1
|
Mieland AO, Petrosino G, Dejung M, Chen JX, Fulzele A, Mahmoudi F, Tu JW, Mustafa AHM, Zeyn Y, Hieber C, Bros M, Schnöder TM, Heidel FH, Najafi S, Oehme I, Hofmann I, Schutkowski M, Hilscher S, Kosan C, Butter F, Bhatia S, Sippl W, Krämer OH. The protein deacetylase HDAC10 controls DNA replication in malignant lymphoid cells. Leukemia 2025:10.1038/s41375-025-02612-8. [PMID: 40301616 DOI: 10.1038/s41375-025-02612-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 05/01/2025]
Abstract
Histone deacetylases (HDACs) comprise a family of 18 epigenetic modifiers. The biologically relevant functions of HDAC10 in leukemia cells are enigmatic. We demonstrate that human cultured and primary acute B cell/T cell leukemia and lymphoma cells require the catalytic activity of HDAC10 for their survival. In such cells, HDAC10 controls a MYC-dependent transcriptional induction of the DNA polymerase subunit POLD1. Consequently, pharmacological inhibition of HDAC10 causes DNA breaks and an accumulation of poly-ADP-ribose chains. These processes culminate in caspase-dependent apoptosis. PZ48 does not damage resting and proliferating human normal blood cells. The in vivo activity of PZ48 against ALL cells is verified in a Danio rerio model. These data reveal a nuclear function for HDAC10. HDAC10 controls the MYC-POLD1 axis to maintain the processivity of DNA replication and genome integrity. This mechanistically defined "HDAC10ness" may be exploited as treatment option for lymphoid malignancies.
Collapse
Affiliation(s)
- Andreas O Mieland
- Institute of Toxicology, Mainz University Medical Center, Mainz, Germany
| | - Giuseppe Petrosino
- Institute of Molecular Biology (IMB), Core Facility Bioinformatics, Mainz, Germany
| | - Mario Dejung
- Institute of Molecular Biology (IMB), Core Facility Proteomics, Mainz, Germany
| | - Jia-Xuan Chen
- Institute of Molecular Biology (IMB), Core Facility Proteomics, Mainz, Germany
| | - Amitkumar Fulzele
- Institute of Molecular Biology (IMB), Core Facility Proteomics, Mainz, Germany
| | - Fereshteh Mahmoudi
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Jia-Wey Tu
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Al-Hassan M Mustafa
- Institute of Toxicology, Mainz University Medical Center, Mainz, Germany
- Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt
| | - Yanira Zeyn
- Department of Dermatology, University Medical Center Mainz, Mainz, Germany
| | - Christoph Hieber
- Department of Dermatology, University Medical Center Mainz, Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Mainz, Germany
| | - Tina M Schnöder
- Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover MedicalSchool (MHH), Hannover, Germany
| | - Florian H Heidel
- Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover MedicalSchool (MHH), Hannover, Germany
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Jena, Germany
| | - Sara Najafi
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Ina Oehme
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Ilse Hofmann
- Core Facility Antibodies, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mike Schutkowski
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sebastian Hilscher
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christian Kosan
- Friedrich-Schiller-University Jena, Faculty of Biological Sciences Center for Molecular Biomedicine (CMB) Department of Biochemistry Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Falk Butter
- Institute for Molecular Virology and Cell Biology (IMVZ), Greifswald, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120, Halle (Saale), Germany.
| | - Oliver H Krämer
- Institute of Toxicology, Mainz University Medical Center, Mainz, Germany.
| |
Collapse
|
2
|
Dall’Olio D, Magnani F, Casadei F, Matteuzzi T, Curti N, Merlotti A, Simonetti G, Della Porta MG, Remondini D, Tarozzi M, Castellani G. Emerging Signatures of Hematological Malignancies from Gene Expression and Transcription Factor-Gene Regulations. Int J Mol Sci 2024; 25:13588. [PMID: 39769352 PMCID: PMC11678896 DOI: 10.3390/ijms252413588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Hematological malignancies are a diverse group of cancers developing in the peripheral blood, the bone marrow or the lymphatic system. Due to their heterogeneity, the identification of novel and advanced molecular signatures is essential for enhancing their characterization and facilitate its translation to new pharmaceutical solutions and eventually to clinical applications. In this study, we collected publicly available microarray data for more than five thousand subjects, across thirteen hematological malignancies. Using PANDA to estimate gene regulatory networks (GRNs), we performed hierarchical clustering and network analysis to explore transcription factor (TF) interactions and their implications on biological pathways. Our findings reveal distinct clustering patterns among leukemias and lymphomas, with notable differences in gene and TF expression profiles. Gene Set Enrichment Analysis (GSEA) identified 57 significantly enriched KEGG pathways, highlighting both common and unique biological processes across HMs. We also identified potential drug targets within these pathways, emphasizing the role of TFs such as CEBPB and NFE2L1 in disease pathophysiology. Our comprehensive analysis enhances the understanding of the molecular landscape of HMs and suggests new avenues for targeted therapeutic strategies. These findings also motivate the adoption of regulatory networks, combined with modern biotechnological possibilities, for insightful pan-cancer exploratory studies.
Collapse
Affiliation(s)
- Daniele Dall’Olio
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Federico Magnani
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Francesco Casadei
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Tommaso Matteuzzi
- Department of Physics and Astronomy, University of Firenze, 50019 Sesto Fiorentino, Italy
| | - Nico Curti
- Department of Physics and Astronomy, University of Bologna, 40127 Bologna, Italy
| | - Alessandra Merlotti
- Department of Physics and Astronomy, University of Bologna, 40127 Bologna, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Matteo Giovanni Della Porta
- Comprehensive Cancer Center, IRCCS Humanitas Clinical and Research Center and Department of Biomedical Sciences, Humanitas University, 20089 Milan, Italy
| | - Daniel Remondini
- Department of Physics and Astronomy, University of Bologna, 40127 Bologna, Italy
| | - Martina Tarozzi
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Gastone Castellani
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
3
|
Malyukova A, Lahnalampi M, Falqués-Costa T, Pölönen P, Sipola M, Mehtonen J, Teppo S, Akopyan K, Viiliainen J, Lohi O, Hagström-Andersson AK, Heinäniemi M, Sangfelt O. Sequential drug treatment targeting cell cycle and cell fate regulatory programs blocks non-genetic cancer evolution in acute lymphoblastic leukemia. Genome Biol 2024; 25:143. [PMID: 38822412 PMCID: PMC11143599 DOI: 10.1186/s13059-024-03260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 04/26/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Targeted therapies exploiting vulnerabilities of cancer cells hold promise for improving patient outcome and reducing side-effects of chemotherapy. However, efficacy of precision therapies is limited in part because of tumor cell heterogeneity. A better mechanistic understanding of how drug effect is linked to cancer cell state diversity is crucial for identifying effective combination therapies that can prevent disease recurrence. RESULTS Here, we characterize the effect of G2/M checkpoint inhibition in acute lymphoblastic leukemia (ALL) and demonstrate that WEE1 targeted therapy impinges on cell fate decision regulatory circuits. We find the highest inhibition of recovery of proliferation in ALL cells with KMT2A-rearrangements. Single-cell RNA-seq and ATAC-seq of RS4;11 cells harboring KMT2A::AFF1, treated with the WEE1 inhibitor AZD1775, reveal diversification of cell states, with a fraction of cells exhibiting strong activation of p53-driven processes linked to apoptosis and senescence, and disruption of a core KMT2A-RUNX1-MYC regulatory network. In this cell state diversification induced by WEE1 inhibition, a subpopulation transitions to a drug tolerant cell state characterized by activation of transcription factors regulating pre-B cell fate, lipid metabolism, and pre-BCR signaling in a reversible manner. Sequential treatment with BCR-signaling inhibitors dasatinib, ibrutinib, or perturbing metabolism by fatostatin or AZD2014 effectively counteracts drug tolerance by inducing cell death and repressing stemness markers. CONCLUSIONS Collectively, our findings provide new insights into the tight connectivity of gene regulatory programs associated with cell cycle and cell fate regulation, and a rationale for sequential administration of WEE1 inhibitors with low toxicity inhibitors of pre-BCR signaling or metabolism.
