1
|
Nie J, Wang S, Zhong Y, Yang F, Liu J, Liu Z. Identifying PSIP1 as a critical R-loop regulator in osteosarcoma via machine-learning and multi-omics analysis. Cancer Cell Int 2025; 25:159. [PMID: 40264164 PMCID: PMC12016182 DOI: 10.1186/s12935-025-03775-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 04/02/2025] [Indexed: 04/24/2025] Open
Abstract
Dysregulation of R-loops has been implicated in tumor development, progression, and the regulation of tumor immune microenvironment (TME). However, their roles in osteosarcoma (OS) remain underexplored. In this study, we firstly constructed a novel R-loop Gene Prognostic Score Model (RGPSM) based on the RNA-sequencing (RNA-seq) datasets and evaluated the relationships between the RGPSM scores and the TME. Additionally, we identified key R-loop-related genes involved in OS progression using single-cell RNA sequencing (scRNA-seq) dataset, and validated these findings through experiments. We found that patients with high-RGPSM scores exhibited poorer prognosis, lower Huvos grades and a more suppressive TME. Moreover, the proportion of malignant cells was significantly higher in the high-RGPSM group. And integrated analysis of RNA-seq and scRNA-seq datasets revealed that PC4 and SRSF1 Interacting Protein 1 (PSIP1) was highly expressed in osteoblastic and proliferative OS cells. Notably, high expression of PSIP1 was associated with poor prognosis of OS patients. Subsequent experiments demonstrated that knockdown of PSIP1 inhibited OS progression both in vivo and in vitro, leading increased R-loop accumulation and DNA damage. Conversely, overexpression of PSIP1 facilitated R-loop resolution and reduced DNA damage induced by cisplatin. In conclusion, we developed a novel RGPSM that effectively predicted the outcomes of OS patients across diverse cohorts and identified PSIP1 as a critical modulator of OS progression by regulating R-loop accumulation and DNA damage.
Collapse
Affiliation(s)
- Jiangbo Nie
- Department of Orthopedic Surgery, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Orthopedic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Diseases, Nanchang, China
| | - Shijiang Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Diseases, Nanchang, China
| | - Yanxin Zhong
- Department of Orthopedic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Diseases, Nanchang, China
| | - Feng Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Diseases, Nanchang, China
| | - Jiaming Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Diseases, Nanchang, China
| | - Zhili Liu
- Department of Orthopedic Surgery, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Nanchang, China.
- Department of Orthopedic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Diseases, Nanchang, China.
| |
Collapse
|
2
|
Akele M, Iervolino M, Van Belle S, Christ F, Debyser Z. Role of LEDGF/p75 (PSIP1) in oncogenesis. Insights in molecular mechanism and therapeutic potential. Biochim Biophys Acta Rev Cancer 2025; 1880:189248. [PMID: 39701326 DOI: 10.1016/j.bbcan.2024.189248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Aberrant gene expression due to dysfunction in proteins involved in transcriptional regulation is a hallmark of tumor development. Indeed, targeting transcriptional regulators represents an emerging approach in cancer therapeutics. Lens epithelium-derived growth factor (LEDGF/p75, PSIP1) is a co-transcriptional activator that tethers several proteins to the chromatin. LEDGF/p75 has been implicated in diseases such as HIV infection and KMT2A-rearranged leukemia. Notably, LEDGF/p75 is upregulated in various human cancers including prostate and breast cancer. In this review, we discuss the essential role of LEDGF/p75 in different malignancies and explore its mechanistic contribution to tumorigenesis revealing its potential as a therapeutic target for chemotherapy.
Collapse
Affiliation(s)
- Muluembet Akele
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Matteo Iervolino
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Siska Van Belle
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Frauke Christ
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Ortiz-Hernandez GL, Sanchez-Hernandez ES, Ochoa PT, Casiano CA. The Emerging Roles of the Stress Epigenetic Reader LEDGF/p75 in Cancer Biology and Therapy Resistance: Mechanisms and Targeting Opportunities. Cancers (Basel) 2024; 16:3957. [PMID: 39682146 DOI: 10.3390/cancers16233957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The lens epithelium derived growth factor of 75 kD (LEDGF/p75) is a transcription co-activator and epigenetic reader that has emerged as a stress oncoprotein in multiple human cancers. Growing evidence indicates that it promotes tumor cell survival against certain therapeutic drugs. The amino (N)-terminal region of LEDGF/p75 contains a PWWP domain that reads methylated histone marks, critical for recognizing transcriptionally active chromatin sites. Its carboxyl (C)-terminus has an integrase binding domain (IBD) that serves as the binding site for the HIV-1 integrase and multiple oncogenic transcription factors. Acting as hubs for protein-protein interactions, both domains facilitate the tethering of oncogenic transcription factors and regulators to active chromatin to regulate mRNA splicing, promote DNA repair, and enhance the expression of stress and cancer-related genes that contribute to tumor cell aggressiveness and chemoresistance. This review summarizes our current knowledge of the emerging roles of LEDGF/p75 in cancer biology and therapy resistance and discusses its potential as a novel oncotherapeutic target in combinatorial treatments.
