1
|
Gong G, Huang H, Tong Z, Zheng Y, Bian D, Zhang Y. Implant derived high local concentration of magnesium inhibits tumorigenicity of osteosarcoma. Biomaterials 2025; 320:123263. [PMID: 40132359 DOI: 10.1016/j.biomaterials.2025.123263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/25/2025] [Accepted: 03/16/2025] [Indexed: 03/27/2025]
Abstract
Osteosarcoma (OS) is a fatal malignant tumor that occurs in bone, whose main treatment is surgical resection. With anti-tumor and osteogenic effects, Magnesium (Mg) is a promising biodegradable metal for postoperative treatment in OS, however, its anti-OS effect and mechanism still need to be explored. Here, while holding the ability to promote osteogenesis, Mg metal at the same time significantly reduces the proliferation, migration and invasion of various OS cells (UMR106, 143B, K7M2) in vitro. Similarly, it inhibits the growth and lung metastasis of UMR106 induced tumors in xenograft models in vivo. The mRNA-seq analysis shows that Mg significantly inhibits Wnt-pathway (increased APC, Axin2 and GSK3β to induce degradation of β-catenin) in typical OS, which is further verified by western blotting and immunofluorescence analyses. A Mg2+ concentration of 240 mg/L, either from Mg metal extract or Mg salt (MgCl2), equivalently exhibits significantly increased APC, Axin2, GSK3β and decreased β-catenin, and then inhibits tumorigenicity of typical OS cells. This work reveals that a local high concentration of Mg can inhibit OS by down-regulating Wnt-pathway, and meanwhile favors for normal health bone, which demonstrates a new approach and mechanism in the treatment of OS with Mg-based biodegradable metals.
Collapse
Affiliation(s)
- Gencheng Gong
- School of Medicine, South China University of Technology, Guangzhou, 510006, China; Department of Orthopedics, Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - He Huang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450003, China
| | - Zhipei Tong
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yufeng Zheng
- Department of Orthopedics, Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| | - Dong Bian
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Yu Zhang
- School of Medicine, South China University of Technology, Guangzhou, 510006, China; Department of Orthopedics, Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| |
Collapse
|
2
|
Liu X, Ren H, Wang A, Liang Z, Min S, Yao S, Wan S, Gao Y, Wang H, Cai H. SIX1 enhances aerobic glycolysis and progression in cervical cancer through ENO1. Hum Cell 2025; 38:88. [PMID: 40234326 DOI: 10.1007/s13577-025-01215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 04/01/2025] [Indexed: 04/17/2025]
Abstract
Cervical cancer is a significant threat to women's health, and its incidence in China has been increasing in recent years. Treating advanced and recurrent cervical cancer has become increasingly challenging, highlighting the urgent need to identify new therapeutic targets for this disease. SIX1 is associated with cell proliferation, metastasis, and chemoresistance in various human malignancies. SIX1 overexpression in cervical cancer tissues has been linked to increased clinical stage and lymph node metastasis; however, the regulatory function of SIX1 in cervical cancer remains largely unexplored. In this study, we found that SIX1 promotes cervical cancer cell proliferation, invasion, and migration by enhancing glucose metabolism. Additionally, SIX1 was shown to influence the glycolytic process in cervical cancer by upregulating GLUT1, PFK1, PGK1, ENO1, and PKM2 expression. Furthermore, we identified a binding site for SIX1 in the ENO1 promoter region, demonstrating that SIX1 has a regulatory effect. These results suggest that SIX1 regulates proliferation and glucose metabolism in cervical cancer cells by promoting the transcription of key glycolytic enzymes, such as ENO1. Understanding this regulatory mechanism is crucial for identifying potential therapeutic targets for cervical cancer.
Collapse
Affiliation(s)
- Xuelian Liu
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, People's Republic of China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, People's Republic of China
- Hubei Cancer Clinical Study Center, Wuhan, People's Republic of China
| | - Hang Ren
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, People's Republic of China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, People's Republic of China
- Hubei Cancer Clinical Study Center, Wuhan, People's Republic of China
| | - Anjin Wang
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, People's Republic of China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, People's Republic of China
- Hubei Cancer Clinical Study Center, Wuhan, People's Republic of China
| | - Ziyan Liang
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, People's Republic of China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, People's Republic of China
- Hubei Cancer Clinical Study Center, Wuhan, People's Republic of China
| | - Su Min
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, People's Republic of China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, People's Republic of China
- Hubei Cancer Clinical Study Center, Wuhan, People's Republic of China
| | - Shijie Yao
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, People's Republic of China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, People's Republic of China
- Hubei Cancer Clinical Study Center, Wuhan, People's Republic of China
| | - Shimeng Wan
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, People's Republic of China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, People's Republic of China
- Hubei Cancer Clinical Study Center, Wuhan, People's Republic of China
| | - Yang Gao
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, People's Republic of China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, People's Republic of China
- Hubei Cancer Clinical Study Center, Wuhan, People's Republic of China
| | - Hua Wang
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, People's Republic of China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, People's Republic of China
- Hubei Cancer Clinical Study Center, Wuhan, People's Republic of China
| | - Hongbing Cai
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, People's Republic of China.
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, People's Republic of China.
- Hubei Cancer Clinical Study Center, Wuhan, People's Republic of China.
| |
Collapse
|
3
|
Yuan Y, Li N, Zhu J, Shao C, Zeng X, Yi D. Role of NAT10-mediated ac 4C acetylation of ENO1 mRNA in glycolysis and apoptosis in non-small cell lung cancer cells. BMC Pulm Med 2025; 25:75. [PMID: 39948547 PMCID: PMC11827380 DOI: 10.1186/s12890-024-03463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/27/2024] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Abnormal expression of N-acetyltransferase 10 (NAT10) has been shown to promote the progression of various tumors, including non-small cell lung cancer (NSCLC). This study was designed to investigate the role of NAT10 in NSCLC and the underlying mechanism. METHODS Reverse transcription-quantitative polymerase chain reaction and Western blot were used to analyze the levels of NAT10 in NSCLC cell lines. The cell viability, proliferation, and apoptosis of A549 and PC9 cell lines were detected by cell counting kit-8, colony formation, and flow cytometry. N4-acetylcytidine (ac4C)-RNA immunoprecipitation assay was performed to detect the level of ac4C of α-enolase (ENO1) mRNA in A549 and PC9 cell lines. The relationship between NAT10 and ENO1 was performed by dual-luciferase reporter assay. RESULTS NAT10 was increased in NSCLC cell lines. The ac4C level of ENO1 mRNA in A549 and PC9 cell lines was downregulated after NAT10 inhibition. Knockdown of NAT10 inhibited cell viability and glycolysis and promoted cell apoptosis in A549 and PC9 cell lines, and the results were reversed after ENO1 overexpressing. CONCLUSIONS NAT10 regulated glycolysis and apoptosis in NSCLC via ac4C acetylating ENO1, which might provide new ideas for the clinical treatment of NSCLC.
Collapse
Affiliation(s)
- Yanqing Yuan
- The Second People's Hospital of Hunan Province(Brain Hospital of Hunan Province), No. 427, Section 3, Furong Middle Road, Changsha, 410000, Hunan Province, China
| | - Na Li
- The Second People's Hospital of Hunan Province(Brain Hospital of Hunan Province), No. 427, Section 3, Furong Middle Road, Changsha, 410000, Hunan Province, China
| | - Jingui Zhu
- The Second People's Hospital of Hunan Province(Brain Hospital of Hunan Province), No. 427, Section 3, Furong Middle Road, Changsha, 410000, Hunan Province, China
| | - Chun Shao
- The Second People's Hospital of Hunan Province(Brain Hospital of Hunan Province), No. 427, Section 3, Furong Middle Road, Changsha, 410000, Hunan Province, China
| | - Xiangbo Zeng
- The Second People's Hospital of Hunan Province(Brain Hospital of Hunan Province), No. 427, Section 3, Furong Middle Road, Changsha, 410000, Hunan Province, China
| | - Daijiao Yi
- The Second People's Hospital of Hunan Province(Brain Hospital of Hunan Province), No. 427, Section 3, Furong Middle Road, Changsha, 410000, Hunan Province, China.
| |
Collapse
|
4
|
Torner B, Géczi D, Klekner Á, Balogh I, Penyige A, Birkó Z. Construction of a miRNA Panel for Differentiating Lung Adenocarcinoma Brain Metastases and Glioblastoma. Cancers (Basel) 2025; 17:581. [PMID: 40002176 PMCID: PMC11853152 DOI: 10.3390/cancers17040581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Brain metastases (BM) are the most common type of intracranial malignant tumor and are associated with high mortality. More than 50% of BM cases originate from lung cancer, and lung adenocarcinoma (LUAD) is most commonly associated with the development of BM (25%). The differential diagnosis of solitary BM and glioblastoma (GBM)-one of the most aggressive and fatal malignant brain tumors-remains a considerable challenge. Given the major role of microRNAs (miRNAs) in regulating gene expression, their clinical potential as biomarkers for tumor diagnosis and prognosis offers significant promise. METHODS Next-generation RNA Sequencing (RNA-seq) was used to assess the miRNA expression profiles of 6 LUAD-BM, 6 GBM, and 6 control (non-tumoral brain tissue samples) human brain tissue samples. miRNAs exhibiting the most significant differential expression in LUAD-BM patients in comparison to both control subjects and GBM patients were selected for validation through RT-qPCR. RESULTS The analysis of RNA-seq data revealed the presence of 229 differentially expressed miRNAs in the comparison between LUAD-BM and control samples and 46 in the comparison between LU-AD-BM and GBM samples. Eight miRNAs were selected for further analysis, four of which were upregulated and four downregulated, based on the significant differences in their expression levels observed between the LUAD-BM samples and the other two groups, as confirmed with the Mann-Whitney U test. Functional enrichment analysis was also conducted based on a miRNA-centered target analysis performed using the miRNet tool. To assess the diagnostic potential of these differentially expressed miRNAs, we performed a receiver operating characteristic (ROC) curve analysis. CONCLUSIONS A panel of eight miRNAs was identified in human brain tissue samples, exhibiting high accuracy in distinguishing LUAD-BM from both GBM and control samples.
Collapse
Affiliation(s)
- Bernadett Torner
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (B.T.); (D.G.); (I.B.); (A.P.)
| | - Dóra Géczi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (B.T.); (D.G.); (I.B.); (A.P.)
| | - Álmos Klekner
- Department of Neurosurgery, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - István Balogh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (B.T.); (D.G.); (I.B.); (A.P.)
- Division of Clinical Genetics, Department of Laboratory Medicine, University of Debrecen Clinical Center, 4032 Debrecen, Hungary
| | - András Penyige
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (B.T.); (D.G.); (I.B.); (A.P.)
| | - Zsuzsanna Birkó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (B.T.); (D.G.); (I.B.); (A.P.)
| |
Collapse
|
5
|
Aziguli Tulamaiti, Xiao SY, Yang Y, Mutailifu M, Li XQ, Yin SQ, Ma HT, Yao HF, Yao LL, Hu LP, Li J, Jiang SH, Zhang ZG, Huo YM, Li DX, Zhang XL. ENO1 promotes PDAC progression by inhibiting CD8 + T cell infiltration through upregulating PD-L1 expression via HIF-1α signaling. Transl Oncol 2025; 52:102261. [PMID: 39752908 PMCID: PMC11754681 DOI: 10.1016/j.tranon.2024.102261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/23/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Metabolic reprogramming is a hallmark of cancer. The"Warburg effect", also known as aerobic glycolysis, is an essential part of metabolic reprogramming and a central contributor to cancer progression. Moreover, hypoxia is one of the significant features of pancreatic ductal adenocarcinoma (PDAC). Under hypoxic conditions, the "Warburg effect" occurs to meet the nutrient and energy demands of rapid genome replication, remodeling the tumor microenvironment (TME) and influencing tumor immunity. α-Enolase (ENO1) is a multifunctional protein, acting as a glycolytic enzyme that catalyzes the conversion of 2-phosphoglyceric acid to phosphoenolpyruvic acid. ENO1 was found to be overexpressed in multiple types of cancers. Here, we investigated the role of ENO1 in modulating the PDAC microenvironment. Using bioinformatic analyses, we demonstrated that ENO1 was highly expressed in PDAC patients, which was related to a poor prognosis. In vitro, Eno1 knockdown resulted in reduced PDAC cell proliferation and colony formation, along with enhanced apoptosis in PDAC cells. In vivo, tumorigenesis was suppressed in mouse PDAC models by Eno1 knockdown. Flow cytometry analysis revealed that high expression of Eno1 altered the tumor immune microenvironment (TIME), particularly the impaired tumor infiltration and function of CD8+ T cells. Mechanistic studies revealed that ENO1 upregulated PD-L1 to prevent CD8+ T cells infiltration through the hypoxia-inducible factor (HIF)-1α signaling pathway, leading to PDAC progression. In conclusion, our findings indicate that ENO1 might serve as a potential biomarker for PDAC and a novel onco-immunotherapeutic target via its role in altering the TIME.
