1
|
Ni C, Hua R, Yang Y, Liang J, Liu W, Wang L, Yao X, Li A, Yu L, Feng R, Lv D, Qin Z, Zhai W. Single-cell transcriptomic analysis reveals prognosis-related stromal signatures that potentiate stratification of patients with extrahepatic cholangiocarcinoma. BMC Gastroenterol 2025; 25:235. [PMID: 40205358 PMCID: PMC11983802 DOI: 10.1186/s12876-025-03829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Extrahepatic cholangiocarcinoma (eCCA) is a rare but refractory cancer with dense desmoplasia. Prognosis-associated stromal cells in eCCA remain poorly characterized. Here, we profiled the tumor cellular composition and identified prognosis-related stromal signatures by single-cell RNA sequencing (scRNA-seq) in eCCA. ECCA patients were further stratified into different categories based on identified stromal signatures. METHODS Using scRNA-seq, we profiled the transcriptomes of 37,498 individual cells from eight eCCA biopsies, including five tumor tissues and three paired adjacent normal tissues. Bulk RNA sequencing (bRNA-seq) was also performed on 43 eCCA tumor tissues. Stromal cell composition and heterogeneity were examined through differential gene expression and gene set enrichment analyses. By assessing the expression levels of marker genes in bRNA-seq data, the correlation of stromal cell clusters with survival was explored. The GSVA scores of the cell-specific signature genes of the prognosis-related stromal cell subtypes were calculated and used to stratify eCCA patients. RESULTS The results revealed that tumor stroma in eCCA were composed of hematopoietic progenitor-like cells (HPLCs), fibroblasts (Fb), Schwann cells (Sch), endothelial cells and immune cells. Prognosis-associated stromal cell subpopulations included MKI67 + HPLC, TMEM158 + C3-Fb, FOXP3 + regulatory T cells (Treg), SLIT2 + Sch, TPSD1 + C2-mast cells (MC) and CTSG + C3-MC. Based on these stromal signatures, the eCCA tumors were categorized into three classes: proliferative Group 1 with enrichment of MKI67 + HPLC, inflammatory and fibrotic Group 2 with enrichment of TPSD1 + C2- MC, FOXP3 + Treg and TMEM158 + C3-Fb, and neuronal Group 3 with enrichment of SLIT2 + Sch and CTSG + C3-MC. ECCA patients in Group 3 had a better prognosis when compared to Group 1 and 2, reflecting different impact of stromal subtypes on tumor progression. CONCLUSION Single-cell transcriptomic analysis reveals prognosis-related stromal signatures that potentiate the stratification of eCCA into proliferative, inflammatory and fibrotic, and neuronal phenotypes, which has important implications on molecular classification and exploring therapeutic targets in eCCA.
Collapse
Affiliation(s)
- Chen Ni
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Rulin Hua
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Yuanyuan Yang
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jialu Liang
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Key Lab of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou, Henan, 450052, China
| | - Wentao Liu
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Key Lab of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou, Henan, 450052, China
| | - Linlin Wang
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiaohan Yao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Anqi Li
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Long Yu
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Key Lab of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou, Henan, 450052, China
| | - Ruo Feng
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450000, China
| | - Dekang Lv
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, China.
| | - Zhihai Qin
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Henan China-Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Wenlong Zhai
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Key Lab of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
2
|
Xiao X, Huang L, Li M, Zhang Q. Intersection between lung cancer and neuroscience: Opportunities and challenges. Cancer Lett 2025; 621:217701. [PMID: 40194655 DOI: 10.1016/j.canlet.2025.217701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
Lung cancer, which has the highest morbidity and mortality rates worldwide, involves intricate interactions with the nervous system. Research indicates that the nervous system not only plays a role in the origin of lung cancer, but also engages in complex interactions with cancer cells through neurons, neurotransmitters, and various neuroactive molecules during tumor proliferation, invasion, and metastasis, especially in brain metastases. Cancer and its therapies can remodel the nervous system. Despite advancements in immunotherapy and targeted therapies in recent years, drug resistance of lung cancer cells after treatment limits improvements in patient survival and prognosis. The emergence of neuroscience has created new opportunities for the treatment of lung cancer. However, it also presents challenges. This review emphasizes that a deeper understanding of the interactions between the nervous system and lung cancer, along with the identification of new therapeutic targets, may lead to significant advancements or even a revolution in treatment strategies for patients with lung cancer.
Collapse
Affiliation(s)
- Xiang Xiao
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, PR China; The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210009, PR China
| | - Lingli Huang
- The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210009, PR China; Department of Pharmacy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, PR China
| | - Ming Li
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, PR China; The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210009, PR China.
| | - Quanli Zhang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, PR China; The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210009, PR China.
| |
Collapse
|
3
|
Liu S, Liu C, He Y, Li J. Benign non-immune cells in tumor microenvironment. Front Immunol 2025; 16:1561577. [PMID: 40248695 PMCID: PMC12003390 DOI: 10.3389/fimmu.2025.1561577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/24/2025] [Indexed: 04/19/2025] Open
Abstract
The tumor microenvironment (TME) is a highly complex and continuous evolving ecosystem, consisting of a diverse array of cellular and non-cellular components. Among these, benign non-immune cells, including cancer-associated fibroblasts (CAFs), adipocytes, endothelial cells (ECs), pericytes (PCs), Schwann cells (SCs) and others, are crucial factors for tumor development. Benign non-immune cells within the TME interact with both tumor cells and immune cells. These interactions contribute to tumor progression through both direct contact and indirect communication. Numerous studies have highlighted the role that benign non-immune cells exert on tumor progression and potential tumor-promoting mechanisms via multiple signaling pathways and factors. However, these benign non-immune cells may play different roles across cancer types. Therefore, it is important to understand the potential roles of benign non-immune cells within the TME based on tumor heterogeneity. A deep understanding allows us to develop novel cancer therapies by targeting these cells. In this review, we will introduce several types of benign non-immune cells that exert on different cancer types according to tumor heterogeneity and their roles in the TME.
Collapse
Affiliation(s)
- Shaowen Liu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chunhui Liu
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
| | - Yuan He
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jun Li
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
4
|
Karjalainen J, Hain S, Progatzky F. Glial-immune interactions in barrier organs. Mucosal Immunol 2025; 18:271-278. [PMID: 39716688 DOI: 10.1016/j.mucimm.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
Neuro-immune interactions within barrier organs, such as lung, gut, and skin, are crucial in regulating tissue homeostasis, inflammatory responses, and host defence. Our rapidly advancing understanding of peripheral neuroimmunology is transforming the field of barrier tissue immunology, offering a fresh perspective for developing therapies for complex chronic inflammatory disorders affecting barrier organs. However, most studies have primarily examined interactions between the peripheral nervous system and the immune system from a neuron-focused perspective, while glial cells, the nonneuronal cells of the nervous system, have received less attention. Glial cells were long considered as mere bystanders, only supporting their neuronal neighbours, but recent discoveries mainly on enteric glial cells in the intestine have implicated these cells in immune-regulation and inflammatory disease pathogenesis. In this review, we will highlight the bi-directional interactions between peripheral glial cells and the immune system and discuss the emerging immune regulatory functions of glial cells in barrier organs.
Collapse
Affiliation(s)
| | - Sofia Hain
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Fränze Progatzky
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Wang Z, Xie X, Xue Y, Chen Y. Tryptophan-2,3-Dioxygenase as a Therapeutic Target in Digestive System Diseases. BIOLOGY 2025; 14:295. [PMID: 40136551 PMCID: PMC11939885 DOI: 10.3390/biology14030295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025]
Abstract
Tryptophan (Trp) is an essential amino acid that must be acquired exclusively through dietary intake. The metabolism of tryptophan plays a critical role in maintaining immune homeostasis and tolerance, as well as in preventing excessive inflammatory responses. Tryptophan-2,3-dioxygenase (TDO2) is a tetrameric heme protein and serves as one of the pivotal rate-limiting enzymes in the first step of tryptophan metabolism. Dysregulation of TDO2 expression has been observed in various digestive system diseases, encompassing those related to the oral cavity, esophagus, liver, stomach, pancreas, and colon and rectum. Digestive system diseases are the most common clinical diseases, with complex clinical manifestations and interrelated symptoms, and have become a research hotspot in the field of medicine. Studies have demonstrated that aberrant TDO2 expression is closely associated with various clinical manifestations and disease outcomes in patients with digestive system disorders. Consequently, TDO2 has garnered increasing recognition as a promising therapeutic target for digestive system diseases in recent years, attracting growing attention. This article provides a brief overview of the role of TDO2 in the tryptophan pathway, emphasizing its significant involvement in diseases of the digestive system. Strategies targeting TDO2 through specific inhibitors suggest considerable promise in enhancing therapeutic outcomes for digestive diseases. Thus, this review concludes by discussing recent advancements in the development of TDO2 inhibitors. We believe that targeted inhibition of TDO2 combined with immunotherapy, the screening of a large number of natural products, and the assistance of artificial intelligence in drug design will be important directions for developing more effective TDO2 inhibitors and improving treatment outcomes in the future.
Collapse
Affiliation(s)
| | | | | | - Yixuan Chen
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
| |
Collapse
|
6
|
Dong Q, Guo Y, Lv C, Ren L, Chen B, Wang Y, Liu Y, Liu M, Liu K, Zhang N, Wang L, Sang S, Li X, Hui Y, Liang H, Gu Y. Unveiling a novel cancer hallmark by evaluation of neural infiltration in cancer. Brief Bioinform 2025; 26:bbaf082. [PMID: 40052442 PMCID: PMC11886572 DOI: 10.1093/bib/bbaf082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/30/2025] [Accepted: 02/17/2025] [Indexed: 03/10/2025] Open
Abstract
Cancer cells acquire necessary functional capabilities for malignancy through the influence of the nervous system. We evaluate the extent of neural infiltration within the tumor microenvironment (TME) across multiple cancer types, highlighting its role as a cancer hallmark. We identify cancer-related neural genes using 40 bulk RNA-seq datasets across 10 cancer types, developing a predictive score for cancer-related neural infiltration (C-Neural score). Cancer samples with elevated C-Neural scores exhibit perineural invasion, recurrence, metastasis, higher stage or grade, or poor prognosis. Epithelial cells show the highest C-Neural scores among all cell types in 55 single-cell RNA sequencing datasets. The epithelial cells with high C-Neural scores (epi-highCNs) characterized by increased copy number variation, reduced cell differentiation, higher epithelial-mesenchymal transition scores, and elevated metabolic level. Epi-highCNs frequently communicate with Schwann cells by FN1 signaling pathway. The co-culture experiment indicates that Schwann cells may facilitate cancer progression through upregulation of VDAC1. Moreover, C-Neural scores positively correlate with the infiltration of antitumor immune cells, indicating potential response for immunotherapy. Melanoma patients with high C-Neural scores may benefit from trametinib. These analyses illuminate the extent of neural influence within TME, suggesting potential role as a cancer hallmark and offering implications for effective therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Qi Dong
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Yingying Guo
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Chen Lv
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Lingxue Ren
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Bo Chen
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Yan Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Yang Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Mingyue Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Kaidong Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Nan Zhang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Linzhu Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Shaocong Sang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Xin Li
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Yang Hui
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| | - Haihai Liang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
- Department of Nephrology, Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150081, China
| | - Yunyan Gu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, China
| |
Collapse
|
7
|
Gracia F, Sanchez-Laorden B, Gomez-Sanchez JA. Schwann cells in regeneration and cancer: an epithelial-mesenchymal transition perspective. Open Biol 2025; 15:240337. [PMID: 40037534 DOI: 10.1098/rsob.240337] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/13/2025] [Accepted: 02/09/2025] [Indexed: 03/06/2025] Open
Abstract
In the peripheral nervous system, glial cells, known as Schwann cells (SCs), are responsible for supporting and maintaining nerves. One of the most important characteristics of SCs is their remarkable plasticity. In various injury contexts, SCs undergo a reprogramming process that generates specialized cells to promote tissue regeneration and repair. However, in pathological conditions, this same plasticity and regenerative potential can be hijacked. Different studies highlight the activation of the epithelial-mesenchymal transition (EMT) as a driver of SC phenotypic plasticity. Although SCs are not epithelial, their neural crest origin makes EMT activation crucial for their ability to adopt repair phenotypes, mirroring the plasticity observed during development. These adaptive processes are essential for regeneration. However, EMT activation in SCs-derived tumours enhances cancer progression and aggressiveness. Furthermore, in the tumour microenvironment (TME), SCs also acquire activated phenotypes that contribute to tumour migration and invasion by activating EMT in cancer cells. In this review, we will discuss how EMT impacts SC plasticity and function from development and tissue regeneration to pathological conditions, such as cancer.
