1
|
Hong KS, Ryu KJ, Kim H, Kim M, Park SH, Kim T, Yang JW, Hwangbo C, Kim KD, Park YJ, Yoo J. MSK1 promotes colorectal cancer metastasis by increasing Snail protein stability through USP5-mediated Snail deubiquitination. Exp Mol Med 2025; 57:820-835. [PMID: 40164688 PMCID: PMC12046000 DOI: 10.1038/s12276-025-01433-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 04/02/2025] Open
Abstract
Mitogen- and stress-activated protein kinase 1 (MSK1), a Ser/Thr kinase, phosphorylates nuclear proteins to increase their stability and DNA-binding affinity. Despite the role of MSK1 in promoting cancer progression in colorectal cancer (CRC), the precise molecular mechanisms remain unelucidated. Here we show that MSK1 expression induces the epithelial-mesenchymal transition (EMT) process and increases CRC cell metastasis. Furthermore, we discovered that MSK1 interacts with Snail, a key EMT regulator, and increases its stability by inhibiting ubiquitin-mediated proteasomal degradation. Importantly, MSK1 increased Snail protein stability by promoting deubiquitination rather than inhibiting its ubiquitination. Finally, we identified USP5 as an essential deubiquitinase that binds to Snail protein phosphorylated by MSK1. Based on the experimental data, in CRC, MSK1-Snail-USP5 axis can promote EMT and metastasis of CRC. Together, our findings provide potential biomarkers and novel therapeutic targets for further research in CRC.
Collapse
Affiliation(s)
- Keun-Seok Hong
- Department of Bio and Medical Bigdata (Brain Korea 21 Four), Gyeongsang National University, Jinju, Republic of Korea
- Anti-aging Bio Cell Factory Regional Leading Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Ki-Jun Ryu
- Department of Biochemistry and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Hyemin Kim
- Anti-aging Bio Cell Factory Regional Leading Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Minju Kim
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Seung-Ho Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Taeyoung Kim
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Jung Wook Yang
- Department of Pathology, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Cheol Hwangbo
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Kwang Dong Kim
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Young-Jun Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jiyun Yoo
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea.
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
2
|
Megid RA, Ribeiro GG, Gomes INF, Laus AC, Ferro Leal L, Sussuchi da Silva L, Ariwoola ABA, Dias JM, Reis RM, Jose da Silva-Oliveira R. Sotorasib resistance triggers epithelial-mesenchymal transition and activates AKT and P38-mediated signaling. Front Mol Biosci 2025; 12:1537523. [PMID: 39950162 PMCID: PMC11821485 DOI: 10.3389/fmolb.2025.1537523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
Background The molecular non-genetic changes of resistance to sotorasib are currently uncertain. The aim of this study was to generate a sotorasib-resistant cell line via selective pressure and systematically examine the molecular and phenotypic alterations caused by resistance. Methods Mutant NCI-H358 (KRASG12C) were exposed to incremental doses (2-512 nM) of sotorasib. Then, resistant clones were separated by single-cell sorting. Proliferation was analyzed in real-time by xCELLigence; protein profiles were quantified by protein arrays; and mRNA expression profile was measured using the PanCancer Pathways panel by NanoString. In silico analyses were conducted from a database comprising patient-derived xenograft (PDX) models and cell lines resistant to sotorasib. AKT and p38. The synergistic effect of combining AKT, p38, and EGFR inhibitors was assessed using the SynergyFinder platform. Additionally, AKT and p38 genes were silenced using esiRNA. Results Sotorasib-resistant H358-R cell line displayed markers of the mesenchymal-epithelial transition and loss of cell adhesion. Were identified 30 overexpressed genes in the resistance model, implicating in signaling pathways that leads to AKT activation and heightened protein expression levels of phosphorylated AKT and p38. To identify potential therapeutic strategies for overcoming sotorasib resistance, we investigated the combination of AKT and p38 inhibitors. Notably, combined inhibition of AKT (MK2206) and p38 (adezmapimod) restored sensitivity to sotorasib in resistant cell lines, as did silencing AKT expression. Conclusion These findings underscore the importance of adaptive mechanisms in sotorasib resistance in NSCLC cells contributing by EMT activation and demonstrates synergic combination with AKT and p38 inhibitors to restore sotorasib sensitivity in KRASG12C cells.
Collapse
Affiliation(s)
| | | | | | - Ana Carolina Laus
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| | - Letícia Ferro Leal
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
- Barretos School of Health Sciences, Dr. Paulo Prata-FACISB, São Paulo, Brazil
| | | | | | | | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
- Life and Health Sciences Research Institute (ICVS) Medical School, University of Minho, Braga, Portugal
| | - Renato Jose da Silva-Oliveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
- Barretos School of Health Sciences, Dr. Paulo Prata-FACISB, São Paulo, Brazil
| |
Collapse
|
3
|
Chen YS, Lee CH, Hsieh YH, Chiou HL, Hung MC, Lee HL. Sorafenib, a Tyrosine Kinase Inhibitor, Synergistically Enhances the Ferroptosis Effects of Asiatic Acid in Hepatocellular Carcinoma Cells. ENVIRONMENTAL TOXICOLOGY 2025; 40:79-87. [PMID: 39264136 DOI: 10.1002/tox.24415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/03/2024] [Accepted: 07/23/2024] [Indexed: 09/13/2024]
Abstract
Hepatocellular carcinoma (HCC) remains one of the most common cancers worldwide. Asiatic acid (AA) is a natural triterpene, which is recognized as effect of antioxidant and antitumor. Sorafenib (Sor), an orally target drug, has been applicate for the HCC therapy. However, the synergistic effect of AA and Sor on human HCC is still unclear. Here, we explore the effect of combined treatment with AA and Sor in the HCC cell line SK-HEP-1 and HepG2. Compared with treating alone, our results demonstrated that AA combined with Sor synergistically inhibited proliferative rates in MTT assay and colony formation assay. We also found that AA combined with Sor in HCC cells strongly caused cell cycle arrest in G0/G1 phase and affected the protein level of cyclin D1 and SKP2. Furthermore, combination treatment strongly enhanced ferroptosis through cellular accumulation of iron ions, lipid peroxidation, and ferroptosis-related proteins (GPX4 and FTH1) in HCC cells. In addition, the combined treatment resulted in higher phosphorylation of JNK1/2 in the promotion of ferroptosis than drug treatment alone. These results indicate that AA combined with Sor synergistically improved ferroptosis in HCC cells through the regulation of JNK1/2 signaling. Taken together, the combinatorial strategy may serve as the potential treatment in HCC.
Collapse
Affiliation(s)
- Yong-Syuan Chen
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Hsing Lee
- Division of Pediatric Surgery, Children's Hospital of China Medical University, Taichung, Taiwan
- Department of Surgery, Children's Hospital of China Medical University, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hui-Ling Chiou
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Chun Hung
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hsiang-Lin Lee
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
4
|
Ghosh A, Debnath SC, Igamberdiev AU. Effects of Vaccinium-derived antioxidants on human health: the past, present and future. Front Mol Biosci 2024; 11:1520661. [PMID: 39758282 PMCID: PMC11695640 DOI: 10.3389/fmolb.2024.1520661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025] Open
Abstract
Dietary intake of Vaccinium berries has demonstrated significant potential in preventing many risk factors associated with metabolic syndromes in the human population. In recent years, a multitude of research has shown the role of antioxidants derived from Vaccinium berries on chronic diseases such as cardiovascular disorders, diabetes, obesity, and cancer. Several studies have also investigated the effect of Vaccinium berry consumption on their ability to modulate the risk factors associated with oxidative stress, vascular function, inflammation, and lipid metabolism. Regarding cancer, studies showed that the consumption of berries reduces inflammation, inhibits angiogenesis, protects against DNA damage within the cell, and controls apoptosis and proliferation rates in malignant tumours. However, which components are responsible for the health benefits is still unclear. Reports show that whole berry consumption usually confers positive effects on human health, and the health-promoting potentials are likely due to the presence of polyphenols with antioxidant activities. Among these polyphenols, various Vaccinium berry species have been reported to contain anthocyanins and flavonoids. These two polyphenolic compounds are known to have higher antioxidant activity and are beneficial for human health. There are now several studies and human clinical trials documenting the beneficial effects of Vaccinium berries, and these findings suggest that they may be promising for preventing and treating neurodegenerative diseases. This review focuses primarily on dietary Vaccinium berries consumption effects on human health and their potential role as therapeutic agents.