Collapse
Affiliation(s)
- Greisha L Ortiz-Hernandez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Evelyn S Sanchez-Hernandez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Pedro T Ochoa
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Carlos A Casiano
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
- Department of Medicine, Division of Rheumatology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
- Cancer Center, Loma Linda University Health, Loma Linda, CA 92350, USA
| |
Collapse
|
4
|
Brouns T, Lux V, Van Belle S, Christ F, Veverka V, Debyser Z. The Impact of Lens Epithelium-Derived Growth Factor p75 Dimerization on Its Tethering Function. Cells 2024; 13:227. [PMID: 38334618 PMCID: PMC10854676 DOI: 10.3390/cells13030227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
The transcriptional co-activator lens epithelium-derived growth factor/p75 (LEDGF/p75) plays an important role in the biology of the cell and in several human diseases, including MLL-rearranged acute leukemia, autoimmunity, and HIV-1 infection. In both health and disease, LEDGF/p75 functions as a chromatin tether that interacts with proteins such as MLL1 and HIV-1 integrase via its integrase-binding domain (IBD) and with chromatin through its N-terminal PWWP domain. Recently, dimerization of LEDGF/p75 was shown, mediated by a network of electrostatic contacts between amino acids from the IBD and the C-terminal α6-helix. Here, we investigated the functional impact of LEDGF/p75 variants on the dimerization using biochemical and cellular interaction assays. The data demonstrate that the C-terminal α6-helix folds back in cis on the IBD of monomeric LEDGF/p75. We discovered that the presence of DNA stimulates LEDGF/p75 dimerization. LEDGF/p75 dimerization enhances binding to MLL1 but not to HIV-1 integrase, a finding that was observed in vitro and validated in cell culture. Whereas HIV-1 replication was not dependent on LEDGF/p75 dimerization, colony formation of MLLr-dependent human leukemic THP-1 cells was. In conclusion, our data indicate that intricate changes in the quaternary structure of LEDGF/p75 modulate its tethering function.
Collapse
Affiliation(s)
- Tine Brouns
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium; (T.B.); (S.V.B.); (F.C.)
| | - Vanda Lux
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000 Prague, Czech Republic; (V.L.); (V.V.)
| | - Siska Van Belle
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium; (T.B.); (S.V.B.); (F.C.)
| | - Frauke Christ
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium; (T.B.); (S.V.B.); (F.C.)
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000 Prague, Czech Republic; (V.L.); (V.V.)
- Department of Cell Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium; (T.B.); (S.V.B.); (F.C.)
| |
Collapse
|
5
|
Drastichova Z, Trubacova R, Novotny J. Regulation of phosphosignaling pathways involved in transcription of cell cycle target genes by TRH receptor activation in GH1 cells. Biomed Pharmacother 2023; 168:115830. [PMID: 37931515 DOI: 10.1016/j.biopha.2023.115830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
Thyrotropin-releasing hormone (TRH) is known to activate several cellular signaling pathway, but the activation of the TRH receptor (TRH-R) has not been reported to regulate gene transcription. The aim of this study was to identify phosphosignaling pathways and phosphoprotein complexes associated with gene transcription in GH1 pituitary cells treated with TRH or its analog, taltirelin (TAL), using label-free bottom-up mass spectrometry-based proteomics. Our detailed analysis provided insight into the mechanism through which TRH-R activation may regulate the transcription of genes related to the cell cycle and proliferation. It involves control of the signaling pathways for β-catenin/Tcf, Notch/RBPJ, p53/p21/Rbl2/E2F, Myc, and YY1/Rb1/E2F through phosphorylation and dephosphorylation of their key components. In many instances, the phosphorylation patterns of differentially phosphorylated phosphoproteins in TRH- or TAL-treated cells were identical or displayed a similar trend in phosphorylation. However, some phosphoproteins, especially components of the Wnt/β-catenin/Tcf and YY1/Rb1/E2F pathways, exhibited different phosphorylation patterns in TRH- and TAL-treated cells. This supports the notion that TRH and TAL may act, at least in part, as biased agonists. Additionally, the deficiency of β-arrestin2 resulted in a reduced number of alterations in phosphorylation, highlighting the critical role of β-arrestin2 in the signal transduction from TRH-R in the plasma membrane to transcription factors in the nucleus.