Collapse
Affiliation(s)
- Alena Malyukova
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden.
| | - Mari Lahnalampi
- The Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ton Falqués-Costa
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Petri Pölönen
- The Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mikko Sipola
- The Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Juha Mehtonen
- The Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Susanna Teppo
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Karen Akopyan
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Johanna Viiliainen
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Olli Lohi
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | | | - Merja Heinäniemi
- The Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland.
| | - Olle Sangfelt
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden.
| |
Collapse
|
4
|
Dufva O, Gandolfi S, Huuhtanen J, Dashevsky O, Duàn H, Saeed K, Klievink J, Nygren P, Bouhlal J, Lahtela J, Näätänen A, Ghimire BR, Hannunen T, Ellonen P, Lähteenmäki H, Rumm P, Theodoropoulos J, Laajala E, Härkönen J, Pölönen P, Heinäniemi M, Hollmén M, Yamano S, Shirasaki R, Barbie DA, Roth JA, Romee R, Sheffer M, Lähdesmäki H, Lee DA, De Matos Simoes R, Kankainen M, Mitsiades CS, Mustjoki S. Single-cell functional genomics reveals determinants of sensitivity and resistance to natural killer cells in blood cancers. Immunity 2023; 56:2816-2835.e13. [PMID: 38091953 DOI: 10.1016/j.immuni.2023.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/19/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
Cancer cells can evade natural killer (NK) cell activity, thereby limiting anti-tumor immunity. To reveal genetic determinants of susceptibility to NK cell activity, we examined interacting NK cells and blood cancer cells using single-cell and genome-scale functional genomics screens. Interaction of NK and cancer cells induced distinct activation and type I interferon (IFN) states in both cell types depending on the cancer cell lineage and molecular phenotype, ranging from more sensitive myeloid to less sensitive B-lymphoid cancers. CRISPR screens in cancer cells uncovered genes regulating sensitivity and resistance to NK cell-mediated killing, including adhesion-related glycoproteins, protein fucosylation genes, and transcriptional regulators, in addition to confirming the importance of antigen presentation and death receptor signaling pathways. CRISPR screens with a single-cell transcriptomic readout provided insight into underlying mechanisms, including regulation of IFN-γ signaling in cancer cells and NK cell activation states. Our findings highlight the diversity of mechanisms influencing NK cell susceptibility across different cancers and provide a resource for NK cell-based therapies.
Collapse
Affiliation(s)
- Olli Dufva
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland
| | - Sara Gandolfi
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jani Huuhtanen
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland; Department of Computer Science, Aalto University, 02150 Espoo, Finland
| | - Olga Dashevsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hanna Duàn
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland
| | - Khalid Saeed
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Jay Klievink
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland
| | - Petra Nygren
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland
| | - Jonas Bouhlal
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland
| | - Jenni Lahtela
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Anna Näätänen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Bishwa R Ghimire
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Tiina Hannunen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Pekka Ellonen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Hanna Lähteenmäki
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Pauliina Rumm
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Jason Theodoropoulos
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Essi Laajala
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland
| | - Jouni Härkönen
- Faculty of Health Sciences, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Petri Pölönen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Merja Heinäniemi
- Faculty of Health Sciences, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Maija Hollmén
- Medicity Research Laboratory, University of Turku, 20014 Turku, Finland
| | - Shizuka Yamano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ryosuke Shirasaki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jennifer A Roth
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rizwan Romee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - Michal Sheffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - Harri Lähdesmäki
- Department of Computer Science, Aalto University, 02150 Espoo, Finland
| | - Dean A Lee
- Hematology/Oncology/BMT, Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Ricardo De Matos Simoes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - Matti Kankainen
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland; Laboratory of Genetics, HUS Diagnostic Center, Hospital District of Helsinki and Uusima (HUS), 00290 Helsinki, Finland
| | - Constantine S Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland.
| |
Collapse
|
5
|
Kuusanmäki H, Dufva O, Vähä-Koskela M, Leppä AM, Huuhtanen J, Vänttinen I, Nygren P, Klievink J, Bouhlal J, Pölönen P, Zhang Q, Adnan-Awad S, Mancebo-Pérez C, Saad J, Miettinen J, Javarappa KK, Aakko S, Ruokoranta T, Eldfors S, Heinäniemi M, Theilgaard-Mönch K, Wartiovaara-Kautto U, Keränen M, Porkka K, Konopleva M, Wennerberg K, Kontro M, Heckman CA, Mustjoki S. Erythroid/megakaryocytic differentiation confers BCL-XL dependency and venetoclax resistance in acute myeloid leukemia. Blood 2023; 141:1610-1625. [PMID: 36508699 PMCID: PMC10651789 DOI: 10.1182/blood.2021011094] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 09/20/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Myeloid neoplasms with erythroid or megakaryocytic differentiation include pure erythroid leukemia, myelodysplastic syndrome with erythroid features, and acute megakaryoblastic leukemia (FAB M7) and are characterized by poor prognosis and limited treatment options. Here, we investigate the drug sensitivity landscape of these rare malignancies. We show that acute myeloid leukemia (AML) cells with erythroid or megakaryocytic differentiation depend on the antiapoptotic protein B-cell lymphoma (BCL)-XL, rather than BCL-2, using combined ex vivo drug sensitivity testing, genetic perturbation, and transcriptomic profiling. High-throughput screening of >500 compounds identified the BCL-XL-selective inhibitor A-1331852 and navitoclax as highly effective against erythroid/megakaryoblastic leukemia cell lines. In contrast, these AML subtypes were resistant to the BCL-2 inhibitor venetoclax, which is used clinically in the treatment of AML. Consistently, genome-scale CRISPR-Cas9 and RNAi screening data demonstrated the striking essentiality of BCL-XL-encoding BCL2L1 but not BCL2 or MCL1, for the survival of erythroid/megakaryoblastic leukemia cell lines. Single-cell and bulk transcriptomics of patient samples with erythroid and megakaryoblastic leukemias identified high BCL2L1 expression compared with other subtypes of AML and other hematological malignancies, where BCL2 and MCL1 were more prominent. BCL-XL inhibition effectively killed blasts in samples from patients with AML with erythroid or megakaryocytic differentiation ex vivo and reduced tumor burden in a mouse erythroleukemia xenograft model. Combining the BCL-XL inhibitor with the JAK inhibitor ruxolitinib showed synergistic and durable responses in cell lines. Our results suggest targeting BCL-XL as a potential therapy option in erythroid/megakaryoblastic leukemias and highlight an AML subgroup with potentially reduced sensitivity to venetoclax-based treatments.