Collapse
Affiliation(s)
- Amrita Ghosh
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Samir C. Debnath
- St. John’s Research and Development Centre, Agriculture and Agri-Food Canada, St. John’s, NL, Canada
| | - Abir U. Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
5
|
Ryu KJ, Lee KW, Park SH, Kim T, Hong KS, Kim H, Kim M, Ok DW, Kwon GNB, Park YJ, Kwon HK, Hwangbo C, Kim KD, Lee JE, Yoo J. Chaperone-mediated autophagy modulates Snail protein stability: implications for breast cancer metastasis. Mol Cancer 2024; 23:227. [PMID: 39390584 PMCID: PMC11468019 DOI: 10.1186/s12943-024-02138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Breast cancer remains a significant health concern, with triple-negative breast cancer (TNBC) being an aggressive subtype with poor prognosis. Epithelial-mesenchymal transition (EMT) is important in early-stage tumor to invasive malignancy progression. Snail, a central EMT component, is tightly regulated and may be subjected to proteasomal degradation. We report a novel proteasomal independent pathway involving chaperone-mediated autophagy (CMA) in Snail degradation, mediated via its cytosolic interaction with HSC70 and lysosomal targeting, which prevented its accumulation in luminal-type breast cancer cells. Conversely, Snail predominantly localized to the nucleus, thus evading CMA-mediated degradation in TNBC cells. Starvation-induced CMA activation downregulated Snail in TNBC cells by promoting cytoplasmic translocation. Evasion of CMA-mediated Snail degradation induced EMT, and enhanced metastatic potential of luminal-type breast cancer cells. Our findings elucidate a previously unrecognized role of CMA in Snail regulation, highlight its significance in breast cancer, and provide a potential therapeutic target for clinical interventions.
Collapse
Affiliation(s)
- Ki-Jun Ryu
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Ki Won Lee
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Seung-Ho Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Taeyoung Kim
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Keun-Seok Hong
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Hyemin Kim
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Minju Kim
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Dong Woo Ok
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Gu Neut Bom Kwon
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Young-Jun Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Hyuk-Kwon Kwon
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Cheol Hwangbo
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Kwang Dong Kim
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - J Eugene Lee
- Division of Biometrology, Korea Research Institute of Standards and Science, Daejeon, 34113, Korea
| | - Jiyun Yoo
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea.
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Korea.
| |
Collapse
|
6
|
Wang Q, Meng D, Shen S, Cao Y, Zhang P, Liu Y, Du L, Li H, Shao C, Dong Q. P4HA3 promotes head and neck squamous cell carcinoma progression via the WNT/β-catenin signaling pathway. Pathol Res Pract 2024; 260:155481. [PMID: 39053135 DOI: 10.1016/j.prp.2024.155481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/12/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Here, we explored the role of Prolyl 4-Hydroxylase Subunit Alpha 3 (P4HA3), the most recently identified member of the prolyl-4-hydroxylase (P4H) family, in head and neck squamous cell carcinoma (HNSCC) progression. P4HA3 is upregulated during cancer progression; however, its specific role in HNSCC progression remains elusive. Thus, this study aimed to elucidate the regulatory function of P4HA3 in HNSCC development and progression and to describe the underlying mechanisms. Initially, we analyzed the correlation between the expression of P4HA3 and the WNT pathway genes and clinicopathologic features in HNSCC based on microarray data from The Cancer Genome Atlas (TCGA). Next, we used Gene Oncology (GO) functional data to describe several potentially associated pathways in HNSCC. Then, we knocked down P4HA3 in SCC15 and SCC25 cells, two classic HNSCC cell lines, and assessed the resulting changes using RT-qPCR. Furthermore, we used Western blot to evaluate the regulatory role of P4HA3 in the epithelial-to-mesenchymal transition (EMT) and the WNT/β-catenin signaling pathway. To explore the effect of P4HA3 knockdown on tumor progression, in vivo experiments were conducted using a murine model. Immunohistochemistry assays were then employed to identify proteins associated with EMT and the WNT/β-catenin signaling pathway in tumor tissues. Upregulated P4HA3 in HNSCC patient tumor tissues was positively correlated with poor prognosis. Notably, P4HA3 knockdown significantly inhibited the proliferative and invasive abilities of HNSCC. The levels of genes and proteins associated with EMT and the WNT/β-catenin signaling pathway were also markedly reduced by P4HA3 knockdown. Importantly, the in vivo experiments demonstrated that P4HA3 can promote subcutaneous tumorigenesis in nude mice and knockdown of P4HA3 induce a significant ihibitation of EMT and WNT/β-catenin pathway detected by immunohistochemistry assay in tumor tissues. In summary, we demonstrated that P4HA3 is a promising diagnostic and therapeutic biomarker for HNSCC. As an oncogene, P4HA3 increases HNSCC proliferation by inducing the EMT and activating the WNT/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Quannian Wang
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154007, China; Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Danyang Meng
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154007, China; Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Si Shen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yang Cao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Pengcheng Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Ying Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Lianqun Du
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Hua Li
- Tianjin Medical University Cancer Institute and Hospital, Tianjin 300050, China.
| | - Changli Shao
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154007, China.
| | - Qingyang Dong
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
7
|
Hu M, Xu J, Shi L, Shi L, Yang H, Wang Y. The p38 MAPK/snail signaling axis participates in cadmium-induced lung cancer cell migration and invasiveness. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24042-24050. [PMID: 38436850 DOI: 10.1007/s11356-024-32746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
To determine that p38 MAPK activation contributes to the migration and invasion of lung cancer cells caused by cadmium (Cd). A549 lung cancer cell migration and invasion were assessed using a transwell plate system, and the role of p38 was determined by knocking down p38 activity with two different inhibitors of p38. The activity of p38 was measured by western blot analysis using phospho-specific p38 antibodies and normalized to blots using antibodies directed to total p38 proteins. Snail transcripts were measured using qRT-PCR. The inhibition of p38 blocked Cd-induced migration and invasion, which correlated with an increased activation of p38 as a function of dose and time. Furthermore, Cd-induced activation of p38 MAPK controlled the increase of snail mRNA expression. The p38 MAPK/snail signaling axis was involved in Cd-induced lung cancer cell migration and invasion.
Collapse
Affiliation(s)
- Mengke Hu
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jie Xu
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Liqin Shi
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Li Shi
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yadong Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, No. 105 of South Nongye Road, Zhengzhou, 450016, China.
| |
Collapse
|
8
|
Chen J, Hu Q, Zhou C, Jin D. CCT2 prevented β-catenin proteasomal degradation to sustain cancer stem cell traits and promote tumor progression in epithelial ovarian cancer. Mol Biol Rep 2024; 51:54. [PMID: 38165547 DOI: 10.1007/s11033-023-09047-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 10/25/2023] [Indexed: 01/04/2024]
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is featured by rapid progression and dismal outcomes clinically. Chaperonin Containing TCP1 Subunit 2 (CCT2) was identified as a crucial regulator for tumor progression, however, its exact role in EOC remained largely unknown. METHODS CCT2 expression and prognostic value in EOC samples were assessed according to TCGA dataset. Proliferation and mobility potentials were assessed by CCK8, colony-formation, wound healing, and Transwell assays. Cancer stem cell (CSC) traits were evaluated by RT-PCR, WB assays, sphere-forming assay and chemoresistance analysis. Bioinformatic analysis, co-IP assays and ubiquitin assays were performed to explore the mechanisms of CCT2 on EOC cells. RESULTS CCT2 highly expressed in EOC tissues and predicted poor prognosis of EOC patients by TCGA analysis. Silencing CCT2 significantly restrained cell proliferation, migration, and invasion. Moreover, CCT2 could effectively trigger epithelial-mesenchymal transition to confer extensive invasion potentials to EOC cells, Importantly, CCT2 positively correlated with CSC markers in EOC, and CCT2 knockdown impaired CSC traits and sensitize EOC cells to conventional chemotherapy regimens. Contrarily, overexpressing CCT2 achieved opposite results. Mechanistically, CCT2 exerted its pro-oncogene function by triggering Wnt/β-catenin signaling. Specifically, CCT2 could recruit HSP105-PP2A complex, a well-established dephosphorylation complex, to β-catenin via direct physical interaction to prevent phosphorylation-induced proteasomal degradation of β-catenin, resulting in intracellular accumulation of active β-catenin and increased signaling activity. CONCLUSIONS CCT2 was a novel promotor for EOC progression and a crucial sustainer for CSC traits mainly by preventing β-catenin degradation. Targeting CCT2 may represent a promising therapeutic strategy for EOC.