Collapse
Affiliation(s)
- Zdenka Drastichova
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czechia
| | - Radka Trubacova
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czechia; Institute of Physiology, Czech Academy of Sciences, 142 20 Prague, Czechia
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czechia.
| |
Collapse
|
6
|
Xiao M, Wang J, Chen Y. E2F2 Promotes Wound Healing of Diabetic Foot Ulcer by Regulating CDCA7L Transcription. Exp Clin Endocrinol Diabetes 2023; 131:162-172. [PMID: 36893788 DOI: 10.1055/a-1989-1918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
OBJECTIVE The E2F2 transcription factor can accelerate cell proliferation and wound healing. However, its mechanism of action in a diabetic foot ulcer (DFU) remains unclear. Therefore, this study explores the influence of E2F2 on wound healing in DFU by examining cell division cycle-associated 7-like (CDCA7L) expression. METHODS CDCA7L and E2F2 expression in DFU tissues were analyzed with databases. CDCA7L and E2F2 expression were altered in human umbilical vein endothelial cells (HUVECs) and spontaneously transformed human keratinocyte cell culture (HaCaT) cells. Cell viability, migration, colony formation, and angiogenesis were evaluated. Binding of E2F2 to the CDCA7L promoter was examined. Subsequently, a diabetes mellitus (DM) mouse model was established and treated with full-thickness excision followed by CDCA7L overexpression. Wound healing in these mice was observed and recorded, and vascular endothelial growth factor receptor 2 (VEGFR2) and hematopoietic progenitor cell antigen CD34 (CD34) expression were determined. E2F2 and CDCA7L expression levels in cells and mice were evaluated. The expression of growth factors was tested. RESULTS CDCA7L expression was downregulated in DFU tissues and wound tissues from DM mice. Mechanistically, E2F2 bound to the CDCA7L promoter to upregulate CDCA7L expression. E2F2 overexpression enhanced viability, migration, and growth factor expression in HaCaT cells and HUVECs, and augmented HUVEC angiogenesis and HaCaT cell proliferation, which was nullified by silencing CDCA7L. In DM mice, CDCA7L overexpression facilitated wound healing and elevated the expression level of growth factors. CONCLUSIONS E2F2 facilitated cell proliferation and migration and fostered wound healing in DFU cells through binding to the CDCA7L promoter.
Collapse
Affiliation(s)
- Meimei Xiao
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, P.R. China
| | - Jiusong Wang
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, P.R. China
| | - Yanming Chen
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, P.R. China
| |
Collapse
|
7
|
The TFIIS N-terminal domain (TND): a transcription assembly module at the interface of order and disorder. Biochem Soc Trans 2023; 51:125-135. [PMID: 36651856 PMCID: PMC9987994 DOI: 10.1042/bst20220342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023]
Abstract
Interaction scaffolds that selectively recognize disordered protein strongly shape protein interactomes. An important scaffold of this type that contributes to transcription is the TFIIS N-terminal domain (TND). The TND is a five-helical bundle that has no known enzymatic activity, but instead selectively reads intrinsically disordered sequences of other proteins. Here, we review the structural and functional properties of TNDs and their cognate disordered ligands known as TND-interacting motifs (TIMs). TNDs or TIMs are found in prominent members of the transcription machinery, including TFIIS, super elongation complex, SWI/SNF, Mediator, IWS1, SPT6, PP1-PNUTS phosphatase, elongin, H3K36me3 readers, the transcription factor MYC, and others. We also review how the TND interactome contributes to the regulation of transcription. Because the TND is the most significantly enriched fold among transcription elongation regulators, TND- and TIM-driven interactions have widespread roles in the regulation of many transcriptional processes.
Collapse
|
8
|
Lepcha TT, Kumar M, Sharma AK, Mal S, Majumder D, Jana K, Basu J, Kundu M. Uncovering the role of microRNA671-5p/CDCA7L/monoamine oxidase-A signaling in Helicobacter pylori mediated apoptosis in gastric epithelial cells. Pathog Dis 2023; 81:7143101. [PMID: 37140023 DOI: 10.1093/femspd/ftad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/27/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023] Open
Abstract
Helicobacter pylori is a gram-negative microaerophilic bacterium and is associated with gastrointestinal diseases ranging from peptic ulcer and gastritis to gastric cancer and mucosa-associated lymphoid tissue lymphoma. In our laboratory, the transcriptomes and miRnomes of AGS cells infected with H. pylori have been profiled, and an miRNA-mRNA network has been constructed. MicroRNA 671-5p is upregulated during H. pylori infection of AGS cells or of mice. In this study, the role of miR-671-5p during infection has been investigated. It has been validated that miR-671-5p targets the transcriptional repressor CDCA7L, which is downregulated during infection (in vitro and in vivo) concomitant with miR-671-5p upregulation. Further, it has been established that the expression of monoamine oxidase A (MAO-A) is repressed by CDCA7L, and that MAO-A triggers the generation of reactive oxygen species (ROS). Consequently, miR-671-5p/CDCA7L signaling is linked to the generation of ROS during H. pylori infection. Finally, it has been demonstrated that ROS-mediated caspase 3 activation and apoptosis that occurs during H. pylori infection, is dependent on the miR-671-5p/CDCA7L/MAO-A axis. Based on the above reports, it is suggested that targeting miR-671-5p could offer a means of regulating the course and consequences of H. pylori infection.