Collapse
Affiliation(s)
- Aziguli Tulamaiti
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shu-Yu Xiao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Yang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Musitaba Mutailifu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xia-Qing Li
- Shanghai Fengxian District Central Hospital, School of Medicine, Anhui University of Science and Technology, Shanghai, China
| | - Shi-Qi Yin
- Shanghai Fengxian District Central Hospital, School of Medicine, Anhui University of Science and Technology, Shanghai, China
| | - Hong-Tai Ma
- Shanghai Fengxian District Central Hospital, School of Medicine, Anhui University of Science and Technology, Shanghai, China
| | - Hong-Fei Yao
- Department of Hepato-Biliary-Pancreatic Surgery, General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Lin-Li Yao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Peng Hu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shu-Heng Jiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Gang Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan-Miao Huo
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China.
| | - Dong-Xue Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xue-Li Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Wang X, Wang M, Lin Q, He L, Zhang B, Chen X, Chen G, Du H, Lang C, Peng X, Dai Y. Osteoblast-Derived ECM1 Promotes Anti-Androgen Resistance in Bone Metastatic Prostate Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407662. [PMID: 39563492 PMCID: PMC11727142 DOI: 10.1002/advs.202407662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/14/2024] [Indexed: 11/21/2024]
Abstract
Acquired resistance to hormonal therapy, particularly enzalutamide (ENZ), remains a significant obstacle in the treatment of advanced bone metastatic prostate cancer. Here, it is demonstrated that under ENZ treatment, osteoblasts in the bone microenvironment secrete increased levels of extracellular matrix protein 1 (ECM1), which affects surrounding prostate cancer cells, promoting tumor cell proliferation and anti-androgen resistance. Mechanistically, ECM1 interacts with the enolase 1 (ENO1) receptor on the prostate cancer cell membrane, leading to its phosphorylation at the Y189 site. This event further recruits adapter proteins including growth factor receptor-bound protein 2 (GRB2) and son of sevenless homolog 1 (SOS1), which activates the downstream mitogen-activated protein kinase (MAPK) signaling pathway to induce anti-androgen resistance. Furthermore, inhibiting ECM1 or utilizing the ENO1-targeting inhibitor phosphonoacetohydroxamate (PhAH) significantly restores tumor cell sensitivity to ENZ. Taken together, a potential mechanism is identified through which osteoblast-derived ECM1 drives resistance in bone metastatic prostate cancer under ENZ treatment. Additionally, the findings indicate that ECM1 and ENO1 may serve as potential targets for developing therapies for bone metastatic castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Xinwen Wang
- Department of Orthopedic Surgerythe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080China
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyGuangzhou510080China
| | - Min Wang
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyGuangzhou510080China
- Department of PathologyGuangzhou First People's HospitalGuangzhou510080China
| | - Qijun Lin
- Department of Orthopedic Surgerythe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080China
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyGuangzhou510080China
| | - Lixin He
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Baolin Zhang
- Department of Orthopedic Surgerythe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080China
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyGuangzhou510080China
| | - Xin Chen
- Department of Orthopedic Surgerythe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080China
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyGuangzhou510080China
| | - Guanhong Chen
- Department of Orthopedic Surgerythe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080China
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyGuangzhou510080China
| | - Hong Du
- Department of PathologyGuangzhou First People's HospitalGuangzhou510080China
| | - Chuandong Lang
- Department of OrthopedicsThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230001China
| | - Xinsheng Peng
- Department of Orthopedic Surgerythe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080China
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyGuangzhou510080China
| | - Yuhu Dai
- Department of Orthopedic Surgerythe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080China
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyGuangzhou510080China
| |
Collapse
|
7
|
Lin C, Wu J, Wang Z, Xiang Y. Long non-coding RNA LNC-POTEM-4 promotes HCC progression via the LNC-POTEM-4/miR-149-5p/Wnt4 signaling axis. Cell Signal 2024; 124:111412. [PMID: 39278454 DOI: 10.1016/j.cellsig.2024.111412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/27/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
Information on the potential role of the long non-coding RNA LNC-POTEM-4 in cancer progression is limited. Our preliminary study found that LNC-POTEM-4 was overexpressed in hepatocellular carcinoma (HCC) tissues, which led us to further investigate the biological function and molecular mechanism of LNC-POTEM-4 in HCC development. LNC-POTEM-4 expression in HCC tissues was examined using transcriptome sequencing and quantitative reverse transcription PCR. The relationships between LNC-POTEM-4 and the stage and prognosis of HCC in patient data from the TCGA database were analyzed. The effects of LNC-POTEM-4 on proliferation, invasion/migration, and epithelial-mesenchymal transition marker expression in HCC cells were evaluated in vitro using gain- and loss-of-function assays, while its effects on tumor growth and metastasis were explored through animal experiments. A LNC-POTEM-4/microRNA (miR)-149-5p/Wnt4 regulatory signaling axis was identified using bioinformatics analysis, and dual luciferase reporter, RNA immunoprecipitation, and RNA pull-down assays. Co-transfection of LNC-POTEM-4 and Wnt4 expression plasmids was employed to confirm the new signaling pathway. We found that LNC-POTEM-4 was overexpressed in HCC tissues and was linked to poor staging and prognosis. LNC-POTEM-4 promoted proliferation, invasion, migration, and the epithelial-mesenchymal transition of HCC cells in vitro. Silencing of LNC-POTEM-4 inhibited HCC growth and distant metastasis in vivo. Mechanically, LNC-POTEM-4 was found to function as a competitive endogenous RNA, upregulating Wnt4 by sponging miR-149-5p to promote HCC progression. Wnt4 overexpression may have counteracted the tumor-inhibition effect of LNC-POTEM-4 silencing. In conclusion, LNC-POTEM-4 upregulated Wnt4 to activate the Wnt signaling pathway and stimulate the malignancy tendency of HCC by sponging miR-149-5p, providing a prospective target for the detection and therapy of HCC. However, the effects of LNC-POTEM-4 on the miR-149-5p/Wnt4 signaling axis should be further studied in animal experiments.
Collapse
Affiliation(s)
- Chao Lin
- Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Jiacheng Wu
- Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun 130000, China
| | - Zhixuan Wang
- Intensive Care Medicine, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Yien Xiang
- Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
8
|
Xiao L, Li Q, Chen S, Huang Y, Ma L, Wang Y, Chen J, Zhang J, Liu A, Yuan X, Liu Y, Liu B. ADAMTS16 drives epithelial-mesenchymal transition and metastasis through a feedback loop upon TGF-β1 activation in lung adenocarcinoma. Cell Death Dis 2024; 15:837. [PMID: 39551781 PMCID: PMC11570625 DOI: 10.1038/s41419-024-07226-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
Lung adenocarcinoma (LUAD) is the major subtype of lung cancer. The poor prognosis of LUAD patients is attributed primarily to metastasis. ADAMTS16 is a crucial member of the ADAMTS family and is involved in tumor progression. However, its role and regulatory mechanism in LUAD remain unexplored. In this study, ADAMTS16 was identified as a crucial oncogene and survival predictor in LUAD via analyses of public datasets. Clinical specimens and tissue microarrays confirmed the differential expression and prognostic value of ADAMTS16 in LUAD patients. Transcriptome data and in vitro experiments demonstrated that ADAMTS16 was positively associated with epithelial-mesenchymal transition (EMT) and the migration abilities of LUAD cells. Knockdown of ADAMTS16 attenuated lung and pleural metastasis in an animal model. Mechanistically, the results of the enzyme-linked immunosorbent assay (ELISA) and western blot (WB) suggested that ADAMTS16 activated the TGF-β signaling pathway by facilitating the conversion of LAP-TGF-β1 to active TGF-β1. Co-Immunoprecipitation (co-IP) indicated an interaction between ADAMTS16 and LAP-TGF-β1. Inhibition of ADAMTS16 impaired EMT and aggressiveness of LUAD cells, while treatment with recombinant TGF-β1 reversed this inhibition. Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays indicated that SOX4 acted as a transcriptional activator of ADAMTS16 and that TGF-β1 regulated the expression of ADAMTS16 by increasing the binding of SOX4 to the promoter of ADAMTS16. Suppressing the TGF-β signaling pathway inhibited ADAMTS16 expression, EMT, and lung metastasis, whereas overexpressing SOX4 reversed this inhibition. Therefore, ADAMTS16 forms a positive feedback loop with the TGF-β1/SOX4 axis to regulate EMT and metastasis, and disruption of this feedback loop inhibits tumor progression. These findings underscore the potential of ADAMTS16 as a prognostic biomarker and therapeutic target in LUAD and offer novel insight into the mechanism of EMT and metastasis.
Collapse
Affiliation(s)
- Lingyan Xiao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuaijun Chen
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Ma
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Andong Liu
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuanhui Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
9
|
Li Y, Liu L, Li B. Role of ENO1 and its targeted therapy in tumors. J Transl Med 2024; 22:1025. [PMID: 39543641 PMCID: PMC11566422 DOI: 10.1186/s12967-024-05847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
ENO1, also called 2-phospho-D-glycerate hydrolase in cellular glycolysis, is an enzyme that converts 2-phosphoglycerate to phosphoenolpyruvate and plays an important role in the Warburg effect. In various tumors, ENO1 overexpression correlates with poor prognosis. ENO1 is a multifunctional oncoprotein that, when located on the cell surface, acts as a "moonlighting protein" to promote tumor invasion and metastasis. When located intracellularly, ENO1 facilitates glycolysis to dysregulate cellular energy and sustain tumor proliferation. Additionally, it promotes tumor progression by activating oncogenic signaling pathways. ENO1 is a tumor biomarker and represents a promising target for tumor therapy. This review summarizes recent advances from 2020 to 2024 in understanding the relationship between ENO1 and tumors and explores the latest targeted therapeutic strategies involving ENO1.
Collapse
Affiliation(s)
- Yafei Li
- Department of Oral Anatomy and Physiology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Lu Liu
- Department of Oral Anatomy and Physiology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Bo Li
- Department of Oral Anatomy and Physiology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| |
Collapse
|
10
|
Goyal A, Murkute SL, Bhowmik S, Prasad CP, Mohapatra P. Belling the "cat": Wnt/β-catenin signaling and its significance in future cancer therapies. Biochim Biophys Acta Rev Cancer 2024; 1879:189195. [PMID: 39413855 DOI: 10.1016/j.bbcan.2024.189195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
The WNT/β-catenin is among one of the most extensively studied cellular signaling pathways involved in the initiation and progression of several deadly cancers. It is now understood that the WNT/β-catenin signaling, during tumor progression operates in a very complex fashion beyond the earlier assumed simple WNT 'On' or 'Off' mode as it recruits numerous WNT ligands, receptors, transcriptional factors and also cross-talks with other signaling molecules including the noncanonical WNT regulators. WNT/β-catenin signaling molecules are often mutated in different cancers which makes them very challenging to inhibit and sometimes ranks them among the undruggable targets. Furthermore, due to the evolutionary conservation of this pathway, inhibiting WNT/β-catenin has caused significant toxicity in normal cells. These challenges are reflected in clinical trial data, where the use of WNT/β-catenin inhibitors as standalone treatments remains limited. In this review, we have highlighted the crucial functional associations of diverse WNT/β-catenin signaling regulators with cancer progression and the phenotypic switching of tumor cells. Next, we have shed light on the roles of WNT/β-catenin signaling in drug resistance, clonal evolution, tumor heterogeneity, and immune evasion. The present review also focuses on various classes of routine and novel WNT/β-catenin therapeutic regimes while addressing the challenges associated with targeting the regulators of this complex pathway. In the light of multiple case studies on WNT/β-catenin inhibitors, we also highlighted the challenges and opportunities for future clinical trial strategies involving these treatments. Additionally, we have proposed strategies for future WNT/β-catenin-based drug discovery trials, emphasizing the potential of combination therapies and AI/ML-driven prediction approaches. Overall, here we showcased the opportunities, possibilities, and potentialities of WNT/β-catenin signaling modulatory therapeutic regimes as promising precision cancer medicines for the future.
Collapse
Affiliation(s)
- Akansha Goyal
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India
| | - Satyajit Laxman Murkute
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India
| | - Sujoy Bhowmik
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India
| | - Chandra Prakash Prasad
- Department of Medical Oncology Lab, DR BRA-IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Purusottam Mohapatra
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India.
| |
Collapse
|
11
|
Uotani K, Fujiwara T, Ueda K, Yoshida A, Iwata S, Morita T, Kiyono M, Kunisada T, Takeda K, Hasei J, Yoshioka Y, Ochiya T, Ozaki T. Identification of ENO-1 positive extracellular vesicles as a circulating biomarker for monitoring of Ewing sarcoma. Cancer Sci 2024; 115:3660-3671. [PMID: 39307979 PMCID: PMC11531948 DOI: 10.1111/cas.16343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/20/2024] [Accepted: 08/31/2024] [Indexed: 11/05/2024] Open
Abstract
The lack of circulating biomarkers for tumor monitoring is a major problem in Ewing sarcoma management. The development of methods for accurate tumor monitoring is required, considering the high recurrence rate of drug-resistant Ewing sarcoma. Here, we describe a sensitive analytical technique for tumor monitoring of Ewing sarcoma by detecting circulating extracellular vesicles secreted from Ewing sarcoma cells. Proteomic analysis of Ewing sarcoma cell-derived extracellular vesicles identified 564 proteins prominently observed in extracellular vesicles from three Ewing sarcoma cell lines. Among these, CD99, SLC1A5, and ENO-1 were identified on extracellular vesicles purified from sera of patients with Ewing sarcoma before treatment but not on extracellular vesicles from those after treatment and healthy individuals. Notably, not only Ewing sarcoma-derived extracellular vesicles but also Ewing sarcoma cells demonstrated proteomic expression of CD99 and ENO-1 on their surface membranes. ENO-1+CD63+ extracellular vesicle detection was reduced after tumor resection while both CD99+CD63+ and ENO-1+CD63+ extracellular vesicles were detected in serum from Ewing sarcoma-bearing mice. Finally, the accuracy of liquid biopsy targeting these candidates was assessed using extracellular vesicles from the sera of patients with Ewing sarcoma. Elevated ENO-1+CD81+ extracellular vesicles in the serum of patients before treatments distinguished patients with Ewing sarcoma from healthy individuals with an area under the curve value of 0.92 (P < 0.001) and reflected the tumor burden in patients with Ewing sarcoma during multidisciplinary treatments. Collectively, circulating ENO-1+CD81+ extracellular vesicle detection could represent a novel tool for tumor monitoring of Ewing sarcoma.
Collapse
Affiliation(s)
- Koji Uotani
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Tomohiro Fujiwara
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
- Center of Innovative MedicineOkayama University HospitalOkayamaJapan
| | - Koji Ueda
- Cancer Precision Medicine CenterJapanese Foundation for Cancer ResearchTokyoJapan
| | - Aki Yoshida
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Shintaro Iwata
- Department of Musculoskeletal OncologyNational Cancer Center HospitalTokyoJapan
| | - Takuya Morita
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Masahiro Kiyono
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Toshiyuki Kunisada
- Department of Medical Materials for Musculoskeletal ReconstructionOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Ken Takeda
- Department of Intelligent Orthopedic SystemOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Joe Hasei
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Yusuke Yoshioka
- Department of Molecular and Cellular MedicineInstitute of Medical Science, Tokyo Medical UniversityTokyoJapan
| | - Takahiro Ochiya
- Department of Molecular and Cellular MedicineInstitute of Medical Science, Tokyo Medical UniversityTokyoJapan
| | - Toshifumi Ozaki
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| |
Collapse
|
12
|
Wang J, Ren J, Tu X, Yuan H, Ye Z, Wang X, Cui J, Wang J, Tang Y, Han P, Bai Y. ARNTL2 facilitates bladder cancer progression through potentiating ENO1-mediated glycolysis in a SLC31A1-independent and -dependent manner. Life Sci 2024; 355:122974. [PMID: 39147318 DOI: 10.1016/j.lfs.2024.122974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Basic helix-loop-helix ARNT like 2 (ARNTL2) is a transcription factor that controls the circadian rhythm. Amounts of studies have demonstrated the carcinogenic function of ARNTL2 in human malignant tumors albeit the underlying mechanisms remain poorly understood. We aimed to study the significance of ARNTL2 in bladder cancer (BLCA). METHODS Immunohistochemical staining, immunoblotting and the database from TCGA were used to analyze the clinical relevance of ARNTL2, enolase 1 (ENO1) and solute carrier family 31 member 1 (SLC31A1) in BLCA. The function of ARNTL2 was explored by cell proliferation assay, apoptosis, colony formation and xenografted tumorigenesis. The molecular mechanisms of ARNTL2-driving BLCA development were investigated by RT-qPCR, immunoblotting and luciferase assays. Glycolysis was checked by measuring glucose consumption and lactate production. ENO1 activity was assessed by using indicated assay kit. RESULTS Overexpression of ARNTL2 facilitates the proliferation and tumorigenesis of BLCA cells through suppression of apoptosis and enhancement of glycolysis. Up-regulation of SLC31A1, ENO1, and enhancement of SLC31A1-mediated ENO1 activity were critical for ARNTL2-triggered glycolysis and malignant growth in BLCA cells. ARNTL2 was positively correlated with SLC31A1 and ENO1 in BLCA patients. High expression of ARNTL2, SLC31A1 or ENO1 predicted the poor prognosis of BLCA patients. Depletion of SLC31A1 and inhibition of glycolysis completely blunted the growth ability of BLCA cells. CONCLUSION In summary, ARNTL2 facilitates the progression of BLCA via activating ENO1-mediated glycolysis in a SLC31A1-independent and -dependent manner. Inhibiting SLC31A1 and glycolysis may be an aspirational approach for the treatment of BLCA patients with overexpression of ARNTL2.