Collapse
MESH Headings
- Animals
- Mice
- Humans
- Proto-Oncogene Proteins c-bcl-2/genetics
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- Cell Line, Tumor
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- bcl-X Protein/genetics
- Leukemia, Megakaryoblastic, Acute/drug therapy
- Leukemia, Megakaryoblastic, Acute/genetics
- Lymphoma, B-Cell
- Cell Differentiation
- Apoptosis
Collapse
Affiliation(s)
- Heikki Kuusanmäki
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Biotech Research & Innovation Centre and Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Olli Dufva
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Markus Vähä-Koskela
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Aino-Maija Leppä
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Division of Stem Cells and Cancer, German Cancer Research Center and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Jani Huuhtanen
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Ida Vänttinen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Petra Nygren
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Jay Klievink
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Jonas Bouhlal
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Petri Pölönen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Qi Zhang
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shady Adnan-Awad
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Cristina Mancebo-Pérez
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Joseph Saad
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Juho Miettinen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Komal K. Javarappa
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Sofia Aakko
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Tanja Ruokoranta
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Samuli Eldfors
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Kim Theilgaard-Mönch
- Biotech Research & Innovation Centre and Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
- Department of Hematology and Finsen Laboratory, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ulla Wartiovaara-Kautto
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Mikko Keränen
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Kimmo Porkka
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Marina Konopleva
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Biotech Research & Innovation Centre and Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Mika Kontro
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Caroline A. Heckman
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| |
Collapse
|
6
|
Hernández-Malmierca P, Vonficht D, Schnell A, Uckelmann HJ, Bollhagen A, Mahmoud MAA, Landua SL, van der Salm E, Trautmann CL, Raffel S, Grünschläger F, Lutz R, Ghosh M, Renders S, Correia N, Donato E, Dixon KO, Hirche C, Andresen C, Robens C, Werner PS, Boch T, Eisel D, Osen W, Pilz F, Przybylla A, Klein C, Buchholz F, Milsom MD, Essers MAG, Eichmüller SB, Hofmann WK, Nowak D, Hübschmann D, Hundemer M, Thiede C, Bullinger L, Müller-Tidow C, Armstrong SA, Trumpp A, Kuchroo VK, Haas S. Antigen presentation safeguards the integrity of the hematopoietic stem cell pool. Cell Stem Cell 2022; 29:760-775.e10. [PMID: 35523139 PMCID: PMC9202612 DOI: 10.1016/j.stem.2022.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/08/2021] [Accepted: 04/08/2022] [Indexed: 12/16/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are responsible for the production of blood and immune cells. Throughout life, HSPCs acquire oncogenic aberrations that can cause hematological cancers. Although molecular programs maintaining stem cell integrity have been identified, safety mechanisms eliminating malignant HSPCs from the stem cell pool remain poorly characterized. Here, we show that HSPCs constitutively present antigens via major histocompatibility complex class II. The presentation of immunogenic antigens, as occurring during malignant transformation, triggers bidirectional interactions between HSPCs and antigen-specific CD4+ T cells, causing stem cell proliferation, differentiation, and specific exhaustion of aberrant HSPCs. This immunosurveillance mechanism effectively eliminates transformed HSPCs from the hematopoietic system, thereby preventing leukemia onset. Together, our data reveal a bidirectional interaction between HSPCs and CD4+ T cells, demonstrating that HSPCs are not only passive receivers of immunological signals but also actively engage in adaptive immune responses to safeguard the integrity of the stem cell pool.
Collapse
Affiliation(s)
- Pablo Hernández-Malmierca
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Dominik Vonficht
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Alexandra Schnell
- Evergrande Center for Immunologic Diseases, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hannah J Uckelmann
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston, MA, USA; Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alina Bollhagen
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Mohamed A A Mahmoud
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Sophie-Luise Landua
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Elise van der Salm
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Christine L Trautmann
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Simon Raffel
- Department of Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Florian Grünschläger
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Raphael Lutz
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany; Department of Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Michael Ghosh
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Simon Renders
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany; Department of Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Nádia Correia
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Elisa Donato
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Karin O Dixon
- Evergrande Center for Immunologic Diseases, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christoph Hirche
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Inflammatory Stress in Stem Cells, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Carolin Andresen
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Claudia Robens
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Paula S Werner
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Inflammatory Stress in Stem Cells, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Tobias Boch
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany; Department of Hematology and Oncology, University Hospital Mannheim, Mannheim, Germany; Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - David Eisel
- Research Group GMP & T Cell Therapy, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Wolfram Osen
- Research Group GMP & T Cell Therapy, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Franziska Pilz
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Inflammatory Stress in Stem Cells, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Adriana Przybylla
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Corinna Klein
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Frank Buchholz
- Medical Faculty, University Hospital Carl Gustav Carus, NCT/UCC Section Medical Systems Biology, TU Dresden, Dresden, Germany
| | - Michael D Milsom
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Experimental Hematology, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Marieke A G Essers
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Inflammatory Stress in Stem Cells, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Stefan B Eichmüller
- Research Group GMP & T Cell Therapy, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, University Hospital Mannheim, Mannheim, Germany; Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Nowak
- Department of Hematology and Oncology, University Hospital Mannheim, Mannheim, Germany; Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Hübschmann
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Computational Oncology, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) Heidelberg and Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Michael Hundemer
- Department of Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Christian Thiede
- German Cancer Consortium (DKTK), Heidelberg, Germany; Medical Department 1, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Lars Bullinger
- German Cancer Consortium (DKTK), Heidelberg, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Hematology, Oncology and Cancer Immunology, Berlin, Germany
| | - Carsten Müller-Tidow
- Department of Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany; Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, University of Heidelberg, Heidelberg, Germany
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston, MA, USA; Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany.
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Simon Haas
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Hematology, Oncology and Cancer Immunology, Berlin, Germany; Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| |
Collapse
|
7
|
Oksa L, Mäkinen A, Nikkilä A, Hyvärinen N, Laukkanen S, Rokka A, Haapaniemi P, Seki M, Takita J, Kauko O, Heinäniemi M, Lohi O. Arginine Methyltransferase PRMT7 Deregulates Expression of RUNX1 Target Genes in T-Cell Acute Lymphoblastic Leukemia. Cancers (Basel) 2022; 14:2169. [PMID: 35565298 PMCID: PMC9101393 DOI: 10.3390/cancers14092169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 02/05/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with no well-established prognostic biomarkers. We examined the expression of protein arginine methyltransferases across hematological malignancies and discovered high levels of PRMT7 mRNA in T-ALL, particularly in the mature subtypes of T-ALL. The genetic deletion of PRMT7 by CRISPR-Cas9 reduced the colony formation of T-ALL cells and changed arginine monomethylation patterns in protein complexes associated with the RNA and DNA processing and the T-ALL pathogenesis. Among them was RUNX1, whose target gene expression was consequently deregulated. These results suggest that PRMT7 plays an active role in the pathogenesis of T-ALL.
Collapse
Affiliation(s)
- Laura Oksa
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (A.M.); (A.N.); (N.H.); (S.L.); (O.L.)
| | - Artturi Mäkinen
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (A.M.); (A.N.); (N.H.); (S.L.); (O.L.)
- Fimlab Laboratories, Department of Pathology, Tampere University Hospital, FI-33520 Tampere, Finland
| | - Atte Nikkilä
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (A.M.); (A.N.); (N.H.); (S.L.); (O.L.)
| | - Noora Hyvärinen
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (A.M.); (A.N.); (N.H.); (S.L.); (O.L.)
| | - Saara Laukkanen
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (A.M.); (A.N.); (N.H.); (S.L.); (O.L.)
| | - Anne Rokka
- Turku Bioscience Center, University of Turku and Åbo Akademi University, FI-20014 Turku, Finland; (A.R.); (P.H.); (O.K.)
| | - Pekka Haapaniemi
- Turku Bioscience Center, University of Turku and Åbo Akademi University, FI-20014 Turku, Finland; (A.R.); (P.H.); (O.K.)
| | - Masafumi Seki
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-17165 Solna, Sweden;
| | - Junko Takita
- Graduate School of Medicine, Kyoto University, Kyoto JP-606-8501, Japan;
| | - Otto Kauko
- Turku Bioscience Center, University of Turku and Åbo Akademi University, FI-20014 Turku, Finland; (A.R.); (P.H.); (O.K.)
| | - Merja Heinäniemi
- The Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland;
| | - Olli Lohi
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (A.M.); (A.N.); (N.H.); (S.L.); (O.L.)