Collapse
Affiliation(s)
- Thurbu Tshering Lepcha
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road Kolkata 700009, India
| | - Manish Kumar
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road Kolkata 700009, India
| | - Arun Kumar Sharma
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road Kolkata 700009, India
| | - Soumya Mal
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road Kolkata 700009, India
| | - Debayan Majumder
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road Kolkata 700009, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, EN80 Sector V, Salt Lake City, Kolkata 700091, India
| | - Joyoti Basu
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road Kolkata 700009, India
| | - Manikuntala Kundu
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road Kolkata 700009, India
| |
Collapse
|
9
|
Freudenhammer M, Salzer U, Heselich A, Hufnagel M, Janda A. Low Prevalence of Anti-DFS70 Antibodies in Children With ANA-Associated Autoimmune Disease. Front Pediatr 2022; 10:839928. [PMID: 35391747 PMCID: PMC8980602 DOI: 10.3389/fped.2022.839928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Anti-DFS70 antibodies occur in healthy individuals with various medical conditions. Unlike other anti-nuclear autoantibodies (ANA), they are not associated with systemic autoimmune disease in adult patients. To date, only a few studies have addressed the prevalence and/or clinical relevance of anti-DFS70 autoantibodies in children with and without autoimmune disease. METHODS Included in this retrospective cross-sectional mono-centric study were 308 pediatric patients with suspected or known autoimmune conditions who had a positive ANA in indirect immune fluorescence (IIF) screening and who were screened for anti-DFS70 antibodies by extractable nuclear antigen antibodies (ENA) immunoblot. Patients were assigned to four different diagnostic categories according to their diagnosis in the corresponding medical record: (a) absence of autoimmune or rheumatic disease (noARD, n = 116); (b) suspected autoimmunity without definitive diagnosis (sAI, n = 48); (c) other rheumatic disease (ORD) (n = 115); and (d) ANA-associated autoimmune disease (AARD, n = 29). RESULTS The prevalence of anti-DFS70 antibodies in the overall cohort was 33.8%. Among children without ARD (46.6%, 54/116), prevalence was significantly higher than among children with ORD (23.7%, 27/115, p = 0.0003) or AARD (17.2%, 5/29, p = 0.0054). Among all of the anti-DFS70 positive patients with AARD, other autoantibodies were found in the ENA immunoblot. In contrast, among anti-DFS70 positive patients with ORD (11.5%, 4/27), sAI (33.3%, 6/18) and noARD (16.7%, 9/54), other autoantibodies infrequently were detected (p = 0.0005). Patients with uveitis rarely were positive for anti-DFS70 antibodies (7.7%, 1/13). No association was found between anti-DFS70 antibodies and a history of allergic conditions (p = 0.51). The concordance between a typical DFS pattern in IIF and the detection of anti-DFS70 antibodies by immunoblot was 59.3%. CONCLUSION As with adults, the higher prevalence of anti-DFS70 among children without autoimmune disease confirms the mutual exclusion for this autoantibody in the pathogenesis of ARD. Among ANA-positive children, monospecific anti-DFS70 antibodies may help to discriminate between AARD and not-AARD-related conditions.
Collapse
Affiliation(s)
- Mirjam Freudenhammer
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,IMM-PACT Clinician Scientist Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulrich Salzer
- Center for Chronic Immunodeficiency, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Rheumatology and Clinical Immunology, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Aileen Heselich
- Center for Chronic Immunodeficiency, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markus Hufnagel
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ales Janda
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
10
|
The LEDGF/p75 Integrase Binding Domain Interactome Contributes to the Survival, Clonogenicity, and Tumorsphere Formation of Docetaxel-Resistant Prostate Cancer Cells. Cells 2021; 10:cells10102723. [PMID: 34685704 PMCID: PMC8534522 DOI: 10.3390/cells10102723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022] Open
Abstract
Patients with prostate cancer (PCa) receiving docetaxel chemotherapy invariably develop chemoresistance. The transcription co-activator lens epithelium-derived growth factor p75 (LEDGF/p75), also known as DFS70 and PSIP1, is upregulated in several human cancers, including PCa and promotes resistance to docetaxel and other drugs. The C-terminal region of LEDGF/p75 contains an integrase binding domain (IBD) that tethers nuclear proteins, including the HIV-1 integrase and transcription factors, to active chromatin to promote viral integration and transcription of cellular survival genes. Here, we investigated the contribution of the LEDGF/p75 IBD interactome to PCa chemoresistance. Quantitative immunoblotting revealed that LEDGF/p75 and its IBD-interacting partners are endogenously upregulated in docetaxel-resistant PCa cell lines compared to docetaxel-sensitive parental cells. Using specific human autoantibodies, we co-immunoprecipitated LEDGF/p75 with its endogenous IBD-interacting partners JPO2, menin, MLL, IWS1, ASK1, and PogZ, as well as transcription factors c-MYC and HRP2, in docetaxel-resistant cells, and confirmed their nuclear co-localization by confocal microscopy. Depletion of LEDGF/p75 and selected interacting partners robustly decreased the survival, clonogenicity, and tumorsphere formation capacity of docetaxel-resistant cells. These results implicate the LEDGF/p75 IBD interactome in PCa chemoresistance and could lead to novel therapeutic strategies targeting this protein complex for the treatment of docetaxel-resistant tumors.
