1
|
Tréfier A, Tousson-Abouelazm N, Yamani L, Ibrahim S, Joung KB, Pietrobon A, Yockell-Lelievre J, Hébert TE, Ladak RJ, Takano T, Nellist M, Namkung Y, Chatenet D, Stanford WL, Laporte SA, Kristof AS. Enhanced Gαq Signaling in TSC2-Deficient Cells Is Required for Their Neoplastic Behavior. Am J Respir Cell Mol Biol 2025; 72:578-590. [PMID: 39514407 DOI: 10.1165/rcmb.2024-0111oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Inherited or sporadic loss of the TSC2 gene can lead to pulmonary lymphangioleiomyomatosis (LAM), a rare cystic lung disease caused by protease-secreting interstitial tumor nodules. The nodules arise by metastasis of cells that exhibit features of neural crest and smooth muscle lineage (LAM cells). Their aberrant growth is attributed to increased activity of mechanistic target of rapamycin complex 1 (mTORC1), an anabolic protein kinase that is normally suppressed by the TSC1-TSC2 protein complex. The mTORC1 inhibitor rapamycin slows the progression of LAM but fails to eradicate disease, indicating a role for mTORC1-independent mechanisms in LAM pathogenesis. Our previous studies revealed G protein-coupled urotensin-II receptor (UT) signaling as a candidate mechanism, but how it promotes oncogenic signaling in TSC2-deficient cells remained unknown. Using a human pluripotent stem cell-derived in vitro model of LAM, we now show hyperactivation of UT, which was required for their enhanced migration and proneoplastic signaling in a rapamycin-insensitive mechanism that required heterotrimeric Gαq/11 (Gαq). Bioluminescence resonance energy transfer assays in HEK 293T cells lacking TSC2 demonstrated selective and enhanced activation of Gαq and its RhoA-associated effectors compared with wild-type control cells. By immunoprecipitation, recombinant UT was physically associated with Gαq and TSC2. The augmented Gαq signaling in TSC2-deleted cells was independent of mTOR activity and associated with increased endosomal targeting of p63RhoGEF, a known RhoA-activating effector of Gαq. These studies identify potential mTORC1-independent proneoplastic mechanisms that can be targeted for prevention or eradication of pulmonary and extrapulmonary LAM tumors.
Collapse
Affiliation(s)
- Aurélie Tréfier
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program
| | - Nihad Tousson-Abouelazm
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | - Sajida Ibrahim
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Kwang-Bo Joung
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program
| | - Adam Pietrobon
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Julien Yockell-Lelievre
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | | | - Reese J Ladak
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program
| | - Tomoko Takano
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Mark Nellist
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands; and
| | | | - David Chatenet
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec, Laval, Québec, Canada
| | - William L Stanford
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | | | - Arnold S Kristof
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program
- Department of Medicine, and
- Respiratory Division, Department of Medicine, and
- Department of Critical Care Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Pietrobon A, Yockell‐Lelièvre J, Melong N, Smith LJ, Delaney SP, Azzam N, Xue C, Merwin N, Lian E, Camacho‐Magallanes A, Doré C, Musso G, Julian LM, Kristof AS, Tam RY, Berman JN, Shoichet MS, Stanford WL. Tissue-Engineered Disease Modeling of Lymphangioleiomyomatosis Exposes a Therapeutic Vulnerability to HDAC Inhibition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302611. [PMID: 37400371 PMCID: PMC10502849 DOI: 10.1002/advs.202302611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/13/2023] [Indexed: 07/05/2023]
Abstract
Lymphangioleiomyomatosis (LAM) is a rare disease involving cystic lung destruction by invasive LAM cells. These cells harbor loss-of-function mutations in TSC2, conferring hyperactive mTORC1 signaling. Here, tissue engineering tools are employed to model LAM and identify new therapeutic candidates. Biomimetic hydrogel culture of LAM cells is found to recapitulate the molecular and phenotypic characteristics of human disease more faithfully than culture on plastic. A 3D drug screen is conducted, identifying histone deacetylase (HDAC) inhibitors as anti-invasive agents that are also selectively cytotoxic toward TSC2-/- cells. The anti-invasive effects of HDAC inhibitors are independent of genotype, while selective cell death is mTORC1-dependent and mediated by apoptosis. Genotype-selective cytotoxicity is seen exclusively in hydrogel culture due to potentiated differential mTORC1 signaling, a feature that is abrogated in cell culture on plastic. Importantly, HDAC inhibitors block invasion and selectively eradicate LAM cells in vivo in zebrafish xenografts. These findings demonstrate that tissue-engineered disease modeling exposes a physiologically relevant therapeutic vulnerability that would be otherwise missed by conventional culture on plastic. This work substantiates HDAC inhibitors as possible therapeutic candidates for the treatment of patients with LAM and requires further study.
Collapse
Affiliation(s)
- Adam Pietrobon
- The Sprott Centre for Stem Cell ResearchRegenerative Medicine ProgramOttawa Hospital Research InstituteOttawaK1Y 4E9Canada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaK1N 6N5Canada
- Ottawa Institute of Systems BiologyOttawaK1H 8M5Canada
| | - Julien Yockell‐Lelièvre
- The Sprott Centre for Stem Cell ResearchRegenerative Medicine ProgramOttawa Hospital Research InstituteOttawaK1Y 4E9Canada
- Ottawa Institute of Systems BiologyOttawaK1H 8M5Canada
| | - Nicole Melong
- Department of PediatricsCHEO Research InstituteOttawaK1H 5B2Canada
| | - Laura J. Smith
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoM5S 3E5Canada
- Institute for Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoM5S 3G9Canada
- The Donnelly Centre for Cellular and Biomolecular ResearchTorontoM5S 3E1Canada
| | - Sean P. Delaney
- The Sprott Centre for Stem Cell ResearchRegenerative Medicine ProgramOttawa Hospital Research InstituteOttawaK1Y 4E9Canada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaK1N 6N5Canada
- Ottawa Institute of Systems BiologyOttawaK1H 8M5Canada
| | - Nadine Azzam
- Department of PediatricsCHEO Research InstituteOttawaK1H 5B2Canada
| | - Chang Xue
- Institute for Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoM5S 3G9Canada
- The Donnelly Centre for Cellular and Biomolecular ResearchTorontoM5S 3E1Canada
| | | | - Eric Lian
- The Sprott Centre for Stem Cell ResearchRegenerative Medicine ProgramOttawa Hospital Research InstituteOttawaK1Y 4E9Canada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaK1N 6N5Canada
- Ottawa Institute of Systems BiologyOttawaK1H 8M5Canada
| | - Alberto Camacho‐Magallanes
- The Sprott Centre for Stem Cell ResearchRegenerative Medicine ProgramOttawa Hospital Research InstituteOttawaK1Y 4E9Canada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaK1N 6N5Canada
