1
|
Ovejero S, Alibert L, Devin J, Cañeque T, Jacquier V, Romero A, Amar S, Abouladze M, de Paco EG, Gadacha OK, Requirand G, Robert N, Zellagui ML, de Boussac H, Cartron G, Chiche J, Ricci JE, Herbaux C, Rodriguez R, Moreaux J, Bret C. Ironomycin induces mantle cell lymphoma cell death by targeting iron metabolism addiction. Theranostics 2025; 15:2834-2851. [PMID: 40083931 PMCID: PMC11898298 DOI: 10.7150/thno.101821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/04/2025] [Indexed: 03/16/2025] Open
Abstract
Rationale: Mantle-cell lymphoma (MCL) remains an aggressive and incurable cancer. Accumulating evidence reveals that abnormal iron metabolism plays an important role in tumorigenesis and in cancer progression of many tumors. Based on these data, we searched to identify alterations of iron homeostasis in MCL that could be exploited to develop novel therapeutic strategies. Methods: Analysis of the iron metabolism gene expression profile of a cohort of patients with MCL enables the identification of patients with a poor outcome who might benefit from an iron homeostasis-targeted therapy. We analyzed the therapeutic interest of ironomycin, known to sequester iron in the lysosome and to induce ferroptosis. Results: In a panel of MCL cell lines, ironomycin inhibited MCL cell growth at nanomolar concentrations compared with conventional iron chelators. Ironomycin treatment resulted in ferroptosis induction and decreased cell proliferation rate, with a reduced percentage of cells in S-phase together with Ki67 and Cyclin D1 downregulation. Ironomycin treatment induced DNA damage response, accumulation of DNA double-strand breaks, and activated the Unfolded Protein Response (UPR). We validated the therapeutic interest of ironomycin in primary MCL cells of patients. Ironomycin demonstrated a significant higher toxicity in MCL cells compared to normal cells from the microenvironment. We tested the therapeutic interest of combining ironomycin with conventional treatments used in MCL. We identified a synergistic effect when ironomycin is combined with Ibrutinib, Bruton's tyrosine kinase (BTK) inhibitor, associated with a strong inhibition of B-Cell receptor (BCR) signaling. Conclusion: Altogether, these data underline that MCL patients my benefit from targeting iron homeostasis using ironomycin alone or in combination with conventional MCL treatments.
Collapse
Affiliation(s)
- Sara Ovejero
- Institute of Human Genetics UMR 9002 CNRS-UM, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Laura Alibert
- Institute of Human Genetics UMR 9002 CNRS-UM, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Julie Devin
- Institute of Human Genetics UMR 9002 CNRS-UM, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Tatiana Cañeque
- Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France; PSL Université, Paris, France; CNRS UMR 3666, Paris, France; INSERM U1143, Paris, France
| | - Valentin Jacquier
- Institute of Human Genetics UMR 9002 CNRS-UM, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Andrea Romero
- Institute of Human Genetics UMR 9002 CNRS-UM, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Salome Amar
- Institute of Human Genetics UMR 9002 CNRS-UM, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Matthieu Abouladze
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | | | | | - Guilhem Requirand
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Nicolas Robert
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | | | | | - Guillaume Cartron
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
- CNRS UMR 5535, University of Montpellier, Montpellier, France
| | - Johanna Chiche
- Université Côte d'Azur, INSERM, C3M, Nice, France
- Équipe labellisée LIGUE Contre le Cancer, Nice, France
| | - Jean-Ehrland Ricci
- Université Côte d'Azur, INSERM, C3M, Nice, France
- Équipe labellisée LIGUE Contre le Cancer, Nice, France
| | - Charles Herbaux
- Institute of Human Genetics UMR 9002 CNRS-UM, Montpellier, France
- CNRS UMR 5535, University of Montpellier, Montpellier, France
- Institut Universitaire de France, Paris, France
| | - Raphael Rodriguez
- Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France; PSL Université, Paris, France; CNRS UMR 3666, Paris, France; INSERM U1143, Paris, France
| | - Jerome Moreaux
- Institute of Human Genetics UMR 9002 CNRS-UM, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- CNRS UMR 5535, University of Montpellier, Montpellier, France
- Institut Universitaire de France, Paris, France
| | - Caroline Bret
- Institute of Human Genetics UMR 9002 CNRS-UM, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- CNRS UMR 5535, University of Montpellier, Montpellier, France
| |
Collapse
|
2
|
Wang Y, He Z, Dong X, Yao Y, Chen Q, Shi Y, Deng Y, Zhang Q, Yu L, Wang C. Regulation and therapy: the role of ferroptosis in DLBCL. Front Pharmacol 2025; 15:1458412. [PMID: 39834804 PMCID: PMC11743434 DOI: 10.3389/fphar.2024.1458412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of B-cell non-Hodgkin's lymphoma (NHL), up to 30%-40% of patients will relapse and 10%-15% of patients have primary refractory disease, so exploring new treatment options is necessary. Ferroptosis is a non-apoptotic cell death mode discovered in recent years. Its occurrence pathway plays an essential impact on the therapeutic effect of tumors. Numerous studies have shown that modulating critical factors in the ferroptosis pathway can influence the growth of tumor cells in hematological malignancies including DLBCL. This review highlights recent advances in ferroptosis-related genes (FRGs), including STAT3, Nrf2, and ZEB1, and focuses on the clinical potential of ferroptosis inducers such as IKE, α-KG, DMF, and APR-246, which are currently being explored in clinical studies for their therapeutic effects in DLBCL. Correlational studies provide a novel idea for the research and treatment of ferroptosis in DLBCL and other hematological malignancies and lay a solid foundation for future studies.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Hematology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an, China