Collapse
|
11
|
LEDGF/p75-mediated chemoresistance of mixed-lineage leukemia involves cell survival pathways and super enhancer activators. Cancer Gene Ther 2021; 29:133-140. [PMID: 33795806 DOI: 10.1038/s41417-021-00319-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/12/2021] [Accepted: 02/26/2021] [Indexed: 11/08/2022]
Abstract
MLL is an aggressive subtype of leukemia with a poor prognosis that mostly affects pediatric patients. MLL-rearranged fusion proteins (MLLr) induce aberrant target gene expression resulting in leukemogenesis. MLL and its fusions are tethered to chromatin by LEDGF/p75, a transcriptional co-activator that specifically recognizes H3K36me2/3. LEDGF/p75 is ubiquitously expressed and associated with regulation of gene expression, autoimmune responses, and HIV replication. LEDGF/p75 was proven to be essential for leukemogenesis in MLL. Apart from MLL, LEDGF/p75 has been linked to lung, breast, and prostate cancer. Intriguingly, LEDGF/p75 interacts with Med-1, which co-localizes with BRD4. Both are known as co-activators of super-enhancers. Here, we describe LEDGF/p75-dependent chemoresistance of MLLr cell lines. Investigation of the underlying mechanism revealed a role of LEDGF/p75 in the cell cycle and in survival pathways and showed that LEDGF/p75 protects against apoptosis during chemotherapy. Remarkably, LEDGF/p75 levels also affected expression of BRD4 and Med1. Altogether, our data suggest a role of LEDGF/p75 in cancer survival, stem cell renewal, and activation of nuclear super enhancers.
Collapse
|
12
|
Li M, Deng Y, Zhang W. Molecular Determinants of Medulloblastoma Metastasis and Leptomeningeal Dissemination. Mol Cancer Res 2021; 19:743-752. [PMID: 33608450 DOI: 10.1158/1541-7786.mcr-20-1026] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/15/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022]
Abstract
Medulloblastoma is the most common malignant brain cancer in pediatrics consisting of four molecular subgroups, namely wingless (WNT), sonic hedgehog (SHH), Group 3, and Group 4. One of the biggest challenges in the clinical management of this disease is the leptomeningeal dissemination (LMD) of tumor cells with high morbidity and mortality. Many molecular regulators to date have been identified to participate in medulloblastoma metastasis. In the SHH subgroup, the co-upregulation of CXCR4 and PDGFR, as well as the activation of c-MET, show significant promigratory effects on medulloblastoma cells. Amplification or overexpression of genes on the long arm of chromosome 17, such as LASP1 and WIP1, facilitates tumor invasion in both Group 3 and Group 4 medulloblastomas. PRUNE1, NOTCH1, and MYC interactor JPO2 are more specific genetic drivers of metastatic Group 3 tumors. The RAS/MAPK and PI3K/AKT pathways are two crucial signal transduction pathways that may work as the convergent downstream mechanism of various metastatic drivers. Extracellular signals and cellular components in the tumor microenvironment also play a vital role in promoting the spread and colonization of medulloblastoma cells. For instance, the stromal granule cells and astrocytes support tumor growth and dissemination by secreting PlGF and CCL2, respectively. Importantly, the genetic divergence has been determined between the matched primary and metastatic medulloblastoma samples. However, the difficulty of obtaining metastatic medulloblastoma tissue hinders more profound studies of LMD. Therefore, identifying and analyzing the subclone with the metastatic propensity in the primary tumor is essential for future investigation.
Collapse
Affiliation(s)
- Min Li
- Department of Pediatrics Neurosurgery, Neurosurgery Center, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhao Deng
- Department of Pediatrics Neurosurgery, Neurosurgery Center, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wangming Zhang
- Department of Pediatrics Neurosurgery, Neurosurgery Center, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
13
|
Ortiz-Hernandez GL, Sanchez-Hernandez ES, Casiano CA. Twenty years of research on the DFS70/LEDGF autoantibody-autoantigen system: many lessons learned but still many questions. AUTOIMMUNITY HIGHLIGHTS 2020; 11:3. [PMID: 32127038 PMCID: PMC7065333 DOI: 10.1186/s13317-020-0126-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/14/2020] [Indexed: 12/24/2022]
Abstract
The discovery and initial characterization 20 years ago of antinuclear autoantibodies (ANAs) presenting a dense fine speckled (DFS) nuclear pattern with strong staining of mitotic chromosomes, detected by indirect immunofluorescence assay in HEp-2 cells (HEp-2 IIFA test), has transformed our view on ANAs. Traditionally, ANAs have been considered as reporters of abnormal immunological events associated with the onset and progression of systemic autoimmune rheumatic diseases (SARD), also called ANA-associated rheumatic diseases (AARD), as well as clinical biomarkers for the differential diagnosis of these diseases. However, based on our current knowledge, it is not apparent that autoantibodies presenting the DFS IIF pattern fall into these categories. These antibodies invariably target a chromatin-associated protein designated as dense fine speckled protein of 70 kD (DFS70), also known as lens epithelium-derived growth factor protein of 75 kD (LEDGF/p75) and PC4 and SFRS1 Interacting protein 1 (PSIP1). This multi-functional protein, hereafter referred to as DFS70/LEDGF, plays important roles in the formation of transcription complexes in active chromatin, transcriptional activation of specific genes, regulation of mRNA splicing, DNA repair, and cellular survival against stress. Due to its multiple functions, it has emerged as a key protein contributing to several human pathologies, including acquired immunodeficiency syndrome (AIDS), leukemia, cancer, ocular diseases, and Rett syndrome. Unlike other ANAs, "monospecific" anti-DFS70/LEDGF autoantibodies (only detectable ANA in serum) are not associated with SARD and have been detected in healthy individuals and some patients with non-SARD inflammatory conditions. These observations have led to the hypotheses that these antibodies could be considered as negative biomarkers of SARD and might even play a protective or beneficial role. In spite of 20 years of research on this autoantibody-autoantigen system, its biological and clinical significance still remains enigmatic. Here we review the current state of knowledge of this system, focusing on the lessons learned and posing emerging questions that await further scrutiny as we continue our quest to unravel its significance and potential clinical and therapeutic utility.