- Ottawa Institute of Systems BiologyOttawaK1H 8M5Canada
| | - Carole Doré
- The Sprott Centre for Stem Cell ResearchRegenerative Medicine ProgramOttawa Hospital Research InstituteOttawaK1Y 4E9Canada
| | | | - Lisa M. Julian
- Centre for Cell BiologyDevelopmentand DiseaseDepartment of Biological SciencesSimon Fraser UniversityBurnabyV5A 1S6Canada
| | - Arnold S. Kristof
- Meakins‐Christie Laboratories and Translational Research in Respiratory Diseases ProgramResearch Institute of the McGill University Health CentreFaculty of MedicineDepartments of Medicine and Critical CareMontrealH4A 3J1Canada
| | - Roger Y. Tam
- Centre for Biologics EvaluationBiologic and Radiopharmaceutical Drugs DirectorateHealth CanadaOttawaK1Y 4X2Canada
| | - Jason N. Berman
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaK1N 6N5Canada
- Department of PediatricsCHEO Research InstituteOttawaK1H 5B2Canada
| | - Molly S. Shoichet
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoM5S 3E5Canada
- Institute for Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoM5S 3G9Canada
- The Donnelly Centre for Cellular and Biomolecular ResearchTorontoM5S 3E1Canada
- Department of ChemistryUniversity of TorontoTorontoM5S 3H6Canada
| | - William L. Stanford
- The Sprott Centre for Stem Cell ResearchRegenerative Medicine ProgramOttawa Hospital Research InstituteOttawaK1Y 4E9Canada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaK1N 6N5Canada
- Ottawa Institute of Systems BiologyOttawaK1H 8M5Canada
| |
Collapse
|
3
|
Kundu N, Holz MK. Lymphangioleiomyomatosis: a metastatic lung disease. Am J Physiol Cell Physiol 2023; 324:C320-C326. [PMID: 36571446 PMCID: PMC9886342 DOI: 10.1152/ajpcell.00202.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022]
Abstract
Lymphangioleiomyomatosis (LAM) is a rare disease affecting women, caused by somatic mutations in the TSC1 or TSC2 genes, and driven by estrogen. Similar to many cancers, it is metastatic, primarily to the lung. Despite its monogenetic nature, like many cancers, LAM is a heterogeneous disease. The cellular constituents of LAM are very diverse, including mesenchymal, epithelial, endothelial, and immune cells. LAM is characterized by dysregulation of many cell signaling pathways, distinct populations of LAM cells, and a rich microenvironment, in which the immune system appears to play an important role. This review delineates the heterogeneity of LAM and focuses on the metastatic features of LAM, the deregulated signaling mechanisms and the tumor microenvironment. Understanding the tumor-host interaction in LAM may provide insights into the development of new therapeutic strategies, which could be combinatorial or superlative to Sirolimus, the current U.S. Food and Drug Administration-approved treatment.
Collapse
Affiliation(s)
- Nandini Kundu
- Department of Cell Biology and Anatomy, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, New York
| | - Marina K Holz
- Department of Cell Biology and Anatomy, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, New York
- Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, New York
| |
Collapse
|
4
|
Allen GE, Dhanda AS, Julian LM. Emerging Methods in Modeling Brain Development and Disease with Human Pluripotent Stem Cells. Methods Mol Biol 2022; 2515:319-342. [PMID: 35776361 DOI: 10.1007/978-1-0716-2409-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Nobel Prize-winning discovery that human somatic cells can be readily reprogrammed into pluripotent cells has revolutionized our potential to understand the human brain. The rapid technological progression of this field has made it possible to easily obtain human neural cells and even intact tissues, offering invaluable resources to model human brain development. In this chapter, we present a brief history of hPSC-based approaches to study brain development and then, provide new insights into neurological diseases, focusing on those driven by aberrant cell death. Furthermore, we will shed light on the latest technologies and highlight the methods that researchers can use to employ established hPSC approaches in their research. Our intention is to demonstrate that hPSC-based modeling is a technical approach accessible to all researchers who seek a deeper understanding of the human brain.
Collapse
Affiliation(s)
- George E Allen
- Department of Biological Sciences; Centre for Cell Biology, Development, and Disease, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Aaron S Dhanda
- Department of Biological Sciences; Centre for Cell Biology, Development, and Disease, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Lisa M Julian
- Department of Biological Sciences; Centre for Cell Biology, Development, and Disease, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
5
|
Espín R, Baiges A, Blommaert E, Herranz C, Roman A, Saez B, Ancochea J, Valenzuela C, Ussetti P, Laporta R, Rodríguez-Portal JA, van Moorsel CHM, van der Vis JJ, Quanjel MJR, Villar-Piqué A, Diaz-Lucena D, Llorens F, Casanova Á, Molina-Molina M, Plass M, Mateo F, Moss J, Pujana MA. Heterogeneity and Cancer-Related Features in Lymphangioleiomyomatosis Cells and Tissue. Mol Cancer Res 2021; 19:1840-1853. [PMID: 34312290 PMCID: PMC8568632 DOI: 10.1158/1541-7786.mcr-21-0220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/23/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022]
Abstract
Lymphangioleiomyomatosis (LAM) is a rare, low-grade metastasizing disease characterized by cystic lung destruction. LAM can exhibit extensive heterogeneity at the molecular, cellular, and tissue levels. However, the molecular similarities and differences among LAM cells and tissue, and their connection to cancer features are not fully understood. By integrating complementary gene and protein LAM signatures, and single-cell and bulk tissue transcriptome profiles, we show sources of disease heterogeneity, and how they correspond to cancer molecular portraits. Subsets of LAM diseased cells differ with respect to gene expression profiles related to hormones, metabolism, proliferation, and stemness. Phenotypic diseased cell differences are identified by evaluating lumican (LUM) proteoglycan and YB1 transcription factor expression in LAM lung lesions. The RUNX1 and IRF1 transcription factors are predicted to regulate LAM cell signatures, and both regulators are expressed in LAM lung lesions, with differences between spindle-like and epithelioid LAM cells. The cancer single-cell transcriptome profiles most similar to those of LAM cells include a breast cancer mesenchymal cell model and lines derived from pleural mesotheliomas. Heterogeneity is also found in LAM lung tissue, where it is mainly determined by immune system factors. Variable expression of the multifunctional innate immunity protein LCN2 is linked to disease heterogeneity. This protein is found to be more abundant in blood plasma from LAM patients than from healthy women. IMPLICATIONS: This study identifies LAM molecular and cellular features, master regulators, cancer similarities, and potential causes of disease heterogeneity.