Collapse
Affiliation(s)
- Jiahao Wang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junwei Ren
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiang Tu
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haichao Yuan
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zhenyang Ye
- Department of Urology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Xiaoming Wang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jianwei Cui
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jia Wang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yin Tang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Ping Han
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yunjin Bai
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
13
|
Lu Z, Wang D, Sun Y, Dai Y. ENO1 regulates IL-1β-induced chondrocyte inflammation, apoptosis and matrix degradation possibly through the potential binding to CRLF1. Tissue Cell 2024; 90:102504. [PMID: 39116531 DOI: 10.1016/j.tice.2024.102504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
In this study, we aim to investigate the role of enolase 1 (ENO1) in osteoarthritis (OA) pathogenic process and to uncover the underlying mechanism. To this end, we used IL-1β to induce an in vitro OA‑like chondrocyte model in human immortalized chondrocyte C-28/I2 cells. We manipulated the expression of ENO1 and cytokine receptor-like factor 1 (CRLF1) in IL-1β-induced C-28/I2 cells using siRNA and/or overexpression and tested their effects on IL-1β-induced pathologies including cell viability, apoptosis and inflammatory cytokine levels (IL-6 and TNF-α), and the expression of extracellular matrix-related enzymes and major mediators in the NF-κB signaling pathway (p-p65, p65, p-IκBα and IκBα). We used co-immunoprecipitation and immunofluorescence imaging to study a possible binding between ENO1 and CRLF1. Our data showed that IL-1β induction elevated ENO1 and CRLF1 expression in C-28/I2 cells. Silencing ENO1 or CRLF1 inhibited the IL-1β-induced cell viability damage, apoptosis, inflammation, and extracellular matrix degradation. The inhibitory effect of silencing ENO1 was reversed by CRLF1 overexpression, suggesting a functional connection between ENO1 and CRLF1, which could be attributed to a binding between these two partners. Our study could help validate the role of ENO1 in OA pathogenies and identify novel therapeutic targets for OA treatment.
Collapse
Affiliation(s)
- Zhihua Lu
- Medical School, Yangzhou Polytechnic College, Yangzhou, Jiangsu 225009, China
| | - Dandan Wang
- Northern Jiangsu People's Hospital, China; Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Yuzhe Sun
- Medical School, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Yan Dai
- Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, China; Medical Research Center, Northern Jiangsu People's Hospital, China.
| |
Collapse
|
14
|
Zhang Q, An N, Liu Y, Zhu Y, Pan W, Gu P, Zhao J, Pu Q, Zhu W. Alveolar type 2 cells marker gene SFTPC inhibits epithelial-to-mesenchymal transition by upregulating SOX7 and suppressing WNT/β-catenin pathway in non-small cell lung cancer. Front Oncol 2024; 14:1448379. [PMID: 39346732 PMCID: PMC11427448 DOI: 10.3389/fonc.2024.1448379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/22/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction Surfactant Protein C gene (SFTPC) is a marker gene of alveolar type 2 cells (AT2), which are the key structures of alveoli. Mutations or deletions in SFTPC cause idiopathic pulmonary fibrosis (IPF). Importantly, IPF is an independent risk factor for non-small cell lung cancer (NSCLC). It suggests that abnormal expression of SFTPC may be relevant to development of NSCLC. However, the function and mechanism of SFTPC in NSCLC are still poor understood until now. Methods The expression of SFTPC and the relationship between SFTPC and prognosis of NSCLC were analyzed in TCGA database and our collected clinical NSCLC tissues. Subsequently, the function and mechanism of SFTPC in NSCLC were explored by RNA-sequence, qRT-PCR, Western blot, Immunohistochemical, Wound-healing, Millicell, Transwell assays and mouse tumor xenograft model. Results SFTPC was dramatically downregulated in NSCLC tissues from TCGA database and 40 out of 46 collected clinical LUAD tissues compared with adjacent non-tumor tissues. Low expression of SFTPC was associated with poor prognosis of LUAD by TCGA database. Importantly, we confirmed that overexpression of SFTPC significantly inhibited Epithelial-to-Mesenchymal Transition (EMT) process of NSCLC cells by upregulating SOX7 and then inactivating WNT/β-catenin pathway in vitro and in vivo. Particularly, we discovered that low expression of SFTPC was associated with EMT process and low expression of SOX7 in NSCLC tissues. Conclusion Our study revealed a novel mechanism of SFTPC in NSCLC development. Meanwhile, it also might provide a new clue for exploring the molecular mechanism about NSCLC development in patients with IPF in the future.
Collapse
Affiliation(s)
- Qiongyin Zhang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ning An
- Cancer Center, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yang Liu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Zhu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wuliang Pan
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peiling Gu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinzhu Zhao
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiang Pu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wen Zhu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Serambeque B, Mestre C, Hundarova K, Marto CM, Oliveiros B, Gomes AR, Teixo R, Carvalho AS, Botelho MF, Matthiesen R, Carvalho MJ, Laranjo M. Proteomic Profile of Endometrial Cancer: A Scoping Review. BIOLOGY 2024; 13:584. [PMID: 39194522 PMCID: PMC11351934 DOI: 10.3390/biology13080584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Proteomics can be a robust tool in protein identification and regulation, allowing the discovery of potential biomarkers. In clinical practice, the management of endometrial cancer can be challenging. Thus, identifying promising markers could be beneficial, helping both in diagnosis and prognostic stratification, even predicting the response to therapy. Therefore, this manuscript systematically reviews the existing evidence of the proteomic profile of human endometrial cancer. The literature search was conducted via Medline (through PubMed) and the Web of Science. The inclusion criteria were clinical, in vitro, and in vivo original studies reporting proteomic analysis using all types of samples to map the human endometrial cancer proteome. A total of 55 publications were included in this review. Most of the articles carried out a proteomic analysis on endometrial tissue, serum and plasma samples, which enabled the identification of several potential diagnostic and prognostic biomarkers. In addition, eight articles were analyzed regarding the identified proteins, where three studies showed a strong correlation, sharing forty-five proteins. This analysis also allowed the identification of the 10 most frequently reported proteins in these studies: EGFR, PGRMC1, CSE1L, MYDGF, STMN1, CASP3 ANXA2, YBX1, ANXA1, and MYH11. Proteomics-based approaches pointed out potential diagnostic and prognostic candidates for endometrial cancer. However, there is a lack of studies exploring novel therapeutic targets.
Collapse
Affiliation(s)
- Beatriz Serambeque
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (C.M.); (C.M.M.); (A.R.G.); (R.T.); (M.F.B.); (M.J.C.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal;
| | - Catarina Mestre
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (C.M.); (C.M.M.); (A.R.G.); (R.T.); (M.F.B.); (M.J.C.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal;
| | - Kristina Hundarova
- Gynecology Service, Department of Gynecology, Obstetrics, Reproduction and Neonatology, Unidade Local de Saúde de Coimbra, 3004-561 Coimbra, Portugal;
| | - Carlos Miguel Marto
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (C.M.); (C.M.M.); (A.R.G.); (R.T.); (M.F.B.); (M.J.C.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal;
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Univ Coimbra, Institute of Experimental Pathology, Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Institute of Integrated Clinical Practice and Laboratory for Evidence-Based Sciences and Precision Dentistry, 3000-075 Coimbra, Portugal
- Univ Coimbra, Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Advanced Production and Intelligent Systems (ARISE), 3030-788 Coimbra, Portugal
| | - Bárbara Oliveiros
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal;
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO) and Laboratory of Biostatistics and Medical Informatics (LBIM), Faculty of Medicine, 3004-531 Coimbra, Portugal
| | - Ana Rita Gomes
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (C.M.); (C.M.M.); (A.R.G.); (R.T.); (M.F.B.); (M.J.C.)
- Univ Coimbra, Chemical Engineering and Renewable Resources for Sustainability (CERES), Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, 3000-548 Coimbra, Portugal
| | - Ricardo Teixo
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (C.M.); (C.M.M.); (A.R.G.); (R.T.); (M.F.B.); (M.J.C.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal;
| | - Ana Sofia Carvalho
- iNOVA4Health, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal; (A.S.C.); (R.M.)
| | - Maria Filomena Botelho
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (C.M.); (C.M.M.); (A.R.G.); (R.T.); (M.F.B.); (M.J.C.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal;
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Univ Coimbra, Institute of Experimental Pathology, Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Rune Matthiesen
- iNOVA4Health, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal; (A.S.C.); (R.M.)
| | - Maria João Carvalho
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (C.M.); (C.M.M.); (A.R.G.); (R.T.); (M.F.B.); (M.J.C.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal;
- Gynecology Service, Department of Gynecology, Obstetrics, Reproduction and Neonatology, Unidade Local de Saúde de Coimbra, 3004-561 Coimbra, Portugal;
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Univ Coimbra, Universitary Clinic of Gynecology, Faculty of Medicine, 3004-561 Coimbra, Portugal
| | - Mafalda Laranjo
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal; (C.M.); (C.M.M.); (A.R.G.); (R.T.); (M.F.B.); (M.J.C.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal;
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| |
Collapse
|
16
|
Shen C, Liu J, Xie F, Yu Y, Ma X, Hu D, Liu C, Wang Y. N6-Methyladenosine enhances the translation of ENO1 to promote the progression of bladder cancer by inhibiting PCNA ubiquitination. Cancer Lett 2024; 595:217002. [PMID: 38823761 DOI: 10.1016/j.canlet.2024.217002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
The mechanism underlying N6-methyladenosine (m6A) modification in bladder cancer (BC) remains elusive. We identified that the RBM15/METTL3 complex enhances m6A modification and promotes the ENO1 protein translation efficiency through its 359A site by depending on YTHDF1 in BC cells. In the tumor microenvironment, TGF-β effectively stimulates RBM15/METTL3 expression to improve ENO1 mRNA m6A modification through the Smad2/3 pathway. Reduced ENO1 m6A levels hamper tumor proliferation both in vitro and in vivo. Mechanistically, ENO1 augments PCNA protein stability by reducing its K48-linked ubiquitination and thus prevents protein degradation through the endoplasmic reticulum-associated degradation pathway. According to the subsequent experiments, the ENO1 inhibitor significantly reduced tumor proliferation both in vitro and in vivo. Our study highlights the significance of RBM15/METTL3 complex-mediated ENO1 mRNA m6A modification in ENO1 expression. It also reveals a novel mechanism by which ENO1 promotes BC progression, thereby suggesting that ENO1 can be a therapeutic target for BC.
Collapse
Affiliation(s)
- Chengquan Shen
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jing Liu
- Department of Research Management and International Cooperation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fei Xie
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yongbo Yu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaocheng Ma
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ding Hu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Changxue Liu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yonghua Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Qingdao Clinical Medical Research Center for Urinary System Diseases, Qingdao, Shandong, China; Shandong Province Medical and Health Key Laboratory of Urology, Qingdao, Shandong, China.
| |
Collapse
|
17
|
Davis JC, Waltz SE. The MET Family of Receptor Tyrosine Kinases Promotes a Shift to Pro-Tumor Metabolism. Genes (Basel) 2024; 15:953. [PMID: 39062731 PMCID: PMC11275592 DOI: 10.3390/genes15070953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The development and growth of cancer is fundamentally dependent on pro-tumor changes in metabolism. Cancer cells generally shift away from oxidative phosphorylation as the primary source of energy and rely more heavily on glycolysis. Receptor tyrosine kinases (RTKs) are a type of receptor that is implicated in this shift to pro-tumor metabolism. RTKs are important drivers of cancer growth and metastasis. One such family of RTKs is the MET family, which consists of MET and RON (MST1R). The overexpression of either MET or RON has been associated with worse cancer patient prognosis in a variety of tumor types. Both MET and RON signaling promote increased glycolysis by upregulating the expression of key glycolytic enzymes via increased MYC transcription factor activity. Additionally, both MET and RON signaling promote increased cholesterol biosynthesis downstream of glycolysis by upregulating the expression of SREBP2-induced cholesterol biosynthesis enzymes via CTTNB1. These changes in metabolism, driven by RTK activity, provide potential targets in limiting tumor growth and metastasis via pharmacological inhibition or modifications in diet. This review summarizes pro-tumor changes in metabolism driven by the MET family of RTKs. In doing so, we will offer our unique perspective on metabolic pathways that drive worse patient prognosis and provide suggestions for future study.
Collapse
Affiliation(s)
- James C. Davis
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Susan E. Waltz
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
| |
Collapse
|
18
|
Rathee M, Umar SM, Dev AJR, Kashyap A, Mathur SR, Gogia A, Mohapatra P, Prasad CP. Canonical WNT/β-catenin signaling upregulates aerobic glycolysis in diverse cancer types. Mol Biol Rep 2024; 51:788. [PMID: 38970704 DOI: 10.1007/s11033-024-09694-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/31/2024] [Indexed: 07/08/2024]
Abstract
Despite many efforts, a comprehensive understanding and clarification of the intricate connections within cancer cell metabolism remain elusive. This might pertain to intracellular dynamics and the complex interplay between cancer cells, and cells with the tumor stroma. Almost a century ago, Otto Warburg found that cancer cells exhibit a glycolytic phenotype, which continues to be a subject of thorough investigation. Past and ongoing investigations have demonstrated intricate mechanisms by which tumors modulate their functionality by utilizing extracellular glucose as a substrate, thereby sustaining the essential proliferation of cancer cells. This concept of "aerobic glycolysis," where cancer cells (even in the presence of enough oxygen) metabolize glucose to produce lactate plays a critical role in cancer progression and is regulated by various signaling pathways. Recent research has revealed that the canonical wingless-related integrated site (WNT) pathway promotes aerobic glycolysis, directly and indirectly, thereby influencing cancer development and progression. The present review seeks to gather knowledge about how the WNT/β-catenin pathway influences aerobic glycolysis, referring to relevant studies in different types of cancer. Furthermore, we propose the concept of impeding the glycolytic phenotype of tumors by employing specific inhibitors that target WNT/β-catenin signaling.