- Northern Jiangsu Institute of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Zhengmei He
- Department of Hematology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an, China
- Northern Jiangsu Institute of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Xinyu Dong
- Northern Jiangsu Institute of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Department of Hematology, The Huaian Clinical College of Xuzhou Medical University, Huai’an, China
| | - Yiming Yao
- Northern Jiangsu Institute of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Department of Hematology, The Huaian Clinical College of Xuzhou Medical University, Huai’an, China
| | - Qiuni Chen
- Department of Hematology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an, China
- Northern Jiangsu Institute of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yuye Shi
- Department of Hematology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an, China
- Northern Jiangsu Institute of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yuan Deng
- Department of Hematology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an, China
- Northern Jiangsu Institute of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Quane Zhang
- Department of Hematology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an, China
- Northern Jiangsu Institute of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Liang Yu
- Department of Hematology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an, China
- Northern Jiangsu Institute of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Department of Hematology, The Huaian Clinical College of Xuzhou Medical University, Huai’an, China
| | - Chunling Wang
- Department of Hematology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an, China
- Northern Jiangsu Institute of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Department of Hematology, The Huaian Clinical College of Xuzhou Medical University, Huai’an, China
| |
Collapse
|
3
|
Si Q, Wang Y, Lu W, Liu Z, Song Y, Chen S, Xia S, Li H, Weng P, Jing Y, Yu Q, Zhu F, Zhang X, Huang X, Ni Y. Transferrin receptor uptakes iron from tumor-associated neutrophils to regulate invasion patterns of OSCC. Cancer Immunol Immunother 2025; 74:43. [PMID: 39751915 PMCID: PMC11699170 DOI: 10.1007/s00262-024-03894-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/13/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Transferrin receptor (TFRC) uptakes iron-loaded transferrin (TF) to acquire iron and regulates tumor development. Nonetheless, the clinical values and the precise functions of TF-TFRC axis in the development of oral squamous cell carcinoma (OSCC) were still undiscovered, especially the impacts of their regional heterogeneous expression. METHODS Immunohistochemistry (IHC) was used to analyze the expression of TFRC in 106 OSCC patients. Then the prognostic value of TFRC was compared between high and low worst pattern of invasion (WPOI) patients. OSCC cells with low or high expression of TFRC were constructed, and functional experiments were performed to elucidate the effects of TFRC on the migration and proliferation of OSCC cells. Multi-immunofluorescence was applied to stain TF and tumor-associated neutrophils (TANs). The stimulating effects of TF were compared between normal and high TFRC cells in vitro and across different OSCC patients' subgroups in our sample bank and TCGA database. RESULTS Higher TFRC was expressed at invasive tumor front (ITF) in OSCC and correlated with WPOI. Only at ITF in patients with WPOI 4-5, TFRC was a prognostic factor. High TFRC promoted migration and proliferation of cancer cells. Additionally, TANs secreted TF outside. Exogenous TF promoted migration and proliferation of cells with high expression of TFRC. Compared to the TANslowTFRClow OSCC patients, TANshighTFRChigh OSCC patients had poorer clinical outcomes. CONCLUSIONS Higher expression of TFRC at ITF and TANs-TF-TFRC axis promoted OSCC invasion at ITF by facilitating cell migration and proliferation, which may result from increased cellular iron uptake through regulating iron metabolism.
Collapse
Affiliation(s)
- Qian Si
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
- Department of Oral Pathology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Yuhan Wang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Wanqiu Lu
- Central Laboratory, School of Biopharmacy, China Pharmaceutical University, Nanjing, 210023, Jiangsu, China
| | - Zijian Liu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Yuxian Song
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Sheng Chen
- Department of Oral Pathology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Shu Xia
- Department of Oral Pathology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Huiling Li
- Department of Oral Pathology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Pei Weng
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Yue Jing
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Qiuya Yu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Feng Zhu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Xiaoxin Zhang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Xiaofeng Huang
- Department of Oral Pathology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Yanhong Ni
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China.