- Tays Cancer Center, Tampere University Hospital, FI-33520 Tampere, Finland
| |
Collapse
|
8
|
Targeting Apoptosis Pathways With BCL2 and MDM2 Inhibitors in Adult B-cell Acute Lymphoblastic Leukemia. Hemasphere 2022; 6:e701. [PMID: 35233509 PMCID: PMC8878725 DOI: 10.1097/hs9.0000000000000701] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 02/07/2022] [Indexed: 11/26/2022] Open
Abstract
In adult patients, the treatment outcome of acute lymphoblastic leukemia (ALL) remains suboptimal. Here, we used an ex vivo drug testing platform and comprehensive molecular profiling to discover new drug candidates for B-ALL. We analyzed sensitivity of 18 primary B-ALL adult patient samples to 64 drugs in a physiological concentration range. Whole-transcriptome sequencing and publicly available expression data were used to examine gene expression biomarkers for observed drug responses. Apoptotic modulators targeting BCL2 and MDM2 were highly effective. Philadelphia chromosome–negative (Ph–) samples were sensitive to both BCL2/BCL-W/BCL-XL-targeting agent navitoclax and BCL2-selective venetoclax, whereas Ph-positive (Ph+) samples were more sensitive to navitoclax. Expression of BCL2 was downregulated and BCL-W and BCL-XL upregulated in Ph+ ALL compared with Ph– samples, providing elucidation for the observed difference in drug responses. A majority of the samples were sensitive to MDM2 inhibitor idasanutlin. The regulatory protein MDM2 suppresses the function of tumor suppressor p53, leading to impaired apoptosis. In B-ALL, the expression of MDM2 was increased compared with other hematological malignancies. In B-ALL cell lines, a combination of BCL2 and MDM2 inhibitor was synergistic. In summary, antiapoptotic proteins including BCL2 and MDM2 comprise promising targets for future drug studies in B-ALL.
Collapse
|
9
|
Stratmann S, Yones SA, Garbulowski M, Sun J, Skaftason A, Mayrhofer M, Norgren N, Herlin MK, Sundström C, Eriksson A, Höglund M, Palle J, Abrahamsson J, Jahnukainen K, Munthe-Kaas MC, Zeller B, Tamm KP, Cavelier L, Komorowski J, Holmfeldt L. Transcriptomic analysis reveals proinflammatory signatures associated with acute myeloid leukemia progression. Blood Adv 2022; 6:152-164. [PMID: 34619772 PMCID: PMC8753201 DOI: 10.1182/bloodadvances.2021004962] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022] Open
Abstract
Numerous studies have been performed over the last decade to exploit the complexity of genomic and transcriptomic lesions driving the initiation of acute myeloid leukemia (AML). These studies have helped improve risk classification and treatment options. Detailed molecular characterization of longitudinal AML samples is sparse, however; meanwhile, relapse and therapy resistance represent the main challenges in AML care. To this end, we performed transcriptome-wide RNA sequencing of longitudinal diagnosis, relapse, and/or primary resistant samples from 47 adult and 23 pediatric AML patients with known mutational background. Gene expression analysis revealed the association of short event-free survival with overexpression of GLI2 and IL1R1, as well as downregulation of ST18. Moreover, CR1 downregulation and DPEP1 upregulation were associated with AML relapse both in adults and children. Finally, machine learning-based and network-based analysis identified overexpressed CD6 and downregulated INSR as highly copredictive genes depicting important relapse-associated characteristics among adult patients with AML. Our findings highlight the importance of a tumor-promoting inflammatory environment in leukemia progression, as indicated by several of the herein identified differentially expressed genes. Together, this knowledge provides the foundation for novel personalized drug targets and has the potential to maximize the benefit of current treatments to improve cure rates in AML.
Collapse
Affiliation(s)
| | - Sara A. Yones
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mateusz Garbulowski
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jitong Sun
- Department of Immunology, Genetics and Pathology and
| | - Aron Skaftason
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Markus Mayrhofer
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Nina Norgren
- Department of Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Umeå University, Umeå, Sweden
| | - Morten Krogh Herlin
- Department of Clinical Medicine and
- Department of Pediatrics and Adolescent Medicine, Aarhus University, Aarhus, Denmark
| | | | | | | | - Josefine Palle
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Jonas Abrahamsson
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Kirsi Jahnukainen
- Children’s Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Monica Cheng Munthe-Kaas
- Norwegian Institute of Public Health, Oslo, Norway
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Bernward Zeller
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Katja Pokrovskaja Tamm
- Department of Oncology and Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | | | - Jan Komorowski
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Umeå University, Umeå, Sweden
- Department of Clinical Medicine and
- Department of Pediatrics and Adolescent Medicine, Aarhus University, Aarhus, Denmark
- Department of Medical Sciences and
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Children’s Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
- Norwegian Institute of Public Health, Oslo, Norway
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Department of Oncology and Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Swedish Collegium for Advanced Study, Uppsala, Sweden
- Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
- Washington National Primate Research Center, Seattle, WA; and
| | - Linda Holmfeldt
- Department of Immunology, Genetics and Pathology and
- The Beijer Laboratory, Uppsala, Sweden
| |
Collapse
|
10
|
Mäkinen A, Nikkilä A, Mehtonen J, Teppo S, Oksa L, Nordlund J, Rounioja S, Pohjolainen V, Laukkanen S, Heinäniemi M, Paavonen T, Lohi O. Expression of BCL6 in paediatric B-cell acute lymphoblastic leukaemia and association with prognosis. Pathology 2021; 53:875-882. [PMID: 34049715 DOI: 10.1016/j.pathol.2021.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/30/2021] [Accepted: 02/15/2021] [Indexed: 11/28/2022]
Abstract
B-cell lineage acute lymphoblastic leukaemia (B-ALL) is the most common paediatric malignancy. Transcription factor B-cell lymphoma 6 (BCL6) is essential to germinal centre formation and antibody affinity maturation and plays a major role in mature B-cell malignancies. More recently, it was shown to act as a critical downstream regulator in pre-BCR+ B-ALL. We investigated the expression of the BCL6 protein in a population-based cohort of paediatric B-ALL cases and detected moderate to strong positivity through immunohistochemistry in 7% of cases (8/117); however, only two of eight BCL6 cases (25%) co-expressed the ZAP70 protein. In light of these data, the subtype with active pre-BCR signalling constitutes a rare entity in paediatric B-ALL. In three independent larger cohorts with gene expression data, high BCL6 mRNA levels were associated with the TCF3-PBX1, Ph-like, NUTM1, MEF2D and PAX5-alt subgroups and the 'metagene' signature for pre-BCR-associated genes. However, higher-than-median BCL6 mRNA level alone was associated with favourable event free survival in the Nordic paediatric cohort, indicating that using BCL6 as a diagnostic marker requires careful design, and evaluation of protein level is needed alongside the genetic or transcriptomic data.
