR). Intraepithelial CD8+ lymphocytic infiltration (IECD8+ ) showed a trend towards correlation with clinical stage (P = 0.073), significant differences between CRC with and without metastases (P = 0.001) and a significant correlation with overall survival (OS, P = 0.001). Each of these three clinical parameters showed a significant link to IECD8+ in the virus DNA-negative (P-values: 0.001-0.036), but no significant differences in the virus DNA-positive subgroup, which is consistent with a moderating effect of virus DNA on these associations. A significant correlation of CD8+ infiltration in the invasive margin (IMCD8+ ) with OS (P = 0.016) was also moderated by virus DNA. CONCLUSION Our data suggest a possible influence of latent viral infection on the association between clinical outcome and CD8+ lymphocytic infiltration in CRC tissue. After confirmation of these results by large cohort studies, a potential interaction between microbial pathogens and host immunity in CRC and its impact on prognostic immunoscores and/or new therapeutic strategies should be investigated further.
Collapse
Affiliation(s)
- Britta Kleist
- Department of Pathology, Southern Hospital Trust, Kristiansand, Norway
| | - Marius Bagdonas
- Department of Pathology, Southern Hospital Trust, Kristiansand, Norway
| | - Prakash Oommen
- Department of Pathology, Southern Hospital Trust, Kristiansand, Norway
| | - Irina Schoenhardt
- Department of Pathology, Southern Hospital Trust, Kristiansand, Norway
| | - Janina Levermann
- Institute of Legal Medicine, University Hospital Essen, Essen, Germany
| | - Micaela Poetsch
- Institute of Legal Medicine, University Hospital Essen, Essen, Germany
| |
Collapse
|
17
|
Chen D, Zhang F, Ren H, Luo J, Wang S. Role of cytokines and chemokines in alcohol-induced tumor promotion. Onco Targets Ther 2017; 10:1665-1671. [PMID: 28360527 PMCID: PMC5364014 DOI: 10.2147/ott.s129781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Excessive chronic alcohol consumption has become a worldwide health problem. The oncogenic effect of chronic alcohol consumption is one of the leading concerns. The mechanisms of alcohol-induced tumorigenesis and tumor progression are largely unknown, although many factors have been implicated in the process. This review discusses the recent progress in this research area with concentration on alcohol-induced dysregulation of cytokines and chemokines. Based on the available evidence, we propose that alcohol promotes tumor progression by the dysregulation of the cytokine/chemokine system. In addition, we discuss specific transcription factors and signaling pathways that are involved in the action of these cytokines/chemokines and the oncogenic effect of alcohol. This review provides novel insight into the mechanisms of alcohol-induced tumor promotion.
Collapse
Affiliation(s)
- Danlei Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Fengyun Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Haifeng Ren
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jia Luo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Siying Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
18
|
Mohr AM, Gould JJ, Kubik JL, Talmon GA, Casey CA, Thomas P, Tuma DJ, McVicker BL. Enhanced colorectal cancer metastases in the alcohol-injured liver. Clin Exp Metastasis 2017; 34:171-184. [PMID: 28168393 DOI: 10.1007/s10585-017-9838-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/16/2017] [Indexed: 02/08/2023]
Abstract
Metastatic liver disease is a major cause of mortality in colorectal cancer (CRC) patients. Alcohol consumption is a noted risk factor for secondary cancers yet the role of alcoholic liver disease (ALD) in colorectal liver metastases (CRLM) is not defined. This work evaluated tumor cell colonization in the alcoholic host liver using a novel preclinical model of human CRC liver metastases. Immunocompromised Rag1-deficient mice were fed either ethanol (E) or isocaloric control (C) diets for 4 weeks prior to intrasplenic injection of LS174T human CRC cells. ALD and CRLM were evaluated 3 or 5 weeks post-LS174T cell injection with continued C/E diet administration. ALD was confirmed by increased serum transaminases, hepatic steatosis and expression of cytochrome P4502E1, a major ethanol-metabolizing enzyme. Alcohol-mediated liver dysfunction was validated by impaired endocytosis of asialoorosomucoid and carcinoembryonic antigen (CEA), indicators of hepatocellular injury and progressive CRC disease, respectively. Strikingly, the rate and burden of CRLM was distinctly enhanced in alcoholic livers with metastases observed earlier and more severely in E-fed mice. Further, alcohol-related increases (1.5-3.0 fold) were observed in the expression of hepatic cytokines (TNF-α, IL-1 beta, IL-6, IL-10) and other factors noted to be involved in the colonization of CRC cells including ICAM-1, CCL-2, CCL-7, MMP-2, and MMP-9. Also, alcoholic liver injury was associated with altered hepatic localization as well as increased circulating levels of CEA released from CRC cells. Altogether, these findings indicate that the alcoholic liver provides a permissive environment for the establishment of CRLM, possibly through CEA-related inflammatory mechanisms.
Collapse
Affiliation(s)
- Ashley M Mohr
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - John J Gould
- Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Jacy L Kubik
- Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA.,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Geoffrey A Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Carol A Casey
- Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA.,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Peter Thomas
- Department of Surgery and Biomedical Sciences, Creighton University, Omaha, NE, USA
| | - Dean J Tuma
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benita L McVicker
- Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA. .,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|