| |
Collapse
|
4
|
Lelliott EJ, Naddaf J, Ganio K, Michie J, Wang S, Liu L, Silke N, Ahn A, Ramsbottom KM, Brennan AJ, Freeman AJ, Goel S, Vervoort SJ, Kearney CJ, Beavis PA, McDevitt CA, Silke J, Oliaro J. Intracellular zinc protects tumours from T cell-mediated cytotoxicity. Cell Death Differ 2024; 31:1707-1716. [PMID: 39261596 PMCID: PMC11618339 DOI: 10.1038/s41418-024-01369-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
Tumour immune evasion presents a significant challenge to the effectiveness of cancer immunotherapies. Recent advances in high-throughput screening techniques have uncovered that loss of antigen presentation and cytokine signalling pathways are central mechanisms by which tumours evade T cell immunity. To uncover additional vulnerabilities in tumour cells beyond the well-recognized antigen presentation pathway, we conducted a genome-wide CRISPR/Cas9 screen to identify genes that mediate resistance to chimeric-antigen receptor (CAR)-T cells, which function independently of classical antigen presentation. Our study revealed that loss of core-binding factor subunit beta (CBFβ) enhances tumour cell resistance to T cell killing, mediated through T cell-derived TNF. Mechanistically, RNA-sequencing and elemental analyses revealed that deletion of CBFβ disrupts numerous pathways including those involved in zinc homoeostasis. Moreover, we demonstrated that modulation of cellular zinc, achieved by supplementation or chelation, significantly altered tumour cell susceptibility to TNF by regulating the levels of inhibitor of apoptosis proteins. Consistent with this, treatment of tumour cells with a membrane-permeable zinc chelator had no impact on tumour cell viability alone, but significantly increased tumour cell lysis by CD8+ T cells in a TNF-dependent but perforin-independent manner. These results underscore the crucial role of intracellular zinc in regulating tumour cell susceptibility to T cell-mediated killing, revealing a novel vulnerability in tumour cells that might be exploited for the development of future cancer immunotherapeutics.
Collapse
Affiliation(s)
- Emily J Lelliott
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.
| | - Jonathan Naddaf
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Katherine Ganio
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jessica Michie
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Shelly Wang
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Lin Liu
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Natasha Silke
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Antonio Ahn
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kelly M Ramsbottom
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Amelia J Brennan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Andrew J Freeman
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Shom Goel
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Stephin J Vervoort
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Conor J Kearney
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paul A Beavis
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - John Silke
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jane Oliaro
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
5
|
Krieg S, Rohde T, Rausch T, Butthof L, Wendler-Link L, Eckert C, Breuhahn K, Galy B, Korbel J, Billmann M, Breinig M, Tschaharganeh DF. Mitoferrin2 is a synthetic lethal target for chromosome 8p deleted cancers. Genome Med 2024; 16:83. [PMID: 38886830 PMCID: PMC11181659 DOI: 10.1186/s13073-024-01357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Somatic copy number alterations are a hallmark of cancer that offer unique opportunities for therapeutic exploitation. Here, we focused on the identification of specific vulnerabilities for tumors harboring chromosome 8p deletions. METHODS We developed and applied an integrative analysis of The Cancer Genome Atlas (TCGA), the Cancer Dependency Map (DepMap), and the Cancer Cell Line Encyclopedia to identify chromosome 8p-specific vulnerabilities. We employ orthogonal gene targeting strategies, both in vitro and in vivo, including short hairpin RNA-mediated gene knockdown and CRISPR/Cas9-mediated gene knockout to validate vulnerabilities. RESULTS We identified SLC25A28 (also known as MFRN2), as a specific vulnerability for tumors harboring chromosome 8p deletions. We demonstrate that vulnerability towards MFRN2 loss is dictated by the expression of its paralog, SLC25A37 (also known as MFRN1), which resides on chromosome 8p. In line with their function as mitochondrial iron transporters, MFRN1/2 paralog protein deficiency profoundly impaired mitochondrial respiration, induced global depletion of iron-sulfur cluster proteins, and resulted in DNA-damage and cell death. MFRN2 depletion in MFRN1-deficient tumors led to impaired growth and even tumor eradication in preclinical mouse xenograft experiments, highlighting its therapeutic potential. CONCLUSIONS Our data reveal MFRN2 as a therapeutic target of chromosome 8p deleted cancers and nominate MFNR1 as the complimentary biomarker for MFRN2-directed therapies.
Collapse
Affiliation(s)
- Stephan Krieg
- Helmholtz-University Group "Cell Plasticity and Epigenetic Remodeling", German Cancer Research Center (DKFZ), Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Rohde
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Tobias Rausch
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Luise Butthof
- Helmholtz-University Group "Cell Plasticity and Epigenetic Remodeling", German Cancer Research Center (DKFZ), Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lena Wendler-Link
- Helmholtz-University Group "Cell Plasticity and Epigenetic Remodeling", German Cancer Research Center (DKFZ), Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christoph Eckert
- Helmholtz-University Group "Cell Plasticity and Epigenetic Remodeling", German Cancer Research Center (DKFZ), Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Bruno Galy
- Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Maximilian Billmann
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany.
| | - Marco Breinig
- Helmholtz-University Group "Cell Plasticity and Epigenetic Remodeling", German Cancer Research Center (DKFZ), Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
| | - Darjus F Tschaharganeh
- Helmholtz-University Group "Cell Plasticity and Epigenetic Remodeling", German Cancer Research Center (DKFZ), Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
6
|
Sung YS, Tomat E. Quinoline-based tetrazolium prochelators: formazan release, iron sequestration, and antiproliferative efficacy in cancer cells. Chem Commun (Camb) 2024; 60:6150-6153. [PMID: 38804255 PMCID: PMC11568512 DOI: 10.1039/d4cc01523a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Iron-binding strategies in anticancer drug design target the key role of iron in cancer growth. The incorporation of a quinoline moiety in the design of tetrazolium-based prochelators facilitates their intracellular reduction/activation to iron-binding formazans. The new prochelators are antiproliferative at submicromolar levels, induce apoptosis and cell cycle arrest, and impact iron signaling in cancer cells.