Collapse
Affiliation(s)
- Francisco Gracia
- Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, 03550, Spain
| | | | - Jose A Gomez-Sanchez
- Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, 03550, Spain
- Instituto de Investigacion Sanitaria y Biomedica de Alicante (ISABIAL), Alicante 03010, Spain
| |
Collapse
|
8
|
Liao S, Kang K, Yao Z, Lu Y. Nervous system contributions to small cell lung cancer: Lessons from diverse oncological studies. Biochim Biophys Acta Rev Cancer 2025; 1880:189252. [PMID: 39725176 DOI: 10.1016/j.bbcan.2024.189252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
The nervous system plays a vital role throughout the entire lifecycle and it may regulate the formation, development and metastasis of tumors. Small cell lung cancer is a typical neuroendocrine tumor, and it is naturally equipped with neurotropism. In this review, we firstly summarize current preclinical and clinical evidence to demonstrate the reciprocal crosstalk among the nervous system, tumor, and tumor microenvironment in various ways, including neurotransmitter-receptor pathways, innervations of nerve fibers, different types of synapse formation by neurons, astrocytes, and cancer cells, neoneurogenesis. Futherly, we emphasize how the nervous system interacts with small cell lung cancer and discuss the limitations of current research methods for examining the interactions. We propose that integrating neuroscience, development biology, and tumor biology can be a promising direction to provide new insights into development and metastasis of small cell lung cancer and raise some novel treatment strategies.
Collapse
Affiliation(s)
- Shuangsi Liao
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Kang
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuoran Yao
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China.
| | - You Lu
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Zhang L, Xie J, Dai W, Lu B, Yi S. Schwann cells in regeneration and cancer. Front Pharmacol 2025; 16:1506552. [PMID: 39981185 PMCID: PMC11840318 DOI: 10.3389/fphar.2025.1506552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/09/2025] [Indexed: 02/22/2025] Open
Abstract
Schwann cells are specific peripheral glial cells with remarkable plasticity following peripheral nerve injury. Injury responses stimulate c-Jun activation in Schwann cells, drive epithelial-mesenchymal transition and cellular phenotypic changes, and induce the generation of reprogrammed repair Schwann cells to orchestrate peripheral nerve regeneration process. Schwann cells and/or Schwann cell-derived molecules are commonly used as supporting cells and/or neurotrophic factors to construct Schwann cell-based tissue-engineered nerve grafts for repairing severe peripheral nerve injury with long defects. Transplantation of Schwann cells and/or Schwann cell-derived molecules also serves as a helpful approach for the treatment of other injured tissues, such as the spinal cord, skin, digit tip, and bone. Schwann cells are not only associated with tissue regeneration but also involved in tumorigenesis and tumor progression. Schwann cells are the major cellular component of neurofibromatosis type 1 and the sole cell type in neurofibromatosis type 2 and schwannomatosis. In addition, Schwann cells also function as an important player in the tumor microenvironment and aid in the growth and invasiveness of many other solid cancers. In the present review, we outline the physiological and pathological activities of Schwann cells and discuss the functional roles of Schwann cells in homeostasis, regeneration, and cancer.
Collapse
Affiliation(s)
- Lan Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Jiale Xie
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Wenyu Dai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Bing Lu
- Department of Clinical Biobank and Institute of Oncology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
10
|
Wang YH, Yang X, Liu CC, Wang X, Yu KD. Unraveling the peripheral nervous System's role in tumor: A Double-edged Sword. Cancer Lett 2025; 611:217451. [PMID: 39793755 DOI: 10.1016/j.canlet.2025.217451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
The peripheral nervous system (PNS) includes all nerves outside the brain and spinal cord, comprising various cells like neurons and glial cells, such as schwann and satellite cells. The PNS is increasingly recognized for its bidirectional interactions with tumors, exhibiting both pro- and anti-tumor effects. Our review delves into the complex mechanisms underlying these interactions, highlighting recent findings that challenge the conventional understanding of PNS's role in tumorigenesis. We emphasize the contradictory results in the literature and propose novel perspectives on how these discrepancies can be resolved. By focusing on the PNS's influence on tumor initiation, progression, and microenvironment remodeling, we provide a comprehensive analysis that goes beyond the structural description of the PNS. Our review suggests that a deeper comprehension of the PNS-tumor crosstalk is pivotal for developing targeted anticancer strategies. We conclude by emphasizing the need for future research to unravel the intricate dynamics of the PNS in cancer, which may lead to innovative diagnostic tools and therapeutic approaches.
Collapse
Affiliation(s)
- Yan-Hao Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China
| | - Xuan Yang
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, 030000, PR China
| | - Cui-Cui Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China
| | - Xin Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Ke-Da Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China.
| |
Collapse
|
11
|
Xu C, Jiang C, Tian Y, Liu Y, Zhang H, Xiang Z, Xue H, Gu L, Xu Q. Nervous system in colorectal cancer. Cancer Lett 2024; 611:217431. [PMID: 39725147 DOI: 10.1016/j.canlet.2024.217431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/28/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024]
Abstract
A malignant tumor is a complex systemic disease involving the nervous system, which regulates nerve signals. Cancer neuroscience is a field that explores the interactions between tumors and the nervous system. The gastrointestinal tract is a typical peripheral organ with abundant neuroregulation and is regulated by the peripheral, enteric, and central nervous systems (PNS, ENS, and CNS, respectively). The physiological functions of the gastrointestinal tract are maintained via complex neuromodulation. Neuroregulatory imbalance is the primary cause of gastrointestinal diseases, including colorectal cancer (CRC). In CRC, there is a direct interaction between the nervous system and tumor cells. Moreover, this tumor-nerve interaction can indirectly regulate the tumor microenvironment, including the microbiota, immunity, and metabolism. In addition to the lower nerve centers, the stress response, emotion, and cognition represented by the higher nerve centers also participate in the occurrence and progression of CRC. Herein, we review some basic knowledge regarding cancer neuroscience and elucidate the mechanism underlying tumor-nerve interactions in CRC.
Collapse
Affiliation(s)
- Chunjie Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Chunhui Jiang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Yuan Tian
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Ye Liu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Hao Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Zeyu Xiang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Hanbing Xue
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China.
| | - Lei Gu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China.
| | - Qing Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China.
| |
Collapse
|
12
|
He K, Wang H, Huo R, Jiang SH, Xue J. Schwann cells and enteric glial cells: Emerging stars in colorectal cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189160. [PMID: 39059672 DOI: 10.1016/j.bbcan.2024.189160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/21/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Cancer neuroscience, a promising field dedicated to exploring interactions between cancer and the nervous system, has attracted growing attention. The gastrointestinal tracts exhibit extensive innervation, notably characterized by intrinsic innervation. The gut harbors a substantial population of glial cells, including Schwann cells wrapping axons of neurons in the peripheral nervous system and enteric glial cells intricately associated with intrinsic innervation. Glial cells play a crucial role in maintaining the physiological functions of the intestine, encompassing nutrient absorption, barrier integrity, and immune modulation. Nevertheless, it has only been in recent times that the significance of glial cells within colorectal cancer (CRC) has begun to receive considerable attention. Emerging data suggests that glial cells in the gut contribute to the progression and metastasis of CRC, by interacting with cancer cells, influencing inflammation, and modulating the tumor microenvironment. Here, we summarize the significant roles of glial cells in the development and progression of CRC and discuss the latest technologies that can be integrated into this field for in-depth exploration, as well as potential specific targeted strategies for future exploration to benefit patients.
Collapse
Affiliation(s)
- Kexin He
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Hao Wang
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Ruixue Huo
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Shu-Heng Jiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Junli Xue
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China.
| |
Collapse
|
13
|
Yimin E, Lu C, Zhu K, Li W, Sun J, Ji P, Meng M, Liu Z, Yu C. Function and mechanism of exosomes derived from different cells as communication mediators in colorectal cancer metastasis. iScience 2024; 27:109350. [PMID: 38500820 PMCID: PMC10945197 DOI: 10.1016/j.isci.2024.109350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the second leading cause of cancer-related mortality, with metastasis being the primary determinant of poor prognosis in patients. Investigating the molecular mechanisms underlying CRC metastasis is currently a prominent and challenging area of research. Exosomes, as crucial intercellular communication mediators, facilitate the transfer of metabolic and genetic information from cells of origin to recipient cells. Their roles in mediating information exchange between CRC cells and immune cells, fibroblasts, and other cell types are pivotal in reshaping the tumor microenvironment, regulating key biological processes such as invasion, migration, and formation of pre-metastatic niche. This article comprehensively examines the communication function and mechanism of exosomes derived from different cells in cancer metastasis, while also presenting an outlook on current research advancements and future application prospects. The aim is to offer a distinctive perspective that contributes to accurate diagnosis and rational treatment strategies for CRC.
Collapse
Affiliation(s)
- Yimin E
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan Road, Nanjing 210011, Jiangsu, China
| | - Chen Lu
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Long Mian Avenue 109 Jiangning, Nanjing 211112, Jiangsu, China
| | - Kuixuan Zhu
- Department of Radiotherapy, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650100, Yunan, China
| | - Wenyuan Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan Road, Nanjing 210011, Jiangsu, China
| | - Jing Sun
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan Road, Nanjing 210011, Jiangsu, China
| | - Pengcheng Ji
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Long Mian Avenue 109 Jiangning, Nanjing 211112, Jiangsu, China
| | - Minjie Meng
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan Road, Nanjing 210011, Jiangsu, China
| | - Zhengxia Liu
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan Road, Nanjing 210011, Jiangsu, China
| | - Chunzhao Yu
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Long Mian Avenue 109 Jiangning, Nanjing 211112, Jiangsu, China
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan Road, Nanjing 210011, Jiangsu, China
| |
Collapse
|
14
|
Cai Z, Yao H, Chen J, Ahmed AA, Li C, Hu X, Tang X, Jiang C. Schwann cells in pancreatic cancer: Unraveling their multifaceted roles in tumorigenesis and neural interactions. Cancer Lett 2024; 587:216689. [PMID: 38367898 DOI: 10.1016/j.canlet.2024.216689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/19/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), characterized by heightened neural density, presents a challenging prognosis primarily due to perineural invasion. Recognized for their crucial roles in neural support and myelination, Schwann cells (SCs) significantly influence the process of tumorigenesis. This review succinctly outlines the interplay between PDAC and neural systems, positioning SCs as a nexus in the tumor-neural interface. Subsequently, it delves into the cellular origin and influencers of SCs within the pancreatic tumor microenvironment, emphasizing their multifaceted roles in tumor initiation, progression, and modulation of the neural and immune microenvironment. The discussion encompasses potential therapeutic interventions targeting SCs. Lastly, the review underscores pressing issues, advocating for sustained exploration into the diverse contributions of SCs within the intricate landscape of PDAC, with the aim of enhancing our understanding of their involvement in this complex malignancy.
Collapse
Affiliation(s)
- Zhiwei Cai
- Department of General Surgery, Pancreatobiliary Surgery Center, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China
| | - Hongfei Yao
- Department of General Surgery, Pancreatobiliary Surgery Center, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China
| | - Jiahao Chen
- Department of General Surgery, Pancreatobiliary Surgery Center, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China
| | - Abousalam Abdoulkader Ahmed
- Department of General Surgery, Pancreatobiliary Surgery Center, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China
| | - Chunjing Li
- Department of General Surgery, Pancreatobiliary Surgery Center, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China
| | - Xiao Hu
- Department of General Surgery, Pancreatobiliary Surgery Center, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China
| | - Xiaoyan Tang
- Department of General Surgery, Pancreatobiliary Surgery Center, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China
| | - Chongyi Jiang
- Department of General Surgery, Pancreatobiliary Surgery Center, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China.
| |
Collapse
|
15
|
Shurin MR, Wheeler SE, Shurin GV, Zhong H, Zhou Y. Schwann cells in the normal and pathological lung microenvironment. Front Mol Biosci 2024; 11:1365760. [PMID: 38638689 PMCID: PMC11024312 DOI: 10.3389/fmolb.2024.1365760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
The lungs are a key organ in the respiratory system. They are regulated by a complex network of nerves that control their development, structure, function, and response to various pathological stimuli. Accumulating evidence suggests the involvement of a neural mechanism in different pathophysiological conditions in the lungs and the development and progression of common respiratory diseases. Lung diseases are the chief source of death globally. For instance, lung cancer is the second most commonly diagnosed malignancy, after prostate cancer in men and breast cancer in women, and is the most lethal cancer worldwide. However, although airway nerves are accepted as a mechanistically and therapeutically important feature that demands appropriate emphasizing in the context of many respiratory diseases, significantly less is known about the role of the neuroglial cells in lung physiology and pathophysiology, including lung cancer. New data have uncovered some cellular and molecular mechanisms of how Schwann cells, as fundamental components of the peripheral nervous system, may regulate lung cancer cells' survival, spreading, and invasiveness in vitro and in vivo. Schwann cells control the formation and maintenance of the lung cancer microenvironment and support metastasis formation. It was also reported that the number of lung cancer-associated Schwann cells correlates with patients' survival. Different factors secreted by Schwann cells, including microRNA, are known to sharpen the lung cancer environment by regulating the tumor-neuro-immune axis. Further clinical and experimental studies are required to elucidate the detailed role of Schwann cells in creating and maintaining pulmonary tumor-neuro-immune axis, which will advance our understanding of the pathogenesis of lung cancer and may inform therapeutic hypotheses aiming neoplasms and metastases in the lung.
