1
|
Zuo W, Tian M, Qi J, Zhang G, Hu J, Wang S, Bao Y. The functions of EF-hand proteins from host and zoonotic pathogens. Microbes Infect 2025; 27:105276. [PMID: 38072184 DOI: 10.1016/j.micinf.2023.105276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
EF-hand proteins not only regulate biological processes, but also influence immunity and infection. In this review, we summarize EF-hand proteins' functions in host and zoonotic pathogens, with details in structures, Ca2+ affinity, downstream targets and functional mechanisms. Studies entitled as EF-hand-related but with less solid features were also discussed. We believe it could raise cautions and facilitate proper research strategy for researchers.
Collapse
Affiliation(s)
- Wei Zuo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Mingxing Tian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jingjing Qi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Guangdong Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jiangang Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Engineering Research Center for the Prevention and Control of Animal Original Zoonosis of Fujian Province University, College of Life Science, Longyan University, Longyan, 364012, Fujian, China.
| | - Yanqing Bao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Engineering Research Center for the Prevention and Control of Animal Original Zoonosis of Fujian Province University, College of Life Science, Longyan University, Longyan, 364012, Fujian, China.
| |
Collapse
|
2
|
Cao S, Yin Y, Hu H, Hong S, He W, Lv W, Liu R, Li Y, Yu S, Xiao H. CircGLIS3 inhibits thyroid cancer invasion and metastasis through miR-146b-3p/AIF1L axis. Cell Oncol (Dordr) 2023; 46:1777-1789. [PMID: 37610691 DOI: 10.1007/s13402-023-00845-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 08/24/2023] Open
Abstract
PURPOSE Studies have shown that circRNA is involved in the occurrence and development of human cancers. However, it remains unclear that the contribution of circRNA in thyroid carcinoma and its role in the process of tumorigenesis. METHODS The expression profile of circRNA-miRNA-mRNA in thyroid carcinoma was detected by RNA sequencing and verified by qRT-PCR. The characteristics of circGLIS3 were verified by RNase R and actinomycin assays, subcellular fractionation, and fluorescence in situ hybridization. The functions of circGLIS3 and AIF1L were detected by wound healing, transwell, 3D culture and Western blot. RNA Immunoprecipitation (RIP), RNA pulldown and dual-luciferase reporter assays were used to verify the target genes of circGLIS3 and downstream miRNAs. Functional rescue experiments were performed by transfecting miRNA mimics or siRNA of target genes. Finally, metastatic mouse models were used to investigate circGLIS3 function in vivo. RESULTS In this study, we discovered a novel circRNA (has_circ_0007368, named as circGLIS3) by RNA sequencing. CircGLIS3 was down-regulated in thyroid carcinoma tissues and cells line, and was negatively associated with malignant clinical features of thyroid carcinoma. Functional studies found that circGLIS3 could inhibit the migration and invasion of thyroid carcinoma cells, and was related to the EMT process. Mechanistically, circGLIS3 can upregulate the expression of the AIF1L gene by acting as a miR-146b-3p sponge to inhibit the progression of thyroid carcinoma. CONCLUSION Our study identified circGLIS3 as a novel tumor suppressor in thyroid cancer, indicating the potential of circGLIS3 as a promising diagnostic and prognostic marker for thyroid cancer.