Collapse
Affiliation(s)
- Roderic Espín
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Alexandra Baiges
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Eline Blommaert
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Carmen Herranz
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Antonio Roman
- Lung Transplant Unit, Pneumology Service, Lymphangioleiomyomatosis Clinic, Vall d'Hebron University Hospital, Barcelona, Catalonia, Spain
| | - Berta Saez
- Lung Transplant Unit, Pneumology Service, Lymphangioleiomyomatosis Clinic, Vall d'Hebron University Hospital, Barcelona, Catalonia, Spain
| | - Julio Ancochea
- Pneumology Service, University Hospital La Princesa, La Princesa Research Institute (IIS-IP), Madrid, Spain
| | - Claudia Valenzuela
- Pneumology Service, University Hospital La Princesa, La Princesa Research Institute (IIS-IP), Madrid, Spain
| | - Piedad Ussetti
- Pneumology Service, University Hospital Clínica Puerta del Hierro, Majadahonda, Madrid, Spain
| | - Rosalía Laporta
- Pneumology Service, University Hospital Clínica Puerta del Hierro, Majadahonda, Madrid, Spain
| | - José A Rodríguez-Portal
- Medical-Surgical Unit of Respiratory Diseases, University Hospital Virgen del Rocío, Institute of Biomedicine of Seville (IBiS), Seville, Spain
- Biomedical Research Network Centre in Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Coline H M van Moorsel
- Interstitial Lung Disease (ILD) Center of Excellence, St. Antonius Hospital, Nieuwegein, the Netherlands
| | - Joanne J van der Vis
- Interstitial Lung Disease (ILD) Center of Excellence, St. Antonius Hospital, Nieuwegein, the Netherlands
| | - Marian J R Quanjel
- Interstitial Lung Disease (ILD) Center of Excellence, St. Antonius Hospital, Nieuwegein, the Netherlands
| | - Anna Villar-Piqué
- Neuroscience Program, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
- Biomedical Research Network Centre in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Daniela Diaz-Lucena
- Neuroscience Program, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
- Biomedical Research Network Centre in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Franc Llorens
- Neuroscience Program, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
- Biomedical Research Network Centre in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical School, Göttingen, Germany
| | - Álvaro Casanova
- Pneumology Service, University Hospital of Henares, University Francisco de Vitoria, Coslada, Madrid, Spain
| | - María Molina-Molina
- Biomedical Research Network Centre in Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Interstitial Lung Disease Unit, Department of Respiratory Medicine, University Hospital of Bellvitge, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Mireya Plass
- Program for Advancing Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
- Gene Regulation of Cell Identity, Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
- Biomedical Research Network Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Francesca Mateo
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Joel Moss
- Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Miquel Angel Pujana
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain.
| |
Collapse
|
6
|
Farré X, Espín R, Baiges A, Blommaert E, Kim W, Giannikou K, Herranz C, Román A, Sáez B, Casanova Á, Ancochea J, Valenzuela C, Ussetti P, Laporta R, Rodríguez-Portal JA, van Moorsel CH, van der Vis JJ, Quanjel MJ, Tena-Garitaonaindia M, Sánchez de Medina F, Mateo F, Molina-Molina M, Won S, Kwiatkowski DJ, de Cid R, Pujana MA. Evidence for shared genetic risk factors between lymphangioleiomyomatosis and pulmonary function. ERJ Open Res 2021; 8:00375-2021. [PMID: 35083324 PMCID: PMC8784893 DOI: 10.1183/23120541.00375-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/17/2021] [Indexed: 11/05/2022] Open
Abstract
IntroductionLymphangioleiomyomatosis (LAM) is a rare low-grade metastasising disease characterised by cystic lung destruction. The genetic basis of LAM remains incompletely determined, and the disease cell-of-origin is uncertain. We analysed the possibility of a shared genetic basis between LAM and cancer, and LAM and pulmonary function.MethodsThe results of genome-wide association studies of LAM, 17 cancer types and spirometry measures (forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC ratio and peak expiratory flow (PEF)) were analysed for genetic correlations, shared genetic variants and causality. Genomic and transcriptomic data were examined, and immunodetection assays were performed to evaluate pleiotropic genes.ResultsThere were no significant overall genetic correlations between LAM and cancer, but LAM correlated negatively with FVC and PEF, and a trend in the same direction was observed for FEV1. 22 shared genetic variants were uncovered between LAM and pulmonary function, while seven shared variants were identified between LAM and cancer. The LAM-pulmonary function shared genetics identified four pleiotropic genes previously recognised in LAM single-cell transcriptomes: ADAM12, BNC2, NR2F2 and SP5. We had previously associated NR2F2 variants with LAM, and we identified its functional partner NR3C1 as another pleotropic factor. NR3C1 expression was confirmed in LAM lung lesions. Another candidate pleiotropic factor, CNTN2, was found more abundant in plasma of LAM patients than that of healthy women.ConclusionsThis study suggests the existence of a common genetic aetiology between LAM and pulmonary function.
Collapse
|
7
|
Herranz C, Mateo F, Baiges A, Ruiz de Garibay G, Junza A, Johnson SR, Miller S, García N, Capellades J, Gómez A, Vidal A, Palomero L, Espín R, Extremera AI, Blommaert E, Revilla‐López E, Saez B, Gómez‐Ollés S, Ancochea J, Valenzuela C, Alonso T, Ussetti P, Laporta R, Xaubet A, Rodríguez‐Portal JA, Montes‐Worboys A, Machahua C, Bordas J, Menendez JA, Cruzado JM, Guiteras R, Bontoux C, La Motta C, Noguera‐Castells A, Mancino M, Lastra E, Rigo‐Bonnin R, Perales JC, Viñals F, Lahiguera A, Zhang X, Cuadras D, van Moorsel CHM, van der Vis JJ, Quanjel MJR, Filippakis H, Hakem R, Gorrini C, Ferrer M, Ugun‐Klusek A, Billett E, Radzikowska E, Casanova Á, Molina‐Molina M, Roman A, Yanes O, Pujana MA. Histamine signaling and metabolism identify potential biomarkers and therapies for lymphangioleiomyomatosis. EMBO Mol Med 2021; 13:e13929. [PMID: 34378323 PMCID: PMC8422079 DOI: 10.15252/emmm.202113929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/12/2022] Open
Abstract
Inhibition of mTOR is the standard of care for lymphangioleiomyomatosis (LAM). However, this therapy has variable tolerability and some patients show progressive decline of lung function despite treatment. LAM diagnosis and monitoring can also be challenging due to the heterogeneity of symptoms and insufficiency of non-invasive tests. Here, we propose monoamine-derived biomarkers that provide preclinical evidence for novel therapeutic approaches. The major histamine-derived metabolite methylimidazoleacetic acid (MIAA) is relatively more abundant in LAM plasma, and MIAA values are independent of VEGF-D. Higher levels of histamine are associated with poorer lung function and greater disease burden. Molecular and cellular analyses, and metabolic profiling confirmed active histamine signaling and metabolism. LAM tumorigenesis is reduced using approved drugs targeting monoamine oxidases A/B (clorgyline and rasagiline) or histamine H1 receptor (loratadine), and loratadine synergizes with rapamycin. Depletion of Maoa or Hrh1 expression, and administration of an L-histidine analog, or a low L-histidine diet, also reduce LAM tumorigenesis. These findings extend our knowledge of LAM biology and suggest possible ways of improving disease management.