Collapse
Affiliation(s)
- Michael R. Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Sarah E. Wheeler
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Galina V. Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Hua Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Zhou Y, Zhang Y, Xu J, Wang Y, Yang Y, Wang W, Gu A, Han B, Shurin GV, Zhong R, Shurin MR, Zhong H. Schwann cell-derived exosomes promote lung cancer progression via miRNA-21-5p. Glia 2024; 72:692-707. [PMID: 38192185 DOI: 10.1002/glia.24497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024]
Abstract
Schwann cells (SCs), the primary glial cells of the peripheral nervous system, which have been identified in many solid tumors, play an important role in cancer development and progression by shaping the tumor immunoenvironment and supporting the development of metastases. Using different cellular, molecular, and genetic approaches with integrated bioinformatics analysis and functional assays, we revealed the role of human SC-derived exosomal miRNAs in lung cancer progression in vitro and in vivo. We found that exosomal miRNA-21 from SCs up-regulated the proliferation, motility, and invasiveness of human lung cancer cells in vitro, which requires functional Rab small GTPases Rab27A and Rab27B in SCs for exosome release. We also revealed that SC exosomal miRNA-21-5p regulated the functional activation of tumor cells by targeting metalloprotease inhibitor RECK in tumor cells. Integrated bioinformatic analyses showed that hsa-miRNA-21-5p is associated with poor prognosis in patients with lung adenocarcinoma and can promote lung cancer progression through multiple signaling pathways including the MAPK, PI3K/Akt, and TNF signaling. Furthermore, in mouse xenograft models, SC exosomes and SC exosomal hsa-miRNA-21-5p augmented human lung cancer cell growth and lymph node metastasis in vivo. Together our data revealed, for the first time, that SC-secreted exosomes and exosomal miRNA-21-5p promoted the proliferation, motility, and spreading of human lung cancer cells in vitro and in vivo. Thus, exosomal miRNA-21 may play an oncogenic role in SC-accelerated progression of lung cancer and this pathway may serve as a new therapeutic target for further evaluation.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianlin Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Yang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weimin Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aiqin Gu
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baohui Han
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Galina V Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Runbo Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Hua Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Yang G, Li C, Tao F, Liu Y, Zhu M, Du Y, Fei C, She Q, Chen J. The emerging roles of lysine-specific demethylase 4A in cancer: Implications in tumorigenesis and therapeutic opportunities. Genes Dis 2024; 11:645-663. [PMID: 37692513 PMCID: PMC10491877 DOI: 10.1016/j.gendis.2022.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/28/2022] [Indexed: 09/12/2023] Open
Abstract
Lysine-specific demethylase 4 A (KDM4A, also named JMJD2A, KIA0677, or JHDM3A) is a demethylase that can remove methyl groups from histones H3K9me2/3, H3K36me2/3, and H1.4K26me2/me3. Accumulating evidence suggests that KDM4A is not only involved in body homeostasis (such as cell proliferation, migration and differentiation, and tissue development) but also associated with multiple human diseases, especially cancers. Recently, an increasing number of studies have shown that pharmacological inhibition of KDM4A significantly attenuates tumor progression in vitro and in vivo in a range of solid tumors and acute myeloid leukemia. Although there are several reviews on the roles of the KDM4 subfamily in cancer development and therapy, all of them only briefly introduce the roles of KDM4A in cancer without systematically summarizing the specific mechanisms of KDM4A in various physiological and pathological processes, especially in tumorigenesis, which greatly limits advances in the understanding of the roles of KDM4A in a variety of cancers, discovering targeted selective KDM4A inhibitors, and exploring the adaptive profiles of KDM4A antagonists. Herein, we present the structure and functions of KDM4A, simply outline the functions of KDM4A in homeostasis and non-cancer diseases, summarize the role of KDM4A and its distinct target genes in the development of a variety of cancers, systematically classify KDM4A inhibitors, summarize the difficulties encountered in the research of KDM4A and the discovery of related drugs, and provide the corresponding solutions, which would contribute to understanding the recent research trends on KDM4A and advancing the progression of KDM4A as a drug target in cancer therapy.
Collapse
Affiliation(s)
- Guanjun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Changyun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Fan Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yanjun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Minghui Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yu Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chenjie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qiusheng She
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
18
|
de Franchis V, Petrungaro S, Pizzichini E, Camerini S, Casella M, Somma F, Mandolini E, Carpino G, Overi D, Cardinale V, Facchiano A, Filippini A, Gaudio E, Fabrizi C, Giampietri C. Cholangiocarcinoma Malignant Traits Are Promoted by Schwann Cells through TGFβ Signaling in a Model of Perineural Invasion. Cells 2024; 13:366. [PMID: 38474330 PMCID: PMC10930666 DOI: 10.3390/cells13050366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
The term cholangiocarcinoma (CCA) defines a class of epithelial malignancies originating from bile ducts. Although it has been demonstrated that CCA patients with perineural invasion (PNI) have a worse prognosis, the biological features of this phenomenon are yet unclear. Our data show that in human intrahepatic CCA specimens with documented PNI, nerve-infiltrating CCA cells display positivity of the epithelial marker cytokeratin 7, lower with respect to the rest of the tumor mass. In an in vitro 3D model, CCA cells move towards a peripheral nerve explant allowing contact with Schwann cells (SCs) emerging from the nerve. Here, we show that SCs produce soluble factors that favor the migration, invasion, survival and proliferation of CCA cells in vitro. This effect is accompanied by a cadherin switch, suggestive of an epithelial-mesenchymal transition. The influence of SCs in promoting the ability of CCA cells to migrate and invade the extracellular matrix is hampered by a specific TGFβ receptor 1 (TGFBR1) antagonist. Differential proteomic data indicate that the exposure of CCA cells to SC secreted factors induces the upregulation of key oncogenes and the concomitant downregulation of some tumor suppressors. Taken together, these data concur in identifying SCs as possible promoters of a more aggressive CCA phenotype, ascribing a central role to TGFβ signaling in regulating this process.
Collapse
Affiliation(s)
- Valerio de Franchis
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; (V.d.F.); (S.P.); (E.P.); (F.S.); (E.M.); (G.C.); (D.O.); (E.G.); (C.F.)
| | - Simonetta Petrungaro
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; (V.d.F.); (S.P.); (E.P.); (F.S.); (E.M.); (G.C.); (D.O.); (E.G.); (C.F.)
| | - Elisa Pizzichini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; (V.d.F.); (S.P.); (E.P.); (F.S.); (E.M.); (G.C.); (D.O.); (E.G.); (C.F.)
| | - Serena Camerini
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.C.); (M.C.)
| | - Marialuisa Casella
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.C.); (M.C.)
| | - Francesca Somma
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; (V.d.F.); (S.P.); (E.P.); (F.S.); (E.M.); (G.C.); (D.O.); (E.G.); (C.F.)
| | - Enrico Mandolini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; (V.d.F.); (S.P.); (E.P.); (F.S.); (E.M.); (G.C.); (D.O.); (E.G.); (C.F.)
| | - Guido Carpino
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; (V.d.F.); (S.P.); (E.P.); (F.S.); (E.M.); (G.C.); (D.O.); (E.G.); (C.F.)
| | - Diletta Overi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; (V.d.F.); (S.P.); (E.P.); (F.S.); (E.M.); (G.C.); (D.O.); (E.G.); (C.F.)
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University of Rome, 04100 Latina, Italy;
| | - Antonio Facchiano
- Laboratory of Molecular Oncology, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy;
| | - Antonio Filippini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; (V.d.F.); (S.P.); (E.P.); (F.S.); (E.M.); (G.C.); (D.O.); (E.G.); (C.F.)
| | - Eugenio Gaudio
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; (V.d.F.); (S.P.); (E.P.); (F.S.); (E.M.); (G.C.); (D.O.); (E.G.); (C.F.)
| | - Cinzia Fabrizi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; (V.d.F.); (S.P.); (E.P.); (F.S.); (E.M.); (G.C.); (D.O.); (E.G.); (C.F.)
| | - Claudia Giampietri
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; (V.d.F.); (S.P.); (E.P.); (F.S.); (E.M.); (G.C.); (D.O.); (E.G.); (C.F.)
| |
Collapse
|
19
|
Chen X, Tao Z, Liang Y, Ma M, Adah D, Ding W, Chen L, Li X, Dai L, Fanuel S, Zhao S, Hu W, Wu D, Duan Z, Zhou F, Qin L, Chen X, Yang Z. Plasmodium immunotherapy combined with gemcitabine has a synergistic inhibitory effect on tumor growth and metastasis in murine Lewis lung cancer models. Front Oncol 2023; 13:1181176. [PMID: 37916167 PMCID: PMC10618005 DOI: 10.3389/fonc.2023.1181176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/18/2023] [Indexed: 11/03/2023] Open
Abstract
Objective Our previous studies have demonstrated that Plasmodium immunotherapy (infection) has antitumor effects in mice. However, as a new form of immunotherapy, this therapy has a weakness: its specific killing effect on tumor cells is relatively weak. Therefore, we tested whether Plasmodium immunotherapy combined with gemcitabine (Gem), a representative chemotherapy drug, has synergistic antitumor effects. Methods We designed subcutaneously and intravenously implanted murine Lewis lung cancer (LLC) models to test the antitumor effect of Plasmodium chabaudi ASS (Pc) infection in combination with Gem treatment and explored its underlying mechanisms. Results We found that both Pc infection alone and Gem treatment alone significantly inhibited tumor growth in the subcutaneous model, and combination therapy was more effective than either monotherapy. Monotherapy only tended to prolong the survival of tumor-bearing mice, while the combination therapy significantly extended the survival of mice, indicating a significant synergistic effect of the combination. In the mechanistic experiments, we found that the combination therapy significantly upregulated E-cadherin and downregulated Snail protein expression levels, thus inhibiting epithelial-mesenchymal transition (EMT) of tumor cells, which may be due to the blockade of CXCR2/TGF-β-mediated PI3K/Akt/GSK-3β signaling pathway. Conclusion The combination of Pc and Gem plays a synergistic role in inhibiting tumor growth and metastasis, and prolonging mice survival in murine lung cancer models. These effects are partially attributed to the inhibition of EMT of tumor cells, which is potentially due to the blockade of CXCR2/TGF-β-mediated PI3K/Akt/GSK-3β/Snail signaling pathway. The clinical transformation of Plasmodium immunotherapy combined with Gem for lung cancer is worthy of expectation.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Medical Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, Guangdong, China
| | - Zhu Tao
- State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, Guangdong, China
- CAS-Lamvac (Guangzhou) Biomedical Technology Co., Ltd., Guangzhou, Guangdong, China
| | - Yun Liang
- State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, Guangdong, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Meng Ma
- State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, Guangdong, China
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Dickson Adah
- State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, Guangdong, China
| | - Wenting Ding
- CAS-Lamvac (Guangzhou) Biomedical Technology Co., Ltd., Guangzhou, Guangdong, China
| | - Lili Chen
- State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, Guangdong, China
| | - Xiaofen Li
- State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, Guangdong, China
| | - Linglin Dai
- State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, Guangdong, China
| | - Songwe Fanuel
- State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, Guangdong, China
- Department of Applied Biosciences and Biotechnology, Faculty of Science and Technology, Midlands State University, Gweru, Zimbabwe
| | - Siting Zhao
- State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, Guangdong, China
- CAS-Lamvac (Guangzhou) Biomedical Technology Co., Ltd., Guangzhou, Guangdong, China
| | - Wen Hu
- CAS-Lamvac (Guangzhou) Biomedical Technology Co., Ltd., Guangzhou, Guangdong, China
| | - Donghai Wu
- State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, Guangdong, China
| | - Ziyuan Duan
- State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, Guangdong, China
| | - Fang Zhou
- CAS-Lamvac (Guangzhou) Biomedical Technology Co., Ltd., Guangzhou, Guangdong, China
| | - Li Qin
- CAS-Lamvac (Guangzhou) Biomedical Technology Co., Ltd., Guangzhou, Guangdong, China
| | - Xiaoping Chen
- State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, Guangdong, China
- CAS-Lamvac (Guangzhou) Biomedical Technology Co., Ltd., Guangzhou, Guangdong, China
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
20
|
Xue M, Zhu Y, Jiang Y, Han L, Shi M, Su R, Wang L, Xiong C, Wang C, Wang T, Deng S, Wu D, Cao Y, Dong L, Bai F, Zhao S, Deng X, Peng C, Li H, Chen J, Shen B, Jiang L, Chen H. Schwann cells regulate tumor cells and cancer-associated fibroblasts in the pancreatic ductal adenocarcinoma microenvironment. Nat Commun 2023; 14:4600. [PMID: 37524695 PMCID: PMC10390497 DOI: 10.1038/s41467-023-40314-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/21/2023] [Indexed: 08/02/2023] Open
Abstract
Neuropathy is a feature more frequently observed in pancreatic ductal adenocarcinoma (PDAC) than other tumors. Schwann cells, the most prevalent cell type in peripheral nerves, migrate toward tumor cells and associate with poor prognosis in PDAC. To unveil the effects of Schwann cells on the neuro-stroma niche, here we perform single-cell RNA-sequencing and microarray-based spatial transcriptome analysis of PDAC tissues. Results suggest that Schwann cells may drive tumor cells and cancer-associated fibroblasts (CAFs) to more malignant subtypes: basal-like and inflammatory CAFs (iCAFs), respectively. Moreover, in vitro and in vivo assays demonstrate that Schwann cells enhance the proliferation and migration of PDAC cells via Midkine signaling and promote the switch of CAFs to iCAFs via interleukin-1α. Culture of tumor cells and CAFs with Schwann cells conditioned medium accelerates PDAC progression. Thus, we reveal that Schwann cells induce malignant subtypes of tumor cells and CAFs in the PDAC milieu.