Collapse
Affiliation(s)
- Jiayao Chen
- Department of Laboratory Medicine, Zhoushan Hospital of Zhejiang Province, Zhoushan, 316021, Zhejiang, China.
| | - Qiong Hu
- Department of Laboratory Medicine, Zhoushan Hospital of Zhejiang Province, Zhoushan, 316021, Zhejiang, China
| | - Chenhao Zhou
- Department of Laboratory Medicine, Zhoushan Hospital of Zhejiang Province, Zhoushan, 316021, Zhejiang, China
| | - Danwen Jin
- Pathological Diagnosis Center, Zhoushan Hospital of Zhejiang Province, Zhoushan, 316021, Zhejiang, China
| |
Collapse
|
9
|
Kim SH, Ryu KJ, Hong KS, Kim H, Han H, Kim M, Kim T, Ok DW, Yang JW, Hwangbo C, Kim KD, Yoo J. ERK3 Increases Snail Protein Stability by Inhibiting FBXO11-Mediated Snail Ubiquitination. Cancers (Basel) 2023; 16:105. [PMID: 38201533 PMCID: PMC10777929 DOI: 10.3390/cancers16010105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Snail is a key regulator of the epithelial-mesenchymal transition (EMT), the key step in the tumorigenesis and metastasis of tumors. Although induction of Snail transcription precedes the induction of EMT, the post-translational regulation of Snail is also important in determining Snail protein levels, stability, and its ability to induce EMT. Several kinases are known to enhance the stability of the Snail protein by preventing its ubiquitination; however, the precise molecular mechanisms by which these kinases prevent Snail ubiquitination remain unclear. Here, we identified ERK3 as a novel kinase that interacts with Snail and enhances its protein stability. Although ERK3 could not directly phosphorylate Snail, Erk3 increased Snail protein stability by inhibiting the binding of FBXO11, an E3 ubiquitin ligase that can induce Snail ubiquitination and degradation, to Snail. Importantly, functional studies and analysis of clinical samples indicated the crucial role of ERK3 in the regulation of Snail protein stability in pancreatic cancer. Therefore, we conclude that ERK3 is a key regulator for enhancing Snail protein stability in pancreatic cancer cells by inhibiting the interaction between Snail and FBXO11.
Collapse
Affiliation(s)
- Seon-Hee Kim
- Division of Applied Life Science, Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.-H.K.); (K.-J.R.); (K.-S.H.); (H.K.); (H.H.); (M.K.); (T.K.); (D.W.O.); (C.H.); (K.D.K.)
| | - Ki-Jun Ryu
- Division of Applied Life Science, Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.-H.K.); (K.-J.R.); (K.-S.H.); (H.K.); (H.H.); (M.K.); (T.K.); (D.W.O.); (C.H.); (K.D.K.)
| | - Keun-Seok Hong
- Division of Applied Life Science, Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.-H.K.); (K.-J.R.); (K.-S.H.); (H.K.); (H.H.); (M.K.); (T.K.); (D.W.O.); (C.H.); (K.D.K.)
| | - Hyemin Kim
- Division of Applied Life Science, Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.-H.K.); (K.-J.R.); (K.-S.H.); (H.K.); (H.H.); (M.K.); (T.K.); (D.W.O.); (C.H.); (K.D.K.)
| | - Hyeontak Han
- Division of Applied Life Science, Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.-H.K.); (K.-J.R.); (K.-S.H.); (H.K.); (H.H.); (M.K.); (T.K.); (D.W.O.); (C.H.); (K.D.K.)
| | - Minju Kim
- Division of Applied Life Science, Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.-H.K.); (K.-J.R.); (K.-S.H.); (H.K.); (H.H.); (M.K.); (T.K.); (D.W.O.); (C.H.); (K.D.K.)
| | - Taeyoung Kim
- Division of Applied Life Science, Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.-H.K.); (K.-J.R.); (K.-S.H.); (H.K.); (H.H.); (M.K.); (T.K.); (D.W.O.); (C.H.); (K.D.K.)
| | - Dong Woo Ok
- Division of Applied Life Science, Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.-H.K.); (K.-J.R.); (K.-S.H.); (H.K.); (H.H.); (M.K.); (T.K.); (D.W.O.); (C.H.); (K.D.K.)
| | - Jung Wook Yang
- Department of Pathology, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea;
| | - Cheol Hwangbo
- Division of Applied Life Science, Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.-H.K.); (K.-J.R.); (K.-S.H.); (H.K.); (H.H.); (M.K.); (T.K.); (D.W.O.); (C.H.); (K.D.K.)
- Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kwang Dong Kim
- Division of Applied Life Science, Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.-H.K.); (K.-J.R.); (K.-S.H.); (H.K.); (H.H.); (M.K.); (T.K.); (D.W.O.); (C.H.); (K.D.K.)
- Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jiyun Yoo
- Division of Applied Life Science, Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.-H.K.); (K.-J.R.); (K.-S.H.); (H.K.); (H.H.); (M.K.); (T.K.); (D.W.O.); (C.H.); (K.D.K.)
- Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
10
|
Mochimaru Y, Yoshida K. Functional Roles of DYRK2 as a Tumor Regulator. Curr Issues Mol Biol 2023; 45:8539-8551. [PMID: 37886981 PMCID: PMC10605165 DOI: 10.3390/cimb45100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023] Open
Abstract
The dual-specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) regulates the induction of apoptosis and DNA repair, metastasis inhibition, cell cycle G1/S transition, protein scaffold stability for E3 ligase complexes, and embryogenesis. Owing to these functions, DYRK2 is thought to regulate tumorigenesis, and its function in cancer has been investigated. Notably, DYRK2 has been reported to function as a tumor suppressor; however, it has also been reported to act as an oncogene in some cancers. This discrepancy makes it difficult to elucidate the conserved functions of DYRK2 in cancer. Here, we reviewed the functions of DYRK2 in various cancers. Patient tissue samples were evaluated for each cancer type. Although some studies have used cell lines and/or xenografts to elucidate the mechanism of DYRK2 function, these studies are not sufficient to understand the role of DYRK2 in cancers. In particular, studies using genetically modified mice would help us to understand the reported functional duality of DYRK2 in cancer.
Collapse
Affiliation(s)
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105-8461, Japan;
| |
Collapse
|
11
|
Phan T, Zhang XH, Rosen S, Melstrom LG. P38 kinase in gastrointestinal cancers. Cancer Gene Ther 2023; 30:1181-1189. [PMID: 37248432 PMCID: PMC10501902 DOI: 10.1038/s41417-023-00622-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 04/09/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023]
Abstract
Gastrointestinal cancers are a leading cause of cancer morbidity and mortality worldwide with 4.2 million new cases and 3.2 million deaths estimated in 2020. Despite the advances in primary and adjuvant therapies, patients still develop distant metastases and require novel therapies. Mitogen‑activated protein kinase (MAPK) cascades are crucial signaling pathways that regulate many cellular processes, including proliferation, differentiation, apoptosis, stress responses and cancer development. p38 Mitogen Activated Protein Kinases (p38 MAPKs) includes four isoforms: p38α (MAPK14), p38β (MAPK11), p38γ (MAPK12), and p38δ (MAPK13). p38 MAPK was first identified as a stress response protein kinase that phosphorylates different transcriptional factors. Dysregulation of p38 pathways, in particular p38γ, are associated with cancer development, metastasis, autophagy and tumor microenvironment. In this article, we provide an overview of p38 and p38γ with respect to gastrointestinal cancers. Furthermore, targeting p38γ is also discussed as a potential therapy for gastrointestinal cancers.
Collapse
Affiliation(s)
- Thuy Phan
- Department of Surgery, City of Hope Medical Center, Duarte, CA, USA
| | - Xu Hannah Zhang
- Department of Hematology, City of Hope Medical Center, Duarte, CA, USA
| | - Steven Rosen
- Department of Hematology, City of Hope Medical Center, Duarte, CA, USA
| | - Laleh G Melstrom
- Department of Surgery, City of Hope Medical Center, Duarte, CA, USA.
| |
Collapse
|
12
|
Lee S, Kang E, Lee U, Cho S. Role of pelitinib in the regulation of migration and invasion of hepatocellular carcinoma cells via inhibition of Twist1. BMC Cancer 2023; 23:703. [PMID: 37495969 PMCID: PMC10373356 DOI: 10.1186/s12885-023-11217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Overexpression of Twist1, one of the epithelial-mesenchymal transition-transcription factors (EMT-TFs), is associated with hepatocellular carcinoma (HCC) metastasis. Pelitinib is known to be an irreversible epidermal growth factor receptor tyrosine kinase inhibitor that is used in clinical trials for colorectal and lung cancers, but the role of pelitinib in cancer metastasis has not been studied. This study aimed to investigate the anti-migration and anti-invasion activities of pelitinib in HCC cell lines. METHODS Using three HCC cell lines (Huh7, Hep3B, and SNU449 cells), the effects of pelitinib on cell cytotoxicity, invasion, and migration were determined by cell viability, wound healing, transwell invasion, and spheroid invasion assays. The activities of MMP-2 and -9 were examined through gelatin zymography. Through immunoblotting analyses, the expression levels of EMT-TFs (Snail1, Twist1, and ZEB1) and EMT-related signaling pathways such as mitogen-activated protein kinases (MAPKs) and Akt signaling pathways were measured. The activity and expression levels of target genes were analyzed by reporter assay, RT-PCR, quantitative RT-PCR, and immunoblotting analysis. Statistical analysis was performed using one-way ANOVA with Dunnett's Multiple comparison tests in Prism 3.0 to assess differences between experimental conditions. RESULTS In this study, pelitinib treatment significantly inhibited wound closure in various HCC cell lines, including Huh7, Hep3B, and SNU449. Additionally, pelitinib was found to inhibit multicellular cancer spheroid invasion and metalloprotease activities in Huh7 cells. Further investigation revealed that pelitinib treatment inhibited the migration and invasion of Huh7 cells by inducing Twist1 degradation through the inhibition of MAPK and Akt signaling pathways. We also confirmed that the inhibition of cell motility by Twist1 siRNA was similar to that observed in pelitinib-treated group. Furthermore, pelitinib treatment regulated the expression of target genes associated with EMT, as demonstrated by the upregulation of E-cadherin and downregulation of N-cadherin. CONCLUSION Based on our novel finding of pelitinib from the perspective of EMT, pelitinib has the ability to inhibit EMT activity of HCC cells via inhibition of Twist1, and this may be the potential mechanism of pelitinib on the suppression of migration and invasion of HCC cells. Therefore, pelitinib could be developed as a potential anti-cancer drug for HCC.