Collapse
Affiliation(s)
- Carmen Herranz
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| | - Francesca Mateo
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| | - Alexandra Baiges
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| | - Gorka Ruiz de Garibay
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| | - Alexandra Junza
- Department of Electronic EngineeringInstitute of Health Research Pere Virgili (IIPSV)University Rovira i VirgiliTarragonaSpain
- Biomedical Research Network Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)Instituto de Salud Carlos IIIMadridSpain
| | - Simon R Johnson
- National Centre for LymphangioleiomyomatosisNottingham University Hospitals NHS Trust, NottinghamshireDivision of Respiratory MedicineUniversity of NottinghamNottinghamUK
| | - Suzanne Miller
- National Centre for LymphangioleiomyomatosisNottingham University Hospitals NHS Trust, NottinghamshireDivision of Respiratory MedicineUniversity of NottinghamNottinghamUK
| | - Nadia García
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| | - Jordi Capellades
- Department of Electronic EngineeringInstitute of Health Research Pere Virgili (IIPSV)University Rovira i VirgiliTarragonaSpain
- Biomedical Research Network Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)Instituto de Salud Carlos IIIMadridSpain
| | - Antonio Gómez
- Centre for Genomic RegulationBarcelona Institute of Science and TechnologyBarcelonaSpain
- Present address:
Rheumatology Department and Rheumatology Research GroupVall d'Hebron Hospital Research Institute (VHIR)BarcelonaSpain
| | - August Vidal
- Department of PathologyUniversity Hospital of BellvitgeOncobellIDIBELL, L’Hospitalet del LlobregatBarcelonaSpain
- CIBER on Cancer (CIBERONC)Instituto de Salud Carlos IIIMadridSpain
| | - Luis Palomero
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| | - Roderic Espín
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| | - Ana I Extremera
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| | - Eline Blommaert
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| | - Eva Revilla‐López
- Lung Transplant Unit, Pneumology ServiceLymphangioleiomyomatosis ClinicVall d’Hebron University HospitalBarcelonaSpain
| | - Berta Saez
- Lung Transplant Unit, Pneumology ServiceLymphangioleiomyomatosis ClinicVall d’Hebron University HospitalBarcelonaSpain
| | - Susana Gómez‐Ollés
- Lung Transplant Unit, Pneumology ServiceLymphangioleiomyomatosis ClinicVall d’Hebron University HospitalBarcelonaSpain
| | - Julio Ancochea
- Pneumology ServiceLa Princesa Research InstituteUniversity Hospital La PrincesaMadridSpain
| | - Claudia Valenzuela
- Pneumology ServiceLa Princesa Research InstituteUniversity Hospital La PrincesaMadridSpain
| | - Tamara Alonso
- Pneumology ServiceLa Princesa Research InstituteUniversity Hospital La PrincesaMadridSpain
| | - Piedad Ussetti
- Pneumology ServiceUniversity Hospital Clínica Puerta del Hierro, MajadahondaMadridSpain
| | - Rosalía Laporta
- Pneumology ServiceUniversity Hospital Clínica Puerta del Hierro, MajadahondaMadridSpain
| | - Antoni Xaubet
- Pneumology ServiceHospital Clínic de BarcelonaBarcelonaSpain
| | - José A Rodríguez‐Portal
- Medical‐Surgical Unit of Respiratory DiseasesInstitute of Biomedicine of Seville (IBiS)University Hospital Virgen del RocíoSevilleSpain
- Biomedical Research Network Centre in Respiratory Diseases (CIBERES)Instituto de Salud Carlos IIIMadridSpain
| | - Ana Montes‐Worboys
- Biomedical Research Network Centre in Respiratory Diseases (CIBERES)Instituto de Salud Carlos IIIMadridSpain
- Interstitial Lung Disease UnitDepartment of Respiratory MedicineUniversity Hospital of BellvitgeIDIBELLL’Hospitalet del LlobregatBarcelonaSpain
| | - Carlos Machahua
- Biomedical Research Network Centre in Respiratory Diseases (CIBERES)Instituto de Salud Carlos IIIMadridSpain
- Interstitial Lung Disease UnitDepartment of Respiratory MedicineUniversity Hospital of BellvitgeIDIBELLL’Hospitalet del LlobregatBarcelonaSpain
| | - Jaume Bordas
- Biomedical Research Network Centre in Respiratory Diseases (CIBERES)Instituto de Salud Carlos IIIMadridSpain
- Interstitial Lung Disease UnitDepartment of Respiratory MedicineUniversity Hospital of BellvitgeIDIBELLL’Hospitalet del LlobregatBarcelonaSpain
| | - Javier A Menendez
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| | - Josep M Cruzado
- Experimental NephrologyDepartment of Clinical SciencesUniversity of BarcelonaBarcelonaSpain
- Department of NephrologyUniversity Hospital of BellvitgeIDIBELLL’Hospitalet del LlobregatBarcelonaSpain
| | - Roser Guiteras
- Experimental NephrologyDepartment of Clinical SciencesUniversity of BarcelonaBarcelonaSpain
- Department of NephrologyUniversity Hospital of BellvitgeIDIBELLL’Hospitalet del LlobregatBarcelonaSpain
| | - Christophe Bontoux
- Department of PathologyUniversity Hospital Pitié‐SalpêtrièreFaculty of MedicineUniversity of SorbonneParisFrance
| | | | - Aleix Noguera‐Castells
- Biomedical Research Institute “August Pi i Sunyer” (IDIBAPS)Department of MedicineUniversity of BarcelonaBarcelonaSpain
| | - Mario Mancino
- Biomedical Research Institute “August Pi i Sunyer” (IDIBAPS)Department of MedicineUniversity of BarcelonaBarcelonaSpain
| | - Enrique Lastra
- Genetic Counseling UnitDepartment of Medical OncologyUniversity Hospital of BurgosBurgosSpain
| | - Raúl Rigo‐Bonnin
- Clinical LaboratoryUniversity Hospital of BellvitgeIDIBELLL'Hospitalet de LlobregatBarcelonaSpain
| | - Jose C Perales
- Department of Physiological Science IIUniversity of BarcelonaBarcelonaSpain
| | - Francesc Viñals
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
- Department of Physiological Science IIUniversity of BarcelonaBarcelonaSpain
| | - Alvaro Lahiguera
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| | - Xiaohu Zhang
- National Center for Advancing Translational Sciences (NCATS)National Institute of Health (NIH)BethesdaMDUSA
| | - Daniel Cuadras
- Statistics DepartmentFoundation Sant Joan de DéuEspluguesSpain
| | - Coline H M van Moorsel
- Interstitial Lung Disease (ILD) Center of ExcellenceSt. Antonius HospitalNieuwegeinThe Netherlands
| | - Joanne J van der Vis
- Interstitial Lung Disease (ILD) Center of ExcellenceSt. Antonius HospitalNieuwegeinThe Netherlands
| | - Marian J R Quanjel
- Interstitial Lung Disease (ILD) Center of ExcellenceSt. Antonius HospitalNieuwegeinThe Netherlands
| | - Harilaos Filippakis
- Pulmonary and Critical Care MedicineDepartment of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Razq Hakem
- Princess Margaret Cancer CentreUniversity Health NetworkDepartment of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| | - Chiara Gorrini
- Princess Margaret HospitalThe Campbell Family Institute for Breast Cancer ResearchOntario Cancer InstituteUniversity Health NetworkTorontoONCanada
| | - Marc Ferrer
- National Center for Advancing Translational Sciences (NCATS)National Institute of Health (NIH)BethesdaMDUSA
| | - Aslihan Ugun‐Klusek
- Centre for Health, Ageing and Understanding Disease (CHAUD)School of Science and TechnologyNottingham Trent UniversityNottinghamUK
| | - Ellen Billett
- Centre for Health, Ageing and Understanding Disease (CHAUD)School of Science and TechnologyNottingham Trent UniversityNottinghamUK
| | - Elżbieta Radzikowska
- Department of Lung Diseases IIINational Tuberculosis and Lung Disease Research InstituteWarsawPoland
| | - Álvaro Casanova
- Pneumology ServiceUniversity Hospital of HenaresUniversity Francisco de Vitoria, CosladaMadridSpain
| | - María Molina‐Molina
- Biomedical Research Network Centre in Respiratory Diseases (CIBERES)Instituto de Salud Carlos IIIMadridSpain
- Interstitial Lung Disease UnitDepartment of Respiratory MedicineUniversity Hospital of BellvitgeIDIBELLL’Hospitalet del LlobregatBarcelonaSpain
| | - Antonio Roman
- Lung Transplant Unit, Pneumology ServiceLymphangioleiomyomatosis ClinicVall d’Hebron University HospitalBarcelonaSpain
| | - Oscar Yanes
- Department of Electronic EngineeringInstitute of Health Research Pere Virgili (IIPSV)University Rovira i VirgiliTarragonaSpain