Collapse
Affiliation(s)
- Meilin Xue
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Youwei Zhu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongsheng Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lijie Han
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Minmin Shi
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Liwen Wang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Xiong
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shijie Deng
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong Wu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Yizhi Cao
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Dong
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Shulin Zhao
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenghong Peng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongwei Li
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Lingxi Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
21
|
Jiang S, Liang J, Li W, Wang L, Song M, Xu S, Liu G, Du Q, Zhai D, Tang L, Yang Y, Zhang L, Zhang B. The role of CXCL1/CXCR2 axis in neurological diseases. Int Immunopharmacol 2023; 120:110330. [PMID: 37247498 DOI: 10.1016/j.intimp.2023.110330] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
The C-X-C chemokine ligand (CXCL) 1 and its receptor C-X-C chemokine receptor (CXCR) 2 are widely expressed in the peripheral nervous systems (PNS) and central nervous systems (CNS) and are involved in the development of inflammation and pain after various nerve injuries. Once a nerve is damaged, it affects not only the neuron itself but also lesions elsewhere in its dominant site. After the CXCL1/CXCR2 axis is activated, multiple downstream pathways can be activated, such as c-Raf/MAPK/AP-1, p-PKC-μ/p-ILK/NLRP3, JAK2/STAT3, TAK1/NF-κB, etc. These pathways in turn mediate cellular motility state or cell migration. CXCR2 is expressed on the surface of neutrophils and monocytes/macrophages. These cells can be recruited to the lesion through the CXCL1/CXCR2 axis to participate in the inflammatory response. The expression of CXCR2 in neurons can activate some pathways in neurons through the CXCL1/CXCR2 axis, thereby causing damage to neurons. CXCR2 is also expressed in astrocytes, and when CXCR2 activated, it increases the number of astrocytes but impairs their function. Since inflammation can occur at almost any site of injury, elucidating the mechanism of CXCL1/CXCR2 axis' influence on inflammation may provide a favorable target for clinical treatment. Therefore, this article reviews the research progress of the CXCL1/CXCR2 axis in neurological diseases, aiming to provide a more meaningful theoretical basis for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Suli Jiang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Jie Liang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Wei Li
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Luoyang Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Meiying Song
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Shuo Xu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Guixian Liu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Qiaochu Du
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Dongchang Zhai
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Lei Tang
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Yanyan Yang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Li Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China.
| |
Collapse
|
22
|
Kruglov O, Vats K, Soman V, Tyurin VA, Tyurina YY, Wang J, Williams L, Zhang J, Donahue Carey C, Jaklitsch E, Chandran UR, Bayir H, Kagan VE, Bunimovich YL. Melanoma-associated repair-like Schwann cells suppress anti-tumor T-cells via 12/15-LOX/COX2-associated eicosanoid production. Oncoimmunology 2023; 12:2192098. [PMID: 36998620 PMCID: PMC10044150 DOI: 10.1080/2162402x.2023.2192098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 04/01/2023] Open
Abstract
Peripheral glia, specifically the Schwann cells (SCs), have been implicated in the formation of the tumor microenvironment (TME) and in cancer progression. However, in vivo and ex vivo analyses of how cancers reprogram SC functions in different organs of tumor-bearing mice are lacking. We generated Plp1-CreERT/tdTomato mice which harbor fluorescently labeled myelinated and non-myelin forming SCs. We show that this model enables the isolation of the SCs with high purity from the skin and multiple other organs. We used this model to study phenotypic and functional reprogramming of the SCs in the skin adjacent to melanoma tumors. Transcriptomic analyses of the peritumoral skin SCs versus skin SCs from tumor-free mice revealed that the former existed in a repair-like state typically activated during nerve and tissue injury. Peritumoral skin SCs also downregulated pro-inflammatory genes and pathways related to protective anti-tumor responses. In vivo and ex vivo functional assays confirmed immunosuppressive activities of the peritumoral skin SCs. Specifically, melanoma-reprogrammed SCs upregulated 12/15-lipoxygenase (12/15-LOX) and cyclooxygenase (COX)-2, and increased production of anti-inflammatory polyunsaturated fatty acid (PUFA) metabolites prostaglandin E2 (PGE2) and lipoxins A4/B4. Inhibition of 12/15-LOX or COX2 in SCs, or EP4 receptor on lymphocytes reversed SC-dependent suppression of anti-tumor T-cell activation. Therefore, SCs within the skin adjacent to melanoma tumors demonstrate functional switching to repair-like immunosuppressive cells with dysregulated lipid oxidation. Our study suggests the involvement of the melanoma-associated repair-like peritumoral SCs in the modulation of locoregional and systemic anti-tumor immune responses.
Collapse
Affiliation(s)
- Oleg Kruglov
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kavita Vats
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vishal Soman
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vladimir A. Tyurin
- Center for Free Radical and Antioxidant Health, Department of Environmental Health and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yulia Y. Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental Health and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jiefei Wang
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Li’an Williams
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jiying Zhang
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cara Donahue Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Erik Jaklitsch
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Uma R. Chandran
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hülya Bayir
- Center for Free Radical and Antioxidant Health, Department of Environmental Health and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Children’s Neuroscience Institute, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Valerian E. Kagan
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Free Radical and Antioxidant Health, Department of Environmental Health and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Children’s Neuroscience Institute, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Hillman Cancer Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Yuri L. Bunimovich
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Free Radical and Antioxidant Health, Department of Environmental Health and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
- Hillman Cancer Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Zhang Y, Sang R, Bao J, Jiang Z, Qian D, Zhou Y, Su W, Wei J, Zhao L, Wei Z, Zhao Y, Shi M, Chen G. Schwann cell-derived CXCL2 contributes to cancer pain by modulating macrophage infiltration in a mouse breast cancer model. Brain Behav Immun 2023; 109:308-320. [PMID: 36754246 DOI: 10.1016/j.bbi.2023.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Pain is one of the most severe complications affecting the quality of life of cancer patients. Although substantial progress has been made in the diagnosis and treatment of cancer, the neurobiological mechanism of cancer pain is still unclear. In the present study, we identified the critical role of CXC chemokine 2 (CXCL2), released by Schwann cells after being activated by cancer cells, in maintaining cancer-induced macrophage infiltration and the resulting mechanical hypersensitivity and persistent spontaneous nociception. In vitro, Schwann cells cocultured with breast cancer cells exhibited a significant increase in CXCL2 expression; in addition, conditioned medium from Schwann cells activated by breast cancer cells had a similar effect to recombinant CXCL2 in terms of inducing macrophage migration. Targeting CXCL2 signaling by both CXC chemokine receptor 2 (CXCR2) antagonist pharmacological blockade and anti-CXCL2 mAb immunological blockade robustly prevented conditioned medium-induced macrophage migration. In vivo, both application of recombinant CXCL2 and perineural breast cancer cell implantation resulted in mechanical hypersensitivity and persistent spontaneous nociception in mice, along with increased macrophage infiltration into the sciatic nerves. Similar to the in vitro results, inhibition of CXCL2/CXCR2 signaling or conditional knockdown of CXCL2 in sciatic nerve Schwann cells effectively attenuated breast cancer cell-induced mechanical hypersensitivity, persistent spontaneous nociception, and macrophage recruitment in the sciatic nerve. Mechanistically, we found that redox effector factor-1 (Ref-1) secreted by breast cancer cells activated hypoxia inducible factor-1α (HIF-1α) expression and inhibited reactive oxygen species (ROS) production in Schwann cells, ultimately inducing CXCL2 expression in Schwann cells. In brief, the present study expands new insights into cancer pain mechanisms from promising animal models to provide new strategies for the control of cancer pain.
Collapse
Affiliation(s)
- Yonghui Zhang
- Basic Medical Research Center, Medical School of Nantong University, Co-Innovation Center of Neuroregeneration, Nantong 226001, Jiangsu Province, China; Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University, Nantong 226001, Jiangsu Province, China
| | - Rui Sang
- Basic Medical Research Center, Medical School of Nantong University, Co-Innovation Center of Neuroregeneration, Nantong 226001, Jiangsu Province, China
| | - Jingyin Bao
- Basic Medical Research Center, Medical School of Nantong University, Co-Innovation Center of Neuroregeneration, Nantong 226001, Jiangsu Province, China
| | - Zhihao Jiang
- Basic Medical Research Center, Medical School of Nantong University, Co-Innovation Center of Neuroregeneration, Nantong 226001, Jiangsu Province, China
| | - Danni Qian
- Basic Medical Research Center, Medical School of Nantong University, Co-Innovation Center of Neuroregeneration, Nantong 226001, Jiangsu Province, China
| | - Yi Zhou
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wenfeng Su
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Jinhuan Wei
- Basic Medical Research Center, Medical School of Nantong University, Co-Innovation Center of Neuroregeneration, Nantong 226001, Jiangsu Province, China
| | - Long Zhao
- Basic Medical Research Center, Medical School of Nantong University, Co-Innovation Center of Neuroregeneration, Nantong 226001, Jiangsu Province, China
| | - Zhongya Wei
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yayu Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Minxin Shi
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University, Nantong 226001, Jiangsu Province, China.
| | - Gang Chen
- Basic Medical Research Center, Medical School of Nantong University, Co-Innovation Center of Neuroregeneration, Nantong 226001, Jiangsu Province, China; Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province, China; Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
24
|
Sun C, Ye Y, Tan Z, Liu Y, Li Y, Hu W, Liang K, Egranov SD, Huang LA, Zhang Z, Zhang Y, Yao J, Nguyen TK, Zhao Z, Wu A, Marks JR, Caudle AS, Sahin AA, Gao J, Gammon ST, Piwnica-Worms D, Hu J, Chiao PJ, Yu D, Hung MC, Curran MA, Calin GA, Ying H, Han L, Lin C, Yang L. Tumor-associated nonmyelinating Schwann cell-expressed PVT1 promotes pancreatic cancer kynurenine pathway and tumor immune exclusion. SCIENCE ADVANCES 2023; 9:eadd6995. [PMID: 36724291 PMCID: PMC9891701 DOI: 10.1126/sciadv.add6995] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/03/2023] [Indexed: 05/16/2023]
Abstract
One of the major obstacles to treating pancreatic ductal adenocarcinoma (PDAC) is its immunoresistant microenvironment. The functional importance and molecular mechanisms of Schwann cells in PDAC remains largely elusive. We characterized the gene signature of tumor-associated nonmyelinating Schwann cells (TASc) in PDAC and indicated that the abundance of TASc was correlated with immune suppressive tumor microenvironment and the unfavorable outcome of patients with PDAC. Depletion of pancreatic-specific TASc promoted the tumorigenesis of PDAC tumors. TASc-expressed long noncoding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) was triggered by the tumor cell-produced interleukin-6. Mechanistically, PVT1 modulated RAF proto-oncogene serine/threonine protein kinase-mediated phosphorylation of tryptophan 2,3-dioxygenase in TASc, facilitating its enzymatic activities in catalysis of tryptophan to kynurenine. Depletion of TASc-expressed PVT1 suppressed PDAC tumor growth. Furthermore, depletion of TASc using a small-molecule inhibitor effectively sensitized PDAC to immunotherapy, signifying the important roles of TASc in PDAC immune resistance.