Collapse
Affiliation(s)
- Artturi Mäkinen
- Faculty of Medicine and Health Technology, Tampere Center for Child Health Research, Tampere University, Tampere, Finland; Fimlab Laboratories, Department of Pathology, Tampere University Hospital, Tampere, Finland.
| | - Atte Nikkilä
- Faculty of Medicine and Health Technology, Tampere Center for Child Health Research, Tampere University, Tampere, Finland
| | - Juha Mehtonen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Susanna Teppo
- Faculty of Medicine and Health Technology, Tampere Center for Child Health Research, Tampere University, Tampere, Finland
| | - Laura Oksa
- Faculty of Medicine and Health Technology, Tampere Center for Child Health Research, Tampere University, Tampere, Finland
| | - Jessica Nordlund
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Samuli Rounioja
- Fimlab Laboratories, Department of Hematology, Tampere University Hospital, Tampere, Finland
| | - Virva Pohjolainen
- Fimlab Laboratories, Department of Pathology, Tampere University Hospital, Tampere, Finland
| | - Saara Laukkanen
- Faculty of Medicine and Health Technology, Tampere Center for Child Health Research, Tampere University, Tampere, Finland
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Timo Paavonen
- Fimlab Laboratories, Department of Pathology, Tampere University Hospital, Tampere, Finland; Department of Pathology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olli Lohi
- Faculty of Medicine and Health Technology, Tampere Center for Child Health Research, Tampere University, Tampere, Finland; Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
11
|
Mäkinen A, Nikkilä A, Haapaniemi T, Oksa L, Mehtonen J, Vänskä M, Heinäniemi M, Paavonen T, Lohi O. IGF2BP3 Associates with Proliferative Phenotype and Prognostic Features in B-Cell Acute Lymphoblastic Leukemia. Cancers (Basel) 2021; 13:1505. [PMID: 33805930 PMCID: PMC8037952 DOI: 10.3390/cancers13071505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
The oncofetal protein insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) belongs to a family of RNA-binding proteins involved in localization, stability, and translational regulation of target RNAs. IGF2BP3 is used as a diagnostic and prognostic marker in several malignancies. Although the prognosis of pediatric B-cell acute lymphoblastic leukemia (B-ALL) has improved, a subgroup of patients exhibits high-risk features and suffer from disease recurrence. We sought to identify additional biomarkers to improve diagnostics, and we assessed expression of IGF2BP3 in a population-based pediatric cohort of B-ALL using a tissue microarray platform. The majority of pediatric B-ALL cases were positive for IGF2BP3 immunohistochemistry and were associated with an increased proliferative phenotype and activated STAT5 signaling pathway. Two large gene expression data sets were probed for the expression of IGF2BP3-the highest levels were seen among the B-cell lymphomas of a germinal center origin and well-established (KMT2A-rearranged and ETV6-RUNX1) and novel subtypes of B-ALL (e.g., NUTM1 and ETV6-RUNX1-like). A high mRNA for IGF2BP3 was associated with a proliferative "metagene" signature and a high expression of CDK6 in B-ALL. A low expression portended inferior survival in a high-risk cohort of pediatric B-ALL. Overall, our results show that IGF2BP3 shows subtype-specificity in expression and provides prognostic utility in high-risk B-ALL.
Collapse
Affiliation(s)
- Artturi Mäkinen
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (A.N.); (L.O.); (O.L.)
- Fimlab Laboratories, Department of Pathology, Tampere University Hospital, 33520 Tampere, Finland; (T.H.); (T.P.)
| | - Atte Nikkilä
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (A.N.); (L.O.); (O.L.)
| | - Teppo Haapaniemi
- Fimlab Laboratories, Department of Pathology, Tampere University Hospital, 33520 Tampere, Finland; (T.H.); (T.P.)
- Department of Biological and Environmental Sciences, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Laura Oksa
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (A.N.); (L.O.); (O.L.)
| | - Juha Mehtonen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland; (J.M.); (M.H.)
| | - Matti Vänskä
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland;
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland; (J.M.); (M.H.)
| | - Timo Paavonen
- Fimlab Laboratories, Department of Pathology, Tampere University Hospital, 33520 Tampere, Finland; (T.H.); (T.P.)
- Department of Pathology, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Olli Lohi
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (A.N.); (L.O.); (O.L.)
- Tays Cancer Centre, Tampere University Hospital, 33520 Tampere, Finland
| |
Collapse
|
12
|
The delta isoform of phosphatidylinositol-3-kinase predominates in chronic myelomonocytic leukemia and can be targeted effectively with umbralisib and ruxolitinib. Exp Hematol 2021; 97:57-65.e5. [PMID: 33617893 DOI: 10.1016/j.exphem.2021.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 11/20/2022]
Abstract
Chronic myelomonocytic leukemia (CMML) is a myelodysplastic syndrome/myeloproliferative neoplasm overlap syndrome characterized by monocytic proliferation in the presence of dysplastic bone marrow changes, inflammatory symptoms, and propensity for transformation to acute myeloid leukemia (AML), with a poor prognosis and limited treatment options. Unlike the α and β isoforms, the phosphatidylinositol-3-kinase (PI3K)-δ signaling protein is predominantly expressed by hematopoietic cells and therefore has garnered interest as a potential target for the treatment of lymphomas and leukemias. We revealed a pattern of increased PIK3CD:PIK3CA ratio in monocytic M5 AML patients and cell lines, and this ratio correlated with responsiveness to pharmacological PI3K-δ inhibition in vitro. Because CMML is a disease defined by monocytic clonal proliferation, we tested the PI3K-δ inhibitor umbralisib as a single agent and in combination with the JAK1/2 inhibitor ruxolitinib, in CMML. Our ex vivo experiments with primary CMML patient samples revealed synergistic inhibition of viability and clonogenicity with this combination. Phospho-specific flow cytometry revealed that dual inhibition had the unique ability to decrease STAT5, ERK, AKT, and S6 phosphorylation simultaneously, which offers a mechanistic hypothesis for the enhanced efficacy of the combination treatment. These preclinical data indicate promising activity by co-inhibition of PI3K-δ and JAK1/2 and support the use of ruxolitinib + umbralisib combination therapy in CMML under active clinical investigation.
Collapse
|
13
|
Lopusna K, Nowialis P, Opavska J, Abraham A, Riva A, Opavsky R. Dnmt3b catalytic activity is critical for its tumour suppressor function in lymphomagenesis and is associated with c-Met oncogenic signalling. EBioMedicine 2021; 63:103191. [PMID: 33418509 PMCID: PMC7804970 DOI: 10.1016/j.ebiom.2020.103191] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND DNA methylation regulates gene transcription in many physiological processes in mammals including development and haematopoiesis. It is catalysed by several DNA methyltransferases, including Dnmt3b that mediates both methylation-dependant and independent gene repression. Dnmt3b is critical for mouse embryogenesis and functions as a tumour suppressor in haematologic malignancies in mice. However, the extent to which Dnmt3b's catalytic activity (CA) is involved in development and cancer is unclear. METHODS We used a mouse model expressing catalytically inactive Dnmt3b (Dnmt3bCI) to study a role of Dnmt3b's CA in development and cancer. We utilized global approaches including Whole-genome Bisulfite sequencing and RNA-seq to analyse DNA methylation and gene expression to identify putative targets of Dnmt3b's CA. To analyse postnatal development and haematopoiesis, we used tissue staining, histological and FACS analysis. To determine potential involvement of selected genes in lymphomagenesis, we used overexpression and knock down approaches followed by in vitro growth assays. FINDINGS We show that mice expressing Dnmt3bCI only, survive postnatal development and develop ICF (the immunodeficiency-centromeric instability-facial anomalies) -like syndrome. The lack of Dnmt3b's CA promoted fibroblasts transformation in vitro, accelerated MLL-AF9 driven Acute Myeloid Leukaemia and MYC-induced T-cell lymphomagenesis in vivo. The elimination of Dnmt3b's CA resulted in decreased methylation of c-Met promoter and its upregulation, activated oncogenic Met signalling, Stat3 phosphorylation and up-regulation of Lin28b promoting lymphomagenesis. INTERPRETATION Our data demonstrates that Dnmt3b's CA is largely dispensable for mouse development but critical to prevent tumourigenesis by controlling events involved in cellular transformation. FUNDING This study was supported by Department of Anatomy and Cell Biology and Cancer Centre at the University of Florida start-up funds, NIH/NCI grant 1R01CA188561-01A1 (R.O.).