Collapse
Affiliation(s)
- Sewoong Lee
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Eunjeong Kang
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Unju Lee
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sayeon Cho
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
13
|
Anerillas C, Altés G, Gorospe M. MAPKs in the early steps of senescence implemEMTation. Front Cell Dev Biol 2023; 11:1083401. [PMID: 37009481 PMCID: PMC10060890 DOI: 10.3389/fcell.2023.1083401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Evidence is accumulating that the earliest stages of the DNA damage response can direct cells toward senescence instead of other cell fates. In particular, tightly regulated signaling through Mitogen-Activated Protein Kinases (MAPKs) in early senescence can lead to a sustained pro-survival program and suppress a pro-apoptotic program. Importantly, an epithelial-to-mesenchymal Transition (EMT)-like program appears essential for preventing apoptosis and favoring senescence following DNA damage. In this review, we discuss how MAPKs might influence EMT features to promote a senescent phenotype that increases cell survival at the detriment of tissue function.
Collapse
|
14
|
Bonica J, Clarke C, Obeid LM, Luberto C, Hannun YA. Upregulation of sphingosine kinase 1 in response to doxorubicin generates an angiogenic response via stabilization of Snail. FASEB J 2023; 37:e22787. [PMID: 36723905 PMCID: PMC9979566 DOI: 10.1096/fj.202201066r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 02/02/2023]
Abstract
Sphingosine kinase 1 (SK1) converts the pro-death lipid sphingosine to the pro-survival sphingosine-1-phosphate (S1P) and is upregulated in several cancers. DNA damaging agents, such as the chemotherapeutic doxorubicin (Dox), have been shown to degrade SK1 protein in cancer cells, a process dependent on wild-type p53. As mutations in p53 are very common across several types of cancer, we evaluated the effects of Dox on SK1 in p53 mutant cancer cells. In the p53 mutant breast cancer cell line MDA-MB-231, we show that Dox treatment significantly increases SK1 protein and S1P. Using MDA-MB-231 cells with CRISPR-mediated knockout of SK1 or the selective SK1 inhibitor PF-543, we implicated SK1 in both Dox-induced migration and in a newly uncovered proangiogenic program induced by Dox. Mechanistically, inhibition of SK1 suppressed the induction of the cytokine BMP4 and of the EMT transcription factor Snail in response to Dox. Interestingly, induction of BMP4 by SK1 increased Snail levels following Dox treatment by stabilizing Snail protein. Furthermore, we found that SK1 was required for Dox-induced p38 MAP kinase phosphorylation and that active p38 MAPK in turn upregulated BMP4 and Snail, positioning p38 downstream of SK1 and upstream of BMP4/Snail. Modulating production of S1P by inhibition of de novo sphingolipid synthesis or knockdown of the S1P-degrading enzyme S1P lyase identified S1P as the sphingolipid activator of p38 in this model. This work establishes a novel angiogenic pathway in response to a commonly utilized chemotherapeutic and highlights the potential of SK1 as a secondary drug target for patients with p53 mutant cancer.
Collapse
Affiliation(s)
- Joseph Bonica
- Department of Pharmacology, Stony Brook University, Stony Brook, NY 11794
- Cancer Center, Stony Brook University, Stony Brook, NY 11794
| | | | - Lina M. Obeid
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794
- Cancer Center, Stony Brook University, Stony Brook, NY 11794
- Northport Veterans Affairs Medical Center, Northport, NY, USA
| | - Chiara Luberto
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794
- Cancer Center, Stony Brook University, Stony Brook, NY 11794
| | - Yusuf A. Hannun
- Department of Pharmacology, Stony Brook University, Stony Brook, NY 11794
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794
- Cancer Center, Stony Brook University, Stony Brook, NY 11794
- Northport Veterans Affairs Medical Center, Northport, NY, USA
- Departments of Biochemistry and Pathology, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
15
|
Wu C, Sun G, Wang F, Chen J, Zhan F, Lian X, Wang J, Weng F, Li B, Tang W, Quan J, Xiang D. DYRK2 downregulation in colorectal cancer leads to epithelial-mesenchymal transition induction and chemoresistance. Sci Rep 2022; 12:22496. [PMID: 36577753 PMCID: PMC9797492 DOI: 10.1038/s41598-022-25053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/23/2022] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer (CRC) is among the most prominent causes of cancer-associated mortality in the world, with chemoresistance representing one of the leading causes of treatment failure. However, the mechanisms governing such chemoresistance remain incompletely understood. In this study, the role of DYRK2 as a mediator of CRC cell drug resistance and the associated molecular mechanisms were assessed by evaluating human tumor tissue samples, CRC cell lines, and animal model systems. Initial analyses of The Cancer Genome Atlas database and clinical tissue microarrays revealed significant DYRK2 downregulation in CRC in a manner correlated with poor prognosis. We further generated LoVo CRC cells that were resistant to the chemotherapeutic drug 5-FU, and found that such chemoresistance was associated with the downregulation of DYRK2 and a more aggressive mesenchymal phenotype. When DYRK2 was overexpressed in these cells, their proliferative, migratory, and invasive activities were reduced and they were more prone to apoptotic death. DYRK2 overexpression was also associated with enhanced chemosensitivity and the inhibition of epithelial-mesenchymal transition (EMT) induction in these LoVo 5-FUR cells. Co-immunoprecipitation assays revealed that DYRK2 bound to Twist and promoted its proteasomal degradation. In vivo studies further confirmed that the overexpression of DYRK2 inhibited human CRC xenograft tumor growth with concomitant Twist downregulation. Overall, these results thus highlight DYRK2 as a promising therapeutic target in CRC worthy of further investigation.
Collapse
Affiliation(s)
- Chunrong Wu
- grid.190737.b0000 0001 0154 0904Department of Oncology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 402260 China ,grid.452506.0Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, 402260 China
| | - Guiyin Sun
- grid.190737.b0000 0001 0154 0904Department of Oncology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 402260 China ,grid.452506.0Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, 402260 China
| | - Fan Wang
- grid.190737.b0000 0001 0154 0904Department of Oncology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 402260 China ,grid.452506.0Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, 402260 China
| | - Jiangyan Chen
- grid.190737.b0000 0001 0154 0904Department of Oncology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 402260 China ,grid.452506.0Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, 402260 China
| | - Fangbiao Zhan
- grid.190737.b0000 0001 0154 0904Department of Orthopedics, Chongqing University, Three Gorges Hospital, Wanzhou, Chongqing, 404000 China
| | - Xiaojuan Lian
- grid.190737.b0000 0001 0154 0904Department of Oncology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 402260 China ,grid.452506.0Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, 402260 China
| | - Jie Wang
- grid.190737.b0000 0001 0154 0904Department of Oncology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 402260 China ,grid.452506.0Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, 402260 China
| | - Fanbin Weng
- grid.190737.b0000 0001 0154 0904Department of Oncology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 402260 China ,grid.452506.0Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, 402260 China
| | - Bo Li
- grid.190737.b0000 0001 0154 0904Department of Cardiology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 402260 China
| | - Weijun Tang
- grid.190737.b0000 0001 0154 0904Department of Oncology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 402260 China ,grid.452506.0Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, 402260 China
| | - Jin Quan
- grid.190737.b0000 0001 0154 0904Department of Oncology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 402260 China ,grid.452506.0Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, 402260 China
| | - Debing Xiang
- grid.190737.b0000 0001 0154 0904Department of Oncology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 402260 China ,grid.452506.0Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, 402260 China
| |
Collapse
|
16
|
Sun J, Zhou J, Zhou J, Xu W, Du Y, Jia Z, Shen Y, Lin X, Wang X, Bao Y, Rao Z, Dong S, Luo Y, Cong W, Jin L, Li X. FGF4 Promotes Skin Wound Repair through p38 MAPK and GSK3β-Mediated Stabilization of Slug. J Invest Dermatol 2022; 143:1073-1084.e8. [PMID: 36521556 DOI: 10.1016/j.jid.2022.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 12/15/2022]
Abstract
Cutaneous wound healing is an orderly and intricate process that restores the barrier function and integrity of injured skin. Re-epithelialization, which involves the proliferation and migration of keratinocytes to cover the denuded surface, is essential for successful wound closure. There are many members of the FGF family, of which the paracrine-acting FGF1 and FGF7 subfamily members have been identified as positive regulators of wound repair. However, the role and underlying mechanisms of some other paracrine FGFs in wound repair still remain obscure. In this report, we found that paracrine FGF4 localized predominantly to the epidermal keratinocytes and was markedly upregulated at the wound edges in response to re-epithelialization in human and mouse wound models. Blockade of FGF4 resulted in delayed re-epithelialization of human ex vivo skin wounds, whereas recombinant FGF4 treatment promoted re-epithelialization and wound repair. Mechanistically, recombinant FGF4 promotes p38 MAPK‒GSK3β‒mediated stabilization of Slug by reducing its ubiquitination, which triggers epithelial-to-mesenchymal transition and promotes the migration and proliferation of keratinocytes and thus wound re-epithelialization. Our findings uncover FGF4 as an important regulator of wound healing, highlighting a promising therapeutic avenue for skin injury.