Collapse
Affiliation(s)
- Meetu Rathee
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Sheikh Mohammad Umar
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Arundhathi J R Dev
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Akanksha Kashyap
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Sandeep R Mathur
- Department of Pathology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Ajay Gogia
- Department of Medical Oncology, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | | | - Chandra Prakash Prasad
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
19
|
Qiao Q, Hu S, Wang X. The regulatory roles and clinical significance of glycolysis in tumor. Cancer Commun (Lond) 2024; 44:761-786. [PMID: 38851859 PMCID: PMC11260772 DOI: 10.1002/cac2.12549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/05/2024] [Accepted: 05/12/2024] [Indexed: 06/10/2024] Open
Abstract
Metabolic reprogramming has been demonstrated to have a significant impact on the biological behaviors of tumor cells, among which glycolysis is an important form. Recent research has revealed that the heightened glycolysis levels, the abnormal expression of glycolytic enzymes, and the accumulation of glycolytic products could regulate the growth, proliferation, invasion, and metastasis of tumor cells and provide a favorable microenvironment for tumor development and progression. Based on the distinctive glycolytic characteristics of tumor cells, novel imaging tests have been developed to evaluate tumor proliferation and metastasis. In addition, glycolytic enzymes have been found to serve as promising biomarkers in tumor, which could provide assistance in the early diagnosis and prognostic assessment of tumor patients. Numerous glycolytic enzymes have been identified as potential therapeutic targets for tumor treatment, and various small molecule inhibitors targeting glycolytic enzymes have been developed to inhibit tumor development and some of them are already applied in the clinic. In this review, we systematically summarized recent advances of the regulatory roles of glycolysis in tumor progression and highlighted the potential clinical significance of glycolytic enzymes and products as novel biomarkers and therapeutic targets in tumor treatment.
Collapse
Affiliation(s)
- Qiqi Qiao
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
| | - Shunfeng Hu
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
| | - Xin Wang
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
- Taishan Scholars Program of Shandong ProvinceJinanShandongP. R. China
- Branch of National Clinical Research Center for Hematologic DiseasesJinanShandongP. R. China
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuP. R. China
| |
Collapse
|
20
|
Chen B, Deng Y, Hong Y, Fan L, Zhai X, Hu H, Yin S, Chen Q, Xie X, Ren X, Zhao J, Jiang C. Metabolic Recoding of NSUN2-Mediated m 5C Modification Promotes the Progression of Colorectal Cancer via the NSUN2/YBX1/m 5C-ENO1 Positive Feedback Loop. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309840. [PMID: 38769664 PMCID: PMC11267267 DOI: 10.1002/advs.202309840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/11/2024] [Indexed: 05/22/2024]
Abstract
The RNA modification, 5-methylcytosine (m5C), has recently gained prominence as a pivotal post-transcriptional regulator of gene expression, intricately intertwined with various tumorigenic processes. However, the exact mechanisms governing m5C modifications during the onset and progression of colorectal cancer (CRC) remain unclear. Here, it is determined that the m5C methyltransferase NSUN2 exhibits significantly elevated expression and exerts an oncogenic function in CRC. Mechanistically, NSUN2 and YBX1 are identified as the "writer" and "reader" of ENO1, culminating in the reprogramming of the glucose metabolism and increased production of lactic acid in an m5C-dependent manner. The accumulation of lactic acid derived from CRC cells, in turn, activates the transcription of NSUN2 through histone H3K18 lactylation (H3K18la), and induces the lactylation of NSUN2 at the Lys356 residue (K356), which is crucial for capturing target RNAs. Together, these findings reveal an intriguing positive feedback loop involving the NSUN2/YBX1/m5C-ENO1 signaling axis, thereby bridging the connection between metabolic reprogramming and epigenetic remodeling, which may shed light on the therapeutic potential of combining an NSUN2 inhibitor with immunotherapy for CRC.
Collapse
Affiliation(s)
- Baoxiang Chen
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhan430071China
- Hubei Key Laboratory of Intestinal and Colorectal DiseasesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Yanrong Deng
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhan430071China
- Hubei Key Laboratory of Intestinal and Colorectal DiseasesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Yuntian Hong
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhan430071China
- Hubei Key Laboratory of Intestinal and Colorectal DiseasesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Lifang Fan
- Department of PathologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Xiang Zhai
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhan430071China
- Hubei Key Laboratory of Intestinal and Colorectal DiseasesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Heng Hu
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhan430071China
- Hubei Key Laboratory of Intestinal and Colorectal DiseasesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Siyuan Yin
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhan430071China
- Hubei Key Laboratory of Intestinal and Colorectal DiseasesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Quanjiao Chen
- CAS Key Laboratory of Special Pathogens and BiosafetyCAS Center for Influenza Research and Early WarningWuhan Institute of VirologyChinese Academy of SciencesWuhan430064China
| | - Xiaoyu Xie
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhan430071China
- Hubei Key Laboratory of Intestinal and Colorectal DiseasesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Xianghai Ren
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhan430071China
- Hubei Key Laboratory of Intestinal and Colorectal DiseasesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Jianhong Zhao
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhan430071China
- Hubei Key Laboratory of Intestinal and Colorectal DiseasesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Congqing Jiang
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhan430071China
- Hubei Key Laboratory of Intestinal and Colorectal DiseasesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| |
Collapse
|
21
|
Ma H, Kong L, Liu L, Du Y, Zhu X, Wang J, Zhao W. ENO1 contributes to the gemcitabine resistance of pancreatic cancer through the YAP1 signaling pathway. Mol Carcinog 2024; 63:1221-1234. [PMID: 38517039 DOI: 10.1002/mc.23719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
Pancreatic cancer (PC), a leading cause of cancer-related deaths, has a 5-year survival rate of approximately 10%. α-Enolase (ENO1) is a junction channel protein involved in tumor cell apoptosis and chemoresistance. However, the role of ENO1 in PC remains unclear. The expression and prognosis of ENO1 levels were determined in PC using public databases based on The Cancer Genome Atlas (TCGA) data sets. Cell viability, half maximal inhibitory concentration (IC50), autophagy, apoptosis, and autophagy markers were examined using cell counting kit-8 (CCK-8), transmission electron microscope, flow cytometry assays, and immunoblot, respectively. Using the Gene Expression Omnibus (GEO) and TCGA data sets, we found that ENO1 was significantly enriched in PC tumor tissues, and high expression levels of ENO1 were associated with an unfavorable prognosis. Whereas ENO1 silencing suppressed proliferation, autophagy, and induced cell apoptosis in PC cells, and inhibited tumor growth in vivo. Mechanistically, knockdown of ENO1 enhanced cellular cytotoxicity of gemcitabine (GEM), as well as reducing the expression of yes-associated protein 1 (YAP1), a major downstream effector of the Hippo pathway in vitro. YAP1 promoted autophagy and protected PC cells from GEM-induced apoptotic cell death. Furthermore, YAP1 overexpression attenuated the inhibition effects of ENO1 silencing. Our results suggest that ENO1 overexpression promotes cell growth and tumor progression by increasing the expression of YAP1 in PC. Further studies are required to understand the detailed mechanisms between ENO1 and YAP1 in PC.
Collapse
Affiliation(s)
- Hongqin Ma
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lulu Kong
- Department of Endocrinology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Li Liu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yusheng Du
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xinguo Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ji Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wenxing Zhao
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
22
|
Bjørkum AA, Griebel L, Birkeland E. Human serum proteomics reveals a molecular signature after one night of sleep deprivation. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2024; 5:zpae042. [PMID: 39131770 PMCID: PMC11310596 DOI: 10.1093/sleepadvances/zpae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/31/2024] [Indexed: 08/13/2024]
Abstract
Study Objectives Sleep deprivation is highly prevalent and caused by conditions such as night shift work or illnesses like obstructive sleep apnea. Compromised sleep affects cardiovascular-, immune-, and neuronal systems. Recently, we published human serum proteome changes after a simulated night shift. This pilot proteomic study aimed to further explore changes in human blood serum after 6 hours of sleep deprivation at night. Methods Human blood serum samples from eight self-declared healthy females were analyzed using Orbitrap Eclipse mass spectrometry (MS-MS) and high-pressure liquid chromatography. We used a within-participant design, in which the samples were taken after 6 hours of sleep at night and after 6 hours of sleep deprivation the following night. Systems biological databases and bioinformatic software were used to analyze the data and comparative analysis were done with other published sleep-related proteomic datasets. Results Out of 494 proteins, 66 were found to be differentially expressed proteins (DEPs) after 6 hours of sleep deprivation. Functional enrichment analysis revealed the associations of these DEPs with several biological functions related to the altered regulation of cellular processes such as platelet degranulation and blood coagulation, as well as associations with different curated gene sets. Conclusions This study presents serum proteomic changes after 6 hours of sleep deprivation, supports previous findings showing that short sleep deprivation affects several biological processes, and reveals a molecular signature of proteins related to pathological conditions such as altered coagulation and platelet function, impaired lipid and immune function, and cell proliferation. Data are available via ProteomeXchange with identifier PXD045729. This paper is part of the Genetic and other molecular underpinnings of sleep, sleep disorders, and circadian rhythms including translational approaches Collection.
Collapse
Affiliation(s)
- Alvhild Alette Bjørkum
- Department of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Leandra Griebel
- Department of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Even Birkeland
- The Proteomics Unit at The Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
23
|
Zhang Z, Westover D, Tang Z, Liu Y, Sun J, Sun Y, Zhang R, Wang X, Zhou S, Hesilaiti N, Xia Q, Du Z. Wnt/β-catenin signaling in the development and therapeutic resistance of non-small cell lung cancer. J Transl Med 2024; 22:565. [PMID: 38872189 PMCID: PMC11170811 DOI: 10.1186/s12967-024-05380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
Wnt/β-catenin signaling is a critical pathway that influences development and therapeutic response of non-small cell lung cancer (NSCLC). In recent years, many Wnt regulators, including proteins, miRNAs, lncRNAs, and circRNAs, have been found to promote or inhibit signaling by acting on Wnt proteins, receptors, signal transducers and transcriptional effectors. The identification of these regulators and their underlying molecular mechanisms provides important implications for how to target this pathway therapeutically. In this review, we summarize recent studies of Wnt regulators in the development and therapeutic response of NSCLC.
Collapse
Affiliation(s)
- Zixu Zhang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - David Westover
- High-Throughput Analytics, Analytical Research and Development, Merck & Co. Inc., Rahway, NJ, USA
| | - Zhantong Tang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Yue Liu
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Jinghan Sun
- School of Life Science and Technology, Southeast University, Nanjing, 210018, China
| | - Yunxi Sun
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Runqing Zhang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Xingyue Wang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Shihui Zhou
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Nigaerayi Hesilaiti
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Qi Xia
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Zhenfang Du
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China.
| |
Collapse
|
24
|
Rosell R, Jantus-Lewintre E, Cao P, Cai X, Xing B, Ito M, Gomez-Vazquez JL, Marco-Jordán M, Calabuig-Fariñas S, Cardona AF, Codony-Servat J, Gonzalez J, València-Clua K, Aguilar A, Pedraz-Valdunciel C, Dantes Z, Jain A, Chandan S, Molina-Vila MA, Arrieta O, Ferrero M, Camps C, González-Cao M. KRAS-mutant non-small cell lung cancer (NSCLC) therapy based on tepotinib and omeprazole combination. Cell Commun Signal 2024; 22:324. [PMID: 38867255 PMCID: PMC11167791 DOI: 10.1186/s12964-024-01667-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/17/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND KRAS-mutant non-small cell lung cancer (NSCLC) shows a relatively low response rate to chemotherapy, immunotherapy and KRAS-G12C selective inhibitors, leading to short median progression-free survival, and overall survival. The MET receptor tyrosine kinase (c-MET), the cognate receptor of hepatocyte growth factor (HGF), was reported to be overexpressed in KRAS-mutant lung cancer cells leading to tumor-growth in anchorage-independent conditions. METHODS Cell viability assay and synergy analysis were carried out in native, sotorasib and trametinib-resistant KRAS-mutant NSCLC cell lines. Colony formation assays and Western blot analysis were also performed. RNA isolation from tumors of KRAS-mutant NSCLC patients was performed and KRAS and MET mRNA expression was determined by real-time RT-qPCR. In vivo studies were conducted in NSCLC (NCI-H358) cell-derived tumor xenograft model. RESULTS Our research has shown promising activity of omeprazole, a V-ATPase-driven proton pump inhibitor with potential anti-cancer properties, in combination with the MET inhibitor tepotinib in KRAS-mutant G12C and non-G12C NSCLC cell lines, as well as in G12C inhibitor (AMG510, sotorasib) and MEK inhibitor (trametinib)-resistant cell lines. Moreover, in a xenograft mouse model, combination of omeprazole plus tepotinib caused tumor growth regression. We observed that the combination of these two drugs downregulates phosphorylation of the glycolytic enzyme enolase 1 (ENO1) and the low-density lipoprotein receptor-related protein (LRP) 5/6 in the H358 KRAS G12C cell line, but not in the H358 sotorasib resistant, indicating that the effect of the combination could be independent of ENO1. In addition, we examined the probability of recurrence-free survival and overall survival in 40 early lung adenocarcinoma patients with KRAS G12C mutation stratified by KRAS and MET mRNA levels. Significant differences were observed in recurrence-free survival according to high levels of KRAS mRNA expression. Hazard ratio (HR) of recurrence-free survival was 7.291 (p = 0.014) for high levels of KRAS mRNA expression and 3.742 (p = 0.052) for high MET mRNA expression. CONCLUSIONS We posit that the combination of the V-ATPase inhibitor omeprazole plus tepotinib warrants further assessment in KRAS-mutant G12C and non G12C cell lines, including those resistant to the covalent KRAS G12C inhibitors.
Collapse
Affiliation(s)
- Rafael Rosell
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Barcelona, Spain.
- IOR, Hospital Quiron-Dexeus Barcelona, Barcelona, Spain.
- Laboratory of Molecular Biology, Germans Trias i Pujol Health Sciences Institute and Hospital (IGTP), Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain.
| | - Eloisa Jantus-Lewintre
- Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain.
- Trial Mixed Unit, Centro Investigación Príncipe Felipe-Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain.
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain.
- Department of Biotechnology, Universitat Politècnica de València, Camí de Vera s/n, Valencia, 46022, Spain.
- Joint Unit: Nanomedicine, Centro Investigación Príncipe Felipe-Universitat Politècnica de Valencia, Valencia, Spain.
| | - Peng Cao
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China.
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou Peoples Hospital, Quzhou, China.