Collapse
Affiliation(s)
- Katarina Lopusna
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL 32610, United States
| | - Pawel Nowialis
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL 32610, United States
| | - Jana Opavska
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL 32610, United States
| | - Ajay Abraham
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL 32610, United States
| | - Alberto Riva
- ICBR Bioinformatics, Cancer and Genetics Research Complex, University of Florida, P.O. Box 103622. Gainesville, FL 32610, United States
| | - Rene Opavsky
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL 32610, United States.
| |
Collapse
|
14
|
Mehtonen J, Teppo S, Lahnalampi M, Kokko A, Kaukonen R, Oksa L, Bouvy-Liivrand M, Malyukova A, Mäkinen A, Laukkanen S, Mäkinen PI, Rounioja S, Ruusuvuori P, Sangfelt O, Lund R, Lönnberg T, Lohi O, Heinäniemi M. Single cell characterization of B-lymphoid differentiation and leukemic cell states during chemotherapy in ETV6-RUNX1-positive pediatric leukemia identifies drug-targetable transcription factor activities. Genome Med 2020; 12:99. [PMID: 33218352 PMCID: PMC7679990 DOI: 10.1186/s13073-020-00799-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tight regulatory loops orchestrate commitment to B cell fate within bone marrow. Genetic lesions in this gene regulatory network underlie the emergence of the most common childhood cancer, acute lymphoblastic leukemia (ALL). The initial genetic hits, including the common translocation that fuses ETV6 and RUNX1 genes, lead to arrested cell differentiation. Here, we aimed to characterize transcription factor activities along the B-lineage differentiation trajectory as a reference to characterize the aberrant cell states present in leukemic bone marrow, and to identify those transcription factors that maintain cancer-specific cell states for more precise therapeutic intervention. METHODS We compared normal B-lineage differentiation and in vivo leukemic cell states using single cell RNA-sequencing (scRNA-seq) and several complementary genomics profiles. Based on statistical tools for scRNA-seq, we benchmarked a workflow to resolve transcription factor activities and gene expression distribution changes in healthy bone marrow lymphoid cell states. We compared these to ALL bone marrow at diagnosis and in vivo during chemotherapy, focusing on leukemias carrying the ETV6-RUNX1 fusion. RESULTS We show that lymphoid cell transcription factor activities uncovered from bone marrow scRNA-seq have high correspondence with independent ATAC- and ChIP-seq data. Using this comprehensive reference for regulatory factors coordinating B-lineage differentiation, our analysis of ETV6-RUNX1-positive ALL cases revealed elevated activity of multiple ETS-transcription factors in leukemic cells states, including the leukemia genome-wide association study hit ELK3. The accompanying gene expression changes associated with natural killer cell inactivation and depletion in the leukemic immune microenvironment. Moreover, our results suggest that the abundance of G1 cell cycle state at diagnosis and lack of differentiation-associated regulatory network changes during induction chemotherapy represent features of chemoresistance. To target the leukemic regulatory program and thereby overcome treatment resistance, we show that inhibition of ETS-transcription factors reduced cell viability and resolved pathways contributing to this using scRNA-seq. CONCLUSIONS Our data provide a detailed picture of the transcription factor activities characterizing both normal B-lineage differentiation and those acquired in leukemic bone marrow and provide a rational basis for new treatment strategies targeting the immune microenvironment and the active regulatory network in leukemia.
Collapse
Affiliation(s)
- Juha Mehtonen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | - Susanna Teppo
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
| | - Mari Lahnalampi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | - Aleksi Kokko
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | - Riina Kaukonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Laura Oksa
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
| | - Maria Bouvy-Liivrand
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | - Alena Malyukova
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Artturi Mäkinen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
| | - Saara Laukkanen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
| | - Petri I Mäkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | | | - Pekka Ruusuvuori
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
| | - Olle Sangfelt
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Riikka Lund
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Tapio Lönnberg
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Olli Lohi
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
- Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland.
| |
Collapse
|
15
|
Dufva O, Pölönen P, Brück O, Keränen MAI, Klievink J, Mehtonen J, Huuhtanen J, Kumar A, Malani D, Siitonen S, Kankainen M, Ghimire B, Lahtela J, Mattila P, Vähä-Koskela M, Wennerberg K, Granberg K, Leivonen SK, Meriranta L, Heckman C, Leppä S, Nykter M, Lohi O, Heinäniemi M, Mustjoki S. Immunogenomic Landscape of Hematological Malignancies. Cancer Cell 2020; 38:380-399.e13. [PMID: 32649887 DOI: 10.1016/j.ccell.2020.06.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 03/27/2020] [Accepted: 05/29/2020] [Indexed: 12/15/2022]
Abstract
Understanding factors that shape the immune landscape across hematological malignancies is essential for immunotherapy development. We integrated over 8,000 transcriptomes and 2,000 samples with multilevel genomics of hematological cancers to investigate how immunological features are linked to cancer subtypes, genetic and epigenetic alterations, and patient survival, and validated key findings experimentally. Infiltration of cytotoxic lymphocytes was associated with TP53 and myelodysplasia-related changes in acute myeloid leukemia, and activated B cell-like phenotype and interferon-γ response in lymphoma. CIITA methylation regulating antigen presentation, cancer type-specific immune checkpoints, such as VISTA in myeloid malignancies, and variation in cancer antigen expression further contributed to immune heterogeneity and predicted survival. Our study provides a resource linking immunology with cancer subtypes and genomics in hematological malignancies.