Collapse
Affiliation(s)
- Siting Cao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yali Yin
- Department of Endocrinology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Huijuan Hu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Shubin Hong
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Weiman He
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Weiming Lv
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Rengyun Liu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanbing Li
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuang Yu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Zakaria S, Allam S, El-Sisi AE. Perindopril sensitizes hepatocellular carcinoma to chemotherapy: A possible role of leptin / Wnt/ β-catenin axis with subsequent inhibition of liver cancer stem cells. Saudi Pharm J 2022; 30:1170-1180. [PMID: 36164573 PMCID: PMC9508642 DOI: 10.1016/j.jsps.2022.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death. The major challenge in managing HCC is the resistance to chemotherapy. Leptin hormone is associated with different oncogenic pathways implicated in drug resistance. Angiotensin II was found to decrease the production and secretion of leptin. Objective This study investigated the potential role of an ACEI perindopril as a chemosensitizer agent to sorafenib. Method HCC was induced in mice using a single dose of diethylnitrosamine DENA (200 mg/kg) followed by phenobarbital 0.05% in drinking water for 16 weeks. Mice were then treated with perindopril (1 mg/kg/day), Sorafenib (30 mg/kg/day), or both of them for another four weeks. Leptin, VEGF, MMP-9, Cyclin D1, EpCAM, and β-catenin were measured using immunoassay while Wnt and ALDH1 were assayed using western blotting assay. Results Perindopril whether alone or in combination with sorafenib decrease liver enzymes and preserve the liver architecture. Our study revealed that perindopril significantly increased the antineoplastic, antiangiogenic as well as anti-metastatic effects of sorafenib. This effect was correlated with the downregulation of the leptin / Wnt / β-catenin pathway and overexpression of ALDH1 while downregulation of EpCAM Conclusion This study presents perindopril as a potential chemosensitizer agent that works through decreased expression of the leptin / Wnt / β-catenin pathway.
Collapse
Affiliation(s)
- Sherin Zakaria
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kaferelsheikh University, 33516, Kaferelsheikh, Egypt
- Corresponding author.at: Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kaferelsheikh University, Kafer elsheikh, Egypt
| | - Shady Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Menoufia University, 32511, Menoufia, Egypt
| | - Alaa E. El-Sisi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, 31512, Tanta, Egypt
| |
Collapse
|
4
|
Yan W, Cheng L, Zhang D. Ultrasound-Targeted Microbubble Destruction Mediated si-CyclinD1 Inhibits the Development of Hepatocellular Carcinoma via Suppression of PI3K/AKT Signaling Pathway. Cancer Manag Res 2020; 12:10829-10839. [PMID: 33149688 PMCID: PMC7605614 DOI: 10.2147/cmar.s263590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
Background and Aim In our study, we aimed to investigate the effect of ultrasound-targeted microbubble destruction (UTMD)mediated si-CyclinD1 (CCND1) on the growth of hepatocellular carcinoma (HCC) cells. Patients and Methods Bioinformatics analysis was performed to detect the difference of CCND1 expression of HCC and normal liver tissues. After treatment with UTMDmediated si-CCND1, the growth and apoptosis of HepG2 cells were detected by flow cytometry, MTT, EdU staining, colony formation assay, Hoechst 33,258 staining and Western blot analysis. The growth of HepG2 cells in vivo was also studied via xenograft tumor in nude mice. Results CCND1 was highly expressed in HCC tissues and HCC cell lines. UTMDmediated si-CCND1 could inhibit the growth of HepG2 cells and promote apoptosis via suppression of the PI3K/AKT signaling pathway. UTMDmediated si-CCND1 could also suppress the growth of HepG2 cells in vivo. Conclusion Our study provided evidence that UTMDmediated si-CCND1 could inhibit the growth of HepG2 cells and promote apoptosis via suppression of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Wei Yan
- Department of Electrical Diagnosis, Changchun University of Traditional Chinese Medicine Affiliated Hospital, Changchun 130021, People's Republic of China
| | - Li Cheng
- Department of Electrical Diagnosis, Changchun University of Traditional Chinese Medicine Affiliated Hospital, Changchun 130021, People's Republic of China
| | - Dongmei Zhang
- Department of Electrical Diagnosis, Changchun University of Traditional Chinese Medicine Affiliated Hospital, Changchun 130021, People's Republic of China