- Shandong Academy of Chinese Medicine, Jinan, China.
| | - Xueting Cai
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Baojuan Xing
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Masaoki Ito
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Jose Luis Gomez-Vazquez
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Barcelona, Spain
- Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Silvia Calabuig-Fariñas
- Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain
- Trial Mixed Unit, Centro Investigación Príncipe Felipe-Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
- Department of Pathology, Universitat de Valéncia, Valencia, Spain
| | - Andrés Felipe Cardona
- Institute of Research and Education, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center - CTIC, Bogotá, Colombia
| | - Jordi Codony-Servat
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Barcelona, Spain
- Pangaea Oncology, Hospital Quiron-Dexeus Barcelona, Barcelona, Spain
| | - Jessica Gonzalez
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Barcelona, Spain
| | | | | | | | | | - Anisha Jain
- Department of Microbiology, JSS Academy of Higher Education & Research, Mysuru, India
| | - S Chandan
- Department of Microbiology, JSS Academy of Higher Education & Research, Mysuru, India
| | | | - Oscar Arrieta
- National Institute of Cancerology (INCAN), Mexico City, Mexico
| | - Macarena Ferrero
- Trial Mixed Unit, Centro Investigación Príncipe Felipe-Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Carlos Camps
- Trial Mixed Unit, Centro Investigación Príncipe Felipe-Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
- Medical Oncology Department, General University Hospital of Valencia, Valencia, Spain
| | | |
Collapse
|
25
|
Krieg S, Fernandes SI, Kolliopoulos C, Liu M, Fendt SM. Metabolic Signaling in Cancer Metastasis. Cancer Discov 2024; 14:934-952. [PMID: 38592405 PMCID: PMC7616057 DOI: 10.1158/2159-8290.cd-24-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
Metastases, which are the leading cause of death in patients with cancer, have metabolic vulnerabilities. Alterations in metabolism fuel the energy and biosynthetic needs of metastases but are also needed to activate cell state switches in cells leading to invasion, migration, colonization, and outgrowth in distant organs. Specifically, metabolites can activate protein kinases as well as receptors and they are crucial substrates for posttranslational modifications on histone and nonhistone proteins. Moreover, metabolic enzymes can have moonlighting functions by acting catalytically, mainly as protein kinases, or noncatalytically through protein-protein interactions. Here, we summarize the current knowledge on metabolic signaling in cancer metastasis. SIGNIFICANCE Effective drugs for the prevention and treatment of metastases will have an immediate impact on patient survival. To overcome the current lack of such drugs, a better understanding of the molecular processes that are an Achilles heel in metastasizing cancer cells is needed. One emerging opportunity is the metabolic changes cancer cells need to undergo to successfully metastasize and grow in distant organs. Mechanistically, these metabolic changes not only fulfill energy and biomass demands, which are often in common between cancer and normal but fast proliferating cells, but also metabolic signaling which enables the cell state changes that are particularly important for the metastasizing cancer cells.
Collapse
Affiliation(s)
- Sarah Krieg
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Sara Isabel Fernandes
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Constantinos Kolliopoulos
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Ming Liu
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
26
|
Fu M, Deng F, Chen J, Fu L, Lei J, Xu T, Chen Y, Zhou J, Gao Q, Ding H. Current data and future perspectives on DNA methylation in ovarian cancer (Review). Int J Oncol 2024; 64:62. [PMID: 38757340 PMCID: PMC11095605 DOI: 10.3892/ijo.2024.5650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
Ovarian cancer (OC) represents the most prevalent malignancy of the female reproductive system. Its distinguishing features include a high aggressiveness, substantial morbidity and mortality, and a lack of apparent symptoms, which collectively pose significant challenges for early detection. Given that aberrant DNA methylation events leading to altered gene expression are characteristic of numerous tumor types, there has been extensive research into epigenetic mechanisms, particularly DNA methylation, in human cancers. In the context of OC, DNA methylation is often associated with the regulation of critical genes, such as BRCA1/2 and Ras‑association domain family 1A. Methylation modifications within the promoter regions of these genes not only contribute to the pathogenesis of OC, but also induce medication resistance and influence the prognosis of patients with OC. As such, a more in‑depth understanding of DNA methylation underpinning carcinogenesis could potentially facilitate the development of more effective therapeutic approaches for this intricate disease. The present review focuses on classical tumor suppressor genes, oncogenes, signaling pathways and associated microRNAs in an aim to elucidate the influence of DNA methylation on the development and progression of OC. The advantages and limitations of employing DNA methylation in the diagnosis, treatment and prevention of OC are also discussed. On the whole, the present literature review indicates that the DNA methylation of specific genes could potentially serve as a prognostic biomarker for OC and a therapeutic target for personalized treatment strategies. Further investigations in this field may yield more efficacious diagnostic and therapeutic alternatives for patients with OC.
Collapse
Affiliation(s)
- Mengyu Fu
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Fengying Deng
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jie Chen
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Li Fu
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jiahui Lei
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ting Xu
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Department of Gynecology and Obstetrics, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215100, P.R. China
| | - Youguo Chen
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jinhua Zhou
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Qinqin Gao
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Hongmei Ding
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
27
|
Yu SK, Yu T, Wang YM, Sun A, Liu J, Lu KH. CCT6A facilitates lung adenocarcinoma progression and glycolysis via STAT1/HK2 axis. J Transl Med 2024; 22:460. [PMID: 38750462 PMCID: PMC11094951 DOI: 10.1186/s12967-024-05284-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Chaperonin Containing TCP1 Subunit 6 A (CCT6A) is a prominent protein involved in the folding and stabilization of newly synthesized proteins. However, its roles and underlying mechanisms in lung adenocarcinoma (LUAD), one of the most aggressive cancers, remain elusive. METHODS Our study utilized in vitro cell phenotype experiments to assess CCT6A's impact on the proliferation and invasion capabilities of LUAD cell lines. To delve into CCT6A's intrinsic mechanisms affecting glycolysis and proliferation in lung adenocarcinoma, we employed transcriptomic sequencing and liquid chromatography-mass spectrometry analysis. Co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (CHIP) assays were also conducted to substantiate the mechanism. RESULTS CCT6A was found to be significantly overexpressed in LUAD and associated with a poorer prognosis. The silencing of CCT6A inhibited the proliferation and migration of LUAD cells and elevated apoptosis rates. Mechanistically, CCT6A interacted with STAT1 protein, forming a complex that enhances the stability of STAT1 by protecting it from ubiquitin-mediated degradation. This, in turn, facilitated the transcription of hexokinase 2 (HK2), a critical enzyme in aerobic glycolysis, thereby stimulating LUAD's aerobic glycolysis and progression. CONCLUSION Our findings reveal that the CCT6A/STAT1/HK2 axis orchestrated a reprogramming of glucose metabolism and thus promoted LUAD progression. These insights position CCT6A as a promising candidate for therapeutic intervention in LUAD treatment.
Collapse
Affiliation(s)
- Shao-Kun Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Ming Wang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ao Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jia Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai-Hua Lu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
28
|
Liu Z, Wang C, Tang Y, Zhang X, Pei J, Liu H, Yu Y, Gu W. ENO1 promotes trophoblast invasion regulated by E2F8 in recurrent miscarriage. FASEB J 2024; 38:e23631. [PMID: 38661062 DOI: 10.1096/fj.202302032rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Recurrent miscarriage (RM) is related to the dysfunction of extravillous trophoblast cells (EVTs), but the comprehensive mechanisms remain largely unexplored. We analyzed single-cell RNA sequencing (scRNA-seq), bulk RNA sequencing and microarray datasets obtained from Gene Expression Omnibus (GEO) database to explore the hub genes in the mechanisms of RM. We identified 1724 differentially expressed genes (DEGs) in EVTs from the RM, and they were all expressed along the trajectory of EVTs. These DEGs were associated with hypoxia and glucose metabolism. Single-cell Regulatory Network Inference and Clustering (SCENIC) analysis revealed that E2F transcription factor (E2F) 8 (E2F8) was a key transcription factor for these DEGs. And the expression of ENO1 can be positively regulated by E2F8 via RNA sequencing analysis. Subsequently, we performed immunofluorescence assay (IF), plasmid transfection, western blotting, chromatin immunoprecipitation (ChIP), real-time quantitative polymerase chain reaction (qRT-PCR), and transwell assays for validation experiments. We found that the expression of alpha-Enolase 1 (ENO1) was lower in the placentas of RM. Importantly, E2F8 can transcriptionally regulate the expression of ENO1 to promote the invasion of trophoblast cells by inhibiting secreted frizzled-related protein 1/4 (SFRP1/4) to activate Wnt signaling pathway. Our results suggest that ENO1 can promote trophoblast invasion via an E2F8-dependent manner, highlighting a potential novel target for the physiological mechanisms of RM.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chengjie Wang
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yao Tang
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xiaoyue Zhang
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jiangnan Pei
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Haiyan Liu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yi Yu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Weirong Gu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
29
|
Shu X, Zhang HW, Liu SY, Sun LX, Zhang T, Ran YL. Anti-ENO1 antibody combined with metformin against tumor resistance: a novel antibody-based platform. PeerJ 2024; 12:e16817. [PMID: 38515460 PMCID: PMC10956521 DOI: 10.7717/peerj.16817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/30/2023] [Indexed: 03/23/2024] Open
Abstract
Background Antibody-based platforms (i.e., ADC) have emerged as one of the most encouraging tools for the cancer resistance caused by cancer stem cells (CSCs) enrichment. Our study might provide a promising therapeutic direction against drug resistance and serve as a potential precursor platform for screening ADC. Methods The cell migration, invasion, drug resistance, and self-renewal were assessed by the cell invasion and migration assay, wound healing assay, CCK-8 assay, colony formation assay, and sphere formation assay, respectively. The expression profiles of CSCs (ALDH+ and CD44+) subpopulations were screened by flow cytometry. The western blot and cell immunofluorescence assay were used to evaluate pathway-related protein expression in both anti-ENO1 antibody, MET combined with DPP/CTX-treated CSCs. Results In the present study, western blot and flow cytometry verified that anti-ENO1 antibody target the CD44+ subpopulation by inhibiting the PI3K/AKT pathway, while metformin might target the ALDH+ subpopulation through activation of the AMPK pathway and thus reverse drug resistance to varying degrees. Subsequently, in vitro investigation indicated that anti-ENO1 antibody, metformin combined with cisplatin/cetuximab could simultaneously target ALDH+ and CD44+ subpopulations. The combination also inhibited the CSCs proliferation, migration, invasion, and sphere formation; which may result in overcoming the drug resistance. Then, molecular mechanism exploration verified that the anti-ENO1 antibody, metformin combined with cisplatin/cetuximab inhibited the Wnt/β-catenin signaling. Conclusions The study preliminarily revealed anti-ENO1 antibody combined with metformin could overcome drug resistance against CSCs by inhibiting the Wnt//β-catenin pathway and might serve as a potential precursor platform for screening ADC. More importantly, it is reasonably believed that antibody-based drug combination therapy might function as an encouraging tool for oncotherapy.
Collapse
Affiliation(s)
- Xiong Shu
- National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing JiShuiTan Hospital, Beijing, China
| | - Hui Wen Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shi Ya Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Xin Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Zhang
- The Second People’s Hospital of Xining, Xining, China
| | - Yu Liang Ran
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
30
|
Bose A, Datta S, Mandal R, Ray U, Dhar R. Increased heterogeneity in expression of genes associated with cancer progression and drug resistance. Transl Oncol 2024; 41:101879. [PMID: 38262110 PMCID: PMC10832509 DOI: 10.1016/j.tranon.2024.101879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/16/2023] [Accepted: 12/29/2023] [Indexed: 01/25/2024] Open
Abstract
Fluctuations in the number of regulatory molecules and differences in timings of molecular events can generate variation in gene expression among genetically identical cells in the same environmental condition. This variation, termed as expression noise, can create differences in metabolic state and cellular functions, leading to phenotypic heterogeneity. Expression noise and phenotypic heterogeneity have been recognized as important contributors to intra-tumor heterogeneity, and have been associated with cancer growth, progression, and therapy resistance. However, how expression noise changes with cancer progression in actual cancer patients has remained poorly explored. Such an analysis, through identification of genes with increasing expression noise, can provide valuable insights into generation of intra-tumor heterogeneity, and could have important implications for understanding immune-suppression, drug tolerance and therapy resistance. In this work, we performed a genome-wide identification of changes in gene expression noise with cancer progression using single-cell RNA-seq data of lung adenocarcinoma patients at different stages of cancer. We identified 37 genes in epithelial cells that showed an increasing noise trend with cancer progression, many of which were also associated with cancer growth, EMT and therapy resistance. We found that expression of several of these genes was positively associated with expression of mitochondrial genes, suggesting an important role of mitochondria in generation of heterogeneity. In addition, we uncovered substantial differences in sample-specific noise profiles which could have implications for personalized prognosis and treatment.
Collapse
Affiliation(s)
- Anwesha Bose
- Department of Bioscience and Biotechnology, Indian Institute of Technology (IIT) Kharagpur, India
| | - Subhasis Datta
- Department of Bioscience and Biotechnology, Indian Institute of Technology (IIT) Kharagpur, India
| | - Rakesh Mandal
- Department of Bioscience and Biotechnology, Indian Institute of Technology (IIT) Kharagpur, India
| | - Upasana Ray
- Department of Bioscience and Biotechnology, Indian Institute of Technology (IIT) Kharagpur, India
| | - Riddhiman Dhar
- Department of Bioscience and Biotechnology, Indian Institute of Technology (IIT) Kharagpur, India.
| |
Collapse
|
31
|
Rosell R, Codony-Servat J, González J, Santarpia M, Jain A, Shivamallu C, Wang Y, Giménez-Capitán A, Molina-Vila MA, Nilsson J, González-Cao M. KRAS G12C-mutant driven non-small cell lung cancer (NSCLC). Crit Rev Oncol Hematol 2024; 195:104228. [PMID: 38072173 DOI: 10.1016/j.critrevonc.2023.104228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 02/20/2024] Open
Abstract
KRAS G12C mutations in non-small cell lung cancer (NSCLC) partially respond to KRAS G12C covalent inhibitors. However, early adaptive resistance occurs due to rewiring of signaling pathways, activating receptor tyrosine kinases, primarily EGFR, but also MET and ligands. Evidence indicates that treatment with KRAS G12C inhibitors (sotorasib) triggers the MRAS:SHOC2:PP1C trimeric complex. Activation of MRAS occurs from alterations in the Scribble and Hippo-dependent pathways, leading to YAP activation. Other mechanisms that involve STAT3 signaling are intertwined with the activation of MRAS. The high-resolution MRAS:SHOC2:PP1C crystallization structure allows in silico analysis for drug development. Activation of MRAS:SHOC2:PP1C is primarily Scribble-driven and downregulated by HUWE1. The reactivation of the MRAS complex is carried out by valosin containing protein (VCP). Exploring these pathways as therapeutic targets and their impact on different chemotherapeutic agents (carboplatin, paclitaxel) is crucial. Comutations in STK11/LKB1 often co-occur with KRAS G12C, jeopardizing the effect of immune checkpoint (anti-PD1/PDL1) inhibitors.