Collapse
MESH Headings
- Acute Disease
- Epigenesis, Genetic
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic
- Genomics/methods
- HLA Antigens/genetics
- Humans
- Immunotherapy/methods
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/immunology
- Leukemia, Myeloid/therapy
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/therapy
- Multiple Myeloma/genetics
- Multiple Myeloma/immunology
- Multiple Myeloma/therapy
- Mutation
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Olli Dufva
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center (HUH CCC), 00029 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki (UH), 00029 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Petri Pölönen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Oscar Brück
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center (HUH CCC), 00029 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki (UH), 00029 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Mikko A I Keränen
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center (HUH CCC), 00029 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki (UH), 00029 Helsinki, Finland
| | - Jay Klievink
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center (HUH CCC), 00029 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki (UH), 00029 Helsinki, Finland
| | - Juha Mehtonen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jani Huuhtanen
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center (HUH CCC), 00029 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki (UH), 00029 Helsinki, Finland
| | - Ashwini Kumar
- Institute for Molecular Medicine Finland, UH, 00014 Helsinki, Finland
| | - Disha Malani
- Institute for Molecular Medicine Finland, UH, 00014 Helsinki, Finland
| | - Sanna Siitonen
- Department of Clinical Chemistry, UH and HUSLAB, HUH, 00029 Helsinki, Finland
| | - Matti Kankainen
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center (HUH CCC), 00029 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki (UH), 00029 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Bishwa Ghimire
- Institute for Molecular Medicine Finland, UH, 00014 Helsinki, Finland
| | - Jenni Lahtela
- Institute for Molecular Medicine Finland, UH, 00014 Helsinki, Finland
| | - Pirkko Mattila
- Institute for Molecular Medicine Finland, UH, 00014 Helsinki, Finland
| | | | | | - Kirsi Granberg
- Laboratory of Computational Biology, Faculty of Medicine and Health Technology, Tampere University (TU), 33014 Tampere, Finland
| | - Suvi-Katri Leivonen
- Department of Oncology, HUH CCC, 00029 Helsinki, Finland; Applied Tumor Genomics Research Program, Faculty of Medicine, UH, 00014 Helsinki, Finland
| | - Leo Meriranta
- Department of Oncology, HUH CCC, 00029 Helsinki, Finland; Applied Tumor Genomics Research Program, Faculty of Medicine, UH, 00014 Helsinki, Finland
| | - Caroline Heckman
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland; Institute for Molecular Medicine Finland, UH, 00014 Helsinki, Finland
| | - Sirpa Leppä
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland; Department of Oncology, HUH CCC, 00029 Helsinki, Finland; Applied Tumor Genomics Research Program, Faculty of Medicine, UH, 00014 Helsinki, Finland
| | - Matti Nykter
- Laboratory of Computational Biology, Faculty of Medicine and Health Technology, Tampere University (TU), 33014 Tampere, Finland
| | - Olli Lohi
- Tampere Center for Child Health Research, TU and Tays Cancer Center, Tampere University Hospital, 33521 Tampere, Finland
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland.
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center (HUH CCC), 00029 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki (UH), 00029 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| |
Collapse
|
16
|
Laukkanen S, Oksa L, Nikkilä A, Lahnalampi M, Parikka M, Seki M, Takita J, Degerman S, de Bock CE, Heinäniemi M, Lohi O. SIX6 is a TAL1-regulated transcription factor in T-ALL and associated with inferior outcome. Leuk Lymphoma 2020; 61:3089-3100. [PMID: 32835548 DOI: 10.1080/10428194.2020.1804560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a hematological malignancy driven by abnormal activity of transcription factors. Here we report an aberrant expression of the developmental transcription factor SIX6 in the TAL1-subtype of T-ALL. Our results demonstrate that the binding of TAL1 and GATA3 transcription factors into an upstream enhancer element directly regulates SIX6 expression. High expression of SIX6 was associated with inferior event-free survival within three independent patient cohorts. At a functional level, CRISPR-Cas9-mediated knockout of the SIX6 gene in TAL1 positive Jurkat cells induced changes in genes associated with the mTOR-, K-RAS-, and TNFα-related molecular signatures but did not impair cell proliferation or viability. There was also no acceleration of T-ALL development within a Myc driven zebrafish tumor model in vivo. Taken together, our results show that SIX6 belongs to the TAL1 regulatory gene network in T-ALL but is alone insufficient to influence the development or maintenance of T-ALL.
Collapse
Affiliation(s)
- Saara Laukkanen
- Faculty of Medicine and Health Technology, Tampere Center for Child Health Research, Tampere University, Tampere, Finland
| | - Laura Oksa
- Faculty of Medicine and Health Technology, Tampere Center for Child Health Research, Tampere University, Tampere, Finland
| | - Atte Nikkilä
- Faculty of Medicine and Health Technology, Tampere Center for Child Health Research, Tampere University, Tampere, Finland
| | - Mari Lahnalampi
- The Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mataleena Parikka
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland.,Oral and Maxillofacial Unit, Tampere University Hospital, Tampere, Finland
| | - Masafumi Seki
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Junko Takita
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sofie Degerman
- Department of Medical Biosciences and Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Charles E de Bock
- Children's Cancer Institute, Lowy Cancer Research Centre, Sydney, Australia.,School of Women's and Children's Health, University of New South Wales Sydney, Sydney, Australia
| | - Merja Heinäniemi
- The Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Olli Lohi
- Faculty of Medicine and Health Technology, Tampere Center for Child Health Research, Tampere University, Tampere, Finland.,Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
17
|
Huang S, Huang Z, Ma C, Luo L, Li YF, Wu YL, Ren Y, Feng C. Acidic leucine-rich nuclear phosphoprotein-32A expression contributes to adverse outcome in acute myeloid leukemia. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:345. [PMID: 32355789 PMCID: PMC7186738 DOI: 10.21037/atm.2020.02.54] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Acidic leucine-rich nuclear phosphoprotein-32A (ANP32A) is a novel regulator of histone H3 acetylation and promotes leukemogenesis in acute myeloid leukemia (AML). However, its prognostic value in AML remains unclear. Methods In this study, we evaluated the prognostic significance of ANP32A expression using two independent large cohorts of cytogenetically normal AML (CN-AML) patients. Multivariable analysis in CN-AML group was also presented. Based on the ANP32A expression, its related genes, dysregulation of pathways, interaction network analysis between microRNAs and target genes, as well as methylation analysis were performed to unveil the complex functions behind ANP32A. Results Here we demonstrated overexpression of ANP32A was notably associated with unfavorable outcome in two independent cohorts of CN-AML patients (OS: P=0.012, EFS: P=0.005, n=185; OS: P=0.041, n=232), as well as in European Leukemia Net (ELN) Intermediate-I group (OS: P=0.018, EFS: P=0.045, n=115), National Comprehensive Cancer Network (NCCN) Intermediate Risk AML group (OS: P=0.048, EFS: P=0.039, n=225), and non-M3 AML group (OS: P=0.034, EFS: P=0.011, n=435). Multivariable analysis further validated ANP32A as a high-risk factor in CN-AML group. Multi-omics analysis presented overexpression of ANP32A was associated with aberrant expression of oncogenes and tumor suppressor, up/down-regulation of metabolic and immune-related pathways, dysregulation of microRNAs, and hypomethylation on CpG island and 1st Exon regions. Conclusions We proved ANP32A as a novel, potential unfavorable prognosticator and therapeutic target for AML.
Collapse
Affiliation(s)
- Sai Huang
- Department of Hematology, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhi Huang
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Chao Ma
- Department of Hematology, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Lan Luo
- Department of Hematology, Peking University Third Hospital, Beijing 100191, China
| | - Yan-Fen Li
- Department of Hematology, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yong-Li Wu
- Department of Hematology, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yuan Ren
- Department of Hematology, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Cong Feng
- Department of Emergency, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
18
|
Abstract
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has proven effective in relapsed and refractory B-cell malignancies, but resistance and relapses still occur. Better understanding of mechanisms influencing CAR T-cell cytotoxicity and the potential for modulation using small-molecule drugs could improve current immunotherapies. Here, we systematically investigated druggable mechanisms of CAR T-cell cytotoxicity using >500 small-molecule drugs and genome-scale CRISPR-Cas9 loss-of-function screens. We identified several tyrosine kinase inhibitors that inhibit CAR T-cell cytotoxicity by impairing T-cell signaling transcriptional activity. In contrast, the apoptotic modulator drugs SMAC mimetics sensitized B-cell acute lymphoblastic leukemia and diffuse large B-cell lymphoma cells to anti-CD19 CAR T cells. CRISPR screens identified death receptor signaling through FADD and TNFRSF10B (TRAIL-R2) as a key mediator of CAR T-cell cytotoxicity and elucidated the RIPK1-dependent mechanism of sensitization by SMAC mimetics. Death receptor expression varied across genetic subtypes of B-cell malignancies, suggesting a link between mechanisms of CAR T-cell cytotoxicity and cancer genetics. These results implicate death receptor signaling as an important mediator of cancer cell sensitivity to CAR T-cell cytotoxicity, with potential for pharmacological targeting to enhance cancer immunotherapy. The screening data provide a resource of immunomodulatory properties of cancer drugs and genetic mechanisms influencing CAR T-cell cytotoxicity.