Collapse
Affiliation(s)
- Yu-Shien Sung
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721-0041, USA.
| | - Elisa Tomat
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721-0041, USA.
| |
Collapse
|
7
|
Zhi HT, Lu Z, Chen L, Wu JQ, Li L, Hu J, Chen WH. Anticancer efficacy triggered by synergistically modulating the homeostasis of anions and iron: Design, synthesis and biological evaluation of dual-functional squaramide-hydroxamic acid conjugates. Bioorg Chem 2024; 147:107421. [PMID: 38714118 DOI: 10.1016/j.bioorg.2024.107421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/12/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024]
Abstract
Targeting the homeostasis of anions and iron has emerged as a promising therapeutic approach for the treatment of cancers. However, single-targeted agents often fall short of achieving optimal treatment efficacy. Herein we designed and synthesized a series of novel dual-functional squaramide-hydroxamic acid conjugates that are capable of synergistically modulating the homeostasis of anions and iron. Among them, compound 16 exhibited the most potent antiproliferative activity against a panel of selected cancer cell lines, and strong in vivo anti-tumor efficacy. This compound effectively elevated lysosomal pH through anion transport, and reduced the levels of intracellular iron. Compound 16 could disturb autophagy in A549 cells and trigger robust apoptosis. This compound caused cell cycle arrest at the G1/S phase, altered the mitochondrial function and elevated ROS levels. The present findings clearly demonstrated that synergistic modulation of anion and iron homeostasis has high potentials in the development of promising chemotherapeutic agents with dual action against cancers.
Collapse
Affiliation(s)
- Hai-Tao Zhi
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Zhonghui Lu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Li Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Jia-Qiang Wu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Lanqing Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Jinhui Hu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China.
| | - Wen-Hua Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China.
| |
Collapse
|
8
|
Bian W, Li H, Chen Y, Yu Y, Lei G, Yang X, Li S, Chen X, Li H, Yang J, Yang C, Li Y, Zhou Y. Ferroptosis mechanisms and its novel potential therapeutic targets for DLBCL. Biomed Pharmacother 2024; 173:116386. [PMID: 38492438 DOI: 10.1016/j.biopha.2024.116386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL), a heterogeneous lymphoid malignancy, poses a significant threat to human health. The standard therapeutic regimen for patients with DLBCL is rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP), with a typical cure rate of 50-70%. However, some patients either relapse after complete remission (CR) or exhibit resistance to R-CHOP treatment. Therefore, novel therapeutic approaches are imperative for managing high-risk or refractory DLBCL. Ferroptosis is driven by iron-dependent phospholipid peroxidation, a process that relies on the transition metal iron, reactive oxygen species (ROS), and phospholipids containing polyunsaturated fatty acids-containing phospholipids (PUFA-PLs). Research indicates that ferroptosis is implicated in various carcinogenic and anticancer pathways. Several hematological disorders exhibit heightened sensitivity to cell death induced by ferroptosis. DLBCL cells, in particular, demonstrate an increased demand for iron and an upregulation in the expression of fatty acid synthase. Additionally, there exists a correlation between ferroptosis-associated genes and the prognosis of DLBCL. Therefore, ferroptosis may be a promising novel target for DLBCL therapy. In this review, we elucidate ferroptosis mechanisms, its role in DLBCL, and the potential therapeutic targets in DLBCL. This review offers novel insights into the application of ferroptosis in treatment strategies for DLBCL.
Collapse
Affiliation(s)
- Wenxia Bian
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haoran Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhan Chen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yanhua Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Guojie Lei
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xinyi Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Sainan Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xi Chen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Huanjuan Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jing Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chen Yang
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Yi Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Shi TM, Chen XF, Ti H. Ferroptosis-Based Therapeutic Strategies toward Precision Medicine for Cancer. J Med Chem 2024; 67:2238-2263. [PMID: 38306267 DOI: 10.1021/acs.jmedchem.3c01749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Ferroptosis is a type of iron-dependent programmed cell death characterized by the dysregulation of iron metabolism and the accumulation of lipid peroxides. This nonapoptotic mode of cell death is implicated in various physiological and pathological processes. Recent findings have underscored its potential as an innovative strategy for cancer treatment, particularly against recalcitrant malignancies that are resistant to conventional therapies. This article focuses on ferroptosis-based therapeutic strategies for precision cancer treatment, covering the molecular mechanisms of ferroptosis, four major types of ferroptosis inducers and their inhibitory effects on diverse carcinomas, the detection of ferroptosis by fluorescent probes, and their implementation in image-guided therapy. These state-of-the-art tactics have manifested enhanced selectivity and efficacy against malignant carcinomas. Given that the administration of ferroptosis in cancer therapy is still at a burgeoning stage, some major challenges and future perspectives are discussed for the clinical translation of ferroptosis into precision cancer treatment.