Collapse
Affiliation(s)
- Greisha L Ortiz-Hernandez
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, USA
| | - Evelyn S Sanchez-Hernandez
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, USA
| | - Carlos A Casiano
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA. .,Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, USA. .,Department of Medicine/Division of Rheumatology, Loma Linda University School of Medicine, Loma Linda, USA.
| |
Collapse
|
14
|
Guo R, Ma Y, Zhao M, Zhang W, An G, Chen B, Song Y, Xu H, Li Y. Polymorphism rs2395655 affects LEDGF/p75 binding activity and p21WAF1/CIP1 gene expression in esophageal squamous cell carcinoma. Cancer Med 2019; 8:2313-2324. [PMID: 30854807 PMCID: PMC6536968 DOI: 10.1002/cam4.2067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/24/2019] [Accepted: 02/12/2019] [Indexed: 01/26/2023] Open
Abstract
p21WAF1/CIP1 (p21) plays critical roles in cell‐cycle regulation and DNA repair and is transcriptionally regulated through p53‐dependent or ‐independent pathways. Bioinformatic analysis predicated one stress‐response element (STRE) implicated in single nucleotide polymorphism (SNP) rs2395655 of the p21 promoter. Here, we investigated the transcriptional regulatory function of rs2395655 variant genotype and analyzed its associations with the p21 expression and clinical outcomes in esophageal squamous cell carcinoma (ESCC) patients. Luciferase assay results showed significantly increased transcriptional activity of the rs2395655 G allele‐containing p21 promoter compared with rs2395655 A allele‐containing counterpart, especially in ESCC cells with ectopic LEDGF/p75 expression. Furthermore electrophoretic mobility shift assay using the rs2395655 G or A allele‐containing probe and chromatin immunoprecipitation assay with specific anti‐LEDGF/p75 antibody indicated the potential binding activity of LEDGF/p75 with the STRE element implicated in rs2395655 G allele of the p21 promoter. Subsequent specific RNA interference‐mediated depletion or ectopic expression of LEDGF/p75 caused obviously down‐ or up‐regulated expression of p21 mRNA in ESCC cells harboring rs2395655 GG genotype but not cells with rs2395655 AA genotype. Furthermore, rs2395655 GG genotype carriers showed significantly elevated p21 protein expression and conferred survival advantage in both univariate and multivariate analyses in total 218 ESCC patients. Our findings suggest that LEDGF/p75 regulates the p21 expression in ESCC cells through interacting with STRE element implicated in polymorphism rs2395655 and the elevated p21 protein expression and rs2395655GG genotype may serve as positive prognostic factors for ESCC patients.