- Biomedical Research Network Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)Instituto de Salud Carlos IIIMadridSpain
| | - Miquel A Pujana
- ProCURECatalan Institute of OncologyOncobellBellvitge Institute for Biomedical Research (IDIBELL)L’Hospitalet del LlobregatBarcelonaSpain
| |
Collapse
|
8
|
Sirolimus Suppresses Phosphorylation of Cofilin and Reduces Interstitial Septal Thickness in Sporadic Lymphangioleiomyomatosis. Int J Mol Sci 2021; 22:ijms22168564. [PMID: 34445268 PMCID: PMC8395305 DOI: 10.3390/ijms22168564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022] Open
Abstract
Sporadic lymphangioleiomyomatosis (S-LAM) is a rare lung disease characterized by the proliferation of smooth muscle-like LAM cells and progressive cystic destruction. Sirolimus, a mammalian target of rapamycin (mTOR) inhibitor, has a proven efficacy in patients with LAM. However, the therapeutic mechanisms of sirolimus in LAM remain unclear. We aimed to evaluate sirolimus-related lung parenchymal changes and the potential effect in LAM cells and modulating pathological cystic destruction. Lung specimens were examined for histopathological changes by HMB45 staining and compared the LAM patients treated with and without sirolimus. We detected the overexpression of mTOR, HMB45, and phosphorylation of cofilin (p-cofilin) in LAM patients. Sirolimus showed efficacy in patients with LAM, who exhibited a reduced expression of mTOR and p-cofilin as well as reduced interstitial septal thickness. In addition, sirolimus suppresses mTOR and p-cofilin, thus suppressing the migration and proliferation of LAM cells isolated from the patient's lung tissue. This study demonstrates that interstitial septal thickness, as determined by histological structural analysis. Sirolimus effectively reduced the expression of p-cofilin and interstitial septal thickness, which may be a novel mechanism by sirolimus. Moreover, we develop a new method to isolate and culture the LAM cell, which can test the possibility of medication in vitro and impact this current study has on the LAM field. The development of approaches to interfere with mTOR-cofilin1-actin signaling may result in an option for S-LAM therapy.
Collapse
|
9
|
Unachukwu U, Shiomi T, Goldklang M, Chada K, D'Armiento J. Renal neoplasms in tuberous sclerosis mice are neurocristopathies. iScience 2021; 24:102684. [PMID: 34222844 PMCID: PMC8243016 DOI: 10.1016/j.isci.2021.102684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/20/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Tuberous sclerosis (TS) is a rare disorder exhibiting multi-systemic benign neoplasms. We hypothesized the origin of TS neoplastic cells derived from the neural crest given the heterogeneous ecto-mesenchymal phenotype of the most common TS neoplasms. To test this hypothesis, we employed Cre-loxP lineage tracing of myelin protein zero (Mpz)-expressing neural crest cells (NCCs) in spontaneously developing renal tumors of Tsc2 +/- /Mpz(Cre)/TdT fl/fl reporter mice. In these mice, ectopic renal tumor onset was detected at 4 months of age increasing in volume by 16 months of age with concomitant increase in the subpopulation of tdTomato+ NCCs from 0% to 6.45% of the total number of renal tumor cells. Our results suggest that Tsc2 +/- mouse renal tumors arise from domiciled proliferative progenitor cell populations of neural crest origin that co-opt tumorigenesis due to mutations in Tsc2 loci. Targeting neural crest antigenic determinants will provide a potential alternative therapeutic approach for TS pathogenesis.
Collapse
Affiliation(s)
- Uchenna Unachukwu
- Center for LAM and Rare Lung Disease, Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, 630 West 168 Street, New York, NY 10032, USA
| | - Takayuki Shiomi
- Department of Pathology, International University of Health and Welfare, School of Medicine, 4-3 Kouzunomori, Narita-shi, Chiba 286-8686, Japan
| | - Monica Goldklang
- Center for LAM and Rare Lung Disease, Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, 630 West 168 Street, New York, NY 10032, USA
| | - Kiran Chada
- Department of Biochemistry, Rutgers-Robert Wood Johnson Medical School, Rutgers University, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Jeanine D'Armiento
- Center for LAM and Rare Lung Disease, Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, 630 West 168 Street, New York, NY 10032, USA
| |
Collapse
|
10
|
The Role of iPSC Modeling Toward Projection of Autophagy Pathway in Disease Pathogenesis: Leader or Follower. Stem Cell Rev Rep 2020; 17:539-561. [PMID: 33245492 DOI: 10.1007/s12015-020-10077-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
Autophagy is responsible for degradation of non-essential or damaged cellular constituents and damaged organelles. The autophagy pathway maintains efficient cellular metabolism and reduces cellular stress by removing additional and pathogenic components. Dysfunctional autophagy underlies several diseases. Thus, several research groups have worked toward elucidating key steps in this pathway. Autophagy can be studied by animal modeling, chemical modulators, and in vitro disease modeling with induced pluripotent stem cells (iPSC) as a loss-of-function platform. The introduction of iPSC technology, which has the capability to maintain the genetic background, has facilitated in vitro modeling of some diseases. Furthermore, iPSC technology can be used as a platform to study defective cellular and molecular pathways during development and unravel novel steps in signaling pathways of health and disease. Different studies have used iPSC technology to explore the role of autophagy in disease pathogenesis which could not have been addressed by animal modeling or chemical inducers/inhibitors. In this review, we discuss iPSC models of autophagy-associated disorders where the disease is caused due to mutations in autophagy-related genes. We classified this group as "primary autophagy induced defects (PAID)". There are iPSC models of diseases in which the primary cause is not dysfunctional autophagy, but autophagy is impaired secondary to disease phenotypes. We call this group "secondary autophagy induced defects (SAID)" and discuss them. Graphical abstract.
Collapse
|
11
|
Han F, Dellacecca ER, Barse LW, Cosgrove C, Henning SW, Ankney CM, Jaishankar D, Yemelyanov A, Krymskaya VP, Dilling DF, Le Poole IC. Adoptive T-Cell Transfer to Treat Lymphangioleiomyomatosis. Am J Respir Cell Mol Biol 2020; 62:793-804. [PMID: 32078336 DOI: 10.1165/rcmb.2019-0117oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Patients with lymphangioleiomyomatosis (LAM) develop pulmonary cysts associated with neoplastic, smooth muscle-like cells that feature neuroendocrine cell markers. The disease preferentially affects premenopausal women. Existing therapeutics do not cure LAM. As gp100 is a diagnostic marker expressed by LAM lesions, we proposed to target this immunogenic glycoprotein using TCR transgenic T cells. To reproduce the genetic mutations underlying LAM, we cultured Tsc2-/- kidney tumor cells from aged Tsc2 heterozygous mice and generated a stable gp100-expressing cell line by lentiviral transduction. T cells were isolated from major histocompatibility complex-matched TCR transgenic pmel-1 mice to measure cytotoxicity in vitro, and 80% cytotoxicity was observed within 48 hours. Antigen-specific cytotoxicity was likewise observed using pmel-1 TCR-transduced mouse T cells, suggesting that transgenic T cells may likewise be useful to treat LAM in vivo. On intravenous injection, slow-growing gp100+ LAM-like cells formed lung nodules that were readily detectable in severe combined immunodeficient/beige mice. Adoptive transfer of gp100-reactive but not wild-type T cells into mice significantly shrunk established lung tumors, even in the absence of anti-PD-1 therapy. These results demonstrate the treatment potential of adoptively transferred T cells to eliminate pulmonary lesions in LAM.