Collapse
Affiliation(s)
- Tong-Mei Shi
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Xiao-Fei Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences, China National Analytical Center, Guangzhou, Guangzhou 510070, P. R. China
| | - Huihui Ti
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
- Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| |
Collapse
|
10
|
Zhang YY, Han Y, Li WN, Xu RH, Ju HQ. Tumor iron homeostasis and immune regulation. Trends Pharmacol Sci 2024; 45:145-156. [PMID: 38212195 DOI: 10.1016/j.tips.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024]
Abstract
Abnormal iron metabolism has long been regarded as a key metabolic hallmark of cancer. As a critical cofactor, iron contributes to tumor progression by participating in various processes such as mitochondrial electron transport, gene regulation, and DNA synthesis or repair. Although the role of iron in tumor cells has been widely studied, recent studies have uncovered the interplay of iron metabolism between tumor cells and immune cells, which may affect both innate and adaptive immune responses. In this review, we discuss the current understanding of the regulatory networks of iron metabolism between cancer cells and immune cells and how they contribute to antitumor immunity, and we analyze potential therapeutics targeting iron metabolism. Also, we highlight several key challenges and describe potential therapeutic approaches for future investigations.
Collapse
Affiliation(s)
- Yan-Yu Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Yi Han
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Wen-Ning Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Rui-Hua Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510060, P. R. China.
| | - Huai-Qiang Ju
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510060, P. R. China.
| |
Collapse
|
11
|
Tang X, Niu Y, Jian J, Guo Y, Wang Y, Zhu Y, Liu B. Potential applications of ferroptosis inducers and regulatory molecules in hematological malignancy therapy. Crit Rev Oncol Hematol 2024; 193:104203. [PMID: 37979734 DOI: 10.1016/j.critrevonc.2023.104203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023] Open
Abstract
Ferroptosis, a novel form of iron-dependent cell death, has emerged as a potential avenue for promoting tumor cell death by causing cell membrane rupture and the accumulation of lipid peroxides (LPO) in the cell. Since its discovery in 2012, extensive research has been conducted to explore the mechanism of ferroptosis inducers, including erastin, sulfasalazine, and sorafenib. These compounds inhibit system XC-, while Ras-selective lethal small molecule 3 (RSL3) and FION2 specifically target GPX4 to promote ferroptosis. Therefore, targeting ferroptosis presents a promising therapeutic approach for malignant tumors. While the study of ferroptosis in solid tumors has made significant progress, there is limited information available on its role in hematological tumors. This review aims to summarize the molecular mechanisms of ferroptosis inducers and discuss their clinical applications in hematological malignancies. Furthermore, the identification of non-coding RNAs (ncRNAs) and genes that regulate key molecules in the ferroptosis pathway could provide new targets and establish a molecular theoretical foundation for exploring novel ferroptosis inducers in hematological malignancies.
Collapse
Affiliation(s)
- Xiao Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730099, China
| | - Yujie Niu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730099, China
| | - Jinli Jian
- The First Clinical Medical College, Lanzhou University, Lanzhou 730099, China
| | - Yuancheng Guo
- The First Clinical Medical College, Lanzhou University, Lanzhou 730099, China
| | - Yin Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730099, China
| | - Yu Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730099, China
| | - Bei Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730099, China; Department of Hematology, The First Affiliated Hospital, Lanzhou University, Lanzhou 730099, China.
| |
Collapse
|
12
|
Yu T, Xu-Monette ZY, Yu L, Li Y, Young KH. Mechanisms of ferroptosis and targeted therapeutic approaches in lymphoma. Cell Death Dis 2023; 14:771. [PMID: 38007476 PMCID: PMC10676406 DOI: 10.1038/s41419-023-06295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
Lymphoma is the sixth most common type of cancer worldwide. Under the current treatment standards, patients with lymphoma often fail to respond to treatment or relapse early and require further therapy. Hence, novel therapeutic strategies need to be explored and our understanding of the molecular underpinnings of lymphomas should be expanded. Ferroptosis, a non-apoptotic regulated cell death, is characterized by increased reactive oxygen species and lipid peroxidation due to metabolic dysfunction. Excessive or lack of ferroptosis has been implicated in tumor development. Current preclinical evidences suggest that ferroptosis participates in tumorigenesis, progression, and drug resistance of lymphoma, identifying a potential biomarker and an attractive molecular target. Our review summarizes the core mechanisms and regulatory networks of ferroptosis and discusses existing evidences of ferroptosis induction for the treatment of lymphoma, with intent to provide a framework for understanding the role of ferroptosis in lymphomagenesis and a new perspective of lymphoma treatment.
Collapse
Affiliation(s)
- Tiantian Yu
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Department of Hematology and Oncology, The Second Affiliated Hospital of NanChang University, Nanchang, China
| | - Zijun Y Xu-Monette
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Li Yu
- Department of Hematology and Oncology, The Second Affiliated Hospital of NanChang University, Nanchang, China
| | - Yong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Ken H Young
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, NC, USA.