Collapse
Affiliation(s)
- Rong Guo
- Department of Medical Oncology, Cancer Hospital Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yunan Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Laboratory Animal, Peking University Cancer Hospital & Institute, Beijing, China
| | - Min Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Wenlong Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Laboratory Animal, Peking University Cancer Hospital & Institute, Beijing, China
| | - Guo An
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Laboratory Animal, Peking University Cancer Hospital & Institute, Beijing, China
| | - Baojun Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Laboratory Animal, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yiping Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Laboratory Animal, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hui Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Laboratory Animal, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yong Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Laboratory Animal, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
15
|
Mahler M, Andrade LE, Casiano CA, Malyavantham K, Fritzler MJ. Anti-DFS70 antibodies: an update on our current understanding and their clinical usefulness. Expert Rev Clin Immunol 2019; 15:241-250. [DOI: 10.1080/1744666x.2019.1562903] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Michael Mahler
- Research & Development, Inova Diagnostics, San Diego, CA, USA
| | - Luis E. Andrade
- Rheumatology Division, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Immunology Division, Fleury Laboratories, São Paulo, Brazil
| | - Carlos A. Casiano
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Department of Medicine, Division of Rheumatology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | | | | |
Collapse
|
16
|
Peng M, Cong K, Panzarino NJ, Nayak S, Calvo J, Deng B, Zhu LJ, Morocz M, Hegedus L, Haracska L, Cantor SB. Opposing Roles of FANCJ and HLTF Protect Forks and Restrain Replication during Stress. Cell Rep 2018; 24:3251-3261. [PMID: 30232006 PMCID: PMC6218949 DOI: 10.1016/j.celrep.2018.08.065] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/23/2018] [Accepted: 08/22/2018] [Indexed: 02/07/2023] Open
Abstract
The DNA helicase FANCJ is mutated in hereditary breast and ovarian cancer and Fanconi anemia (FA). Nevertheless, how loss of FANCJ translates to disease pathogenesis remains unclear. We addressed this question by analyzing proteins associated with replication forks in cells with or without FANCJ. We demonstrate that FANCJ-knockout (FANCJ-KO) cells have alterations in the replisome that are consistent with enhanced replication stress, including an aberrant accumulation of the fork remodeling factor helicase-like transcription factor (HLTF). Correspondingly, HLTF contributes to fork degradation in FANCJ-KO cells. Unexpectedly, the unrestrained DNA synthesis that characterizes HLTF-deficient cells is FANCJ dependent and correlates with S1 nuclease sensitivity and fork degradation. These results suggest that FANCJ and HLTF promote replication fork integrity, in part by counteracting each other to keep fork remodeling and elongation in check. Indicating one protein compensates for loss of the other, loss of both HLTF and FANCJ causes a more severe replication stress response.
Collapse
Affiliation(s)
- Min Peng
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ke Cong
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nicholas J Panzarino
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sumeet Nayak
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jennifer Calvo
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Bin Deng
- Department of Biology/VGN Proteomics Facility, University of Vermont, Burlington, VT 05405, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Monika Morocz
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged 6726, Temesvari krt. 62, Hungary
| | - Lili Hegedus
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged 6726, Temesvari krt. 62, Hungary
| | - Lajos Haracska
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged 6726, Temesvari krt. 62, Hungary
| | - Sharon B Cantor
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
17
|
Sharma S, Čermáková K, De Rijck J, Demeulemeester J, Fábry M, El Ashkar S, Van Belle S, Lepšík M, Tesina P, Duchoslav V, Novák P, Hubálek M, Srb P, Christ F, Řezáčová P, Hodges HC, Debyser Z, Veverka V. Affinity switching of the LEDGF/p75 IBD interactome is governed by kinase-dependent phosphorylation. Proc Natl Acad Sci U S A 2018; 115:E7053-E7062. [PMID: 29997176 PMCID: PMC6065015 DOI: 10.1073/pnas.1803909115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lens epithelium-derived growth factor/p75 (LEDGF/p75, or PSIP1) is a transcriptional coactivator that tethers other proteins to gene bodies. The chromatin tethering function of LEDGF/p75 is hijacked by HIV integrase to ensure viral integration at sites of active transcription. LEDGF/p75 is also important for the development of mixed-lineage leukemia (MLL), where it tethers the MLL1 fusion complex at aberrant MLL targets, inducing malignant transformation. However, little is known about how the LEDGF/p75 protein interaction network is regulated. Here, we obtained solution structures of the complete interfaces between the LEDGF/p75 integrase binding domain (IBD) and its cellular binding partners and validated another binding partner, Mediator subunit 1 (MED1). We reveal that structurally conserved IBD-binding motifs (IBMs) on known LEDGF/p75 binding partners can be regulated by phosphorylation, permitting switching between low- and high-affinity states. Finally, we show that elimination of IBM phosphorylation sites on MLL1 disrupts the oncogenic potential of primary MLL1-rearranged leukemic cells. Our results demonstrate that kinase-dependent phosphorylation of MLL1 represents a previously unknown oncogenic dependency that may be harnessed in the treatment of MLL-rearranged leukemia.
