1
|
Li X, Chang JH, Venkatesan M, Wang ZP, Moore JH. Enhancing clinical outcome predictions through effective sample size evaluation in graph-based digital twin modeling. BioData Min 2025; 18:30. [PMID: 40234971 PMCID: PMC11998210 DOI: 10.1186/s13040-025-00446-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025] Open
Abstract
Digital twins in healthcare offer an innovative approach to precision diagnosis, prognosis, and treatment. SynTwin, a novel computational methodology to generate digital twins using synthetic data and network science, has previously shown promise for improving prediction of breast cancer mortality. In this study, we validate SynTwin using population-level data for different cancer types from the Surveillance, Epidemiology, and End Results (SEER) program from the National Cancer Institute (USA). We assess its predictive accuracy across cancer types of varying sample sizes (n = 1,000 to 30,000 records), mortality rates (35% to 60%), and study designs, revealing insights into the strengths and limitations of digital twins derived from synthetic data in mortality prediction. We also evaluate the effect of sample size (n = 1,000 to 70,000 records) on predictive accuracy for selected cancers (non-Hodgkin lymphoma, bladder, and colorectal cancers). Our results indicate that for larger datasets (n > 10,000) including digital twins in the nearest network neighbor prediction model significantly improves the performance compared to using real patients alone. Specifically, AUROCs ranged from 0.828 to 0.884 for cancers such as cervix uteri and ovarian cancer with digital twins, compared to 0.720 to 0.858 when using real patient data. Similarly, among the selected three cancers, AUROCs using digital twins exceeded AUROCs using real patients alone by at least 0.06 with narrowing variance in performance as the sample size increased. These results highlight the benefit of network-based digital twins, while emphasizing the importance of considering effective sample size when developing predictive models like SynTwin.
Collapse
Affiliation(s)
- Xi Li
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90069, USA
| | - Jui-Hsuan Chang
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90069, USA
| | - Mythreye Venkatesan
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90069, USA
| | - Zhiping Paul Wang
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90069, USA
| | - Jason H Moore
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90069, USA.
| |
Collapse
|
2
|
Wu C, Lima EABF, Stowers CE, Xu Z, Yam C, Son JB, Ma J, Rauch GM, Yankeelov TE. MRI-based digital twins to improve treatment response of breast cancer by optimizing neoadjuvant chemotherapy regimens. NPJ Digit Med 2025; 8:195. [PMID: 40195521 PMCID: PMC11976917 DOI: 10.1038/s41746-025-01579-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 03/20/2025] [Indexed: 04/09/2025] Open
Abstract
We developed a practical framework to construct digital twins for predicting and optimizing triple-negative breast cancer (TNBC) response to neoadjuvant chemotherapy (NAC). This study employed 105 TNBC patients from the ARTEMIS trial (NCT02276443, registered on 10/21/2014) who received Adriamycin/Cytoxan (A/C)-Taxol (T). Digital twins were established by calibrating a biology-based mathematical model to patient-specific MRI data, which accurately predicted pathological complete response (pCR) with an AUC of 0.82. We then used each patient's twin to theoretically optimize outcome by identifying their optimal A/C-T schedule from 128 options. The patient-specifically optimized treatment yielded a significant improvement in pCR rate of 20.95-24.76%. Retrospective validation was conducted by virtually treating the twins with AC-T schedules from historical trials and obtaining identical observations on outcomes: bi-weekly A/C-T outperforms tri-weekly A/C-T, and weekly/bi-weekly T outperforms tri-weekly T. This proof-of-principle study demonstrates that our digital twin framework provides a practical methodology to identify patient-specific TNBC treatment schedules.
Collapse
Affiliation(s)
- Chengyue Wu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA.
| | - Ernesto A B F Lima
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX, USA
| | - Casey E Stowers
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Zhan Xu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clinton Yam
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jong Bum Son
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jingfei Ma
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gaiane M Rauch
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Thomas E Yankeelov
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
3
|
Yusufaly T, Roncali E, Brosch-Lenz J, Uribe C, Jha AK, Currie G, Dutta J, El-Fakhri G, McMeekin H, Pandit-Taskar N, Schwartz J, Shi K, Strigari L, Zaidi H, Saboury B, Rahmim A. Computational Nuclear Oncology Toward Precision Radiopharmaceutical Therapies: Current Tools, Techniques, and Uncharted Territories. J Nucl Med 2025; 66:509-515. [PMID: 39947910 PMCID: PMC11960611 DOI: 10.2967/jnumed.124.267927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 01/27/2025] [Indexed: 04/03/2025] Open
Abstract
Radiopharmaceutical therapy (RPT), with its targeted delivery of cytotoxic ionizing radiation, demonstrates significant potential for treating a wide spectrum of malignancies, with particularly unique benefits for metastatic disease. There is an opportunity to optimize RPTs and enhance the precision of theranostics by moving beyond a one-size-fits-all approach and using patient-specific image-based dosimetry for personalized treatment planning. Such an approach, however, requires accurate methods and tools for the mathematic modeling and prediction of dose and clinical outcome. To this end, the SNMMI AI-Dosimetry Working Group is promoting the paradigm of computational nuclear oncology: mathematic models and computational tools describing the hierarchy of etiologic mechanisms involved in RPT dose response. This includes radiopharmacokinetics for image-based internal dosimetry and radiobiology for the mapping of dose response to clinical endpoints. The former area originates in pharmacotherapy, whereas the latter originates in radiotherapy. Accordingly, models and methods developed in these predecessor disciplines serve as a foundation on which to develop a repurposed set of tools more appropriate to RPT. Over the long term, this computational nuclear oncology framework also promises to facilitate widespread cross-fertilization of ideas between nuclear medicine and the greater mathematic and computational oncology communities.