- Duke Cancer Institute, Durham, NC, USA.
| |
Collapse
|
13
|
Lu X, Zhang Q, Xie Y. TCFL5 knockdown sensitizes DLBCL to doxorubicin treatment via regulation of GPX4. Cell Signal 2023; 110:110831. [PMID: 37516394 DOI: 10.1016/j.cellsig.2023.110831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/09/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND Resistance to chemo-drug is a major cause of bad outcome in diffuse large B-cell lymphoma (DLBCL). It was reported that TCFL5 may be related to chemoresistance in childhood acute lymphoblastic leukemia. However, it is still unclear whether TCFL5 is involved in DLBCL drug-resistance. METHODS To explore the underlying mechanism of doxorubicin resistance, recombinant lentivirus was applied to control expression of TCFL5 in DLBCL cells. CCK-8 assay was perfomed to investigate the influence of doxorubicin on proliferation of TCFL5-overexpressed or sh-TCFL5 DLBCL cells. Correlation between TCFL5 and GPX4 was analyzed with bioinformatic methods, which was further confirmed by qPCR and western blot. TCFL5 overexpression conferred doxorubicin resistance via regulating GPX4 and was verified by TUNEL assay and western blot in vitro and mice model in vivo. RESULTS TCFL5 was enriched in DLBCL cells and conferred doxorubicin resistance through binding to GPX4. Inhibition of TCFL5 enhanced the sensitivity of DLBCL cells to doxorubicin. GPX4 knockdown reversed doxorubicin resistance in TCFL5-overexpressed DLBCL cells. CONCLUSION DLBCL cells overexpress TCFL5 that promotes chemoresistance by regulating GPX4. Targeting TCFL5 may provide a prospective therapeutic strategy for doxorubicin-resistant DLBCL.
Collapse
Affiliation(s)
- Xueying Lu
- Graduate School, Nanjing Medical University, Nanjing 210000, China
| | - Quan'e Zhang
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, China
| | - Yandong Xie
- Graduate School, Nanjing Medical University, Nanjing 210000, China.
| |
Collapse
|
14
|
Yu L, Wang YF, Xiao J, Shen QQ, Chi SS, Gao YL, Lin DZ, Ding J, Fang YF, Chen Y. Dysregulation of iron homeostasis by TfR-1 renders EZH2 wild type diffuse large B-cell lymphoma resistance to EZH2 inhibition. Acta Pharmacol Sin 2023; 44:2113-2124. [PMID: 37225847 PMCID: PMC10545686 DOI: 10.1038/s41401-023-01097-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/22/2023] [Indexed: 05/26/2023]
Abstract
EZH2 has been regarded as an efficient target for diffuse large B-cell lymphoma (DLBCL), but the clinical benefits of EZH2 inhibitors (EZH2i) are limited. To date, only EPZ-6438 has been approved by FDA for the treatment of follicular lymphoma and epithelioid sarcoma. We have discovered a novel EZH1/2 inhibitor HH2853 with a better antitumor effect than EPZ-6438 in preclinical studies. In this study we explored the molecular mechanism underlying the primary resistance to EZH2 inhibitors and sought for combination therapy strategy to overcome it. By analyzing EPZ-6438 and HH2853 response profiling, we found that EZH2 inhibition increased intracellular iron through upregulation of transferrin receptor 1 (TfR-1), ultimately triggered resistance to EZH2i in DLBCL cells. We demonstrated that H3K27ac gain by EZH2i enhanced c-Myc transcription, which contributed to TfR-1 overexpression in insensitive U-2932 and WILL-2 cells. On the other hand, EZH2i impaired the occurrence of ferroptosis by upregulating the heat shock protein family A (Hsp70) member 5 (HSPA5) and stabilizing glutathione peroxidase 4 (GPX4), a ferroptosis suppressor; co-treatment with ferroptosis inducer erastin effectively overrode the resistance of DLBCL to EZH2i in vitro and in vivo. Altogether, this study reveals iron-dependent resistance evoked by EZH2i in DLBCL cells, and suggests that combination with ferroptosis inducer may be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Lei Yu
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Ya-Fang Wang
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jian Xiao
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Qian-Qian Shen
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shuai-Shuai Chi
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Ying-Lei Gao
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Dong-Ze Lin
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jian Ding
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| | - Yan-Fen Fang
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Yi Chen
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
15
|
Zhao J, Zhang N, Ma X, Li M, Feng H. The dual role of ferroptosis in anthracycline-based chemotherapy includes reducing resistance and increasing toxicity. Cell Death Discov 2023; 9:184. [PMID: 37344500 DOI: 10.1038/s41420-023-01483-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023] Open
Abstract
In conjunction with previous studies, we have noted that ferroptosis, as an emerging mode of regulated cell death (RCD), is intimately related to anthracycline pharmacotherapy. Not only does ferroptosis significantly modulate tumour resistance and drug toxicity, which are core links of the relevant chemotherapeutic process, but it also appears to play a conflicting role that has yet to be appreciated. By targeting the dual role of ferroptosis in anthracycline-based chemotherapy, this review aims to focus on the latest findings at this stage, identify the potential associations and provide novel perspectives for subsequent research directions and therapeutic strategies.