Collapse
Affiliation(s)
| | - Kateřina Čermáková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Jan De Rijck
- Molecular Virology and Gene Therapy, KU Leuven, 3000 Leuven, Belgium;
| | | | - Milan Fábry
- Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
| | - Sara El Ashkar
- Molecular Virology and Gene Therapy, KU Leuven, 3000 Leuven, Belgium
| | - Siska Van Belle
- Molecular Virology and Gene Therapy, KU Leuven, 3000 Leuven, Belgium
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Petr Tesina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
- Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
| | - Vojtěch Duchoslav
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Petr Novák
- Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Pavel Srb
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Frauke Christ
- Molecular Virology and Gene Therapy, KU Leuven, 3000 Leuven, Belgium
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
- Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
| | - H Courtney Hodges
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Zeger Debyser
- Molecular Virology and Gene Therapy, KU Leuven, 3000 Leuven, Belgium;
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6, Czech Republic;
- Department of Cell Biology, Faculty of Science, Charles University, 116 36 Prague 1, Czech Republic
| |
Collapse
|
18
|
Lin TP, Li J, Li Q, Li X, Liu C, Zeng N, Huang JM, Chu GCY, Lin CH, Zhau HE, Chung LWK, Wu BJ, Shih JC. R1 Regulates Prostate Tumor Growth and Progression By Transcriptional Suppression of the E3 Ligase HUWE1 to Stabilize c-Myc. Mol Cancer Res 2018; 16:1940-1951. [PMID: 30042175 DOI: 10.1158/1541-7786.mcr-16-0346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 03/22/2018] [Accepted: 07/05/2018] [Indexed: 11/16/2022]
Abstract
Prostate cancer is a prevalent public health problem, especially because noncutaneous advanced malignant forms significantly affect the lifespan and quality of life of men worldwide. New therapeutic targets and approaches are urgently needed. The current study reports elevated expression of R1 (CDCA7L/RAM2/JPO2), a c-Myc-interacting protein and transcription factor, in human prostate cancer tissue specimens. In a clinical cohort, high R1 expression is associated with disease recurrence and decreased patient survival. Overexpression and knockdown of R1 in human prostate cancer cells indicate that R1 induces cell proliferation and colony formation. Moreover, silencing R1 dramatically reduces the growth of prostate tumor xenografts in mice. Mechanistically, R1 increases c-Myc protein stability by inhibiting ubiquitination and proteolysis through transcriptional suppression of HUWE1, a c-Myc-targeting E3 ligase, via direct interaction with a binding element in the promoter. Moreover, transcriptional repression is supported by a negative coexpression correlation between R1 and HUWE1 in a prostate cancer clinical dataset. Collectively, these findings, for the first time, characterize the contribution of R1 to prostate cancer pathogenesis. IMPLICATIONS: These findings provide evidence that R1 is a novel regulator of prostate tumor growth by stabilizing c-Myc protein, meriting further investigation of its therapeutic and prognostic potential.
Collapse
Affiliation(s)
- Tzu-Ping Lin
- Depatment of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
- USC-Taiwan Center for Translational Research, University of Southern California, Los Angeles, California
- Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Department of Urology, School of Medicine and Shu-Tien Urological Research Center, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Jingjing Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Qinlong Li
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiangyan Li
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Chunyan Liu
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ni Zeng
- Depatment of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Jen-Ming Huang
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Gina Chia-Yi Chu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Chi-Hung Lin
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Haiyen E Zhau
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Leland W K Chung
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Boyang Jason Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington.
| | - Jean C Shih
- Depatment of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California.
- USC-Taiwan Center for Translational Research, University of Southern California, Los Angeles, California
- Depatment of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
19
|
The therapeutic potential of targeting the PI3K pathway in pediatric brain tumors. Oncotarget 2018; 8:2083-2095. [PMID: 27926496 PMCID: PMC5356782 DOI: 10.18632/oncotarget.13781] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/22/2016] [Indexed: 01/12/2023] Open
Abstract
Central nervous system tumors are the most common cancer type in children and the leading cause of cancer related deaths. There is therefore a need to develop novel treatments. Large scale profiling studies have begun to identify alterations that could be targeted therapeutically, including the phosphoinositide 3-kinase (PI3K) signaling pathway, which is one of the most commonly activated pathways in cancer with many inhibitors under clinical development. PI3K signaling has been shown to be aberrantly activated in many pediatric CNS neoplasms. Pre-clinical analysis supports a role for PI3K signaling in the control of tumor growth, survival and migration as well as enhancing the cytotoxic effects of current treatments. Based on this evidence agents targeting PI3K signaling have begun to be tested in clinical trials of pediatric cancer patients. Overall, targeting the PI3K pathway presents as a promising strategy for the treatment of pediatric CNS tumors. In this review we examine the genetic alterations found in the PI3K pathway in pediatric CNS tumors and the pathological role it plays, as well as summarizing the current pre-clinical and clinical data supporting the use of PI3K pathway inhibitors for the treatment of these tumors.
Collapse
|
20
|
Hyun K, Jeon J, Park K, Kim J. Writing, erasing and reading histone lysine methylations. Exp Mol Med 2017; 49:e324. [PMID: 28450737 PMCID: PMC6130214 DOI: 10.1038/emm.2017.11] [Citation(s) in RCA: 776] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 02/08/2023] Open
Abstract
Histone modifications are key epigenetic regulatory features that have important roles in many cellular events. Lysine methylations mark various sites on the tail and globular domains of histones and their levels are precisely balanced by the action of methyltransferases ('writers') and demethylases ('erasers'). In addition, distinct effector proteins ('readers') recognize specific methyl-lysines in a manner that depends on the neighboring amino-acid sequence and methylation state. Misregulation of histone lysine methylation has been implicated in several cancers and developmental defects. Therefore, histone lysine methylation has been considered a potential therapeutic target, and clinical trials of several inhibitors of this process have shown promising results. A more detailed understanding of histone lysine methylation is necessary for elucidating complex biological processes and, ultimately, for developing and improving disease treatments. This review summarizes enzymes responsible for histone lysine methylation and demethylation and how histone lysine methylation contributes to various biological processes.
Collapse
Affiliation(s)
- Kwangbeom Hyun
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jongcheol Jeon
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Kihyun Park
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jaehoon Kim
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|