Collapse
Affiliation(s)
- Jian Sun
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jie Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianhui Zhou
- Department of Pediatrics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Wenxin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yali Du
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhenyu Jia
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yingjie Shen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; School of Life Sciences, Huzhou University, Huzhou, China
| | - Xiaohua Lin
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xulan Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuxuan Bao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhiheng Rao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Siyang Dong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongde Luo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weitao Cong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Litai Jin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
17
|
Wang L, Ye G, Wang Y, Wang C. Stearoyl-CoA desaturase 1 regulates malignant progression of cervical cancer cells. Bioengineered 2022; 13:12941-12954. [PMID: 35609330 PMCID: PMC9275951 DOI: 10.1080/21655979.2022.2079253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The primary regulatory gene for fatty acid synthesis, stearoyl-CoA desaturase 1 (SCD1), has been linked to the progression of several malignancies. Its role in cervical cancer remains unclear till now. This paper aimed to explore the role and mechanism of SCD1 in cervical cancer. The GEPIA database was used to perform a bioinformatics analysis of the role of SCD1 in cervical cancer staging and prognosis. The influences of SCD1 knockdown on cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) progress were then investigated. Following transcription factor Kruppel like factor 9 (KLF9) was discovered to be negatively correlated with SCD1, the regulatory role of KLF9 in the effects of SCD1 on cervical cancer cells and the signaling pathway was evaluated. According to the GEPIA database, SCD1 level was associated with the cervical cancer stage, the overall survival level, and the disease-free survival level. Cell proliferation, migration, invasion, and EMT progress were all hindered when its expression was knocked down. Novelty, KLF9 reversed the effects of SCD1 on cells, as well as the Akt/glycogen synthase kinase 3β (GSK3β) signaling pathway. Together, SCD1 was negatively regulated by KLF9 and it activated the Akt/GSK3β signaling pathway to promote the malignant progression of cervical cancer cells. Developing SCD1 inhibitors offers novel ideas for the biological treatment of cervical cancer.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Obstetrics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Guoliu Ye
- Department of Obstetrics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yan Wang
- Department of Obstetrics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Caizhi Wang
- Department of Obstetrics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
18
|
Discoidin domain receptor 1 promotes lung adenocarcinoma migration via the AKT/snail signaling axis. Mol Biol Rep 2022; 49:7275-7286. [PMID: 35562515 DOI: 10.1007/s11033-022-07509-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/22/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Discoidin domain receptor 1 (DDR1), a member of receptor tyrosine kinase, has been implicated in tumor progression. However, the function and underlying mechanism of DDR1 in lung adenocarcinoma (LUAD) progression is unclear. Thus, we explored the molecular regulatory mechanism of DDR1 in the migration of LUAD. METHODS Transwell assays, wound healing assays and xenograft tumor assays were performed to study the function of DDR1 in the progression of LUAD. Immunoblotting and quantitative real-time polymerase chain reaction (RT-qPCR) were used to detect the expression levels of genes. Co-immunoprecipitation (co-IP) assays were performed to detect the interaction between DDR1 and AKT. Immunofluorescence and immunohistochemistry assays were used to determine the expression level of proteins in cells and tissues, respectively. RESULTS DDR1 expression was significantly higher in LUAD tissues than in normal lung tissues, and the level of DDR1 was inversely correlated with prognosis in patients. We found that DDR1 promoted the migration and invasion of LUAD cells in vitro. Furthermore, ectopic expression of DDR1 in LUAD cells altered EMT-related markers expression. Importantly, the DDR1 protein interacted with AKT and phosphorylated AKT. The AKT inhibitor MK2206 interrupted Snail upregulation in DDR1-overexpressing LUAD cells. Finally, our study revealed that depletion of DDR1 attenuated LUAD cell migration in a tumor xenograft mouse model. CONCLUSION Our findings uncovered that a high abundance of DDR1 increased the migration and invasion capability of LUAD cells via the AKT/Snail signaling axis and indicated that DDR1 could be a potential target for treating LUAD.
Collapse
|
19
|
Gli1 promotes epithelial–mesenchymal transition and metastasis of non-small cell lung carcinoma by regulating Snail transcriptional activity and stability. Acta Pharm Sin B 2022; 12:3877-3890. [PMID: 36213531 PMCID: PMC9532560 DOI: 10.1016/j.apsb.2022.05.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/18/2022] [Accepted: 03/31/2022] [Indexed: 11/23/2022] Open
Abstract
Metastasis is crucial for the mortality of non-small cell lung carcinoma (NSCLC) patients. The epithelial–mesenchymal transition (EMT) plays a critical role in regulating tumor metastasis. Glioma-associated oncogene 1 (Gli1) is aberrantly active in a series of tumor tissues. However, the molecular regulatory relationships between Gli1 and NSCLC metastasis have not yet been identified. Herein, we reported Gli1 promoted NSCLC metastasis. High Gli1 expression was associated with poor survival of NSCLC patients. Ectopic expression of Gli1 in low metastatic A549 and NCI-H460 cells enhanced their migration, invasion abilities and facilitated EMT process, whereas knock-down of Gli1 in high metastatic NCI-H1299 and NCI-H1703 cells showed an opposite effect. Notably, Gli1 overexpression accelerated the lung and liver metastasis of NSCLC in the intravenously injected metastasis model. Further research showed that Gli1 positively regulated Snail expression by binding to its promoter and enhancing its protein stability, thereby facilitating the migration, invasion and EMT of NSCLC. In addition, administration of GANT-61, a Gli1 inhibitor, obviously suppressed the metastasis of NSCLC. Collectively, our study reveals that Gli1 is a critical regulator for NSCLC metastasis and suggests that targeting Gli1 is a prospective therapy strategy for metastatic NSCLC.
Collapse
|
20
|
Wang H, Yang L, Liu M, Luo J. Protein post-translational modifications in the regulation of cancer hallmarks. Cancer Gene Ther 2022; 30:529-547. [PMID: 35393571 DOI: 10.1038/s41417-022-00464-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/28/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022]
Abstract
Posttranslational modifications (PTMs) of proteins, the major mechanism of protein function regulation, play important roles in regulating a variety of cellular physiological and pathological processes. Although the classical PTMs, such as phosphorylation, acetylation, ubiquitination and methylation, have been well studied, the emergence of many new modifications, such as succinylation, hydroxybutyrylation, and lactylation, introduces a new layer to protein regulation, leaving much more to be explored and wide application prospects. In this review, we will provide a broad overview of the significant roles of PTMs in regulating human cancer hallmarks through selecting a diverse set of examples, and update the current advances in the therapeutic implications of these PTMs in human cancer.
Collapse
Affiliation(s)
- Haiying Wang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
| | - Liqian Yang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Minghui Liu
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, 100191, Beijing, China
| | - Jianyuan Luo
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China. .,Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, 100191, Beijing, China.
| |
Collapse
|
21
|
Pai JT, Chen XH, Leu YL, Weng MS. Propolin G-Suppressed Epithelial-to-Mesenchymal Transition in Triple-Negative Breast Cancer Cells via Glycogen Synthase Kinase 3β-Mediated Snail and HDAC6-Regulated Vimentin Degradation. Int J Mol Sci 2022; 23:ijms23031672. [PMID: 35163593 PMCID: PMC8835855 DOI: 10.3390/ijms23031672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 01/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer with a poor prognosis. The incidence and mortality rate of TNBC are frequently found in younger women. Due to the absence of a good therapeutic strategy, effective remedies for inhibiting TNBC have been developed for improving the cure rate. Epithelial-to-mesenchymal transition (EMT) is a critical mechanism to regulate cancer cell motility and invasion. Furthermore, ectopic expression of EMT molecules correlates with the metastasis and poor prognosis of TNBC. Targeting EMT might be a strategy for the therapy and prevention of TNBC. Propolin G, an active c-prenylflavanone in Taiwanese propolis, has been shown to possess anti-cancer activity in many cancers. However, the anti-metastasis activity of propolin G on TNBC is still unclear. The present study showed that the migration and invasion activities of TNBC cells was suppressed by propolin G. Down-regulated expression of Snail and vimentin and up-regulated expression of E-cadherin were dose- and time-dependently observed in propolin G-treated MDA-MB-231 cells. Propolin G inhibited Snail and vimentin expressions via the signaling pathways associated with post-translational modification. The activation of glycogen synthase kinase 3β (GSK-3β) by propolin G resulted in increasing GSK-3β interaction with Snail. Consequently, the nuclear localization and stability of Snail was disrupted resulting in promoting the degradation. Propolin G-inhibited Snail expression and the activities of migration and invasion were reversed by GSK-3β inhibitor pretreatment. Meanwhile, the outcomes also revealed that histone deacetylase 6 (HDAC6) activity was dose-dependently suppressed by propolin G. Correspondently, the amounts of acetyl-α-tubulin, a down-stream substrate of HDAC6, were increased. Dissociation of HDAC6/Hsp90 with vimentin leading to increased vimentin acetylation and degradation was perceived in the cells with the addition of propolin G. Moreover, up-regulated expression of acetyl-α-tubulin by propolin G was attenuated by HDAC6 overexpression. On the contrary, down-regulated expression of vimentin, cell migration and invasion by propolin G were overturned by HDAC6 overexpression. Conclusively, restraint cell migration and invasion of TNBC by propolin G were activated by the expression of GSK-3β-suppressed Snail and the interruption of HDAC6-mediated vimentin protein stability. Aiming at EMT, propolin G might be a potential candidate for TNBC therapy.