Collapse
Affiliation(s)
- Jiazheng Zhao
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei, 050011, China
| | - Ning Zhang
- Department of Cardiology, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei, 050011, China
| | - Xiaowei Ma
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China
| | - Ming Li
- Department of Orthopedics, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijia-zhuang, Hebei, China
| | - Helin Feng
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
16
|
Tomat E. Targeting iron to contrast cancer progression. Curr Opin Chem Biol 2023; 74:102315. [PMID: 37187095 PMCID: PMC10225354 DOI: 10.1016/j.cbpa.2023.102315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023]
Abstract
An altered metabolism of iron fuels cancer growth, invasion, metastasis, and recurrence. Ongoing research in cancer biology is delineating a complex iron-trafficking program involving both malignant cells and their support network of cancer stem cells, immune cells, and other stromal components in the tumor microenvironment. Iron-binding strategies in anticancer drug discovery are being pursued in clinical trials and in multiple programs at various levels of development. Polypharmacological mechanisms of action, combined with emerging iron-associated biomarkers and companion diagnostics, are poised to offer new therapeutic options. By targeting a fundamental player in cancer progression, iron-binding drug candidates (either alone or in combination therapy) have the potential to impact a broad range of cancer types and to address the major clinical problems of recurrence and resistance to therapy.
Collapse
Affiliation(s)
- Elisa Tomat
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721-0041, USA.
| |
Collapse
|
17
|
Mynott RL, Habib A, Best OG, Wallington-Gates CT. Ferroptosis in Haematological Malignancies and Associated Therapeutic Nanotechnologies. Int J Mol Sci 2023; 24:ijms24087661. [PMID: 37108836 PMCID: PMC10146166 DOI: 10.3390/ijms24087661] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Haematological malignancies are heterogeneous groups of cancers of the bone marrow, blood or lymph nodes, and while therapeutic advances have greatly improved the lifespan and quality of life of those afflicted, many of these cancers remain incurable. The iron-dependent, lipid oxidation-mediated form of cell death, ferroptosis, has emerged as a promising pathway to induce cancer cell death, particularly in those malignancies that are resistant to traditional apoptosis-inducing therapies. Although promising findings have been published in several solid and haematological malignancies, the major drawbacks of ferroptosis-inducing therapies are efficient drug delivery and toxicities to healthy tissue. The development of tumour-targeting and precision medicines, particularly when combined with nanotechnologies, holds potential as a way in which to overcome these obstacles and progress ferroptosis-inducing therapies into the clinic. Here, we review the current state-of-play of ferroptosis in haematological malignancies as well as encouraging discoveries in the field of ferroptosis nanotechnologies. While the research into ferroptosis nanotechnologies in haematological malignancies is limited, its pre-clinical success in solid tumours suggests this is a very feasible therapeutic approach to treat blood cancers such as multiple myeloma, lymphoma and leukaemia.
Collapse
Affiliation(s)
- Rachel L Mynott
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Ali Habib
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Oliver G Best
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Craig T Wallington-Gates
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, SA 5042, Australia
- Flinders Medical Centre, Bedford Park, SA 5042, Australia
| |
Collapse
|
18
|
Setiawan SA, Liu WZ, Weng PW, Lee CH, Yadav VK, Hardianti MS, Yeh CT, Chao TY. Synergistic disruption of BTK and BCL-2 causes apoptosis while inducing ferroptosis in double-hit lymphoma. Eur J Pharmacol 2023; 943:175526. [PMID: 36693553 DOI: 10.1016/j.ejphar.2023.175526] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Double-hit lymphoma (DHL) is an aggressive subset of Diffuse Large B-cell Lymphoma (DLBCL) with poor outcomes and without satisfying treatment options. BTK inhibitor monotherapy is ineffective to suppress aggressive lymphoma. Hence, combination with other potential agents is warranted. Here, we demonstrated the second generation of BTK inhibitor, zanubrutinib, and a BCL-2 inhibitor, navitoclax, worked in synergistic manner to suppress DHL. Comprehensive in silico approach by interrogating single-cell to bulk-level profiling was employed along with in vitro and in vivo validation in DHL cell lines. Ablation of BTK enhanced sensitivity to navitoclax and suppressed proliferation of DHL cells. Combination of second generation of BTK inhibitor with navitoclax synergistically suppressed DLBCL cells with higher synergy score in DHL subset. The drug combination triggered apoptosis and ferroptosis, with the latter being characterized by reactive oxygen species (ROS) accumulation, extensive lipid peroxidation, and depletion of reduced glutathione. Moreover, ablation of BTK sensitized DHL cells to ferroptosis. Mechanistically, disruption of BTK and BCL-2 triggered ferroptosis by downregulating NRF2 and HMOX1, while deactivating GPX4. Combination of zanubrutinib and navitoclax effectively suppressed tumor growth in vivo. Our data suggest that zanubrutinib and navitoclax synergistically suppressed DHL by inducing apoptosis and ferroptosis.