Collapse
|
19
|
Dufva O, Koski J, Maliniemi P, Ianevski A, Klievink J, Leitner J, Pölönen P, Hohtari H, Saeed K, Hannunen T, Ellonen P, Steinberger P, Kankainen M, Aittokallio T, Keränen MAI, Korhonen M, Mustjoki S. Integrated drug profiling and CRISPR screening identify essential pathways for CAR T-cell cytotoxicity. Blood 2020; 135:597-609. [PMID: 31830245 PMCID: PMC7098811 DOI: 10.1182/blood.2019002121] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has proven effective in relapsed and refractory B-cell malignancies, but resistance and relapses still occur. Better understanding of mechanisms influencing CAR T-cell cytotoxicity and the potential for modulation using small-molecule drugs could improve current immunotherapies. Here, we systematically investigated druggable mechanisms of CAR T-cell cytotoxicity using >500 small-molecule drugs and genome-scale CRISPR-Cas9 loss-of-function screens. We identified several tyrosine kinase inhibitors that inhibit CAR T-cell cytotoxicity by impairing T-cell signaling transcriptional activity. In contrast, the apoptotic modulator drugs SMAC mimetics sensitized B-cell acute lymphoblastic leukemia and diffuse large B-cell lymphoma cells to anti-CD19 CAR T cells. CRISPR screens identified death receptor signaling through FADD and TNFRSF10B (TRAIL-R2) as a key mediator of CAR T-cell cytotoxicity and elucidated the RIPK1-dependent mechanism of sensitization by SMAC mimetics. Death receptor expression varied across genetic subtypes of B-cell malignancies, suggesting a link between mechanisms of CAR T-cell cytotoxicity and cancer genetics. These results implicate death receptor signaling as an important mediator of cancer cell sensitivity to CAR T-cell cytotoxicity, with potential for pharmacological targeting to enhance cancer immunotherapy. The screening data provide a resource of immunomodulatory properties of cancer drugs and genetic mechanisms influencing CAR T-cell cytotoxicity.
Collapse
MESH Headings
- Cell Line, Tumor
- Clustered Regularly Interspaced Short Palindromic Repeats
- Cytotoxicity Tests, Immunologic/methods
- Cytotoxicity, Immunologic/immunology
- Drug Resistance, Neoplasm/immunology
- Drug Screening Assays, Antitumor/methods
- Humans
- Immunotherapy, Adoptive/methods
- Lymphocyte Activation/immunology
- Lymphoma, Large B-Cell, Diffuse/immunology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology
- Receptors, Chimeric Antigen
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Olli Dufva
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Jan Koski
- Finnish Red Cross Blood Service, Helsinki, Finland
| | | | - Aleksandr Ianevski
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Helsinki Institute for Information Technology, Department of Computer Science, Aalto University, Espoo, Finland
| | - Jay Klievink
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Judith Leitner
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Petri Pölönen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland; and
| | - Helena Hohtari
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Khalid Saeed
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Tiina Hannunen
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Pekka Ellonen
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Peter Steinberger
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Matti Kankainen
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Helsinki Institute for Information Technology, Department of Computer Science, Aalto University, Espoo, Finland
- Department of Mathematics and Statistics, University of Turku, Quantum, Turku, Finland
| | - Mikko A I Keränen
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | | | - Satu Mustjoki
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| |
Collapse
|
20
|
Grönroos T, Mäkinen A, Laukkanen S, Mehtonen J, Nikkilä A, Oksa L, Rounioja S, Marincevic-Zuniga Y, Nordlund J, Pohjolainen V, Paavonen T, Heinäniemi M, Lohi O. Clinicopathological features and prognostic value of SOX11 in childhood acute lymphoblastic leukemia. Sci Rep 2020; 10:2043. [PMID: 32029838 PMCID: PMC7005266 DOI: 10.1038/s41598-020-58970-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
Acute lymphoblastic leukemia is marked by aberrant transcriptional features that alter cell differentiation, self-renewal, and proliferative features. We sought to identify the transcription factors exhibiting altered and subtype-specific expression patterns in B-ALL and report here that SOX11, a developmental and neuronal transcription factor, is aberrantly expressed in the ETV6-RUNX1 and TCF3-PBX1 subtypes of acute B-cell leukemias. We show that a high expression of SOX11 leads to alterations of gene expression that are typically associated with cell adhesion, migration, and differentiation. A high expression is associated with DNA hypomethylation at the SOX11 locus and a favorable outcome. The results indicate that SOX11 expression marks a group of patients with good outcomes and thereby prompts further study of its use as a biomarker.
Collapse
Affiliation(s)
- Toni Grönroos
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Artturi Mäkinen
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Laboratories, Department of Pathology, Tampere University Hospital, Tampere, Finland
| | - Saara Laukkanen
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Juha Mehtonen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Atte Nikkilä
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Laura Oksa
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Samuli Rounioja
- Fimlab Laboratories, Department of Hematology, Tampere University Hospital, Tampere, Finland
| | - Yanara Marincevic-Zuniga
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jessica Nordlund
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Virva Pohjolainen
- Fimlab Laboratories, Department of Pathology, Tampere University Hospital, Tampere, Finland
| | - Timo Paavonen
- Fimlab Laboratories, Department of Pathology, Tampere University Hospital, Tampere, Finland.,Department of Pathology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Olli Lohi
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
21
|
Kuusanmäki H, Leppä AM, Pölönen P, Kontro M, Dufva O, Deb D, Yadav B, Brück O, Kumar A, Everaus H, Gjertsen BT, Heinäniemi M, Porkka K, Mustjoki S, Heckman CA. Phenotype-based drug screening reveals association between venetoclax response and differentiation stage in acute myeloid leukemia. Haematologica 2019; 105:708-720. [PMID: 31296572 PMCID: PMC7049363 DOI: 10.3324/haematol.2018.214882] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/08/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Heikki Kuusanmäki
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki .,Hematology Research Unit, Helsinki University Hospital Comprehensive Cancer Center, Helsinki
| | - Aino-Maija Leppä
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki
| | - Petri Pölönen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mika Kontro
- Hematology Research Unit, Helsinki University Hospital Comprehensive Cancer Center, Helsinki
| | - Olli Dufva
- Hematology Research Unit, Helsinki University Hospital Comprehensive Cancer Center, Helsinki
| | - Debashish Deb
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki
| | - Bhagwan Yadav
- Hematology Research Unit, Helsinki University Hospital Comprehensive Cancer Center, Helsinki
| | - Oscar Brück
- Hematology Research Unit, Helsinki University Hospital Comprehensive Cancer Center, Helsinki
| | - Ashwini Kumar
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki
| | - Hele Everaus
- Department of Hematology and Oncology, University of Tartu, Tartu, Estonia
| | - Bjørn T Gjertsen
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Kimmo Porkka
- Hematology Research Unit, Helsinki University Hospital Comprehensive Cancer Center, Helsinki
| | - Satu Mustjoki
- Hematology Research Unit, Helsinki University Hospital Comprehensive Cancer Center, Helsinki.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Caroline A Heckman
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki
| |
Collapse
|