Collapse
Affiliation(s)
- Tahir Yusufaly
- Division of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland;
| | - Emilie Roncali
- Department of Biomedical Engineering, University of California Davis, Davis, California
| | | | - Carlos Uribe
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Abhinav K Jha
- Department of Biomedical Engineering and Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
| | - Geoffrey Currie
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Joyita Dutta
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts
| | - Georges El-Fakhri
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | | | - Neeta Pandit-Taskar
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Jazmin Schwartz
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kuangyu Shi
- Department of Nuclear Medicine, University of Bern, Bern, Switzerland
| | - Lidia Strigari
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | | | - Arman Rahmim
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Shen S, Qi W, Liu X, Zeng J, Li S, Zhu X, Dong C, Wang B, Shi Y, Yao J, Wang B, Jing L, Cao S, Liang G. From virtual to reality: innovative practices of digital twins in tumor therapy. J Transl Med 2025; 23:348. [PMID: 40108714 PMCID: PMC11921680 DOI: 10.1186/s12967-025-06371-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND As global cancer incidence and mortality rise, digital twin technology in precision medicine offers new opportunities for cancer treatment. OBJECTIVE This study aims to systematically analyze the current applications, research trends, and challenges of digital twin technology in tumor therapy, while exploring future directions. METHODS Relevant literature up to 2024 was retrieved from PubMed, Web of Science, and other databases. Data visualization was performed using R and VOSviewer software. The analysis includes the research initiation and trends, funding models, global research distribution, sample size analysis, and data processing and artificial intelligence applications. Furthermore, the study investigates the specific applications and effectiveness of digital twin technology in tumor diagnosis, treatment decision-making, prognosis prediction, and personalized management. RESULTS Since 2020, research on digital twin technology in oncology has surged, with significant contributions from the United States, Germany, Switzerland, and China. Funding primarily comes from government agencies, particularly the National Institutes of Health in the U.S. Sample size analysis reveals that large-sample studies have greater clinical reliability, while small-sample studies emphasize technology validation. In data processing and artificial intelligence applications, the integration of medical imaging, multi-omics data, and AI algorithms is key. By combining multimodal data integration with dynamic modeling, the accuracy of digital twin models has been significantly improved. However, the integration of different data types still faces challenges related to tool interoperability and limited standardization. Specific applications of digital twin technology have shown significant advantages in diagnosis, treatment decision-making, prognosis prediction, and surgical planning. CONCLUSION Digital twin technology holds substantial promise in tumor therapy by optimizing personalized treatment plans through integrated multimodal data and dynamic modeling. However, the study is limited by factors such as language restrictions, potential selection bias, and the relatively small number of published studies in this emerging field, which may affect the comprehensiveness and generalizability of our findings. Moreover, issues related to data heterogeneity, technical integration, and data privacy and ethics continue to impede its broader clinical application. Future research should promote international collaboration, establish unified interdisciplinary standards, and strengthen ethical regulations to accelerate the clinical translation of digital twin technology in cancer treatment.
Collapse
Affiliation(s)
- Shiying Shen
- School of Nursing, Hangzhou Normal University, No.2318, Yuhangtang Road, Yuhang District, Hangzhou, 310021, China
| | - Wenhao Qi
- School of Nursing, Hangzhou Normal University, No.2318, Yuhangtang Road, Yuhang District, Hangzhou, 310021, China
| | - Xin Liu
- School of Nursing, Hangzhou Normal University, No.2318, Yuhangtang Road, Yuhang District, Hangzhou, 310021, China
| | - Jianwen Zeng
- School of Nursing, Hangzhou Normal University, No.2318, Yuhangtang Road, Yuhang District, Hangzhou, 310021, China
| | - Sixie Li
- School of Nursing, Hangzhou Normal University, No.2318, Yuhangtang Road, Yuhang District, Hangzhou, 310021, China
| | - Xiaohong Zhu
- School of Nursing, Hangzhou Normal University, No.2318, Yuhangtang Road, Yuhang District, Hangzhou, 310021, China
| | - Chaoqun Dong
- School of Nursing, Hangzhou Normal University, No.2318, Yuhangtang Road, Yuhang District, Hangzhou, 310021, China
| | - Bin Wang
- School of Nursing, Hangzhou Normal University, No.2318, Yuhangtang Road, Yuhang District, Hangzhou, 310021, China
| | - Yankai Shi
- School of Nursing, Hangzhou Normal University, No.2318, Yuhangtang Road, Yuhang District, Hangzhou, 310021, China
| | - Jiani Yao
- School of Nursing, Hangzhou Normal University, No.2318, Yuhangtang Road, Yuhang District, Hangzhou, 310021, China
| | - Bingsheng Wang
- School of Nursing, Hangzhou Normal University, No.2318, Yuhangtang Road, Yuhang District, Hangzhou, 310021, China
| | - Louxia Jing
- School of Nursing, Hangzhou Normal University, No.2318, Yuhangtang Road, Yuhang District, Hangzhou, 310021, China
| | - Shihua Cao
- School of Nursing, Hangzhou Normal University, No.2318, Yuhangtang Road, Yuhang District, Hangzhou, 310021, China.