Collapse
Affiliation(s)
- Fei Han
- Lurie Comprehensive Cancer Center
| | | | | | | | | | - Christian M Ankney
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois
| | | | - Alexander Yemelyanov
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Vera P Krymskaya
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Daniel F Dilling
- Department of Medicine, Loyola University Medical Center, Maywood, Illinois
| | - I Caroline Le Poole
- Lurie Comprehensive Cancer Center.,Department of Dermatology, Microbiology, and Immunology, Northwestern University, Chicago, Illinois
| |
Collapse
|
12
|
Hirose S, Tanaka Y, Shibata M, Kimura Y, Ishikawa M, Higurashi N, Yamamoto T, Ichise E, Chiyonobu T, Ishii A. Application of induced pluripotent stem cells in epilepsy. Mol Cell Neurosci 2020; 108:103535. [DOI: 10.1016/j.mcn.2020.103535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/10/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
|
13
|
Abstract
Forkhead box O (FOXO) transcription factors regulate diverse biological processes, affecting development, metabolism, stem cell maintenance and longevity. They have also been increasingly recognised as tumour suppressors through their ability to regulate genes essential for cell proliferation, cell death, senescence, angiogenesis, cell migration and metastasis. Mechanistically, FOXO proteins serve as key connection points to allow diverse proliferative, nutrient and stress signals to converge and integrate with distinct gene networks to control cell fate, metabolism and cancer development. In consequence, deregulation of FOXO expression and function can promote genetic disorders, metabolic diseases, deregulated ageing and cancer. Metastasis is the process by which cancer cells spread from the primary tumour often via the bloodstream or the lymphatic system and is the major cause of cancer death. The regulation and deregulation of FOXO transcription factors occur predominantly at the post-transcriptional and post-translational levels mediated by regulatory non-coding RNAs, their interactions with other protein partners and co-factors and a combination of post-translational modifications (PTMs), including phosphorylation, acetylation, methylation and ubiquitination. This review discusses the role and regulation of FOXO proteins in tumour initiation and progression, with a particular emphasis on cancer metastasis. An understanding of how signalling networks integrate with the FOXO transcription factors to modulate their developmental, metabolic and tumour-suppressive functions in normal tissues and in cancer will offer a new perspective on tumorigenesis and metastasis, and open up therapeutic opportunities for malignant diseases.
Collapse
Affiliation(s)
- Yannasittha Jiramongkol
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK.
| |
Collapse
|
14
|
Julian LM, Stanford WL. Organelle Cooperation in Stem Cell Fate: Lysosomes as Emerging Regulators of Cell Identity. Front Cell Dev Biol 2020; 8:591. [PMID: 32733892 PMCID: PMC7358313 DOI: 10.3389/fcell.2020.00591] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/17/2020] [Indexed: 12/26/2022] Open
Abstract
Regulation of stem cell fate is best understood at the level of gene and protein regulatory networks, though it is now clear that multiple cellular organelles also have critical impacts. A growing appreciation for the functional interconnectedness of organelles suggests that an orchestration of integrated biological networks functions to drive stem cell fate decisions and regulate metabolism. Metabolic signaling itself has emerged as an integral regulator of cell fate including the determination of identity, activation state, survival, and differentiation potential of many developmental, adult, disease, and cancer-associated stem cell populations and their progeny. As the primary adenosine triphosphate-generating organelles, mitochondria are well-known regulators of stem cell fate decisions, yet it is now becoming apparent that additional organelles such as the lysosome are important players in mediating these dynamic decisions. In this review, we will focus on the emerging role of organelles, in particular lysosomes, in the reprogramming of both metabolic networks and stem cell fate decisions, especially those that impact the determination of cell identity. We will discuss the inter-organelle interactions, cell signaling pathways, and transcriptional regulatory mechanisms with which lysosomes engage and how these activities impact metabolic signaling. We will further review recent data that position lysosomes as critical regulators of cell identity determination programs and discuss the known or putative biological mechanisms. Finally, we will briefly highlight the potential impact of elucidating mechanisms by which lysosomes regulate stem cell identity on our understanding of disease pathogenesis, as well as the development of refined regenerative medicine, biomarker, and therapeutic strategies.
Collapse
Affiliation(s)
- Lisa M. Julian
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - William L. Stanford
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
15
|
Afshar Saber W, Sahin M. Recent advances in human stem cell-based modeling of Tuberous Sclerosis Complex. Mol Autism 2020; 11:16. [PMID: 32075691 PMCID: PMC7031912 DOI: 10.1186/s13229-020-0320-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by epilepsy, intellectual disability, and benign tumors of the brain, heart, skin, and kidney. Animal models have contributed to our understanding of normal and abnormal human brain development, but the construction of models that accurately recapitulate a human pathology remains challenging. Recent advances in stem cell biology with the derivation of human-induced pluripotent stem cells (hiPSCs) from somatic cells from patients have opened new avenues to the study of TSC. This approach combined with gene-editing tools such as CRISPR/Cas9 offers the advantage of preserving patient-specific genetic background and the ability to generate isogenic controls by correcting a specific mutation. The patient cell line and the isogenic control can be differentiated into the cell type of interest to model various aspects of TSC. In this review, we discuss the remarkable capacity of these cells to be used as a model for TSC in two- and three-dimensional cultures, the potential variability in iPSC models, and highlight differences between findings reported to date.