Collapse
Affiliation(s)
- Jih-Tung Pai
- Division of Hematology and Oncology, Tao-Yuan General Hospital, Ministry of Health and Welfare, Taoyuan City 33004, Taiwan;
| | - Xing-Han Chen
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Yann-Lii Leu
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan;
- Tissue Bank, Chang Gung Memorial Hospital, Linkou, Taoyuan City 33342, Taiwan
| | - Meng-Shih Weng
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
- Correspondence: ; Tel.: +886-2-2905-3776; Fax: +886-2-2902-1215
| |
Collapse
|
22
|
Low-Dose Albendazole Inhibits Epithelial-Mesenchymal Transition of Melanoma Cells by Enhancing Phosphorylated GSK-3 β/Tyr216 Accumulation. JOURNAL OF ONCOLOGY 2021; 2021:4475192. [PMID: 34966427 PMCID: PMC8712124 DOI: 10.1155/2021/4475192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/16/2021] [Indexed: 11/18/2022]
Abstract
Albendazole (ABZ) is an effective broad-spectrum anthelmintic agent that has been widely used for humans and animals. Previous studies have reported that ABZ exhibits antitumor effects against melanoma and other different cancer types; however, it is unknown whether ABZ exerts the inhibitory effect against melanoma metastasis. In this study, we aimed to investigate the inhibitory effect of ABZ on melanoma cells. Through in vitro studies, we discovered that low-dose ABZ treatment significantly inhibited the migration and invasion, but not the proliferation, of A375 and B16-F10 cells in a dose-dependent manner. Further analysis revealed that ABZ treatment reduced the expression level of snail family transcriptional repressor 1 (Snail) in the cytoplasm and nucleus by decreasing the levels of phosphorylated AKT (pAKT) Ser473/GSK-3β (pGSK-3β) Ser9 and increasing pGSK-3β/Tyr216, resulting in a significant upregulation of E-cadherin and downregulation of N-cadherin and ultimately reversing the epithelial-mesenchymal transition (EMT) process of melanoma cells. In contrast, the continuous activation of AKT via transfected plasmids elevated the protein levels of pAKT Ser473/pGSK-3β Ser9 and Snail and antagonized the inhibitory action of ABZ. We also confirmed that ABZ treatment effectively inhibited the lung metastasis of melanoma in nude mice in vivo. Subsequent immunohistochemical analysis verified the decreased pAKT Ser473/pGSK-3β Ser9 and increased pGSK-3β/Tyr216 levels in ABZ-treated subcutaneous tumors. Therefore, our findings demonstrate that ABZ treatment can suppress the EMT progress of melanoma by increasing the pGSK-3β/Tyr216-mediated degradation of Snail, which may be used as a potential treatment strategy for metastatic melanoma.
Collapse
|
23
|
Bao S, Ji Z, Shi M, Liu X. EPB41L5 promotes EMT through the ERK/p38 MAPK signaling pathway in esophageal squamous cell carcinoma. Pathol Res Pract 2021; 228:153682. [PMID: 34784520 DOI: 10.1016/j.prp.2021.153682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/11/2021] [Accepted: 11/03/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors worldwide and is characterized by activation of epithelial-mesenchymal transition (EMT). EPB41L5 is regarded as a key factor in the progression of EMT and metastasis in various kinds of cancers, although the role and mechanism of EPB41L5 in ESCC have not yet been elucidated. In addition, tumor cells can acquire enhanced aggressiveness and a mesenchymal phenotype through phosphorylation of MAPK signaling pathway components. Here, we intend to explore whether EPB41L5 can regulate the EMT process in ESCC and reveal whether the MAPK signaling pathway is involved. METHODS We compared the expression level of EPB41L5 with the prognostic characteristics of 100 ESCC patients to hypothesize the role of EPB41L5 in the progression of ESCC. Furthermore, in vivo and in vitro experiments were conducted to verify the conclusions from the analysis of clinical specimens and investigate the underlying mechanism by which EPB41L5 contributes to ESCC. RESULTS We discovered that EPB41L5 was overexpressed in ESCC and that higher EPB41L5 expression was related to higher TNM stage, a higher incidence of lymphatic metastasis and worse prognosis. Moreover, using ESCC cells and nude mouse models, we found that EPB41L5 promoted EMT, proliferation, migration and invasion in ESCC. Mechanistically, activation of phosphorylation in the ERK/p38 MAPK signaling pathway was involved in the EPB41L5-mediated regulation of EMT. CONCLUSION In conclusion, our findings suggest that EPB41L5 plays a critical role in the regulation of EMT and the progression of ESCC.
Collapse
Affiliation(s)
- ShiHao Bao
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - ZhiQi Ji
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Mo Shi
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - XiangYan Liu
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| |
Collapse
|
24
|
Epigenetic Regulation and Post-Translational Modifications of SNAI1 in Cancer Metastasis. Int J Mol Sci 2021; 22:ijms222011062. [PMID: 34681726 PMCID: PMC8538584 DOI: 10.3390/ijms222011062] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
SNAI1, a zinc finger transcription factor, not only acts as the master regulator of epithelial-mesenchymal transition (EMT) but also functions as a driver of cancer progression, including cell invasion, survival, immune regulation, stem cell properties, and metabolic regulation. The regulation of SNAI1 occurs at the transcriptional, translational, and predominant post-translational levels including phosphorylation, acetylation, and ubiquitination. Here, we discuss the regulation and role of SNAI1 in cancer metastasis, with a particular emphasis on epigenetic regulation and post-translational modifications. Understanding how signaling networks integrate with SNAI1 in cancer progression will shed new light on the mechanism of tumor metastasis and help develop novel therapeutic strategies against cancer metastasis.
Collapse
|
25
|
Huo FC, Zhu ZM, Du QY, Pei DS. PAK5-stabilized Smuc confers renal cell carcinoma metastasis. Clin Transl Med 2021; 11:e559. [PMID: 34586742 PMCID: PMC8444558 DOI: 10.1002/ctm2.559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Fu-Chun Huo
- Department of Pathology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhi-Man Zhu
- Department of Basic Medicine, Jiangsu College of Nursing, Huai'an, China
| | - Qiu-Ying Du
- Department of Pathology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dong-Sheng Pei
- Department of Pathology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
26
|
Qiu Z, Dong B, Guo W, Piotr R, Longmore G, Yang X, Yu Z, Deng J, Evers BM, Wu Y. STK39 promotes breast cancer invasion and metastasis by increasing SNAI1 activity upon phosphorylation. Theranostics 2021; 11:7658-7670. [PMID: 34335956 PMCID: PMC8315073 DOI: 10.7150/thno.62406] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
SNAI1 is widely regarded as a master driver of epithelial-mesenchymal transition (EMT) and associated with breast cancer progression and metastasis. This pro-malignant role is strongly linked to posttranslational modification, especially phosphorylation, which controls its protein levels and subcellular localization. While multiple kinases are implicated in regulation of SNAI1 stability, the precise mechanism by which SNAI1 is stabilized in tumors remains to be fully elucidated. Methods: A series of in vitro and in vivo experiments were conducted to reveal the regulation of SNAI1 by Serine/Threonine Kinase 39 (STK39) and the role of STK39 in breast cancer metastasis. Results: We identified STK39, a member of Stem 20-like serine/threonine kinase family, as a novel posttranslational regulator that enhances the stability of SNAI1. Inhibition of STK39 via knockdown or use of a specific inhibitor resulted in SNAI1 destabilization. Mechanistically, STK39 interacted with and phosphorylated SNAI1 at T203, which is critical for its nuclear retention. Functionally, STK39 inhibition markedly impaired the EMT phenotype and decreased tumor cell migration, invasion, and metastasis both in vitro and in vivo. These effects were rescued by ectopic SNAI1 expression. In addition, depletion of STK39 dramatically enhanced sensitivity to chemotherapeutic agents. Conclusions: Our study demonstrated that STK39 is a key mediator of SNAI1 stability and is associated with the pro-metastatic cellular process, highlighting the STK39-SNAI1 signaling axis as promising therapeutic targets for treatments of metastatic breast cancer.