| |
Collapse
|
5
|
Parikh D, Riascos-Bernal DF, Egaña-Gorroño L, Jayakumar S, Almonte V, Chinnasamy P, Sibinga NES. Allograft inflammatory factor-1-like is not essential for age dependent weight gain or HFD-induced obesity and glucose insensitivity. Sci Rep 2020; 10:3594. [PMID: 32107417 PMCID: PMC7046694 DOI: 10.1038/s41598-020-60433-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/04/2020] [Indexed: 01/01/2023] Open
Abstract
The allograft inflammatory factor (AIF) gene family consists of two identified paralogs – AIF1 and AIF1-like (AIF1L). The encoded proteins, AIF1 and AIF1L, are 80% similar in sequence and show conserved tertiary structure. While studies in human populations suggest links between AIF1 and metabolic diseases such as obesity and diabetes, such associations with AIF1L have not been reported. Drawing parallels based on structural similarity, we postulated that AIF1L might contribute to metabolic disorders, and studied it using mouse models. Here we report that AIF1L is expressed in major adipose depots and kidney but was not detectable in liver or skeletal muscle; in notable contrast to AIF1, AIF1L was also not found in spleen. Studies of AIF1L deficient mice showed no obvious postnatal developmental phenotype. In response to high fat diet (HFD) feeding for 6 or 18 weeks, WT and AIF1L deficient mice gained weight similarly, showed no differences in fat or lean mass accumulation, and displayed no changes in energy expenditure or systemic glucose handling. These findings indicate that AIF1L is not essential for the development of obesity or impaired glucose handling due to HFD, and advance understanding of this little-studied gene and its place in the AIF gene family.
Collapse
Affiliation(s)
- Dippal Parikh
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology. 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | - Dario F Riascos-Bernal
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology. 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | - Lander Egaña-Gorroño
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology. 1300 Morris Park Avenue, Bronx, New York, 10461, USA.,Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Smitha Jayakumar
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology. 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | - Vanessa Almonte
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology. 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | - Prameladevi Chinnasamy
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology. 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | - Nicholas E S Sibinga
- Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology. 1300 Morris Park Avenue, Bronx, New York, 10461, USA.
| |
Collapse
|
6
|
Human amniotic membrane conditioned medium inhibits proliferation and modulates related microRNAs expression in hepatocarcinoma cells. Sci Rep 2019; 9:14193. [PMID: 31578445 PMCID: PMC6775050 DOI: 10.1038/s41598-019-50648-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 09/17/2019] [Indexed: 12/19/2022] Open
Abstract
The placental stem cells have called the focus of attention for their therapeutic potential to treat different diseases, including cancer. There is plenty evidence about the antiproliferative, antiangiogenic and proapoptotic properties of the amniotic membrane. Liver cancer is the fifth cause of cancer in the world, with a poor prognosis and survival. Alternative treatments to radio- or chemotherapy have been searched. In this work we aimed to study the antiproliferative properties of the human amniotic membrane conditioned medium (AM-CM) in hepatocarcinoma cells. In addition, we have analyzed the regulation of pro and antiOncomiRs expression involved in hepatocarcinoma physiology. We have determined by 3H-thymidine incorporation assay that AM-CM inhibits DNA synthesis in HepG2 cells after 72 h of treatment. AM-CM pure or diluted at 50% and 25% also diminished HepG2 and HuH-7 cells viability and cell number. Furthermore, AM-CM induced cell cycle arrest in G2/M. When proliferation mechanisms were analyzed we found that AM-CM reduced the expression of both Cyclin D1 mRNA and protein. Nuclear expression of Ki-67 was also reduced. We observed that this CM was able to promote the expression of p53 and p21 mRNA and proteins, leading to cell growth arrest. Moreover, AM-CM induced an increase in nuclear p21 localization, observed by immunofluorescence. As p53 levels were increased, Mdm-2 expression was downregulated. Interestingly, HepG2 and HuH-7 cells treatment with AM-CM during 24 and 72 h produced an upregulation of antiOncomiRs 15a and 210, and a downregulation of proOncomiRs 206 and 145. We provide new evidence about the promising novel applications of human amniotic membrane in liver cancer.