Collapse
Affiliation(s)
- Chengcao Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Zhi Tan
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuan Liu
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Yajuan Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei Hu
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ke Liang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sergey D. Egranov
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lisa Angela Huang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Yaohua Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tina K. Nguyen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zilong Zhao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew Wu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeffrey R. Marks
- Division of Surgical Science, Department of Surgery, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Abigail S. Caudle
- Department of Breast Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aysegul A. Sahin
- Department of Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Seth T. Gammon
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian Hu
- Department of Cancer Biology, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paul J. Chiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
| | - Michael A. Curran
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
25
|
Renal clear cell carcinoma-derived CXCL5 drives tumor-associated fibroblast formation and facilitates cancer progression. Pathol Res Pract 2023; 244:154319. [PMID: 36889175 DOI: 10.1016/j.prp.2023.154319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
BACKGROUND Kidney renal clear cell carcinoma (KIRC, ccRCC) is one of the most common and aggressive subtypes of urinary system cancer. Cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME) exacerbate the malignant phenotype of KIRC. It is necessary to explore further how KIRC induces normal fibroblasts (NFs) into CAFs. METHODS The transcriptome data of KIRC was obtained from The Cancer Genome Atlas (TCGA), and the hub-genes and their corresponding functions in the co-expression module were obtained through differential analysis, enrichment analysis, and weighted correlation network analysis (WGCNA) analysis. RT-PCR, western-blot, and Elisa assays were used to detect the expression of CXCL5 (C-X-C Motif Chemokine Ligand 5) in KIRC cells and medium. Western-blot and immunofluorescence were used to demonstrate the transformation of NFs to CAF-like cells and relevant pathways. Human umbilical vein endothelial cells (huvec) were seeded within collagen gel to represent the neo-vascular network. Transwell, scrape, colony formation, and CCK-8 assays were performed to reveal the feedback effect of KIRC cells. RESULTS Bioinformatics analysis showed that CXCL5 was a core gene in differential expression genes (DEGs) and was associated with extracellular matrix (ECM), which was associated with CAFs. KIRC-derived CXCL5 promoted the conversion of NFs to CAF-like cells. It included morphological and corresponding molecular marker changes. Activation of the JAK/STAT3 pathway was involved in this process. Corresponding, CAFs cells could secrete vascular endothelial growth factor (VEGF), which induced angiogenesis. CXCL5 promoted KIRC invasion and proliferation. CONCLUSIONS Our research suggested that KIRC-derived CXCL5 could induce NFs to become CAFs-like cells that promote angiogenesis in the TME. The positive feedback of CXCL5 promoted its own invasive growth. The intercellular communication with CXCL5 as the core might be the critical node in the occurrence and development of KIRC.
Collapse
|
26
|
Han S, Wang D, Huang Y, Zeng Z, Xu P, Xiong H, Ke Z, Zhang Y, Hu Y, Wang F, Wang J, Zhao Y, Zhuo W, Zhao G. A reciprocal feedback between colon cancer cells and Schwann cells promotes the proliferation and metastasis of colon cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:348. [PMID: 36522730 PMCID: PMC9753336 DOI: 10.1186/s13046-022-02556-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Research has indicated that the emergence of Schwann cells around premalignant lesions of colon cancer might be an early indicator promoting the onset of tumorigenesis. The present study explored the communication between colon cancer cells and Schwann cells. METHODS Immunofluorescence analyses were conducted to examine the differential distribution of Schwann cells within colon cancer tissues and normal colon tissues. CCK8 assay, colony formation assay, wound healing assay, and transwell assay were performed to investigate the interaction between colon cancer cells and Schwann cells. Exosomes derived from colon cancer cells were isolated to further explore the effect of colon cancer cells on Schwann cells. Gain- and loss-of function experiments, luciferase reporter assays, chromatin immunoprecipitation assays, and immunohistochemistry assays were performed to reveal the cross-talk between colon cancer cells and Schwann cells. Furthermore, colon cancer cells co-cultured with Schwann cells were transplanted into nude mice for evaluating their effect on tumor proliferation and metastasis in vivo. RESULTS The clinicopathological characteristics indicated that Schwann cells were enriched in colon cancer tissues and were associated with tumor metastasis and poor prognosis. The co-culture of Schwann cells with colon cancer cells promoted the proliferation and migration of colon cancer cells and Schwann cells, which was mediated by nerve growth factor (NGF) secreted from Schwann cells. Exosomal miR-21-5p released by colon cancer cells inhibited VHL expression in Schwann cells, which in turn stabilized the HIF-1α protein and increased the transcription of NGF. Meanwhile, the Schwann cells-derived NGF activated TrkA/ERK/ELK1/ZEB1 signaling pathway in colon cancer cells, which further enhanced the expression of exosomal miR-21-5p. Inhibition of either NGF or miR-21-5p significantly inhibited the proliferation and metastasis of transplanted colon cancer cells in nude mice. Coincidently, miR-21-5p was positively associated with the expression of NGF, p-ERK, p-ELK1, and ZEB1 in human colon cancer tissues. CONCLUSIONS Our results implicated a reciprocal communication between colon cancer cells and Schwan cells that promoted the proliferation and metastasis of colon cancer, and identified NGF and exosomal miR-21-5p as potential therapeutic targets for the treatment of colon cancer.
Collapse
Affiliation(s)
- Shengbo Han
- grid.33199.310000 0004 0368 7223Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Decai Wang
- grid.33199.310000 0004 0368 7223Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Yan Huang
- grid.33199.310000 0004 0368 7223Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Zhu Zeng
- grid.33199.310000 0004 0368 7223Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Peng Xu
- grid.33199.310000 0004 0368 7223Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Hewei Xiong
- grid.33199.310000 0004 0368 7223Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Zunxiang Ke
- grid.33199.310000 0004 0368 7223Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Ya Zhang
- grid.33199.310000 0004 0368 7223Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Yuhang Hu
- grid.33199.310000 0004 0368 7223Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Fan Wang
- grid.33199.310000 0004 0368 7223Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Jie Wang
- grid.33199.310000 0004 0368 7223Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Yong Zhao
- grid.33199.310000 0004 0368 7223Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Wenfeng Zhuo
- grid.33199.310000 0004 0368 7223Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Gang Zhao
- grid.33199.310000 0004 0368 7223Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| |
Collapse
|
27
|
Cao S, Wang Y, Zhou Y, Zhang Y, Ling X, Zhang L, Li J, Yang Y, Wang W, Shurin MR, Zhong H. A Novel Therapeutic Target for Small-Cell Lung Cancer: Tumor-Associated Repair-like Schwann Cells. Cancers (Basel) 2022; 14:cancers14246132. [PMID: 36551618 PMCID: PMC9776631 DOI: 10.3390/cancers14246132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Small-cell lung cancer (SCLC), representing 15-20% of all lung cancers, is an aggressive malignancy with a distinct natural history, poor prognosis, and limited treatment options. We have previously identified Schwann cells (SCs), the main glial cells of the peripheral nervous system, in tumor tissues and demonstrated that they may support tumor spreading and metastasis formation in the in vitro and in vivo models. However, the role of SCs in the progression of SCLC has not been investigated. To clarify this issue, the cell proliferation assay, the annexin V apoptosis assay, and the transwell migration and invasion assay were conducted to elucidate the roles in SCLC of tumor-associated SCs (TA-SCs) in the proliferation, apoptosis, migration, and invasion of SCLC cells in vitro, compared to control group. In addition, the animal models to assess SC action's effects on SCLC in vivo were also developed. The result confirmed that TA-SCs have a well-established and significant role in facilitating SCLC cell cancer migration and invasion of SCLC in vitro, and we also observed that SC promotes tumor growth of SCLC in vivo and that TA-SCs exhibited an advantage and show a repair-like phenotype, which allowed defining them as tumor-associated repair SCs (TAR-SCs). Potential molecular mechanisms of pro-tumorigenic activity of TAR-SCs were investigated by the screening of differentially expressed genes and constructing networks of messenger-, micro-, and long- non-coding RNA (mRNA-miRNA-lncRNA) using DMS114 cells, a human SCLC, stimulated with media from DMS114-activated SCs, non-stimulated SCs, and appropriate controls. This study improves our understanding of how SCs, especially tumor-activated SCs, may promote SCLC progression. Our results highlight a new functional phenotype of SCs in cancer and bring new insights into the characterization of the nervous system-tumor crosstalk.
Collapse
Affiliation(s)
- Shuhui Cao
- Department of Pulmonary, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yue Wang
- Department of Pulmonary, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yan Zhou
- Department of Pulmonary, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yao Zhang
- Department of Pulmonary, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xuxinyi Ling
- Department of Pulmonary, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lincheng Zhang
- Department of Pulmonary, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jingwen Li
- Department of Pulmonary, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yu Yang
- Department of Pulmonary, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Weimin Wang
- Department of Pulmonary, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Michael R. Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
- Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
- Correspondence: (M.R.S.); (H.Z.); Tel.: +86-180-1732-1320 (H.Z.)
| | - Hua Zhong
- Department of Pulmonary, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Correspondence: (M.R.S.); (H.Z.); Tel.: +86-180-1732-1320 (H.Z.)
| |
Collapse
|
28
|
Chen S, Chen M. Schwann cells promote the migration and invasion of colorectal cancer cells via the activated NF-κB/IL-8 axis in the tumor microenvironment. Front Oncol 2022; 12:1026670. [PMID: 36465391 PMCID: PMC9714538 DOI: 10.3389/fonc.2022.1026670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/14/2022] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Evidence has shown neurons and glial cells were closely related to tumor progression. As the predominant glial cells in the external innervated nerves of the gastrointestinal, the role of Schwann cells (SCs) in colorectal cancer (CRC) has not been well explored. METHODS HCT-116 and HT-29 CRC cells were treated with conditioned medium (CM) from SCs, and the cells' proliferative and migrating capacities were examined. Cytokine array analysis was used to identify the tumor-promoting-cytokines from SCs-CM. Molecular changes from SCs after being co-cultured with tumor cells were detected by ELISA and reverse transcription-quantitative PCR. The activation of the nuclear factor kappa B (NF-κB) signaling pathway in SCs was demonstrated by immunofluorescence staining. Neutralizing antibody was used to verify the tumor-promoting effects of key cytokine. RESULTS Migration and invasion of CRC cells were markedly aided by CM from SCs in vitro. Interleukin-8 (IL-8) was identified as an effective factor. SCs co-cultured with CRC cells upregulated IL-8 expression, which may be related to its activated NF-κB signaling pathway. Neutralization of IL-8 attenuated the tumor-promoting effect of SCs. CONCLUSION The present study identified a new mechanism of tumor-neuroglia interaction, enriching the concept of the tumor-neural axis in the tumor microenvironment of CRC, which also inspired potential targets for anti-cancer therapies.
Collapse
Affiliation(s)
- Shuhai Chen
- Department of Digestive and Transplant Surgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Mingyou Chen
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, Shandong, China
| |
Collapse
|
29
|
Shurin GV, Vats K, Kruglov O, Bunimovich YL, Shurin MR. Tumor-Induced T Cell Polarization by Schwann Cells. Cells 2022; 11:3541. [PMID: 36428970 PMCID: PMC9688729 DOI: 10.3390/cells11223541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/12/2022] Open
Abstract
Nerve-cancer crosstalk resulting in either tumor neurogenesis or intratumoral neurodegeneration is critically controlled by Schwann cells, the principal glial cells of the peripheral nervous system. Though the direct stimulating effect of Schwann cells on malignant cell proliferation, motility, epithelial-mesenchymal transition, and the formation of metastases have been intensively investigated, the ability of Schwann cells to affect the effector and regulatory immune cells in the tumor environment is significantly less studied. Here, we demonstrated that tumor cells could stimulate Schwann cells to produce high levels of prostaglandin E, which could be blocked by COX-2 inhibitors. This effect was mediated by tumor-derived TGF-β as neutralization of this cytokine in the tumor-conditioned medium completely blocked the inducible prostaglandin E production by Schwann cells. Similar protective effects were also induced by the Schwann cell pretreatment with TGF-βR1/ALK4/5/7 and MAPK/ERK kinase inhibitors of the canonical and non-canonical TGF-β signaling pathways, respectively. Furthermore, prostaglandin E derived from tumor-activated Schwann cells blocked the proliferation of CD3/CD28-activated T cells and upregulated the expression of CD73 and PD-1 on both CD4+ and CD8+ T cells, suggesting T cell polarization to the exhausted phenotype. This new pathway of tumor-induced T cell inhibition via the activation of neuroglial cells represents new evidence of the importance of nerve-cancer crosstalk in controlling tumor development and progression. A better understanding of the tumor-neuro-immune axis supports the development of efficient targets for harnessing this axis and improving the efficacy of cancer therapy.