Collapse
Affiliation(s)
- Wardiya Afshar Saber
- Department of Neurology, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Mustafa Sahin
- Department of Neurology, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
16
|
Kim W, Giannikou K, Dreier JR, Lee S, Tyburczy ME, Silverman EK, Radzikowska E, Wu S, Wu CL, Henske EP, Hunninghake G, Carel H, Roman A, Pujana MA, Moss J, Won S, Kwiatkowski DJ. A genome-wide association study implicates NR2F2 in lymphangioleiomyomatosis pathogenesis. Eur Respir J 2019; 53:13993003.00329-2019. [PMID: 31000673 DOI: 10.1183/13993003.00329-2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/19/2019] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Lymphangioleiomyomatosis (LAM) occurs either associated with tuberous sclerosis complex (TSC) or as sporadic disease (S-LAM). Risk factors for development of S-LAM are unknown. We hypothesised that DNA sequence variants outside of TSC2/TSC1 might be associated with susceptibility for S-LAM and performed a genome-wide association study (GWAS). METHODS Genotyped and imputed data on 5 426 936 single nucleotide polymorphisms (SNPs) in 426 S-LAM subjects were compared, using conditional logistic regression, with similar data from 852 females from COPDGene in a matched case-control design. For replication studies, genotypes for 196 non-Hispanic White female S-LAM subjects were compared with three different sets of controls. RNA sequencing and immunohistochemistry analyses were also performed. RESULTS Two noncoding genotyped SNPs met genome-wide significance: rs4544201 and rs2006950 (p=4.2×10-8 and 6.1×10-9, respectively), which are in the same 35 kb linkage disequilibrium block on chromosome 15q26.2. This association was replicated in an independent cohort. NR2F2 (nuclear receptor subfamily 2 group F member 2), a nuclear receptor and transcription factor, was the only nearby protein-coding gene. NR2F2 expression was higher by RNA sequencing in one abdominal LAM tumour and four kidney angiomyolipomas, a LAM-related tumour, compared with all cancers from The Cancer Genome Atlas. Immunohistochemistry showed strong nuclear expression in both LAM and angiomyolipoma tumours. CONCLUSIONS SNPs on chromosome 15q26.2 are associated with S-LAM, and chromatin and expression data suggest that this association may occur through effects on NR2F2 expression, which potentially plays an important role in S-LAM development.
Collapse
Affiliation(s)
- Wonji Kim
- Interdisciplinary Program of Bioinformatics, Seoul National University, Seoul, Korea.,Channing Division of Network Medicine, Dept of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,These two authors contributed equally to this work
| | - Krinio Giannikou
- Division of Pulmonary and Critical Care Medicine and of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,These two authors contributed equally to this work
| | - John R Dreier
- Division of Pulmonary and Critical Care Medicine and of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sanghun Lee
- Dept of Medical Consilience, Graduate School, Dankook University, Yongin-si, Korea
| | - Magdalena E Tyburczy
- Division of Pulmonary and Critical Care Medicine and of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Dept of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine and of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Shulin Wu
- Urology Research Laboratory, Massachusetts General Hospital, Boston, MA, USA
| | - Chin-Lee Wu
- Urology Research Laboratory, Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth P Henske
- Division of Pulmonary and Critical Care Medicine and of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gary Hunninghake
- Division of Pulmonary and Critical Care Medicine and of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Havi Carel
- Dept of Philosophy, University of Bristol, Bristol, UK
| | - Antonio Roman
- Vall d'Hebron University Hospital, CIBERES, Barcelona, Spain
| | - Miquel Angel Pujana
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain
| | - Joel Moss
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sungho Won
- Dept of Public Health Sciences, Seoul National University, Seoul, Korea.,Institute of Health and Environment, Seoul National University, Seoul, Korea.,Joint senior authors
| | - David J Kwiatkowski
- Division of Pulmonary and Critical Care Medicine and of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA .,Joint senior authors
| |
Collapse
|
17
|
Kristof AS, Ortega VE. The discovery of novel mechanisms for lymphangioleiomyomatosis pathogenesis through GWAS: a rarity in rare respiratory disorders. Eur Respir J 2019; 53:53/6/1900863. [PMID: 31249011 DOI: 10.1183/13993003.00863-2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Arnold S Kristof
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Depts of Medicine and Critical Care, Montreal, QC, Canada
| | - Victor E Ortega
- Dept of Internal Medicine, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
18
|
Circulating Lymphangioleiomyomatosis Tumor Cells With Loss of Heterozygosity in the TSC2 Gene Show Increased Aldehyde Dehydrogenase Activity. Chest 2019; 156:298-307. [PMID: 31034819 DOI: 10.1016/j.chest.2019.03.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/27/2019] [Accepted: 03/22/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Lymphangioleiomyomatosis (LAM) is a destructive metastasizing neoplasm of the lung characterized by proliferation of LAM cells in specialized lung nodules. LAM cells are characterized by expression of the prometastatic and cancer-initiating hyaluronan receptor CD44v6, and loss of heterozygosity (LOH) of TSC1 and TSC2. The circulating neoplastic LAM cells are thought to be involved in metastasis. Because LAM cells display properties of neoplastic, metastatic, and stem cell-like cancer cells, we hypothesized that elevated aldehyde dehydrogenase (ALDH) activity, characteristic of cancer and stem cells, is a property of LAM cells. METHODS We performed an in silico search of ALDH genes in microdissected LAM lung nodules. To identify circulating LAM cells, we osmotically removed red blood cells from whole blood to obtain peripheral blood mononuclear cells, which were then sorted by fluorescence-activated cell sorting based on their level of ALDH activity. RESULTS Microdissected LAM lung nodules possess a distinctive ALDH gene profile. The cell subpopulation with high ALDH activity, isolated from circulating cells, possessed TSC2 LOH in 8 of 14 patients with LAM. Approximately 60% of the circulating cells with high ALDH activity expressed CD44v6. Cells with TSC2 LOH from patients with LAM and LAM/TSC exhibited different properties in different body locations, but all cell types showed high ALDH activity. CONCLUSIONS This new procedure allows for isolation of circulating LAM cells from cultured cells, blood, and chylous effusions and shows that circulating LAM cells are heterogeneous with neoplastic, metastatic, and cancer-stem cell-like properties.
Collapse
|
19
|
Tam RY, Yockell-Lelièvre J, Smith LJ, Julian LM, Baker AEG, Choey C, Hasim MS, Dimitroulakos J, Stanford WL, Shoichet MS. Rationally Designed 3D Hydrogels Model Invasive Lung Diseases Enabling High-Content Drug Screening. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806214. [PMID: 30589121 DOI: 10.1002/adma.201806214] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Cell behavior is highly dependent upon microenvironment. Thus, to identify drugs targeting metastatic cancer, screens need to be performed in tissue mimetic substrates that allow cell invasion and matrix remodeling. A novel biomimetic 3D hydrogel platform that enables quantitative analysis of cell invasion and viability at the individual cell level is developed using automated data acquisition methods with an invasive lung disease (lymphangioleiomyomatosis, LAM) characterized by hyperactive mammalian target of rapamycin complex 1 (mTORC1) signaling as a model. To test the lung-mimetic hydrogel platform, a kinase inhibitor screen is performed using tuberous sclerosis complex 2 (TSC2) hypomorphic cells, identifying Cdk2 inhibition as a putative LAM therapeutic. The 3D hydrogels mimic the native niche, enable multiple modes of invasion, and delineate phenotypic differences between healthy and diseased cells, all of which are critical to effective drug screens of highly invasive diseases including lung cancer.