Collapse
|
7
|
Zhang QH, Hu QX, Xie D, Chang B, Miao HG, Wang YG, Liu DZ, Li XD. Ganoderma lucidum Exerts an Anticancer Effect on Human Osteosarcoma Cells via Suppressing the Wnt/β-Catenin Signaling Pathway. Integr Cancer Ther 2019; 18:1534735419890917. [PMID: 31855073 PMCID: PMC6923688 DOI: 10.1177/1534735419890917] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/27/2019] [Accepted: 10/22/2019] [Indexed: 02/05/2023] Open
Abstract
Background: Current treatment of osteosarcoma is limited in part by side effects and low tolerability, problems generally avoided with traditional Chinese medicine. Ganoderma lucidum, a traditional Chinese medicine with antitumor effects, offers a potential alternative, but little is known about its molecular mechanisms in osteosarcoma cells. Objective: To investigate the effect of G lucidum on osteosarcoma cells and its mechanism. Methods: Osteosarcoma MG63 and U2-OS cells were treated with G lucidum, followed by assays for cell proliferation (Cell Counting Kit-8), colony formation, and apoptosis (Alexa Fluor 647-Annexin V/propidium iodide, flow cytometry). Migration and invasion of cells were assessed by wound healing and Transwell invasion assays, and the effect of G lucidum on Wnt/β-catenin signal transduction was studied by real-time quantitative polymerase chain reaction, western blot, and dual-luciferase assay. Results:G lucidum inhibited the proliferation, migration, and invasion, and induced apoptosis of human osteosarcoma MG63 and U2-OS cells. Dual-luciferase assay showed that G lucidum suppressed the transcriptional activity of T-cell factor/lymphocyte enhancer factor in the Wnt/β-catenin signaling pathway. Moreover, G lucidum blocked Wnt/β-catenin signaling by inhibiting the Wnt co-receptor LRP5 and Wnt-related target genes, such as β-catenin, cyclin D1, C-Myc, MMP-2, and MMP-9. At the same time, when Wnt/β-catenin was inhibited, the expression of E-cadherin was upregulated. Conclusions: Our results suggest that G lucidum broadly suppresses osteosarcoma cell growth by inhibiting Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Qi-Hao Zhang
- The First Affiliated Hospital of Shantou
University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Qin-Xiao Hu
- The First Affiliated Hospital of Shantou
University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Da Xie
- The First Affiliated Hospital of Shantou
University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Bo Chang
- The First Affiliated Hospital of Shantou
University Medical College, Shantou, Guangdong, People’s Republic of China
- The Third Affiliated Hospital (The
Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, Guangdong, People’s
Republic of China
| | - Hou-Guang Miao
- The Third Affiliated Hospital (The
Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, Guangdong, People’s
Republic of China
| | - Yun-Guo Wang
- The Second Hospital of Tianjin Medical
University, Tianjin, People’s Republic of China
| | - De-Zhong Liu
- The First Affiliated Hospital of Shantou
University Medical College, Shantou, Guangdong, People’s Republic of China
- De-Zhong Liu, Department of Emergency
Surgery, The First Affiliated Hospital of Shantou University Medical College,
Shantou, Guangdong 515041, People’s Republic of China.
| | - Xue-Dong Li
- The First Affiliated Hospital of Shantou
University Medical College, Shantou, Guangdong, People’s Republic of China
- De-Zhong Liu, Department of Emergency
Surgery, The First Affiliated Hospital of Shantou University Medical College,
Shantou, Guangdong 515041, People’s Republic of China.