Collapse
Affiliation(s)
- Rafael Rosell
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Spain; IOR, Hospital Quiron-Dexeus, Barcelona, Spain.
| | | | - Jessica González
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Spain
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Italy
| | - Anisha Jain
- Department of Microbiology, JSS Academy of Higher Education & Research, Mysuru, India
| | - Chandan Shivamallu
- Department of Biotechnology & Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Yu Wang
- Genfleet Therapeutics, Shanghai, China
| | | | | | - Jonas Nilsson
- Department Radiation Sciences, Oncology, Umeå University, Sweden
| | | |
Collapse
|
32
|
Lou H, Wu Z, Wei G. CDC6 may serve as an indicator of lung adenocarcinoma prognosis and progression based on TCGA and GEO data mining and experimental analyses. Oncol Rep 2024; 51:35. [PMID: 38186304 PMCID: PMC10807357 DOI: 10.3892/or.2024.8694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the most lethal types of cancer worldwide, and accurately predicting patient prognosis is an important challenge. Gene prediction models, which are known for their simplicity and efficiency, have the potential to be used for prognostic predictions. However, the availability of models with true clinical value is limited. The present study integrated tissue sequencing and the clinical information of patients with LUAD from The Cancer Genome Atlas and Gene Expression Omnibus databases using bioinformatics. This comprehensive approach enabled the identification of 252 differentially expressed genes. Subsequently, univariate and multivariate Cox analyses were performed using these genes, and 14 and 3 genes [including cell division cycle 6 (CDC6), hyaluronan mediated motility receptor and STIL centriolar assembly protein] were selected for the construction of two prognostic models. Notably, the 3‑gene prognostic model exhibited a comparable predictive ability to that of the 14‑gene model. Functionally, pathway enrichment analysis revealed that CDC6 played a role in regulating the cell cycle and promoting tumor staging. To further investigate the relevance of CDC6, in vitro experiments involving the downregulation of CDC6 expression were conducted, which resulted in significant inhibition of tumor cell migration, invasion and proliferation. Moreover, in vivo experiments demonstrated that downregulating CDC6 expression significantly reduced the burden and metastasis of in situ lung tumors in mice. These findings suggested that CDC6 may be a critical gene involved in the development and prognosis of LUAD. In summary, the present study successfully constructed a simple yet accurate prognostic prediction model consisting of 3 genes. Additionally, the functional importance of CDC6 as a key gene in the model was identified. These findings lay a crucial foundation for further exploration of prognostic prediction models and a deeper understanding of the functional mechanisms of CDC6. Notably, these results have potential clinical implications for improving personalized treatment and prognosis evaluation for patients with LUAD.
Collapse
Affiliation(s)
- Hao Lou
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Zelai Wu
- Department of Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Guangyou Wei
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
- Department of Pediatrics, Bozhou Municipal People's Hospital, Bozhou, Anhui 236800, P.R. China
- Department of Pediatrics, Bozhou Clinical Medicine of Anhui University of Science and Technology School, Bozhou, Anhui 236800, P.R. China
| |
Collapse
|
33
|
Huang Y, Ma S, Xu JY, Qian K, Wang Y, Zhang Y, Tan M, Xiao T. Prognostic biomarker discovery based on proteome landscape of Chinese lung adenocarcinoma. Clin Proteomics 2024; 21:2. [PMID: 38182978 PMCID: PMC10768252 DOI: 10.1186/s12014-023-09449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
Despite recent innovations in imaging and genomic screening promotes advance in diagnosis and treatment of lung adenocarcinoma (LUAD), there remains high mortality of LUAD and insufficient understanding of LUAD biology. Our previous study performed an integrative multi-omic analysis of LUAD, filling the gap between genomic alterations and their biological proteome effects. However, more detailed molecular characterization and biomarker resources at proteome level still need to be uncovered. In this study, a quantitative proteomic experiment of patient-derived benign lung disease samples was carried out. After that, we integrated the proteomic data with previous dataset of 103 paired LUAD samples. We depicted the proteomic differences between non-cancerous and tumor samples and among diverse pathological subtypes. We also found that up-regulated mitophagy was a significant characteristic of early-stage LUAD. Additionally, our integrative analysis filtered out 75 potential prognostic biomarkers and validated two of them in an independent LUAD serum cohort. This study provided insights for improved understanding proteome abnormalities of LUAD and the novel prognostic biomarker discovery offered an opportunity for LUAD precise management.
Collapse
Affiliation(s)
- Yuqi Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sheng Ma
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jun-Yu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, 528400, China.
| | - Kun Qian
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yaru Wang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yi Zhang
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, 528400, China.
| | - Ting Xiao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
34
|
Lei P, Liang J, Su X, Gao J, Ren B, Ma X, Zhang Y, Ma W. Pseudolaric Acid B Inhibits FLT4-induced Proliferation and Migration in Non-small Cell Lung Cancer. Anticancer Agents Med Chem 2024; 24:1419-1430. [PMID: 39192640 DOI: 10.2174/0118715206313028240819103933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/26/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVES Non-Small Cell Lung Cancer (NSCLC) has attracted much attention on account of the high incidence and mortality of cancers. Vascular Endothelial Growth Factor Receptor 3 (VEGFR3/FLT4), which is a highly expressed receptor in NSCLC, greatly regulates cancer proliferation and migration. Pseudolaric Acid B (PAB) is a diterpenoid acid with antitumor activity isolated from Pseudolarix kaempferi. This study aimed to explore the inhibitory effect of PAB targeting FLT4 in NSCLC. METHODS Cell membrane chromatography was used to evaluate the affinity of PAB binding on FLT4. NCIH1299 cells were used in this study, and an MTT assay was performed to determine the anti-proliferation effect of PAB. Cell cycle analysis was conducted to study the cycle arrest of PAB. Wound healing and Transwell assays assessed the rate of cell migration. Western blot analysis evaluated the expression of related proteins. RESULTS PAB showed strong affinity to FLT4 with a KD value of 3.01 × 10- 6 M. Targeting FLT4 by PAB inactivated downstream P38MAPK and PI3K/AKT pathways, which inhibited the proliferation of NCI-H1299 cells. Meanwhile, PAB promoted G2/M phase arrest by influencing CyclinB1 and CDK1 complex formation to inhibit NCI-H1299 cell growth, but the effect was attenuated by knocking down the FLT4. Besides, PAB regulated MMP9 secretion through the Wnt/β-catenin signaling pathway to inhibit NCI-H1299 cell migration. However, the ability of PAB to inhibit migration was significantly weakened by FLT4 knockdown in NCI-H1299 cells. CONCLUSION PAB can inhibit the proliferation and migration of NSCLC cells through targeting FLT4 and is expected to be a promising FLT4 inhibitor for NSCLC treatment.
Collapse
Affiliation(s)
- Panpan Lei
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P.R. China
| | - Jinna Liang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P.R. China
| | - Xinyue Su
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P.R. China
| | - Jiapan Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P.R. China
| | - Bingxi Ren
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P.R. China
| | - Xiaoyu Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P.R. China
| | - Yuxiu Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P.R. China
| | - Weina Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P.R. China
| |
Collapse
|
35
|
Ding D, Wang L, Zhang Y, Shi K, Shen Y. Machine learning developed a programmed cell death signature for predicting prognosis and immunotherapy benefits in lung adenocarcinoma. Transl Oncol 2023; 38:101784. [PMID: 37722290 PMCID: PMC10511492 DOI: 10.1016/j.tranon.2023.101784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related deaths worldwide with poor prognosis. Programmed cell death (PCD) plays a crucial function in tumor progression and immunotherapy response in lung adenocarcinoma (LUAD). METHODS Integrative machine learning procedure including 10 methods was performed to develop a prognostic cell death signature (CDS) using TCGA, GSE30129, GSE31210, GSE37745, GSE42127, GSE50081, GSE68467, GSE68571, and GSE72094 dataset. The correlation between CDS and tumor immune microenvironment was evaluated using various methods and single cell analysis. qRT-PCR and CCK-8 assay were conducted to explore the biological functions of hub gene. RESULTS The prognostic CDS developed by Lasso + survivalSVM method was regarded as the optimal prognostic model. The CDS had a stable and powerful performance in predicting the clinical outcome of LUAD and served as an independent risk factor in TCGA and 8 GEO datasets. The C-index of CDS was higher than that of clinical stage and many developed signatures for LUAD. LUAD patients with low CDS score had a higher PD1&CTLA4 immunophenoscore, higher TMB score, lower TIDE score and lower tumor escape score, indicating a better immunotherapy benefit. Single cell analysis revealed a strong and frequent communication between epithelial cells and cancer-related fibroblasts by specific ligand-receptor pairs, including COL1A2-SDC4 and COL1A2-SDC1. Vitro experiment showed that SLC7A5 was upregulated in LUAD and knockdown of SLC7A5 obviously suppressed tumor cell proliferation. CONCLUSION Our study developed a novel CDS for LUAD. The CDS served as an indicator for predicting the prognosis and immunotherapy benefits of LAUD patients.
Collapse
Affiliation(s)
- Dongxiao Ding
- Department of Thoracic Surgery, The People's Hospital of Beilun District, Ningbo, 315800, Zhejiang, China
| | - Liangbin Wang
- Department of Anorectal Surgery, The People's Hospital of Beilun district, Ningbo, 315800, Zhejiang, China
| | - Yunqiang Zhang
- Department of Thoracic Surgery, The People's Hospital of Beilun District, Ningbo, 315800, Zhejiang, China
| | - Ke Shi
- Department of Thoracic Surgery, The People's Hospital of Beilun District, Ningbo, 315800, Zhejiang, China
| | - Yaxing Shen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Duan B, Zhou X, Zhang X, Qiu F, Zhang S, Chen Y, Yang J, Wang J, Tan W. BRD4-binding enhancer promotes CRC progression by interacting with YY1 to activate the Wnt pathway through upregulation of TCF7L2. Biochem Pharmacol 2023; 218:115877. [PMID: 37879498 DOI: 10.1016/j.bcp.2023.115877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Colorectal carcinoma (CRC), one of the most life-threatening cancer types, is associated with aberrant expression of epigenetic modifiers and activation of the Wnt pathway. However, the role of epigenetic regulators in driving cancer cell proliferation and their potential as therapeutic targets affecting the Wnt pathway remain unclear. In this study, BRD4 was found to promote the progression of CRC both in vitro and in vivo. The expression of BRD4 correlated with shortened CRC patient survival. In addition, BRD4 function was strongly correlated with the Wnt pathway, but rather through regulation of TCF7L2 at transcriptional levels. BRD4 and H3K27ac have overlapping occupancies in the cis-regulatory elements of TCF7L2, suggesting enhancer-based epigenetic regulation. Numerous YY1 binding sites were found in the abovementioned region. YY1 recruited BRD4 to bind to cis-regulatory elements of TCF7L2, thereby regulating the expression of TCF7L2. Altogether, this study validates that BRD4 performs a canonical epigenetic regulatory function in CRC and can be used in the treatment of Wnt pathway-dependent CRC or other malignancies with clinically available bromodomain inhibitors.
Collapse
Affiliation(s)
- Biao Duan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Xuwei Zhou
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiaoyi Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Fenglan Qiu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shaoqing Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yue Chen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jun Yang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Juan Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wenfu Tan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
37
|
Wang X, Liu Y, Zhou M, Yu L, Si Z. m6A modified BACE1-AS contributes to liver metastasis and stemness-like properties in colorectal cancer through TUFT1 dependent activation of Wnt signaling. J Exp Clin Cancer Res 2023; 42:306. [PMID: 37986103 PMCID: PMC10661562 DOI: 10.1186/s13046-023-02881-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Liver metastasis is one of the most important reasons for high mortality of colorectal cancer (CRC). Growing evidence illustrates that lncRNAs play a critical role in CRC liver metastasis. Here we described a novel function and mechanisms of BACE1-AS promoting CRC liver metastasis. METHODS qRT-PCR and in situ hybridization were performed to examine the BACE1-AS level in CRC. IGF2BP2 binding to m6A motifs in BACE1-AS was determined by RIP assay and S1m-tagged immunoprecipitation. Transwell assay and liver metastasis mice model experiments were performed to examine the metastasis capabilities of BACE1-AS knockout cells. Stemness-like properties was examined by tumor sphere assay and the expression of stemness biomarkers. Microarray data were acquired to analyze the signaling pathways involved in BACE1-AS promoting CRC metastasis. RESULTS BACE1-AS is the most up-regulated in metastatic CRC associated with unfavorable prognosis. Sequence blast revealed two m6A motifs in BACE1-AS. IGF2BP2 binding to these two m6A motifs is required for BACE1-AS boost in metastatic CRC. m6A modified BACE1-AS drives CRC cells migration and invasion and liver metastasis both in vitro and in vivo. Moreover, BACE1-AS maintains the stemness-like properties of CRC cells. Mechanically, BACE1-AS promoted TUFT1 expression by ceRNA network through miR-214-3p. CRC patients with such ceRNA network suffer poorer prognosis than ceRNA-negative patients. Depletion of TUFT1 mimics BACE1-AS loss. BACE1-AS activated Wnt signaling pathway in a TUFT1 dependent manner. BACE1-AS/miR-214-3p/TUFT1/Wnt signaling regulatory axis is essential for CRC liver metastasis. Pharmacologic inhibition of Wnt signaling pathway repressed liver metastasis and stemness-like features in BACE1-AS over-expressed CRC cells. CONCLUSION Our study demonstrated BACE1-AS as a novel target of IGF2BP2 through m6A modification. m6A modified BACE1-AS promotes CRC liver metastasis through TUFT1 dependent activation of Wnt signaling pathway. Thus, targeting BACE1-AS and its downstream Wnt signaling pathways may provide a new opportunity for metastatic CRC intervention and treatment.
Collapse
Affiliation(s)
- Xidi Wang
- Central Laboratory of the Medical Research Center, The First Affiliated Hospital of Ningbo University, 247 Renmin Road, Jiangbei District, Ningbo, 315020, P. R. China.