Collapse
Affiliation(s)
- Roger Y Tam
- Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, K1H 8L6, Canada
| | - Julien Yockell-Lelièvre
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, K1H 8L6, Canada
| | - Laura J Smith
- Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| | - Lisa M Julian
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, K1H 8L6, Canada
| | - Alexander E G Baker
- Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| | - Chandarong Choey
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, K1H 8L6, Canada
| | - Mohamed S Hasim
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, K1H 8L6, Canada
| | - Jim Dimitroulakos
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, K1H 8L6, Canada
| | - William L Stanford
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Molly S Shoichet
- Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
20
|
Mitochondrial dysfunction is a key determinant of the rare disease lymphangioleiomyomatosis and provides a novel therapeutic target. Oncogene 2018; 38:3093-3101. [PMID: 30573768 PMCID: PMC6484686 DOI: 10.1038/s41388-018-0625-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/04/2018] [Accepted: 11/20/2018] [Indexed: 01/15/2023]
Abstract
Lymphangioleiomyomatosis (LAM) is a rare and progressive systemic disease affecting mainly young women of childbearing age. A deterioration in lung function is driven by neoplastic growth of atypical smooth muscle-like LAM cells in the pulmonary interstitial space that leads to cystic lung destruction and spontaneous pneumothoraces. Therapeutic options for preventing disease progression are limited and often end with lung transplantation temporarily delaying an inevitable decline. To identify new therapeutic strategies for this crippling orphan disease, we have performed array based and metabolic molecular analysis on patient-derived cell lines. Our results point to the conclusion that mitochondrial biogenesis and mitochondrial dysfunction in LAM cells provide a novel target for treatment.
Collapse
|
21
|
Zhao X, Bhattacharyya A. Human Models Are Needed for Studying Human Neurodevelopmental Disorders. Am J Hum Genet 2018; 103:829-857. [PMID: 30526865 DOI: 10.1016/j.ajhg.2018.10.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022] Open
Abstract
The analysis of animal models of neurological disease has been instrumental in furthering our understanding of neurodevelopment and brain diseases. However, animal models are limited in revealing some of the most fundamental aspects of development, genetics, pathology, and disease mechanisms that are unique to humans. These shortcomings are exaggerated in disorders that affect the brain, where the most significant differences between humans and animal models exist, and could underscore failures in targeted therapeutic interventions in affected individuals. Human pluripotent stem cells have emerged as a much-needed model system for investigating human-specific biology and disease mechanisms. However, questions remain regarding whether these cell-culture-based models are sufficient or even necessary. In this review, we summarize human-specific features of neurodevelopment and the most common neurodevelopmental disorders, present discrepancies between animal models and human diseases, demonstrate how human stem cell models can provide meaningful information, and discuss the challenges that exist in our pursuit to understand distinctively human aspects of neurodevelopment and brain disease. This information argues for a more thoughtful approach to disease modeling through consideration of the valuable features and limitations of each model system, be they human or animal, to mimic disease characteristics.
Collapse
Affiliation(s)
- Xinyu Zhao
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA.
| | - Anita Bhattacharyya
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA.
| |
Collapse
|
22
|
Kim H, Schaniel C. Modeling Hematological Diseases and Cancer With Patient-Specific Induced Pluripotent Stem Cells. Front Immunol 2018; 9:2243. [PMID: 30323816 PMCID: PMC6172418 DOI: 10.3389/fimmu.2018.02243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022] Open
Abstract
The advent of induced pluripotent stem cells (iPSCs) together with recent advances in genome editing, microphysiological systems, tissue engineering and xenograft models present new opportunities for the investigation of hematological diseases and cancer in a patient-specific context. Here we review the progress in the field and discuss the advantages, limitations, and challenges of iPSC-based malignancy modeling. We will also discuss the use of iPSCs and its derivatives as cellular sources for drug target identification, drug development and evaluation of pharmacological responses.
Collapse
Affiliation(s)
- Huensuk Kim
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Christoph Schaniel
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
23
|
Steagall WK, Pacheco-Rodriguez G, Darling TN, Torre O, Harari S, Moss J. The Lymphangioleiomyomatosis Lung Cell and Its Human Cell Models. Am J Respir Cell Mol Biol 2018; 58:678-683. [PMID: 29406787 PMCID: PMC6002654 DOI: 10.1165/rcmb.2017-0403tr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/05/2018] [Indexed: 01/11/2023] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a multisystem disease of women, affecting lungs, kidneys, and lymphatics. It is caused by the proliferation of abnormal smooth muscle-like LAM cells, with mutations and loss of heterozygosity in the TSC1 or, more frequently, TSC2 genes. Isolated pulmonary LAM cells have been difficult to maintain in culture, and most studies of LAM lung cells involve mixtures of TSC2 wild-type and TSC2-null cells. A clonal population of LAM lung cells has not been established, making analysis of the cells challenging. Cell lines have been established from angiomyolipomas, a common manifestation of LAM, and from tumors from patients with TSC. Circulating LAM cells have also been isolated from blood and other body fluids. LAM cells may also be identified in clusters apparently derived from lymphatic vessels. Genetics, patterns of antigen expression, and signaling pathways have been studied in LAM lung tissue and in LAM cell models, although rarely all in the same study. We show here that LAM cells manifest differences in these characteristics, depending on the source investigated, suggesting further studies.
Collapse
Affiliation(s)
- Wendy K. Steagall
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Gustavo Pacheco-Rodriguez
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Thomas N. Darling
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, Maryland; and
| | - Olga Torre
- Unità Operativa di Pneumologia e Terapia Semi-Intensiva Respiratoria, Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare, Ospedale San Giuseppe, MultiMedica Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Sergio Harari
- Unità Operativa di Pneumologia e Terapia Semi-Intensiva Respiratoria, Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare, Ospedale San Giuseppe, MultiMedica Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Joel Moss
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
24
|
Reprogramming patient-derived tumor cells generates model cell lines for tuberous sclerosis-associated lymphangioleiomyomatosis. Oncoscience 2018; 4:170-172. [PMID: 29344553 PMCID: PMC5769979 DOI: 10.18632/oncoscience.375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 12/05/2022] Open
|
25
|
Abstract
INTRODUCTION Lymphangioleiomyomatosis (LAM) is a destructive lung disease affecting primarily women. LAM is caused by inactivating mutations in the tuberous sclerosis complex (TSC) genes, resulting in hyperactivation of mechanistic/mammalian target of rapamycin complex 1 (mTORC1). Over the past five years, there have been remarkable advances in the diagnosis and therapy of LAM, including the identification of vascular endothelial growth factor D (VEGF-D) as a diagnostic biomarker and the US Food and Drug Administration approval of sirolimus as therapy for LAM. In appropriate clinical situations VEGF-D testing can make lung biopsy unnecessary to diagnose LAM. However, there remains an urgent unmet need for additional biomarkers of disease activity and/or response to therapy. Areas covered: This work reviews VEGF-D, an established LAM biomarker, and discusses emerging biomarkers, including circulating LAM cells, imaging, lipid, and metabolite biomarkers, focusing on those with the highest potential impact for LAM patients. Expert commentary: Ongoing research priorities include the development of validated biomarkers to 1) noninvasively diagnose LAM in women whose VEGF-D levels are not diagnostic, 2) accurately predict the likelihood of disease progression and 3) quantitatively measure disease activity and LAM cell burden. These biomarkers would enable personalized, precision clinical care and fast-track clinical trial implementation, with high clinical impact.
Collapse
Affiliation(s)
- Julie Nijmeh
- a Pulmonary and Critical Care Medicine, Department of Medicine , Brigham and Women's Hospital and Harvard Medical School , Boston , MA , USA
| | - Souheil El-Chemaly
- a Pulmonary and Critical Care Medicine, Department of Medicine , Brigham and Women's Hospital and Harvard Medical School , Boston , MA , USA
| | - Elizabeth P Henske
- a Pulmonary and Critical Care Medicine, Department of Medicine , Brigham and Women's Hospital and Harvard Medical School , Boston , MA , USA
| |
Collapse
|