| |
Collapse
|
8
|
Wang S, Huang L, Zhang Y, Peng Y, Wang X, Peng Y. Protective Effects of L-3-n-Butylphthalide Against H2O2-Induced Injury in Neural Stem Cells by Activation of PI3K/Akt and Mash1 Pathway. Neuroscience 2018; 393:164-174. [DOI: 10.1016/j.neuroscience.2018.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 09/18/2018] [Accepted: 10/02/2018] [Indexed: 11/24/2022]
|
9
|
Yasuda-Yamahara M, Rogg M, Yamahara K, Maier JI, Huber TB, Schell C. AIF1L regulates actomyosin contractility and filopodial extensions in human podocytes. PLoS One 2018; 13:e0200487. [PMID: 30001384 PMCID: PMC6042786 DOI: 10.1371/journal.pone.0200487] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/27/2018] [Indexed: 11/17/2022] Open
Abstract
Podocytes are highly-specialized epithelial cells essentially required for the generation and the maintenance of the kidney filtration barrier. This elementary function is directly based on an elaborated cytoskeletal apparatus establishing a complex network of primary and secondary processes. Here, we identify the actin-bundling protein allograft-inflammatory-inhibitor 1 like (AIF1L) as a selectively expressed podocyte protein in vivo. We describe the distinct subcellular localization of AIF1L to actin stress fibers, focal adhesion complexes and the nuclear compartment of podocytes in vitro. Genetic deletion of AIF1L in immortalized human podocytes resulted in an increased formation of filopodial extensions and decreased actomyosin contractility. By the use of SILAC based quantitative proteomics analysis we describe the podocyte specific AIF1L interactome and identify several components of the actomyosin machinery such as MYL9 and UNC45A as potential AIF1L interaction partners. Together, these findings indicate an involvement of AIF1L in the stabilization of podocyte morphology by titrating actomyosin contractility and membrane dynamics.
Collapse
Affiliation(s)
- Mako Yasuda-Yamahara
- Department of Medicine IV, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Manuel Rogg
- Department of Medicine IV, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kosuke Yamahara
- Department of Medicine IV, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Jasmin I. Maier
- Department of Medicine IV, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Tobias B. Huber
- Department of Medicine IV, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Center for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Department of Medicine III, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| | - Christoph Schell
- Department of Medicine IV, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany
- Berta-Ottenstein Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Xie D, Zheng GZ, Xie P, Zhang QH, Lin FX, Chang B, Hu QX, Du SX, Li XD. Antitumor activity of resveratrol against human osteosarcoma cells: a key role of Cx43 and Wnt/β-catenin signaling pathway. Oncotarget 2017; 8:111419-111432. [PMID: 29340064 PMCID: PMC5762332 DOI: 10.18632/oncotarget.22810] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/13/2017] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma is a high-grade bone sarcoma with strong invasive ability. However, treatment with traditional chemotherapeutic drugs is limited by low tolerability and side effects. Resveratrol has been reported previously to have selective antitumor effect on various tumor cells while little is known about its effects and underlying mechanism in osteosarcoma biology. In this study, we found that resveratrol inhibits proliferation and glycolysis, induces apoptosis and reduces the invasiveness of U2-OS cells in vitro. After treatment with resveratrol, the expression of related Wnt/β-catenin signaling pathway target genes, such as β-catenin, c-myc, cyclin D1, MMP-2 and MMP-9, was downregulated and an increased E-cadherin level was observed as well. Additionally, the dual luciferase assay results also indicated that resveratrol suppressed the activity of Wnt/β-catenin signaling pathway. Interestingly, we noticed that the expression of connexin 43 (Cx43) increased with the prolongation of resveratrol treatment time. To further investigate the relationship between Cx43 and the Wnt/β-catenin signaling pathway in osteosarcoma, we used lentiviral-mediated shRNA to knockdown the expression of Cx43. Knockdown of Cx43 activated the Wnt/β-catenin signaling pathway, promoted proliferation and invasion, and inhibited apoptosis of U2-OS cells. Taken together, our results demonstrate that the antitumor activity of resveratrol against U2-OS cells in vitro occurs through up-regulating Cx43 and E-cadherin, and suppressing the Wnt/β-catenin signaling pathway. Moreover, Cx43 expression is negatively related to the activity of the Wnt/β-catenin pathway in U2-OS cells.