- Health Science Center, Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, P. R. China.
| | - Yu Liu
- Health Science Center, Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, P. R. China
| | - Miao Zhou
- Central Laboratory of the Medical Research Center, The First Affiliated Hospital of Ningbo University, 247 Renmin Road, Jiangbei District, Ningbo, 315020, P. R. China
| | - Lei Yu
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Zizhen Si
- Health Science Center, Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, P. R. China.
| |
Collapse
|
38
|
Hashemi M, Khosroshahi EM, Chegini MK, Abedi M, Matinahmadi A, Hosnarody YSD, Rezaei M, Saghari Y, Fattah E, Abdi S, Entezari M, Nabavi N, Rashidi M, Raesi R, Taheriazam A. miRNAs and exosomal miRNAs in lung cancer: New emerging players in tumor progression and therapy response. Pathol Res Pract 2023; 251:154906. [PMID: 37939448 DOI: 10.1016/j.prp.2023.154906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
Non-coding RNAs have shown key roles in cancer and among them, short RNA molecules are known as microRNAs (miRNAs). These molecules have length less than 25 nucleotides and suppress translation and expression. The functional miRNAs are produced in cytoplasm. Lung cancer is a devastating disease that its mortality and morbidity have undergone an increase in recent years. Aggressive behavior leads to undesirable prognosis and tumors demonstrate abnormal proliferation and invasion. In the present review, miRNA functions in lung cancer is described. miRNAs reduce/increase proliferation and metastasis. They modulate cell death and proliferation. Overexpression of oncogenic miRNAs facilitates drug resistance and radio-resistance in lung cancer. Tumor microenvironment components including macrophages and cancer-associated fibroblasts demonstrate interactions with miRNAs in lung cancer. Other factors such as HIF-1α, lncRNAs and circRNAs modulate miRNA expression. miRNAs have also value in the diagnosis of lung cancer. Understanding such interactions can pave the way for developing novel therapeutics in near future for lung cancer patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Kalhor Chegini
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Abedi
- Department of Pathology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun, Poland
| | - Yasaman Sotodeh Dokht Hosnarody
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdi Rezaei
- Faculty of Medicine, Shahed University, Tehran, Iran
| | - Yalda Saghari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Eisa Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Abdi
- Department of Physics, Safadasht Branch, Islamic Azad university, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
39
|
Freeburg NF, Peterson N, Ruiz DA, Gladstein AC, Feldser DM. Metastatic Competency and Tumor Spheroid Formation Are Independent Cell States Governed by RB in Lung Adenocarcinoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:1992-2002. [PMID: 37728504 PMCID: PMC10545537 DOI: 10.1158/2767-9764.crc-23-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/08/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023]
Abstract
Inactivation of the retinoblastoma (RB) tumor suppressor in lung adenocarcinoma is associated with the rapid acquisition of metastatic ability and the loss of lung cell lineage commitment. We previously showed that restoration of RB in advanced lung adenocarcinomas in the mouse was correlated with a decreased frequency of lineage decommitted tumors and overt metastases. To identify a causal relationship for RB and its role in reprogramming lineage commitment and reducing metastatic competency in lung adenocarcinoma, we developed multiple tumor spheroid forming lines where RB restoration could be achieved after characterization of the degree of each spheroid's lineage commitment and metastatic ability. Surprisingly, we discovered that RB inactivation dramatically promoted tumor spheroid forming potential in tumors that arise in the KrasLSL-G12D/+; p53flox/flox lung adenocarcinoma model. However, RB reactivation had no effect on the maintenance of tumor spheroid lines once established. In addition, we show that RB-deficient tumor spheroid lines are not uniformly metastatically competent but are equally likely to be nonmetastatic. Interestingly, unlike tumor spheroid maintenance, RB restoration could functionally revert metastatic tumor spheroids to a nonmetastatic cell state. Thus, strategies to reinstate RB pathway activity in lung cancer may reverse metastatic ability and have therapeutic potential. Finally, the acquisition of tumor spheroid forming potential reflects underlying cell state plasticity, which is often predictive of, or even conflated with metastatic ability. Our data support that each is a discrete cell state restricted by RB and question the suitability of tumor spheroid models for their predictive potential of advanced metastatic tumor cell states. SIGNIFICANCE Members of the RB pathway are frequently mutated in lung adenocarcinoma. We show that RB regulates cell state plasticity, tumor spheroid formation, and metastatic competency. Our data indicate that these are independent states where spheroid formation is distinct from metastatic competency. Thus, we caution against conflating spheroid formation and other signs of cell state plasticity with advanced metastatic cell states. Nevertheless, our work supports clinical strategies to reactivate RB pathways.
Collapse
Affiliation(s)
- Nelson F. Freeburg
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nia Peterson
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dain A. Ruiz
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amy C. Gladstein
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David M. Feldser
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
40
|
Kong J, Xu S, Deng Z, Wang Y, Zhang P. Transcription factor FOXM1 promotes hepatocellular carcinoma malignant progression through activation of the WNT pathway by binding to SETDB1. Tissue Cell 2023; 84:102186. [PMID: 37556918 DOI: 10.1016/j.tice.2023.102186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND FOXM1 is a transcription factor confirmed by studies to promote the development of hepatocellular carcinoma (HCC) and various other cancers, yet the molecular mechanism remains rather enigmatic. This study attempted to unveil the function and regulatory mechanism of FOXM1 in the progression of HCC. METHODS Bioinformatics methods first analyzed the expression of FOXM1 in HCC tissues and then screened target genes downstream of FOXM1. Possible pathways of the target gene were specified through Gene Set Enrichment Analysis (GSEA). After using qRT-PCR to measure the expression of FOXM1 and its downstream regulatory gene SETDB1 in HCC tissues, ChIP and dual-luciferase assays were employed and verified the binding relationship between FOXM1 and the promoter of SETDB1. Then the effects of the FOXM1/SETDB1/Wnt pathway on the proliferation, migration, and invasion of HCC cells were profiled by CCK-8, colony formation, wound healing, and transwell assays. WNT and EMT-related protein expression levels were detected by western blot and immunofluorescence assay, respectively. RESULTS The bioinformatics prediction showed that SETDB1 was the target downstream of FOXM1, and their binding relationship was verified by ChIP and dual-luciferase assays. Cell experiments showed that FOXM1 could enhance the proliferative, migratory, and invasive abilities of HCC cells through binding to SETDB1. Rescue assay suggested that the activation of key genes of the WNT pathway and EMT-related genes were part of the regulatory mechanism that FOXM1 bound to SETDB1. CONCLUSION This study found that FOXM1 could bind with SETDB1 and hence activate the WNT signaling pathway to promote the malignant progression of HCC. It indicated that FOXM1 could be the possible target for treating HCC.
Collapse
Affiliation(s)
- Jianqiao Kong
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang City, China
| | - Song Xu
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang City, China
| | - Zhongming Deng
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang City, China
| | - Yi Wang
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang City, China.
| | - Peng Zhang
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang City, China.
| |
Collapse
|
41
|
Ye Z, Yang J, Jiang H, Zhan X. The roles of protein ubiquitination in tumorigenesis and targeted drug discovery in lung cancer. Front Endocrinol (Lausanne) 2023; 14:1220108. [PMID: 37795365 PMCID: PMC10546409 DOI: 10.3389/fendo.2023.1220108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023] Open
Abstract
The malignant lung cancer has a high morbidity rate and very poor 5-year survival rate. About 80% - 90% of protein degradation in human cells is occurred through the ubiquitination enzyme pathway. Ubiquitin ligase (E3) with high specificity plays a crucial role in the ubiquitination process of the target protein, which usually occurs at a lysine residue in a substrate protein. Different ubiquitination forms have different effects on the target proteins. Multiple short chains of ubiquitination residues modify substrate proteins, which are favorable signals for protein degradation. The dynamic balance adapted to physiological needs between ubiquitination and deubiquitination of intracellular proteins is beneficial to the health of the organism. Ubiquitination of proteins has an impact on many biological pathways, and imbalances in these pathways lead to diseases including lung cancer. Ubiquitination of tumor suppressor protein factors or deubiquitination of tumor carcinogen protein factors often lead to the progression of lung cancer. Ubiquitin proteasome system (UPS) is a treasure house for research and development of new cancer drugs for lung cancer, especially targeting proteasome and E3s. The ubiquitination and degradation of oncogene proteins with precise targeting may provide a bright prospect for drug development in lung cancer; Especially proteolytic targeted chimerism (PROTAC)-induced protein degradation technology will offer a new strategy in the discovery and development of new drugs for lung cancer.
Collapse
Affiliation(s)
- Zhen Ye
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jingru Yang
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hanming Jiang
- School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
42
|
Tang H, Pan L, Tang L, Liu J. Alpha-enolase 1 knockdown facilitates the proliferation and invasion of villous trophoblasts by upregulating COX-2. Mol Genet Genomic Med 2023; 11:e2220. [PMID: 37288669 PMCID: PMC10496057 DOI: 10.1002/mgg3.2220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 04/07/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Enolase 1 (ENO1) is a metabolic enzyme which participates in pyruvate synthesis and ATP production in cells. Previously, differential expression of ENO1 was discovered in villous tissues between recurrent miscarriage and induced abortion. This study was designed to explore whether ENO1 influences the proliferation and invasion of villous trophoblasts and the related molecular mechanisms. METHODS First, ENO1 expression in placental villus tissues collected from recurrent miscarriage (RM) patients and women for induced abortion as well as in trophoblast-derived cell lines was detected by RT-qPCR and western blotting. ENO1 localization and expression in villus tissues were further confirmed through immunohistochemistry staining. Then, the effects of ENO1 downregulation on trophoblast Bewo cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) process were evaluated by CCK-8 assay, transwell assay, and western blotting. As for the regulatory mechanism of ENO1, the expression of COX-2, c-Myc and cyclin D1 in Bewo cells after ENO1 knockdown was finally evaluated by RT-qPCR and western blotting. RESULTS ENO1 was mainly localized in the cytoplasm, with very small amounts in the nucleus of trophoblast cells. ENO1 expression in the villi tissues of RM patients was significantly increased, when compared with the villous tissues of healthy controls. Furthermore, Bewo cells, a trophoblast cell line with relatively higher expression of ENO1, was used to downregulate the ENO1 expression by ENO1-siRNA transfection. ENO1 knockdown significantly facilitated Bewo cell growth, EMT process, migration, and invasion. ENO1 silencing markedly elevated COX-2, c-Myc, and cyclin D1 expression. CONCLUSION ENO1 may participate in the development of RM via suppressing the growth and invasion of villous trophoblasts via reducing the expression of COX-2, c-Myc, and cyclin D1.
Collapse
Affiliation(s)
- Huaiyun Tang
- Clinical Center of Reproductive Medicine, Lianyungang Maternal and Child Health HospitalKangda College of Nanjing Medical UniversityLianyungangChina
| | - Linqing Pan
- Clinical Center of Reproductive Medicine, Lianyungang Maternal and Child Health HospitalKangda College of Nanjing Medical UniversityLianyungangChina
| | - Lisha Tang
- Clinical Center of Reproductive Medicine, Lianyungang Maternal and Child Health HospitalKangda College of Nanjing Medical UniversityLianyungangChina
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
43
|
Wang H, Qiu Y, Zhang H, Chang N, Hu Y, Chen J, Hu R, Liao P, Li Z, Yang Y, Cen Q, Ding X, Li M, Xie X, Li Y. Histone acetylation by HBO1 (KAT7) activates Wnt/β-catenin signaling to promote leukemogenesis in B-cell acute lymphoblastic leukemia. Cell Death Dis 2023; 14:498. [PMID: 37542030 PMCID: PMC10403501 DOI: 10.1038/s41419-023-06019-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023]
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) is an aggressive hematological disorder with a dismal prognosis. The dysregulation of histone acetylation is of great significance in the pathogenesis and progression of B-ALL. Regarded as a fundamental acetyltransferase gene, the role of HBO1 (lysine acetyltransferase 7/KAT7) in B-ALL has not been investigated. Herein, we found that HBO1 expression was elevated in human B-ALL cells and associated with poor disease-free survival. Strikingly, HBO1 knockdown inhibited viability, proliferation, and G1-S cycle progression in B-ALL cells, while provoking apoptosis. In contrast, ectopic overexpression of HBO1 enhanced cell viability and proliferation but inhibited apoptotic activation. The results of in vivo experiments also certificated the inhibitory effect of HBO1 knockdown on tumor growth. Mechanistically, HBO1 acetylated histone H3K14, H4K8, and H4K12, followed by upregulating CTNNB1 expression, resulting in activation of the Wnt/β-catenin signaling pathway. Moreover, a novel small molecule inhibitor of HBO1, WM-3835, potently inhibited the progression of B-ALL. Our data identified HBO1 as an efficacious regulator of CTNNB1 with therapeutic potential in B-ALL.
Collapse
Affiliation(s)
- Hao Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P. R. China
| | - Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P. R. China
| | - Honghao Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P. R. China.
| | - Ning Chang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P. R. China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P. R. China
| | - Jianyu Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P. R. China
| | - Rong Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P. R. China
| | - Peiyun Liao
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P. R. China
| | - Zhongwei Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P. R. China
| | - Yulu Yang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P. R. China
| | - Qingyan Cen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P. R. China
| | - Xiangyang Ding
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P. R. China
| | - Meifang Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P. R. China
| | - Xiaoling Xie
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P. R. China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P. R. China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, 510005, P. R. China.
| |
Collapse
|
44
|
Chen X, Li Z, Liang M, Zhang Z, Zhu D, Lin B, Zhou R, Lu Y. Identification of DDIT4 as a potential prognostic marker associated with chemotherapeutic and immunotherapeutic response in triple-negative breast cancer. World J Surg Oncol 2023; 21:194. [PMID: 37391802 DOI: 10.1186/s12957-023-03078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/14/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most heterogenous and aggressive subtype of breast cancer. Chemotherapy remains the standard treatment option for patients with TNBC owing to the unavailability of acceptable targets and biomarkers in clinical practice. Novel biomarkers and targets for patient stratification and treatment of TNBC are urgently needed. It has been reported that the overexpression of DNA damage-inducible transcript 4 gene (DDIT4) is associated with resistance to neoadjuvant chemotherapy and poor prognosis in patients with TNBC. In this study, we aimed to identify novel biomarkers and therapeutic targets using RNA sequencing (RNA-seq) and data mining using data from public databases. METHODS RNA sequencing (RNA-Seq) was performed to detect the different gene expression patterns in the human TNBC cell line HS578T treated with docetaxel or doxorubicin. Sequencing data were further analyzed by the R package "edgeR" and "clusterProfiler" to identify the profile of differentially expressed genes (DEGs) and annotate gene functions. The prognostic and predictive value of DDIT4 expression in patients with TNBC was further validated by published online data resources, including TIMER, UALCAN, Kaplan-Meier plotter, and LinkedOmics, and GeneMANIA and GSCALite were used to investigate the functional networks and hub genes related to DDIT4, respectively. RESULTS Through the integrative analyses of RNA-Seq data and public datasets, we observed the overexpression of DDIT4 in TNBC tissues and found that patients with DDIT4 overexpression showed poor survival outcomes. Notably, immune infiltration analysis showed that the levels of DDIT4 expression correlated negatively with the abundance of tumor-infiltrating immune cells and immune biomarker expression, but correlated positively with immune checkpoint molecules. Furthermore, DDIT4 and its hub genes (ADM, ENO1, PLOD1, and CEBPB) involved in the activation of apoptosis, cell cycle, and EMT pathways. Eventually, we found ADM, ENO1, PLOD1, and CEBPB showed poor overall survival in BC patients. CONCLUSION In this study, we found that DDIT4 expression is associated with the progression, therapeutic efficacy, and immune microenvironment of patients with TNBC, and DDIT4 would be as a potential prognostic biomarker and therapeutic target. These findings will help to identify potential molecular targets and improve therapeutic strategies against TNBC.