Collapse
Affiliation(s)
- Galina V. Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Kavita Vats
- Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Oleg Kruglov
- Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Yuri L. Bunimovich
- Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Michael R. Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
- Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Clinical Immunopathology UPMC, CLB, Room 4024, 3477 Euler Way, Pittsburgh, PA 15213, USA
| |
Collapse
|
30
|
Tian Z, Ou G, Su M, Li R, Pan L, Lin X, Zou J, Chen S, Li Y, Huang K, Chen Y. TIMP1 derived from pancreatic cancer cells stimulates Schwann cells and promotes the occurrence of perineural invasion. Cancer Lett 2022; 546:215863. [PMID: 35961511 DOI: 10.1016/j.canlet.2022.215863] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 02/07/2023]
Abstract
Perineural invasion (PNI) occurs in most pancreatic ductal adenocarcinomas (PDACs). The relationship between cancer cells and peripheral nerves, however, is unknown. Therefore, we focused on the cooperation of PDAC cells and peripheral nerve astrocytes, Schwann cells (SCs), in PNI. The mutual tumor-supportive secretory cytokines between SCs (sNF96.2) and PDAC cells (PANC-1, BxPC-3) were screened by human cytokine arrays and verified. The prognostic value of selected cytokines and SC-associated markers was confirmed in PDAC patients. TIMP1 and CCL7 were found to form a paracrine feedback loop between PDAC cells and SCs. PDAC cell-derived TIMP1 promotes SCs proliferation and migration via CD63/PI3K/AKT signaling. CCL7 secreted from SCs enhances PDAC cell migration, invasion and expression of TIMP1 via CCR2/STAT3. PDAC cell-SC cooperation in PNI was blocked when TIMP1 knockdown in vitro and in vivo. Finally, TIMP1, CCL7 and SC-associated markers were correlated with PNI and prognosis in PDAC patients. In conclusion, SCs collaborate with PDAC cells through the TIMP1-CCL7 paracrine feedback loop to promote PNI. TIMP1 knockdown in PDAC cells suppresses PNI. Strategies to disrupt the TIMP1-CCL7 feedback loop might be developed to inhibit PNI in PDAC.
Collapse
Affiliation(s)
- Zhenfeng Tian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China; Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Guangsheng Ou
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510600, PR China
| | - Mingxin Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China; Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Ruomeng Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China; Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Lele Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China; Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Xingyi Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China; Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Jinmao Zou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China; Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Shangxiang Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China; Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Yaqing Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China; Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Kaihong Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China; Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Yinting Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China; Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China.
| |
Collapse
|
31
|
Yurteri Ü, Çifcibaşı K, Friess H, Ceyhan GO, Istvanffy R, Demir IE. Schwann Cells in Peripheral Cancers: Bystanders or Promoters? Adv Biol (Weinh) 2022; 6:e2200033. [PMID: 35656739 DOI: 10.1002/adbi.202200033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/19/2022] [Indexed: 01/28/2023]
Abstract
The tumor microenvironment is subject to intense investigation in terms of its influence on tumorigenesis. Despite the fact that Schwann cells are cancer cells' early interaction partners, investigations on tumor progression and the molecular drivers of carcinogenesis do not place enough emphasis on them. Recent studies have shown that malignant cells and nerves interact on several levels during early carcinogenesis. For instance, the emergence of nerves in cancer, known as cancer neo-neurogenesis, is one important mechanism that contributes to cancer progression. Recent studies on Schwann cells brought the investigation of tumor-nerve interactions to a whole new level. Schwann cells make up the majority of glial cells in the peripheral nervous system, are outstandingly plastic cells, and serve a variety of roles in most organs. All these properties make Schwann cells excellent potential targets for tumor cells to exploit and turn them into promoters of carcinogenesis. In the present review, the distinctive features of Schwann cell-tumor cell interactions and the implications of this interaction on the tumor microenvironment are outlined. Further, this study points out the neglected aspects of Schwann cells in the tumor microenvironment and provides a potential new avenue for future research.
Collapse
Affiliation(s)
- Ümmügülsüm Yurteri
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, 81675, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, 81675, Munich, Germany.,CRC 1321 Modelling and Targeting Pancreatic Cancer, 81675, Munich, Germany
| | - Kaan Çifcibaşı
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, 81675, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, 81675, Munich, Germany.,CRC 1321 Modelling and Targeting Pancreatic Cancer, 81675, Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, 81675, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, 81675, Munich, Germany.,CRC 1321 Modelling and Targeting Pancreatic Cancer, 81675, Munich, Germany
| | - Güralp O Ceyhan
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, 34752, Turkey
| | - Rouzanna Istvanffy
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, 81675, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, 81675, Munich, Germany.,CRC 1321 Modelling and Targeting Pancreatic Cancer, 81675, Munich, Germany
| | - Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, 81675, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, 81675, Munich, Germany.,CRC 1321 Modelling and Targeting Pancreatic Cancer, 81675, Munich, Germany.,Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, 34752, Turkey.,Else Kröner Clinician Scientist Professor for Translational Pancreatic Surgery, 81675, Munich, Germany
| |
Collapse
|
32
|
Santi MD, Zhang M, Salvo E, Asam K, Viet C, Xie T, Amit M, Aouizerat B, Ye Y. Schwann Cells Induce Phenotypic Changes in Oral Cancer Cells. Adv Biol (Weinh) 2022; 6:e2200187. [PMID: 35925609 PMCID: PMC9474679 DOI: 10.1002/adbi.202200187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/18/2022] [Indexed: 01/28/2023]
Abstract
Head and neck cancer (HNC) is the seventh most common cancer worldwide, the majority being oral squamous cell carcinoma. Despite advances in cancer diagnosis and treatment, the survival rate of patients with HNC remains stagnant. The cancer-nerve interaction has been recognized as an important driver of cancer progression. Schwann cells, a type of peripheral glia, have been implicated in promoting cancer cell growth, migration, dispersion, and invasion into the nerve in many cancers. Here, it is demonstrated that the presence of Schwann cells makes oral cancer cells more aggressive by promoting their proliferation, extracellular matrix breakdown, and altering cell metabolism. Furthermore, oral cancer cells became larger, more circular, with more projections and nuclei following co-culturing with Schwann cells. RNA-sequencing analysis in oral cancer cells following exposure to Schwann cells shows corresponding changes in genes involved in the hallmarks of cancer and cell metabolism; the enriched KEGG pathways are spliceosome, RNA transport, cell cycle, axon guidance, signaling pathways regulating pluripotency of stem cells, cAMP signaling, WNT signaling, proteoglycans in cancer and PI3K-Akt signaling. Taken together, these results suggest a significant role for Schwann cells in facilitating oral cancer progression, highlighting their potential as a target to treat oral cancer progression.
Collapse
Affiliation(s)
- Maria Daniela Santi
- Bluestone Center for Clinical Research, College of Dentistry, New York University
- Department of Oral Maxillofacial Surgery, College of Dentistry, New York University
| | - Morgan Zhang
- Bluestone Center for Clinical Research, College of Dentistry, New York University
- Department of Oral Maxillofacial Surgery, College of Dentistry, New York University
| | - Elizabeth Salvo
- Bluestone Center for Clinical Research, College of Dentistry, New York University
- Department of Oral Maxillofacial Surgery, College of Dentistry, New York University
| | - Kesava Asam
- Bluestone Center for Clinical Research, College of Dentistry, New York University
- Department of Oral Maxillofacial Surgery, College of Dentistry, New York University
| | - Chi Viet
- Loma Linda University School of Dentistry, Loma Linda, CA92350
| | - Tongxin Xie
- Head & Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Moran Amit
- Head & Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Bradley Aouizerat
- Bluestone Center for Clinical Research, College of Dentistry, New York University
- Department of Oral Maxillofacial Surgery, College of Dentistry, New York University
| | - Yi Ye
- Bluestone Center for Clinical Research, College of Dentistry, New York University
- Department of Oral Maxillofacial Surgery, College of Dentistry, New York University
| |
Collapse
|
33
|
Deng J, Jiang R, Meng E, Wu H. CXCL5: A coachman to drive cancer progression. Front Oncol 2022; 12:944494. [PMID: 35978824 PMCID: PMC9376318 DOI: 10.3389/fonc.2022.944494] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Chemokines are a class of pro-inflammatory cytokines that can recruit and activate chemotactic cells. C‐X‐C motif chemokine ligand 5 (CXCL5) is a member of the chemokine family binding CXCR2 (C-X-C Motif Chemokine Receptor 2), a G-protein coupled receptor. Accumulated evidence has shown that dysregulated CXCL5 participates in tumor metastasis and angiogenesis in human malignant tumors. In this review, we summarized the advances in research on CXCL5, including its dysregulation in different tumors and the mechanism associated with tumor behavior (formation of the immunosuppressive microenvironment, promotion of tumor angiogenesis, and metastasis). We also summarized and discussed the perspective about the potential application of CXCL5 in tumor therapy targeting the tumor inflammatory microenvironment.
Collapse
|
34
|
Baraldi JH, Martyn GV, Shurin GV, Shurin MR. Tumor Innervation: History, Methodologies, and Significance. Cancers (Basel) 2022; 14:1979. [PMID: 35454883 PMCID: PMC9029781 DOI: 10.3390/cancers14081979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 12/11/2022] Open
Abstract
The role of the nervous system in cancer development and progression has been under experimental and clinical investigation since nineteenth-century observations in solid tumor anatomy and histology. For the first half of the twentieth century, methodological limitations and opaque mechanistic concepts resulted in ambiguous evidence of tumor innervation. Differential spatial distribution of viable or disintegrated nerve tissue colocalized with neoplastic tissue led investigators to conclude that solid tumors either are or are not innervated. Subsequent work in electrophysiology, immunohistochemistry, pathway enrichment analysis, neuroimmunology, and neuroimmunooncology have bolstered the conclusion that solid tumors are innervated. Regulatory mechanisms for cancer-related neurogenesis, as well as specific operational definitions of perineural invasion and axonogenesis, have helped to explain the consensus observation of nerves at the periphery of the tumor signifying a functional role of nerves, neurons, neurites, and glia in tumor development.
Collapse
Affiliation(s)
- James H. Baraldi
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - German V. Martyn
- Biomedical Studies Program, Chatham University, Pittsburgh, PA 15232, USA;
| | - Galina V. Shurin
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Michael R. Shurin
- Department of Pathology and Immunology, Division of Clinical Immunopathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
35
|
A highly branched α-D-glucan facilitates antitumor immunity by reducing cancer cell CXCL5 expression. Int J Biol Macromol 2022; 209:166-179. [PMID: 35390399 DOI: 10.1016/j.ijbiomac.2022.03.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022]
Abstract
Tumor immunotherapy has emerged as a major pillar of anticancer therapeutic strategies. Natural polysaccharides, known for their strong immunomodulatory activities with relatively low cost and toxicity, are becoming promising prospects for cancer immunotherapy. In this study, we investigated the antitumor mechanism of JNY2PW, a highly branched α-D-glucan previously purified from the traditional marine Chinese medicine Arca inflata. JNY2PW was shown to enhance the sensitivity of tumor cells to co-culture macrophage supernatants by decreasing cancer cell CXCL5 expression. Furthermore, JNY2PW exerted antitumor effects without obvious toxic side effects in tumor-bearing mice by triggering the Akt/mTOR and ERK/GSK3β/β-catenin pathways and attenuating expression of CXCL5 in cancer cells. Remarkably, JNY2PW reduced tumor proliferation and dampened CXCL5 expression in tumor cells overexpressing CXCL5 both in vitro and in vivo. Additionally, JNY2PW blocked epithelial-mesenchymal transition (EMT) in both CXCL5-overexpressing and wild type tumor cells. Our data therefore uncovered a previously unrecognized antitumor mechanism for JNY2PW, suggesting that JNY2PW is a promising adjuvant as an immunomodulator for cancer immunotherapy.
Collapse
|
36
|
Goluba K, Kunrade L, Riekstina U, Parfejevs V. Schwann Cells in Digestive System Disorders. Cells 2022; 11:832. [PMID: 35269454 PMCID: PMC8908985 DOI: 10.3390/cells11050832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
Proper functioning of the digestive system is ensured by coordinated action of the central and peripheral nervous systems (PNS). Peripheral innervation of the digestive system can be viewed as intrinsic and extrinsic. The intrinsic portion is mainly composed of the neurons and glia of the enteric nervous system (ENS), while the extrinsic part is formed by sympathetic, parasympathetic, and sensory branches of the PNS. Glial cells are a crucial component of digestive tract innervation, and a great deal of research evidence highlights the important status of ENS glia in health and disease. In this review, we shift the focus a bit and discuss the functions of Schwann cells (SCs), the glial cells of the extrinsic innervation of the digestive system. For more context, we also provide information on the basic findings regarding the function of innervation in disorders of the digestive organs. We find diverse SC roles described particularly in the mouth, the pancreas, and the intestine. We note that most of the scientific evidence concerns the involvement of SCs in cancer progression and pain, but some research identifies stem cell functions and potential for regenerative medicine.
Collapse
Affiliation(s)
| | | | | | - Vadims Parfejevs
- Faculty of Medicine, University of Latvia, House of Science, Jelgavas Str. 3, LV-1004 Riga, Latvia; (K.G.); (L.K.); (U.R.)
| |
Collapse
|
37
|
Schwann Cells in the Tumor Microenvironment: Need More Attention. JOURNAL OF ONCOLOGY 2022; 2022:1058667. [PMID: 35186076 PMCID: PMC8853772 DOI: 10.1155/2022/1058667] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/20/2022] [Indexed: 12/13/2022]
Abstract
The tumor microenvironment (TME), which is composed of various cell components and signaling molecules, plays an important role in the occurrence and progression of tumors and has become the central issue of current cancer research. In recent years, as a part of the TME, the peripheral nervous system (PNS) has attracted increasing attention. Moreover, emerging evidence shows that Schwann cells (SCs), which are the most important glial cells in the PNS, are not simply spectators in the TME. In this review article, we focused on the up-to-date research progress on SCs in the TME and introduced our point of view. In detail, we described that under two main tumor-nerve interaction patterns, perineural invasion (PNI) and tumor innervation, SCs were reprogrammed and acted as important participants. We also investigated the newest mechanisms between the interactions of SCs and tumor cells. In addition, SCs can have profound impacts on other cellular components in the TME, such as immune cells and cancer-associated fibroblasts (CAFs), involving immune regulation, tumor-related pain, and nerve remodeling. Overall, these innovative statements can expand the scope of the TME, help fully understand the significant role of SCs in the tumor-nerve-immune axis, and propose enlightenments to innovate antitumor therapeutic methods and future research.