Collapse
Affiliation(s)
- Da Xie
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518000, Guangdong, P. R. China
| | - Gui-Zhou Zheng
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518000, Guangdong, P. R. China
| | - Peng Xie
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518000, Guangdong, P. R. China
| | - Qi-Hao Zhang
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518000, Guangdong, P. R. China
| | - Fei-Xiang Lin
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518000, Guangdong, P. R. China
| | - Bo Chang
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518000, Guangdong, P. R. China
| | - Qin-Xiao Hu
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518000, Guangdong, P. R. China
| | - Shi-Xin Du
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518000, Guangdong, P. R. China
| | - Xue-Dong Li
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518000, Guangdong, P. R. China
| |
Collapse
|
11
|
Chen J, Li X, Cheng Q, Ning D, Ma J, Zhang Z, Chen X, Jiang L. Retracted
: Effects of cyclin D1 gene silencing on cell proliferation, cell cycle, and apoptosis of hepatocellular carcinoma cells. J Cell Biochem 2017; 119:2368-2380. [DOI: 10.1002/jcb.26400] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/30/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Jin Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanP.R. China
| | - Xue Li
- Department of Clinical Immunology, School of Medical LaboratoryTianjin Medical UniversityTianjinP.R. China
| | - Qi Cheng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanP.R. China
| | - Deng Ning
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanP.R. China
| | - Jie Ma
- Department of Thyroid and Breast SurgeryJining No.1 People's HospitalJiningP.R. China
| | - Zhi‐Ping Zhang
- Department of Thyroid and Breast SurgeryJining No.1 People's HospitalJiningP.R. China
| | - Xiao‐Ping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanP.R. China
| | - Li Jiang
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanP.R. China
| |
Collapse
|
12
|
Fan Y, Zhang Q, Li H, Cheng Z, Li X, Chen Y, Shen Y, Wang L, Song G, Qian L. Peptidomics Analysis of Transient Regeneration in the Neonatal Mouse Heart. J Cell Biochem 2017; 118:2828-2840. [PMID: 28198139 DOI: 10.1002/jcb.25933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/10/2017] [Indexed: 12/30/2022]
Abstract
Neonatal mouse hearts have completely regenerative capability after birth, but the ability to regenerate rapidly lost after 7 days, the mechanism has not been clarified. Previous studies have shown that mRNA profile of adult mouse changed greatly compared to neonatal mouse. So far, there is no research of peptidomics related to heart regeneration. In order to explore the changes of proteins, enzymes, and peptides related to the transient regeneration, we used comparative petidomics technique to compare the endogenous peptides in the mouse heart of postnatal 1 and 7 days. In final, we identified 236 differentially expressed peptides, 169 of which were upregulated and 67 were downregulated in the postnatal 1 day heart, and also predicted 36 functional peptides associated with transient regeneration. The predicted 36 candidate peptides are located in the important domains of precursor proteins and/or contain the post-transcriptional modification (PTM) sites, which are involved in the biological processes of cardiac development, cardiac muscle disease, cell proliferation, necrosis, and apoptosis. In conclusion, for the first time, we compared the peptidomics profiles of neonatal heart between postnatal 1 day and postnatal 7 day. This study provides a new direction and an important basis for the mechanism research of transient regeneration in neonatal heart. J. Cell. Biochem. 118: 2828-2840, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yi Fan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qijun Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hua Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zijie Cheng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xing Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yumei Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yahui Shen
- Departments of Cardiology, Taizhou People's Hospital, Taizhou 225300, China
| | - Liansheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Guixian Song
- Departments of Cardiology, Taizhou People's Hospital, Taizhou 225300, China
| | - Lingmei Qian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|