Collapse
Affiliation(s)
- Xuanzhao Chen
- The Center of Pathological Diagnosis and Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zeyan Li
- Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Meihua Liang
- The Center of Pathological Diagnosis and Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ziyang Zhang
- Guangzhou Huayin Medical Laboratory Center, Ltd., Guangzhou, China
| | - Di Zhu
- Department of Clinical Pathology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Biyun Lin
- The Center of Pathological Diagnosis and Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Renyu Zhou
- School of Medicine, Jinan University, Guangzhou, China
| | - Yuanzhi Lu
- The Center of Pathological Diagnosis and Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Department of Clinical Pathology, First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
45
|
Shao X, Sun Y, Zhong K, Gu J, Yu Y, Hu T, Kuai X, Xing Y. TYRO3 promotes tumorigenesis and drug resistance in colorectal cancer by enhancing the epithelial-mesenchymal transition process. Aging (Albany NY) 2023; 15:3035-3051. [PMID: 37116196 DOI: 10.18632/aging.204656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/03/2023] [Indexed: 04/30/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer mortality worldwide. Although considerable advances in CRC treatment have been achieved, effective treatment improvement has hit a bottleneck. This study demonstrated that TYRO3 expression was aberrantly increased in CRC tissues with prognosis association. The prediction model of prognosis for CRC patients was constructed based on TYRO3 expression. The model suggested that the TYRO3 level is crucial to the final prediction results. We observed that knockdown TYRO3 expression could inhibit the proliferation and migration ability and reverse the drug resistance by constructing drug-resistant CRC cell lines. In vivo experiments also confirmed this conclusion. Thus, targeting TYRO3 combined with 5-Fu treatment could provide a better therapeutic effect. Additionally, TYRO3 could inhibit the EMT process by down-regulating ENO1, which may be achieved by interfering with energy metabolism in cancer cells. Therefore, the current study provides a theoretical basis for TYRO3 in drug-resistance of CRC cells and highlights a new strategy for CRC-targeted therapy.
Collapse
Affiliation(s)
- Xinyu Shao
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Yibin Sun
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Kaiqiang Zhong
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Jinrong Gu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Yang Yu
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Tong Hu
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Xiaoyi Kuai
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Yechen Xing
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215000, China
| |
Collapse
|
46
|
Xu H, Liu J, Zhang Y, Zhou Y, Zhang L, Kang J, Ning C, He Z, Song S. KIF23, under regulation by androgen receptor, contributes to nasopharyngeal carcinoma deterioration by activating the Wnt/β-catenin signaling pathway. Funct Integr Genomics 2023; 23:116. [PMID: 37010644 DOI: 10.1007/s10142-023-01044-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023]
Abstract
Our study aimed to explore the potential mechanisms of KIF23 regulating function in the progression of nasopharyngeal carcinoma and pinpoint novel therapeutic targets for the clinical treatment of nasopharyngeal carcinoma patients. Firstly, the mRNA and protein level of KIF23 in nasopharyngeal carcinoma was measured using quantitative real-time PCR and western blot. Then, the influence of KIF23 on tumor metastasis and growth in nasopharyngeal carcinoma was determined through the in vivo and in vitro experiments. Lastly, the regulatory mechanisms of KIF23 in nasopharyngeal carcinoma were illustrated in the chromatin immunoprecipitation assay. KIF23 was first found to be overexpressed in nasopharyngeal carcinoma samples, and its expression was associated with poor prognosis. Then, the nasopharyngeal carcinoma cell's proliferation, migration, and invasion potential could be improved by inducing KIF23 expression both in vivo and in vitro. Furthermore, androgen receptor (AR) was found to bind to the KIF23 promoter region directly and enhance KIF23 transcription. At last, KIF23 could accelerate nasopharyngeal carcinoma deterioration via activating the Wnt/β-catenin signaling pathway. AR/KIF23/Wnt/β-catenin pathway promotes nasopharyngeal carcinoma deterioration. Our findings could serve as a new therapeutic strategy for nasopharyngeal carcinoma in the clinical practice.
Collapse
Affiliation(s)
- Hongbo Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical College, No.287, Changhuai Road, Longzihu District, Bengbu, 233004, Anhui, China
- Anhui Province Key Laboratory of Translational Cancer Research Affiliated to Bengbu Medical College, Bengbu, Anhui, China
| | - Jingjing Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical College, No.287, Changhuai Road, Longzihu District, Bengbu, 233004, Anhui, China
| | - Yajun Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical College, No.287, Changhuai Road, Longzihu District, Bengbu, 233004, Anhui, China
| | - Yan Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical College, No.287, Changhuai Road, Longzihu District, Bengbu, 233004, Anhui, China
| | - Lei Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical College, No.287, Changhuai Road, Longzihu District, Bengbu, 233004, Anhui, China
| | - Jia Kang
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical College, No.287, Changhuai Road, Longzihu District, Bengbu, 233004, Anhui, China
| | - Can Ning
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical College, No.287, Changhuai Road, Longzihu District, Bengbu, 233004, Anhui, China
| | - Zelai He
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical College, No.287, Changhuai Road, Longzihu District, Bengbu, 233004, Anhui, China.
- Anhui Province Key Laboratory of Translational Cancer Research Affiliated to Bengbu Medical College, Bengbu, Anhui, China.
| | - Shilong Song
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical College, No.287, Changhuai Road, Longzihu District, Bengbu, 233004, Anhui, China.
- Anhui Province Key Laboratory of Translational Cancer Research Affiliated to Bengbu Medical College, Bengbu, Anhui, China.
| |
Collapse
|
47
|
Ross KE, Zhang G, Akcora C, Lin Y, Fang B, Koomen J, Haura EB, Grimes M. Network models of protein phosphorylation, acetylation, and ubiquitination connect metabolic and cell signaling pathways in lung cancer. PLoS Comput Biol 2023; 19:e1010690. [PMID: 36996232 PMCID: PMC10089347 DOI: 10.1371/journal.pcbi.1010690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/11/2023] [Accepted: 03/11/2023] [Indexed: 04/01/2023] Open
Abstract
We analyzed large-scale post-translational modification (PTM) data to outline cell signaling pathways affected by tyrosine kinase inhibitors (TKIs) in ten lung cancer cell lines. Tyrosine phosphorylated, lysine ubiquitinated, and lysine acetylated proteins were concomitantly identified using sequential enrichment of post translational modification (SEPTM) proteomics. Machine learning was used to identify PTM clusters that represent functional modules that respond to TKIs. To model lung cancer signaling at the protein level, PTM clusters were used to create a co-cluster correlation network (CCCN) and select protein-protein interactions (PPIs) from a large network of curated PPIs to create a cluster-filtered network (CFN). Next, we constructed a Pathway Crosstalk Network (PCN) by connecting pathways from NCATS BioPlanet whose member proteins have PTMs that co-cluster. Interrogating the CCCN, CFN, and PCN individually and in combination yields insights into the response of lung cancer cells to TKIs. We highlight examples where cell signaling pathways involving EGFR and ALK exhibit crosstalk with BioPlanet pathways: Transmembrane transport of small molecules; and Glycolysis and gluconeogenesis. These data identify known and previously unappreciated connections between receptor tyrosine kinase (RTK) signal transduction and oncogenic metabolic reprogramming in lung cancer. Comparison to a CFN generated from a previous multi-PTM analysis of lung cancer cell lines reveals a common core of PPIs involving heat shock/chaperone proteins, metabolic enzymes, cytoskeletal components, and RNA-binding proteins. Elucidation of points of crosstalk among signaling pathways employing different PTMs reveals new potential drug targets and candidates for synergistic attack through combination drug therapy.
Collapse
Affiliation(s)
- Karen E Ross
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Guolin Zhang
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Cuneyt Akcora
- Department of Computer Science and Statistics, University of Manitoba, Winnipeg, Manitoba Canada
| | - Yu Lin
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Bin Fang
- Proteomics & Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - John Koomen
- Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Mark Grimes
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| |
Collapse
|
48
|
Xia P, Zhang H, Lu H, Xu K, Jiang X, Jiang Y, Gongye X, Chen Z, Liu J, Chen X, Ma W, Zhang Z, Yuan Y. METTL5 stabilizes c-Myc by facilitating USP5 translation to reprogram glucose metabolism and promote hepatocellular carcinoma progression. Cancer Commun (Lond) 2023; 43:338-364. [PMID: 36602428 PMCID: PMC10009668 DOI: 10.1002/cac2.12403] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/10/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most prevalent cancers in the world, with a high likelihood of metastasis and a dismal prognosis. The reprogramming of glucose metabolism is critical in the development of HCC. The Warburg effect has recently been confirmed to occur in a variety of cancers, including HCC. However, little is known about the molecular biological mechanisms underlying the Warburg effect in HCC cells. In this study, we sought to better understand how methyltransferase 5, N6-adenosine (METTL5) controls the development of HCC and the Warburg effect. METHODS In the current study, quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of METTL5 in HCC tissues and cell lines. Several different cell models and animal models were established to determine the role of METTL5 in glucose metabolism reprogramming and the underlying molecular mechanism of HCC. Glutathione-S-transferase pulldown, coimmunoprecipitation, RNA sequencing, non-targeted metabolomics, polysome profiling, and luciferase reporter assays were performed to investigate the molecular mechanisms of METTL5 in HCC cells. RESULTS We discovered that METTL5 drove glucose metabolic reprogramming to promote the proliferation and metastasis of HCC. Mechanistically, upregulation of METTL5 promoted c-Myc stability and thus activated its downstream glycolytic genes lactate dehydrogenase A (LDHA), enolase 1 (ENO1), triosephosphate isomerase 1 (TPI1), solute carrier family 2 member 1 (SLC2A1), and pyruvate kinase M2 (PKM2). The c-Box and ubiquitin binding domain (UBA) regions of ubiquitin specific peptidase 5 (USP5) binded to c-Myc protein and inhibited K48-linked polyubiquitination of c-Myc. Further study revealed that METTL5 controled the USP5 translation process, which in turn regulated the ubiquitination of c-Myc. Furthermore, we identified cAMP responsive element binding protein 1 (CREB1)/P300 as a critical transcriptional regulator of METTL5 that promoted the transcription of METTL5 in HCC. In patient-derived tumor xenograft (PDX) models, adenovirus-mediated knockout of METTL5 had a good antitumor effect and prolonged the survival of PDX-bearing mice. CONCLUSIONS These findings point to a novel mechanism by which CREB1/P300-METTL5-USP5-c-Myc controls abnormal glucose metabolism and promotes tumor growth, suggesting that METTL5 is a potential therapeutic target and prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Peng Xia
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, P. R. China
| | - Hao Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, P. R. China
| | - Haofeng Lu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, P. R. China
| | - Kequan Xu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, P. R. China
| | - Xiang Jiang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Yuke Jiang
- Department of Clinical and Translational Research Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, P. R. China
| | - Xiangdong Gongye
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Zhang Chen
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Jie Liu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, P. R. China
| | - Xi Chen
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, P. R. China
| | - Weijie Ma
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, P. R. China
| | - Zhonglin Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, P. R. China
| |
Collapse
|
49
|
Huang CK, Lv L, Chen H, Sun Y, Ping Y. ENO1 promotes immunosuppression and tumor growth in pancreatic cancer. Clin Transl Oncol 2023:10.1007/s12094-023-03114-8. [PMID: 36820953 DOI: 10.1007/s12094-023-03114-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAAD) is a highly aggressive and malignant cancer type with the highest mortality rate of all major cancers. However, the molecular and tumor immune escape mechanism underlying pancreatic cancer remains largely unclear. α-enolase (ENO1) is a glycolytic enzyme reported to overexpress in a variety of cancer types. This study was undertaken to investigate the functional role and therapeutic potential of ENO1 in pancreatic cancer. METHODS We examined the expression levels of ENO1 across a broad spectrum of cancer types from the TCGA database. ENO1-knockout (ENO1-KO) through CRISPR/CAS9 technology in a mouse pancreatic cancer cell line (PAN02) was used to analyze the role of ENO1 on proliferation and colony formation. Flow cytometry and RT-PCR were also applied to analyze T lymphocytes and relevant cytokines. RESULTS In the present study, we identified that ENO1 promoted pancreatic cancer cell proliferation. Our bioinformatics data indicated that ENO1 was significantly overexpressed in pancreatic cancer cell lines and tissues. Survival analyses revealed that ENO1 overexpression implicated poor survival of PAAD patients. Knockout of ENO1 expression repressed the ability of proliferation and colony formation in PAN02. In addition, ENO1-KO significantly decreased tumor growth in mouse models. Further flow cytometry and RT-PCR analysis revealed that ENO1-KO modulates the tumor microenvironment (TME), especially in suppressed Treg cells and inducing anti-tumor cytokine responses. CONCLUSIONS Taken together, our data showed that ENO1 was an oncogenic biomarker and might serve as a promising target for immunotherapy of pancreatic cancer.
Collapse
Affiliation(s)
- Chen Kai Huang
- Department of Molecular and Cellular Biology, University of California, Berkeley, 110 Sproul Hall, Berkeley, CA, 94720, USA
| | - Lei Lv
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Huanliang Chen
- Department of Oncology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201620, China
| | - Ying Sun
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Yong Ping
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
50
|
Accumulation of Fat Not Responsible for Femoral Head Necrosis, Revealed by Single-Cell RNA Sequencing: A Preliminary Study. Biomolecules 2023; 13:biom13010171. [PMID: 36671556 PMCID: PMC9856115 DOI: 10.3390/biom13010171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
The etiology of osteonecrosis of the femoral head (ONFH) is not yet fully understood. However, ONFH is a common disease with high morbidity, and approximately one-third of cases are caused by glucocorticoids. We performed single-cell RNA sequencing of bone marrow to explore the effect of glucocorticoid on ONFH. Bone marrow samples of the proximal femur were extracted from four participants during total hip arthroplasty, including two participants diagnosed with ONFH for systemic lupus erythematosus (SLE) treated with glucocorticoids (the case group) and two participants with femoral neck fracture (the control group). Unbiased transcriptome-wide single-cell RNA sequencing analysis and computational analyses were performed. Seventeen molecularly defined cell types were identified in the studied samples, including significantly dysregulated neutrophils and B cells in the case group. Additionally, fatty acid synthesis and aerobic oxidation were repressed, while fatty acid beta-oxidation was enhanced. Our results also preliminarily clarified the roles of the inflammatory response, substance metabolism, vascular injury, angiogenesis, cell proliferation, apoptosis, and dysregulated coagulation and fibrinolysis in glucocorticoid-induced ONFH. Notably, we list the pathways that were markedly altered in glucocorticoid-induced ONFH with SLE compared with femoral head fracture, as well as their common genes, which are potential early therapeutic targets. Our results provide new insights into the mechanism of glucocorticoid-induced ONFH and present potential clues for effective and functional manipulation of human glucocorticoid-induced ONFH, which could improve patient outcomes.
Collapse
|