Collapse
|
27
|
Kasuya Y, Kim JD, Hatano M, Tatsumi K, Matsuda S. Pathophysiological Roles of Stress-Activated Protein Kinases in Pulmonary Fibrosis. Int J Mol Sci 2021; 22:ijms22116041. [PMID: 34204949 PMCID: PMC8199902 DOI: 10.3390/ijms22116041] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/22/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is one of the most symptomatic progressive fibrotic lung diseases, in which patients have an extremely poor prognosis. Therefore, understanding the precise molecular mechanisms underlying pulmonary fibrosis is necessary for the development of new therapeutic options. Stress-activated protein kinases (SAPKs), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38) are ubiquitously expressed in various types of cells and activated in response to cellular environmental stresses, including inflammatory and apoptotic stimuli. Type II alveolar epithelial cells, fibroblasts, and macrophages are known to participate in the progression of pulmonary fibrosis. SAPKs can control fibrogenesis by regulating the cellular processes and molecular functions in various types of lung cells (including cells of the epithelium, interstitial connective tissue, blood vessels, and hematopoietic and lymphoid tissue), all aspects of which remain to be elucidated. We recently reported that the stepwise elevation of intrinsic p38 signaling in the lungs is correlated with a worsening severity of bleomycin-induced fibrosis, indicating an importance of this pathway in the progression of pulmonary fibrosis. In addition, a transcriptome analysis of RNA-sequencing data from this unique model demonstrated that several lines of mechanisms are involved in the pathogenesis of pulmonary fibrosis, which provides a basis for further studies. Here, we review the accumulating evidence for the spatial and temporal roles of SAPKs in pulmonary fibrosis.
Collapse
Affiliation(s)
- Yoshitoshi Kasuya
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (M.H.); (S.M.)
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Correspondence: ; Tel.: +81-432-262-193; Fax: +81-432-262-196
| | - Jun-Dal Kim
- Department of Research and Development, Institute of Natural Medicine (INM), University of Toyama, Toyama 930-0194, Japan;
| | - Masahiko Hatano
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (M.H.); (S.M.)
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Shuichi Matsuda
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (M.H.); (S.M.)
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| |
Collapse
|
28
|
Canovas B, Nebreda AR. Diversity and versatility of p38 kinase signalling in health and disease. Nat Rev Mol Cell Biol 2021; 22:346-366. [PMID: 33504982 PMCID: PMC7838852 DOI: 10.1038/s41580-020-00322-w] [Citation(s) in RCA: 357] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
The ability of cells to deal with different types of stressful situations in a precise and coordinated manner is key for survival and involves various signalling networks. Over the past 25 years, p38 kinases — in particular, p38α — have been implicated in the cellular response to stress at many levels. These span from environmental and intracellular stresses, such as hyperosmolarity, oxidative stress or DNA damage, to physiological situations that involve important cellular changes such as differentiation. Given that p38α controls a plethora of functions, dysregulation of this pathway has been linked to diseases such as inflammation, immune disorders or cancer, suggesting the possibility that targeting p38α could be of therapeutic interest. In this Review, we discuss the organization of this signalling pathway focusing on the diversity of p38α substrates, their mechanisms and their links to particular cellular functions. We then address how the different cellular responses can be generated depending on the signal received and the cell type, and highlight the roles of this kinase in human physiology and in pathological contexts. p38α — the best-characterized member of the p38 kinase family — is a key mediator of cellular stress responses. p38α is activated by a plethora of signals and functions through a multitude of substrates to regulate different cellular behaviours. Understanding context-dependent p38α signalling provides important insights into p38α roles in physiology and pathology.
Collapse
Affiliation(s)
- Begoña Canovas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain. .,ICREA, Barcelona, Spain.
| |
Collapse
|
29
|
Tandon V, de la Vega L, Banerjee S. Emerging roles of DYRK2 in cancer. J Biol Chem 2021; 296:100233. [PMID: 33376136 PMCID: PMC7948649 DOI: 10.1074/jbc.rev120.015217] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, the CMGC kinase DYRK2 has been reported as a tumor suppressor across various cancers triggering major antitumor and proapoptotic signals in breast, colon, liver, ovary, brain, and lung cancers, with lower DYRK2 expression correlated with poorer prognosis in patients. Contrary to this, various medicinal chemistry studies reported robust antiproliferative properties of DYRK2 inhibitors, whereas unbiased 'omics' and genome-wide association study-based studies identified DYRK2 as a highly overexpressed kinase in various patient tumor samples. A major paradigm shift occurred in the last 4 years when DYRK2 was found to regulate proteostasis in cancer via a two-pronged mechanism. DYRK2 phosphorylated and activated the 26S proteasome to enhance degradation of misfolded/tumor-suppressor proteins while also promoting the nuclear stability and transcriptional activity of its substrate, heat-shock factor 1 triggering protein folding. Together, DYRK2 regulates proteostasis and promotes protumorigenic survival for specific cancers. Indeed, potent and selective small-molecule inhibitors of DYRK2 exhibit in vitro and in vivo anti-tumor activity in triple-negative breast cancer and myeloma models. However, with conflicting and contradictory reports across different cancers, the overarching role of DYRK2 remains enigmatic. Specific cancer (sub)types coupled to spatiotemporal interactions with substrates could decide the procancer or anticancer role of DYRK2. The current review aims to provide a balanced and critical appreciation of the literature to date, highlighting top substrates such as p53, c-Myc, c-Jun, heat-shock factor 1, proteasome, or NOTCH1, to discuss DYRK2 inhibitors available to the scientific community and to shed light on this duality of protumorigenic and antitumorigenic roles of DYRK2.
Collapse
Affiliation(s)
- Vasudha Tandon
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Laureano de la Vega
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Sourav Banerjee
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
30
|
Cheng F, Dou J, Zhang Y, Wang X, Wei H, Zhang Z, Cao Y, Wu Z. Urolithin A Inhibits Epithelial-Mesenchymal Transition in Lung Cancer Cells via P53-Mdm2-Snail Pathway. Onco Targets Ther 2021; 14:3199-3208. [PMID: 34040386 PMCID: PMC8139733 DOI: 10.2147/ott.s305595] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The epithelial-to-mesenchymal transition (EMT) is a fundamental process in tumor progression that endows cancer cells with migratory and invasive potential. Snail, a zinc finger transcriptional repressor, plays an important role in the induction of EMT by directly repressing the key epithelial marker E-cadherin. Here, we assessed the effect of urolithin A, a major metabolite from pomegranate ellagitannins, on Snail expression and EMT process. METHODS The role of Snail in urolithin A-induced EMT inhibition in lung cancer cells was explored by wound healing assay and cell invasion assay. The qRT-PCR and CHX assay were performed to investigate how urolithin A regulates Snail expression. Immunoprecipitation assays were established to determine the effects of urolithin A in mdm2-Snail interaction. In addition, the expression of p53 was manipulated to explore its effect on the expression of mdm2 and Snail. RESULTS The urolithin A dose-dependently upregulated epithelial marker and decreased mesenchymal markers in lung cancer cells. In addition, exposure to urolithin A decreased cell migratory and invasive capacity. We have further demonstrated that urolithin A inhibits lung cancer cell EMT by decreasing Snail protein expression and activity. Mechanistically, urolithin A disrupts the interaction of p53 and mdm2 which leads Snail ubiquitination and degradation. CONCLUSION We conclude that urolithin A could inhibit EMT process by controlling mainly Snail expression. These results highlighted the role of pomegranate in regulation of EMT program in lung cancer.