Collapse
|
38
|
Glia and Orofacial Pain: Progress and Future Directions. Int J Mol Sci 2021; 22:ijms22105345. [PMID: 34069553 PMCID: PMC8160907 DOI: 10.3390/ijms22105345] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
Orofacial pain is a universal predicament, afflicting millions of individuals worldwide. Research on the molecular mechanisms of orofacial pain has predominately focused on the role of neurons underlying nociception. However, aside from neural mechanisms, non-neuronal cells, such as Schwann cells and satellite ganglion cells in the peripheral nervous system, and microglia and astrocytes in the central nervous system, are important players in both peripheral and central processing of pain in the orofacial region. This review highlights recent molecular and cellular findings of the glia involvement and glia–neuron interactions in four common orofacial pain conditions such as headache, dental pulp injury, temporomandibular joint dysfunction/inflammation, and head and neck cancer. We will discuss the remaining questions and future directions on glial involvement in these four orofacial pain conditions.
Collapse
|
39
|
Li C, Hou X, Yuan S, Zhang Y, Yuan W, Liu X, Li J, Wang Y, Guan Q, Zhou Y. High expression of TREM2 promotes EMT via the PI3K/AKT pathway in gastric cancer: bioinformatics analysis and experimental verification. J Cancer 2021; 12:3277-3290. [PMID: 33976737 PMCID: PMC8100818 DOI: 10.7150/jca.55077] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/15/2021] [Indexed: 01/17/2023] Open
Abstract
Background: To date, the pathogenesis of gastric cancer (GC) remains unclear. We combined public database resources and bioinformatics analysis methods, explored some novel genes and verified the experiments to further understand the pathogenesis of GC and to provide a promising target for anti-tumor therapy. Methods: We downloaded the chip data related to GC from the Gene Expression Omnibus (GEO) database, extracted differentially expressed genes (DEGs), and then determined the key genes in the development of GC via PPI networks and model analysis. Functional annotation via GO and KEGG enrichment of DEGs was used to understand the latent roles of DEGs. The expression of the triggering receptor expressed on myeloid cells 2 (TREM2) gene in GC cell lines was verified via RT-PCR and western blotting. Moreover, the CCK-8, wound healing assay, and transwell migration and invasion assays were used to understand the changes in the proliferation, migration, and invasion abilities of GC cells after silencing TREM2. Western blotting verified the interaction between TREM2 and PI3K predict of the string website, as well as the effect of TREM2 on EMT. Finally, a lung metastasis model was used to explore the relationship between TREM2 and metastasis. Results: Our study identified 16 key genes, namely BGN, COL1A1, COL4A1, COL5A2, NOX4, SPARC, HEYL, SPP1, TIMP1, CTHRC1, TREM2, SFRP4, FBXO32, GPX3, KIF4A, and MMP9 genes associated with GC. The EMT-related pathway was the most significantly altered pathway. TREM2 expression was higher in GC cell lines and was remarkably associated with tumor invasion depth, TNM stage, histological grade, histological type, anatomic subdivision, and Helicobacter pylori state. Knockdown of TREM2 expression inhibited the proliferation, migration, and invasion of GC cells as well as the progression of EMT by PI3K/AKT signaling in vitro. In addition, lung metastasis were decreased in vivo. Conclusions: We identified some important genes associated with the progression of GC via public database analysis, explored and verified the effects of proto-oncogene TREM2 on EMT via the PI3K/AKT pathway. TREM2 may be a novel target in the GC therapy.
Collapse
Affiliation(s)
- Chunmei Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaoming Hou
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Shuqiao Yuan
- Department of medical laboratory, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yigan Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wenzhen Yuan
- Department of Oncology Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaoguang Liu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,Department of Rheumatology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Juan Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,Department of Gastroenterology, Gansu Provincial Hospital, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Quanlin Guan
- Department of Oncology Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
40
|
Zhang W, Wang H, Sun M, Deng X, Wu X, Ma Y, Li M, Shuoa SM, You Q, Miao L. CXCL5/CXCR2 axis in tumor microenvironment as potential diagnostic biomarker and therapeutic target. Cancer Commun (Lond) 2021; 40:69-80. [PMID: 32237072 PMCID: PMC7163794 DOI: 10.1002/cac2.12010] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 01/31/2020] [Indexed: 12/14/2022] Open
Abstract
The components of the tumor microenvironment (TME) in solid tumors, especially chemokines, are currently attracting much attention from scientists. C-X-C motif chemokine ligand 5 (CXCL5) is one of the important chemokines in TME. Overexpression of CXCL5 is closely related to the survival time, recurrence and metastasis of cancer patients. In TME, CXCL5 binds to its receptors, such as C-X-C motif chemokine receptor 2 (CXCR2), to participate in the recruitment of immune cells and promote angiogenesis, tumor growth, and metastasis. The CXCL5/CXCR2 axis can act as a bridge between tumor cells and host cells in TME. Blocking the transmission of CXCL5/CXCR2 signals can increase the sensitivity and effectiveness of immunotherapy and slow down tumor progression. CXCL5 and CXCR2 are also regarded as biomarkers for predicting prognosis and molecular targets for customizing the treatment. In this review, we summarized the current literature regarding the biological functions and clinical significance of CXCL5/CXCR2 axis in TME. The possibility to use CXCL5 and CXCR2 as potential prognostic biomarkers and therapeutic targets in cancer is also discussed.
Collapse
Affiliation(s)
- Wen Zhang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, P. R. China
| | - Huishan Wang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, P. R. China
| | - Mingyang Sun
- Department of Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, P. R. China
| | - Xueting Deng
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, P. R. China
| | - Xueru Wu
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, P. R. China
| | - Yilan Ma
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, P. R. China
| | - Mengjing Li
- Department of Biotherapy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, P. R. China.,Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, 210011, Jiangsu, P. R. China
| | - Said Maisam Shuoa
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, P. R. China
| | - Qiang You
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, P. R. China.,Department of Biotherapy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, P. R. China.,Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, 210011, Jiangsu, P. R. China
| | - Lin Miao
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, P. R. China
| |
Collapse
|
41
|
Neuroimmune Regulation of Surgery-Associated Metastases. Cells 2021; 10:cells10020454. [PMID: 33672617 PMCID: PMC7924204 DOI: 10.3390/cells10020454] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Surgery remains an essential therapeutic approach for most solid malignancies. Although for more than a century accumulating clinical and experimental data have indicated that surgical procedures themselves may promote the appearance and progression of recurrent and metastatic lesions, only in recent years has renewed interest been taken in the mechanism by which metastasizing of cancer occurs following operative procedures. It is well proven now that surgery constitutes a risk factor for the promotion of pre-existing, possibly dormant micrometastases and the acceleration of new metastases through several mechanisms, including the release of neuroendocrine and stress hormones and wound healing pathway-associated immunosuppression, neovascularization, and tissue remodeling. These postoperative consequences synergistically facilitate the establishment of new metastases and the development of pre-existing micrometastases. While only in recent years the role of the peripheral nervous system has been recognized as another contributor to cancer development and metastasis, little is known about the contribution of tumor-associated neuronal and neuroglial elements in the metastatic disease related to surgical trauma and wound healing. Specifically, although numerous clinical and experimental data suggest that biopsy- and surgery-induced wound healing can promote survival and metastatic spread of residual and dormant malignant cells, the involvement of the tumor-associated neuroglial cells in the formation of metastases following tissue injury has not been well understood. Understanding the clinical significance and underlying mechanisms of neuroimmune regulation of surgery-associated metastasis will not only advance the field of neuro–immuno–oncology and contribute to basic science and translational oncology research but will also produce a strong foundation for developing novel mechanism-based therapeutic approaches that may protect patients against the oncologically adverse effects of primary tumor biopsy and excision.
Collapse
|
42
|
TNFα promotes oral cancer growth, pain, and Schwann cell activation. Sci Rep 2021; 11:1840. [PMID: 33469141 PMCID: PMC7815837 DOI: 10.1038/s41598-021-81500-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Oral cancer is very painful and impairs a patient's ability to eat, talk, and drink. Mediators secreted from oral cancer can excite and sensitize sensory neurons inducing pain. Cancer mediators can also activate Schwann cells, the peripheral glia that regulates neuronal function and repair. The contribution of Schwann cells to oral cancer pain is unclear. We hypothesize that the oral cancer mediator TNFα activates Schwann cells, which further promotes cancer progression and pain. We demonstrate that TNFα is overexpressed in human oral cancer tissues and correlates with increased self-reported pain in patients. Antagonizing TNFα reduces oral cancer proliferation, cytokine production, and nociception in mice with oral cancer. Oral cancer or TNFα alone increases Schwann cell activation (measured by Schwann cell proliferation, migration, and activation markers), which can be inhibited by neutralizing TNFα. Cancer- or TNFα-activated Schwann cells release pro-nociceptive mediators such as TNFα and nerve growth factor (NGF). Activated Schwann cells induce nociceptive behaviors in mice, which is alleviated by blocking TNFα. Our study suggests that TNFα promotes cancer proliferation, progression, and nociception at least partially by activating Schwann cells. Inhibiting TNFα or Schwann cell activation might serve as therapeutic approaches for the treatment of oral cancer and associated pain.
Collapse
|
43
|
Hussain S, Peng B, Cherian M, Song JW, Ahirwar DK, Ganju RK. The Roles of Stroma-Derived Chemokine in Different Stages of Cancer Metastases. Front Immunol 2020; 11:598532. [PMID: 33414786 PMCID: PMC7783453 DOI: 10.3389/fimmu.2020.598532] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
The intricate interplay between malignant cells and host cellular and non-cellular components play crucial role in different stages of tumor development, progression, and metastases. Tumor and stromal cells communicate to each other through receptors such as integrins and secretion of signaling molecules like growth factors, cytokines, chemokines and inflammatory mediators. Chemokines mediated signaling pathways have emerged as major mechanisms underlying multifaceted roles played by host cells during tumor progression. In response to tumor stimuli, host cells-derived chemokines further activates signaling cascades that support the ability of tumor cells to invade surrounding basement membrane and extra-cellular matrix. The host-derived chemokines act on endothelial cells to increase their permeability and facilitate tumor cells intravasation and extravasation. The tumor cells-host neutrophils interaction within the vasculature initiates chemokines driven recruitment of inflammatory cells that protects circulatory tumor cells from immune attack. Chemokines secreted by tumor cells and stromal immune and non-immune cells within the tumor microenvironment enter the circulation and are responsible for formation of a "pre-metastatic niche" like a "soil" in distant organs whereby circulating tumor cells "seed' and colonize, leading to formation of metastatic foci. Given the importance of host derived chemokines in cancer progression and metastases several drugs like Mogamulizumab, Plerixafor, Repertaxin among others are part of ongoing clinical trial which target chemokines and their receptors against cancer pathogenesis. In this review, we focus on recent advances in understanding the complexity of chemokines network in tumor microenvironment, with an emphasis on chemokines secreted from host cells. We especially summarize the role of host-derived chemokines in different stages of metastases, including invasion, dissemination, migration into the vasculature, and seeding into the pre-metastatic niche. We finally provide a brief description of prospective drugs that target chemokines in different clinical trials against cancer.