Collapse
Affiliation(s)
- Syahru Agung Setiawan
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei City, 11031, Taiwan
| | | | - Pei-Wei Weng
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Department of Orthopaedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chia-Hwa Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
| | - Vijesh Kumar Yadav
- Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 23561, Taiwan
| | - Mardiah Suci Hardianti
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Chi-Tai Yeh
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei City, 11031, Taiwan; Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 23561, Taiwan; Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung, 95092, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, 11031, Taiwan.
| | - Tsu-Yi Chao
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei City, 11031, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, 11031, Taiwan; Department of Hematology & Oncology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 23561, Taiwan; Division of Medical Oncology and Hematology, Tri-Service General Hospital, National Defense Medical Centre, Taipei, 11409, Taiwan.
| |
Collapse
|
19
|
Li J, Zhang W. From iron chelation to overload as a therapeutic strategy to induce ferroptosis in hematologic malignancies. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2022; 27:1163-1170. [PMID: 36222350 DOI: 10.1080/16078454.2022.2132362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Ferroptosis is an iron-dependent, non-apoptotic mode of cell death characterized by excessive accumulation of reactive oxygen species (ROS). It plays an important role in the occurrence, development and treatment of various cancers, but little is known regarding the role of ferroptosis in hematologic malignancies. This review elaborates the regulatory mechanism of ferroptosis and the treatment opportunities for targeting ferroptosis in hematologic malignancies. METHODS A systematic literature review through PubMed was conducted to summarize the published evidence on the therapeutic potential of targeting ferroptosis in hematological malignant tumors. Literature sources published in English were searched, using the terms ferroptosis, leukemia, myelodysplastic syndrome, lymphoma and multiple myeloma. RESULTS More and more small molecules have been found to induce ferroptosis in hematologic malignancies through targeted iron metabolism and lipid peroxidation, and some ferroptosis inducers have been proved to have synergistic effect with other chemotherapeutic drugs. CONCLUSION This paper discusses the significance of ferroptosis in hematologic malignancies and provides a new way for the treatment of hematologic malignancies, and more experimental studies should be conducted in future.
Collapse
Affiliation(s)
- Jiaojiao Li
- Department of Hematology, General Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Wei Zhang
- Department of Hematology, General Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
20
|
Zhou Q, Li T, Qin Q, Huang X, Wang Y. Ferroptosis in lymphoma: Emerging mechanisms and a novel therapeutic approach. Front Genet 2022; 13:1039951. [PMID: 36406116 PMCID: PMC9669386 DOI: 10.3389/fgene.2022.1039951] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2023] Open
Abstract
Unlike apoptosis, necroptosis, autophagy, and pyroptosis, ferroptosis represents a new type of cell death, which is characterized by iron-dependent lipid peroxidation. This process relies largely on the metabolite reactive oxygen species (ROS), phospholipids containing polyunsaturated fatty acids (PUFA-PL), transition metal iron, intra-, and intercellular signaling events, and environmental stress that regulate cellular metabolism and ROS levels. Recent studies show that ferroptosis plays an important role in tumorigenesis, tumor development, and the treatment of hematological malignancies, including lymphoma. Despite the constant emergence of new drugs, the differences in morphological features, immunophenotypes, biological patterns, rates of onset, and response to treatment in lymphoma pose major therapeutic challenges. Since lymphoma is associated with ferroptosis and shows sensitivity towards it, targeting the potential regulatory factors may regulate lymphoma progression. This has emerged as a research hotspot. This review summarizes the current knowledge on ferroptosis induction and resistance mechanisms, their roles and mechanistic details of ferroptosis in lymphoma suppression and immunity, and finally the treatment strategies for lymphoma by targeting ferroptosis.
Collapse
Affiliation(s)
- Qiao Zhou
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ting Li
- Department of Rheumatology, Wenjiang District People’s Hospital, Chengdu, China
| | - Qin Qin
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobo Huang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
21
|
Cui Z, Fu Y, Yang Z, Gao Z, Feng H, Zhou M, Zhang L, Chen C. Comprehensive Analysis of a Ferroptosis Pattern and Associated Prognostic Signature in Acute Myeloid Leukemia. Front Pharmacol 2022; 13:866325. [PMID: 35656299 PMCID: PMC9152364 DOI: 10.3389/fphar.2022.866325] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
Ferroptosis is a widespread form of programmed cell death. The environment of cancer cells makes them vulnerable to ferroptosis, including AML cells, yet the specific association between ferroptosis and AML outcome is little known. In this study, we utilized ferroptosis-related genes to distinguish two subtypes in TCGA cohort, which were subsequently validated in independent AML cohorts. The subtypes were linked with tumor-related immunological abnormalities, mutation landscape and pathway dysregulation, and clinical outcome. Further, we developed a 13-gene prognostic model for AML from DEG analysis in the two subtypes. A risk score was calculated for each patient, and then the overall group was stratified into high- and low-risk groups; the higher risk score correlated with short survival. The model was validated in both independent AML cohorts and pan-cancer cohorts, which demonstrated robustness and extended the usage of the model. A nomogram was constructed that integrated risk score, FLT3-ITD, TP53, and RUNX1 mutations, and age. This model had the additional value of discriminating the sensitivity of several chemotherapeutic drugs and ferroptosis inducers in the two risk groups, which increased the translational value of this model as a potential tool in clinical management. Through integrated analysis of ferroptosis pattern and its related model, our work shed new light on the relationship between ferroptosis and AML, which may facilitate clinical application and therapeutics.
Collapse
Affiliation(s)
- Zelong Cui
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue Fu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zongcheng Yang
- Center of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhenxing Gao
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huimin Feng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Minran Zhou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lu Zhang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunyan Chen
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|