Collapse
Affiliation(s)
- Feng Cheng
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, People’s Republic of China
| | - Jintao Dou
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, People’s Republic of China
- School of Anesthesiology, Wannan Medical College, Wuhu, 241001, People’s Republic of China
| | - Yong Zhang
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, People’s Republic of China
- School of Clinical Medicine, Wannan Medical College, Wuhu, 241001, People’s Republic of China
| | - Xiang Wang
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, People’s Republic of China
- School of Laboratory Medicine, Wannan Medical College, Wuhu, 241001, People’s Republic of China
| | - Huijun Wei
- School of Preclinical Medicine, Wannan Medical College, Wuhu, 241001, People’s Republic of China
| | - Zhijian Zhang
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, People’s Republic of China
- School of Preclinical Medicine, Wannan Medical College, Wuhu, 241001, People’s Republic of China
| | - Yuxiang Cao
- School of Laboratory Medicine, Wannan Medical College, Wuhu, 241001, People’s Republic of China
- Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu, 241001, People’s Republic of China
| | - Zhihao Wu
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, People’s Republic of China
- School of Preclinical Medicine, Wannan Medical College, Wuhu, 241001, People’s Republic of China
- Anhui Province Key Laboratory of Active Biological Macro-Molecules Research, Wannan Medical College, Wuhu, 241001, People’s Republic of China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241001, People’s Republic of China
- Correspondence: Zhihao Wu Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, People’s Republic of China Email
| |
Collapse
|
31
|
Correa-Sáez A, Jiménez-Izquierdo R, Garrido-Rodríguez M, Morrugares R, Muñoz E, Calzado MA. Updating dual-specificity tyrosine-phosphorylation-regulated kinase 2 (DYRK2): molecular basis, functions and role in diseases. Cell Mol Life Sci 2020; 77:4747-4763. [PMID: 32462403 PMCID: PMC7658070 DOI: 10.1007/s00018-020-03556-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022]
Abstract
Members of the dual-specificity tyrosine-regulated kinase (DYRKs) subfamily possess a distinctive capacity to phosphorylate tyrosine, serine, and threonine residues. Among the DYRK class II members, DYRK2 is considered a unique protein due to its role in disease. According to the post-transcriptional and post-translational modifications, DYRK2 expression greatly differs among human tissues. Regarding its mechanism of action, this kinase performs direct phosphorylation on its substrates or acts as a priming kinase, enabling subsequent substrate phosphorylation by GSK3β. Moreover, DYRK2 acts as a scaffold for the EDVP E3 ligase complex during the G2/M phase of cell cycle. DYRK2 functions such as cell survival, cell development, cell differentiation, proteasome regulation, and microtubules were studied in complete detail in this review. We have also gathered available information from different bioinformatic resources to show DYRK2 interactome, normal and tumoral tissue expression, and recurrent cancer mutations. Then, here we present an innovative approach to clarify DYRK2 functionality and importance. DYRK2 roles in diseases have been studied in detail, highlighting this kinase as a key protein in cancer development. First, DYRK2 regulation of c-Jun, c-Myc, Rpt3, TERT, and katanin p60 reveals the implication of this kinase in cell-cycle-mediated cancer development. Additionally, depletion of this kinase correlated with reduced apoptosis, with consequences on cancer patient response to chemotherapy. Other functions like cancer stem cell formation and epithelial-mesenchymal transition regulation are also controlled by DYRK2. Furthermore, the pharmacological modulation of this protein by different inhibitors (harmine, curcumine, LDN192960, and ID-8) has enabled to clarify DYRK2 functionality.
Collapse
Affiliation(s)
- Alejandro Correa-Sáez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n., 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rafael Jiménez-Izquierdo
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n., 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Martín Garrido-Rodríguez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n., 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rosario Morrugares
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n., 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n., 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n., 14004, Córdoba, Spain.
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Córdoba, Spain.
- Hospital Universitario Reina Sofía, Córdoba, Spain.
| |
Collapse
|
32
|
Boni J, Rubio-Perez C, López-Bigas N, Fillat C, de la Luna S. The DYRK Family of Kinases in Cancer: Molecular Functions and Therapeutic Opportunities. Cancers (Basel) 2020; 12:cancers12082106. [PMID: 32751160 PMCID: PMC7465136 DOI: 10.3390/cancers12082106] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
DYRK (dual-specificity tyrosine-regulated kinases) are an evolutionary conserved family of protein kinases with members from yeast to humans. In humans, DYRKs are pleiotropic factors that phosphorylate a broad set of proteins involved in many different cellular processes. These include factors that have been associated with all the hallmarks of cancer, from genomic instability to increased proliferation and resistance, programmed cell death, or signaling pathways whose dysfunction is relevant to tumor onset and progression. In accordance with an involvement of DYRK kinases in the regulation of tumorigenic processes, an increasing number of research studies have been published in recent years showing either alterations of DYRK gene expression in tumor samples and/or providing evidence of DYRK-dependent mechanisms that contribute to tumor initiation and/or progression. In the present article, we will review the current understanding of the role of DYRK family members in cancer initiation and progression, providing an overview of the small molecules that act as DYRK inhibitors and discussing the clinical implications and therapeutic opportunities currently available.
Collapse
Affiliation(s)
- Jacopo Boni
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, 08003 Barcelona, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Carlota Rubio-Perez
- Cancer Science Programme, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (C.R.-P.); (N.L.-B.)
| | - Nuria López-Bigas
- Cancer Science Programme, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (C.R.-P.); (N.L.-B.)
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Cristina Fillat
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain;
| | - Susana de la Luna
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, 08003 Barcelona, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain
- Correspondence: ; Tel.: +34-933-160-144
| |
Collapse
|
33
|
Han J, Wu J, Silke J. An overview of mammalian p38 mitogen-activated protein kinases, central regulators of cell stress and receptor signaling. F1000Res 2020; 9. [PMID: 32612808 PMCID: PMC7324945 DOI: 10.12688/f1000research.22092.1] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
The p38 family is a highly evolutionarily conserved group of mitogen-activated protein kinases (MAPKs) that is involved in and helps co-ordinate cellular responses to nearly all stressful stimuli. This review provides a succinct summary of multiple aspects of the biology, role, and substrates of the mammalian family of p38 kinases. Since p38 activity is implicated in inflammatory and other diseases, we also discuss the clinical implications and pharmaceutical approaches to inhibit p38.
Collapse
Affiliation(s)
- Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - John Silke
- The Walter and Eliza Hall Institute, IG Royal Parade, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3050, Australia
| |
Collapse
|
34
|
Yu X, Zhao H, Cao Z. The m6A methyltransferase METTL3 aggravates the progression of nasopharyngeal carcinoma through inducing EMT by m6A-modified Snail mRNA. Minerva Med 2020; 113:309-314. [PMID: 32512975 DOI: 10.23736/s0026-4806.20.06653-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND This study aims to elucidate the role of METTL3 in aggravating the progression of NPC through m6A modification on Snail and thus the stimulated EMT (epithelial-mesenchymal transition). PATIENTS AND METHODS Differential expressions of METTL3 in 48 paired NPC tissues and paracancerous tissues were determined by quantitative real-time polymerase chain reaction (qRT-PCR). Its level in NPC patients with different clinical stages and metastatic states was examined. Prognostic potential of METTL3 in NPC patients was assessed by Kaplan-Meier method. After knockdown of METTL3, expression changes of Snail and EMT-related genes, as well as invasive and migratory abilities in SUNE-1 cells were detected. The interaction between Snail with METTL3 and IGF2BP2 was verified by RIP (RNA-Binding Protein Immunoprecipitation) assay. At last, the roles of METTL3/Snail regulatory loop in influencing EMT and metastasis of NPC were clarified. RESULTS METTL3 was upregulated in NPC tissues than that of paracancerous ones. NPC patients with advanced stage or lymphatic metastasis expressed higher level of METTL3. Kaplan-Meier curves revealed that NPC patients expressing high level of METTL3 suffered worse prognosis. Knockdown of METTL3 downregulated protein levels of Snail and N-cadherin, while E-cadherin was upregulated in SUNE-1 cells. Meanwhile, knockdown of METTL3 inhibited invasive and migratory abilities in NPC cells. RIP assay confirmed the interaction between Snail and METTL3. Besides, knockdown of METTL3 decreased the enrichment abundance of Snail in anti-IGF2BP2. Overexpression of Snail partially reversed the regulatory effects of METTL3 on EMT-related gene expressions and metastatic abilities in NPC. CONCLUSIONS METTL3 is upregulated in NPC, which regulates EMT and metastasis in NPC cells through m6A-modified Snail mRNA.
Collapse
Affiliation(s)
- Xiaofeng Yu
- Department of Otorhinolaryngology, China Medical University Affiliated Shengjing Hospital, Shenyang, China
| | - He Zhao
- Department of Otorhinolaryngology, China Medical University Affiliated Shengjing Hospital, Shenyang, China
| | - Zhiwei Cao
- Department of Otorhinolaryngology, China Medical University Affiliated Shengjing Hospital, Shenyang, China -
| |
Collapse
|
35
|
Yoshida S, Yoshida K. Multiple functions of DYRK2 in cancer and tissue development. FEBS Lett 2019; 593:2953-2965. [PMID: 31505048 DOI: 10.1002/1873-3468.13601] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 01/09/2023]
Abstract
Dual-specificity tyrosine-regulated kinases (DYRKs) are evolutionarily conserved from yeast to mammals. Accumulating studies have revealed that DYRKs have important roles in regulation of the cell cycle and survival. DYRK2, a member of the class II DYRK family protein, is a key regulator of p53, and phosphorylates it at Ser46 to induce apoptosis in response to DNA damage. Moreover, recent studies have uncovered that DYRK2 regulates G1/S transition, epithelial-mesenchymal-transition, and stemness in human cancer cells. DYRK2 also appears to have roles in tissue development in lower eukaryotes. Thus, the elucidation of mechanisms for DYRK2 during mammalian tissue development will promote the understanding of cell differentiation, tissue homeostasis, and congenital diseases as well as cancer. In this review, we discuss the roles of DYRK2 in tumor cells. Moreover, we focus on DYRK2-dependent developmental mechanisms in several species including fly (Drosophila), worm (Caenorhabditis elegans), zebrafish (Danio rerio), and mammals.
Collapse
Affiliation(s)
- Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|