Collapse
Affiliation(s)
- Shahid Hussain
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Bo Peng
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Mathew Cherian
- Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jonathan W Song
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Mechanical and Aerospace Engineering, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Dinesh K Ahirwar
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Ramesh K Ganju
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
44
|
Yuan R, Huang Y, Chan L, He D, Chen T. Engineering EHD1-Targeted Natural Borneol Nanoemulsion Potentiates Therapeutic Efficacy of Gefitinib against Nonsmall Lung Cancer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45714-45727. [PMID: 32927941 DOI: 10.1021/acsami.0c08069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite the effective targeting of the epidermal growth factor receptor (EGFR), the use of gefitinib (GFT) for nonsmall cell lung cancer (NSCLC) treatment meets a failure because of the insufficient drug accumulation in the tumor region. Therefore, developing chemosensitizers of GFT with synergistic therapeutic effects is urgently needed for advanced cancer therapy. Herein, a natural chemosensitizer, natural borneol (NB), is reformulated as an oil-in-water nanoemulsion to enhance its solubility, distribution, and to ultimately increase the therapeutic index with GFT. The nanolization of NB (NBNPs) displays stronger targeted delivery and cytotoxicity than NB by selectively identifying eight specific protein targets in A549 NSCLC cells as revealed by the proteomic studies. Consistently, NBNPs realize stronger chemosensitization effects than NB with GFT by effectively regulating EGFR/EHD1-mediated apoptosis in A549 NSCLC cells. Owing to the satisfying synergistic effect between NBNPs and GFT, the combined therapy not only enhances the anticancer ability of GFT against NSCLC proliferation but also avoids heavy double toxicity in vivo. This finding demonstrates the effective synergism between NBNPs and GFT with clear mechanistic investigation and is expected to extend the application of NBNPs as a novel chemosensitizer for advanced cancer chemotherapy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Camphanes/chemistry
- Camphanes/pharmacology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Proliferation/drug effects
- Cells, Cultured
- Drug Screening Assays, Antitumor
- Emulsions/chemistry
- Female
- Gefitinib/chemistry
- Gefitinib/pharmacology
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Structure
- Nanoparticles/chemistry
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Particle Size
- Surface Properties
- Vesicular Transport Proteins/antagonists & inhibitors
- Vesicular Transport Proteins/metabolism
Collapse
Affiliation(s)
- Riming Yuan
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Yanyu Huang
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Leung Chan
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Dihao He
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
45
|
Milichko V, Dyachuk V. Novel Glial Cell Functions: Extensive Potency, Stem Cell-Like Properties, and Participation in Regeneration and Transdifferentiation. Front Cell Dev Biol 2020; 8:809. [PMID: 33015034 PMCID: PMC7461986 DOI: 10.3389/fcell.2020.00809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/31/2020] [Indexed: 12/26/2022] Open
Abstract
Glial cells are the most abundant cells in both the peripheral and central nervous systems. During the past decade, a subpopulation of immature peripheral glial cells, namely, embryonic Schwann cell-precursors, have been found to perform important functions related to development. These cells have properties resembling those of the neural crest and, depending on their location in the body, can transform into several different cell types in peripheral tissues, including autonomic neurons. This review describes the multipotent properties of Schwann cell-precursors and their importance, together with innervation, during early development. The heterogeneity of Schwann cells, as revealed using single-cell transcriptomics, raises a question on whether some glial cells in the adult peripheral nervous system retain their stem cell-like properties. We also discuss how a deeper insight into the biology of both embryonic and adult Schwann cells might lead to an effective treatment of the damage of both neural and non-neural tissues, including the damage caused by neurodegenerative diseases. Furthermore, understanding the potential involvement of Schwann cells in the regulation of tumor development may reveal novel targets for cancer treatment.
Collapse
Affiliation(s)
- Valentin Milichko
- Department of Nanophotonics and Metamaterials, ITMO University, St. Petersburg, Russia
| | - Vyacheslav Dyachuk
- Department of Nanophotonics and Metamaterials, ITMO University, St. Petersburg, Russia.,National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
46
|
Ferdoushi A, Li X, Griffin N, Faulkner S, Jamaluddin MFB, Gao F, Jiang CC, van Helden DF, Tanwar PS, Jobling P, Hondermarck H. Schwann Cell Stimulation of Pancreatic Cancer Cells: A Proteomic Analysis. Front Oncol 2020; 10:1601. [PMID: 32984024 PMCID: PMC7477957 DOI: 10.3389/fonc.2020.01601] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Schwann cells (SCs), the glial component of peripheral nerves, have been identified as promoters of pancreatic cancer (PC) progression, but the molecular mechanisms are unclear. In the present study, we aimed to identify proteins released by SCs that could stimulate PC growth and invasion. Proteomic analysis of human primary SC secretome was performed using liquid chromatography–tandem mass spectrometry, and a total of 13,796 unique peptides corresponding to 1,470 individual proteins were identified. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment were conducted using the Database for Annotation, Visualization, and Integrated Discovery. Metabolic and cell–cell adhesion pathways showed the highest levels of enrichment, a finding in line with the supportive role of SCs in peripheral nerves. We identified seven SC-secreted proteins that were validated by western blot. The involvement of these SC-secreted proteins was further demonstrated by using blocking antibodies. PC cell proliferation and invasion induced by SC-conditioned media were decreased using blocking antibodies against the matrix metalloproteinase-2, cathepsin D, plasminogen activator inhibitor-1, and galectin-1. Blocking antibodies against the proteoglycan biglycan, galectin-3 binding protein, and tissue inhibitor of metalloproteinases-2 decreased only the proliferation but not the invasion of PC cells. Together, this study delineates the secretome of human SCs and identifies proteins that can stimulate PC cell growth and invasion and therefore constitute potential therapeutic targets.
Collapse
Affiliation(s)
- Aysha Ferdoushi
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia.,Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Xiang Li
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| | - Nathan Griffin
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| | - Sam Faulkner
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| | - M Fairuz B Jamaluddin
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| | - Fangfang Gao
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| | - Chen Chen Jiang
- Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia.,School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
| | - Dirk F van Helden
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| | - Pradeep S Tanwar
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| | - Phillip Jobling
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| |
Collapse
|
47
|
Shurin MR, Shurin GV, Zlotnikov SB, Bunimovich YL. The Neuroimmune Axis in the Tumor Microenvironment. THE JOURNAL OF IMMUNOLOGY 2020; 204:280-285. [PMID: 31907270 DOI: 10.4049/jimmunol.1900828] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/23/2019] [Indexed: 12/14/2022]
Abstract
Cancer is a complex ecosystem and should be considered in the context of its cellular and molecular microenvironment, which includes the nerves. Peripheral nerves can modulate phenotype and behavior of the malignant cells and thus affect tumor growth and metastasis. Only recently has the role of neuroimmune cross-talk surfaced as a key contributor to cancer progression. However, little is known about the immunomodulatory role of the neuroglial cells in cancer progression and metastasis and the response to therapy. Schwann cells, the principal glial cells of the peripheral nervous system, are now considered to be important players in the tumor microenvironment. They can directly accelerate malignant cell migration and the formation of metastases. Better understanding of the neuroimmune circuits in the tumor milieu will be instrumental in the development of novel therapeutic approaches for the malignancies known to be associated with inflammation and dysregulated immune responses.
Collapse
Affiliation(s)
- Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232; .,Department of Immunology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232; and
| | - Galina V Shurin
- Department of Pathology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
| | - Samuel B Zlotnikov
- Department of Pathology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
| | - Yuri L Bunimovich
- Department of Dermatology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
| |
Collapse
|
48
|
Mao Z, Zhang J, Shi Y, Li W, Shi H, Ji R, Mao F, Qian H, Xu W, Zhang X. CXCL5 promotes gastric cancer metastasis by inducing epithelial-mesenchymal transition and activating neutrophils. Oncogenesis 2020; 9:63. [PMID: 32632106 PMCID: PMC7338464 DOI: 10.1038/s41389-020-00249-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Deregulated expression of chemokines in tumor microenvironment contributes to tumor metastasis by targeting distinct cells. Epithelial-derived neutrophil-activating peptide-78 (ENA78/CXCL5) is upregulated in many cancers and involved in tumor progression. The role and underlying mechanism of CXCL5 in gastric cancer (GC) metastasis remain unclear. In this study, we reported that the expression of CXCL5 was elevated in tumor tissues and positively associated with lymphatic metastasis and tumor differentiation. Stimulation by recombinant human CXCL5 (rhCXCL5) induced epithelial-mesenchymal transition (EMT) in GC cells through the activation of ERK pathway, which enhanced their migration and invasion abilities. The culture supernatant from tumor tissues also enhanced the migration and invasion abilities of GC cells, however, this effect was reversed by pre-treatment with CXCL5 neutralizing antibody. Further studies showed that rhCXCL5 could induce the expression of IL-6 and IL-23 in neutrophils through the activation of ERK and p38 signaling pathways, which in turn facilitated GC cell migration and invasion. The culture supernatant from tumor tissues showed similar effects on neutrophils in a CXCL5-dependent manner. Blockade of IL-6 and IL-23 with neutralizing antibodies reversed the induction of EMT and the increased migration and invasion abilities in GC cells by CXCL5-activated neutrophils. Moreover, CXCL5 activated neutrophils could promote gastric cancer metastasis in vivo. Taken together, our results indicate that CXCL5 acts on gastric cancer cells to induce EMT and mediates pro-tumor activation of neutrophils, which synergistically promotes the metastatic ability of GC cells.
Collapse
Affiliation(s)
- Zheying Mao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jiahui Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yinghong Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Wei Li
- Center of Research Laboratory, First People's Hospital of Lianyungang, Lianyungang, Jiangsu, 222001, China
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Runbi Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.,Department of Clinical Laboratory Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Fei Mao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
49
|
Patchett AL, Flies AS, Lyons AB, Woods GM. Curse of the devil: molecular insights into the emergence of transmissible cancers in the Tasmanian devil (Sarcophilus harrisii). Cell Mol Life Sci 2020; 77:2507-2525. [PMID: 31900624 PMCID: PMC11104928 DOI: 10.1007/s00018-019-03435-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022]
Abstract
The Tasmanian devil (Sarcophilus harrisii) is the only mammalian species known to be affected by multiple transmissible cancers. Devil facial tumours 1 and 2 (DFT1 and DFT2) are independent neoplastic cell lineages that produce large, disfiguring cancers known as devil facial tumour disease (DFTD). The long-term persistence of wild Tasmanian devils is threatened due to the ability of DFTD cells to propagate as contagious allografts and the high mortality rate of DFTD. Recent studies have demonstrated that both DFT1 and DFT2 cancers originated from founder cells of the Schwann cell lineage, an uncommon origin of malignant cancer in humans. This unprecedented finding has revealed a potential predisposition of Tasmanian devils to transmissible cancers of the Schwann cell lineage. In this review, we compare the molecular nature of human Schwann cells and nerve sheath tumours with DFT1 and DFT2 to gain insights into the emergence of transmissible cancers in the Tasmanian devil. We discuss a potential mechanism, whereby Schwann cell plasticity and frequent wounding in Tasmanian devils combine with an inherent cancer predisposition and low genetic diversity to give rise to transmissible Schwann cell cancers in devils on rare occasions.
Collapse
Affiliation(s)
- Amanda L Patchett
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Andrew S Flies
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - A Bruce Lyons
- School of Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Gregory M Woods
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia.
| |
Collapse
|
50
|
Su D, Guo X, Huang L, Ye H, Li Z, Lin L, Chen R, Zhou Q. Tumor-neuroglia interaction promotes pancreatic cancer metastasis. Am J Cancer Res 2020; 10:5029-5047. [PMID: 32308766 PMCID: PMC7163446 DOI: 10.7150/thno.42440] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/22/2020] [Indexed: 12/28/2022] Open
Abstract
Rationale: The peripheral nervous system (PNS) plays an important role in tumor growth and progression. Schwann cells (SCs), the main glia cells of the PNS, augment cancer metastasis in contact-dependent or contact-independent manner in various malignancies. In the present study, we aimed to determine whether interplay between pancreatic cancer cells and SCs via paracrine signaling contributes to cancer progression. Methods: Immunofluorescence analysis was performed to reveal the distribution of SCs in PDAC tissues and to determine the prognostic value and clinicopathological relevance of the level of intra‑tumoral SC markers for patients diagnosed with PDAC. Transwell assays and wound healing assays were carried out to investigate the influence of SC conditioned medium (SCM), SC co‑culture, or co-cultured CM on the migratory and invasive abilities of pancreatic cancer cells. The mechanism of SCs induced cancer cells migration and invasion was confirmed using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assays (ELISAs), western blotting, immunofluorescence, immunohistochemistry, siRNA-mediated gene interference, and an in vivo mouse model. Results: Immunofluorescence analysis of tissue samples revealed that there were two different types of SCs distributed in the tumor microenvironment, the presence of which correlated with several clinicopathological characteristics and overall survival for patients with PDAC. Although SCM had no impact on the motility and invasiveness of tumor cells, both co-cultivation with SCs and co‑cultured CM enhanced pancreatic cancer cell migration and invasion. Mechanistically, SC‑derived Interleukin 6 (IL6), which was induced by co-culture with pancreatic cancer cells, augmented cancer cell migration and invasion by activating STAT3 signaling in cancer cells, while IL6 neutralization or STAT3 downregulation abrogated these effects. Furthermore, Interleukin 1β (IL1β), secreted by tumor cells, activated the nuclear actor (NF)-kappa B pathway in SCs, resulting in increased cytokines production, including IL6, while inhibiting the IL1β-IL1R1 axis led to inactivation of NF-kappa B signaling and downregulated cytokines expression in SCs. Interfering with tumor-neuroglia crosstalk impeded cancer cell dissemination in vivo. Conclusion: Schwann cells were extensively distributed in the PDAC tumor microenvironment and high level of intra-tumoral SC markers could serve as an independent prognostic factor for poor survival of patients with PDAC. The tumor-neuroglia interaction is indispensable for SCs to acquire a tumor-facilitating phenotype. Targeting the tumor-neuroglia interplay might be a promising strategy to treat PDAC.
Collapse
|