- Key Engineering Research Center of Mobile Health Management System, Ministry of Education, Hangzhou, China.
| | - Guanmian Liang
- Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
5
|
Lorenzo G, Hormuth DA, Wu C, Pash G, Chaudhuri A, Lima EABF, Okereke LC, Patel R, Willcox K, Yankeelov TE. Validating the predictions of mathematical models describing tumor growth and treatment response. ARXIV 2025:arXiv:2502.19333v1. [PMID: 40061122 PMCID: PMC11888553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Despite advances in methods to interrogate tumor biology, the observational and population-based approach of classical cancer research and clinical oncology does not enable anticipation of tumor outcomes to hasten the discovery of cancer mechanisms and personalize disease management. To address these limitations, individualized cancer forecasts have been shown to predict tumor growth and therapeutic response, inform treatment optimization, and guide experimental efforts. These predictions are obtained via computer simulations of mathematical models that are constrained with data from a patient's cancer and experiments. This book chapter addresses the validation of these mathematical models to forecast tumor growth and treatment response. We start with an overview of mathematical modeling frameworks, model selection techniques, and fundamental metrics. We then describe the usual strategies employed to validate cancer forecasts in preclinical and clinical scenarios. Finally, we discuss existing barriers in validating these predictions along with potential strategies to address them.
Collapse
Affiliation(s)
- Guillermo Lorenzo
- Group of Numerical Methods in Engineering, Department of Mathematics, University of A Coruña, Spain
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - David A. Hormuth
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX
| | - Chengyue Wu
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Graham Pash
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Anirban Chaudhuri
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Ernesto A. B. F. Lima
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX, USA
| | - Lois C. Okereke
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Reshmi Patel
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Karen Willcox
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Thomas E. Yankeelov
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
6
|
Salavati H, Pullens P, Debbaut C, Ceelen W. Image-guided patient-specific prediction of interstitial fluid flow and drug transport in solid tumors. J Control Release 2025; 378:899-911. [PMID: 39716662 DOI: 10.1016/j.jconrel.2024.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Tumor fluid dynamics and drug delivery simulations in solid tumors are highly relevant topics in clinical oncology. The current study introduces a novel method combining computational fluid dynamics (CFD) modeling, quantitative magnetic resonance imaging (MRI; including dynamic contrast-enhanced (DCE) MRI and diffusion-weighted (DW) MRI), and a novel ex-vivo protocol to generate patient-specific models of solid tumors in four patients with peritoneal metastases. DCE-MRI data were analyzed using the extended Tofts model to estimate the spatial distribution of tumor capillary permeability using the Ktrans parameter. DW-MRI data analysis provided a 3D representation of drug diffusivity, and DW-MRI coupled to an ex-vivo measurement protocol informed the spatial heterogeneity of the hydraulic conductivity of tumor tissue. The patient-specific data were subsequently incorporated into a computational fluid dynamics (CFD) model to simulate individualized tumor perfusion and drug transport maps. The results on interstitial fluid flow demonstrated noticeable heterogeneity of interstitial fluid pressure and velocity within the tumor, along with heterogeneous drug penetration profiles among different tumors, even with a similar drug administration regimen.
Collapse
Affiliation(s)
- Hooman Salavati
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium; IBiTech - BioMMedA, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent CRIG, Ghent, Belgium
| | - Pim Pullens
- Department of Radiology, Ghent University Hospital, Ghent, Belgium; Ghent Institute of Functional and Metabolic Imaging GIFMI, Ghent University, Ghent, Belgium; IBiTech - Medisip, Ghent University, Ghent, Belgium
| | - Charlotte Debbaut
- IBiTech - BioMMedA, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent CRIG, Ghent, Belgium
| | - Wim Ceelen
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent CRIG, Ghent, Belgium.
| |
Collapse
|
7
|
Riahi V, Diouf I, Khanna S, Boyle J, Hassanzadeh H. Digital Twins for Clinical and Operational Decision-Making: Scoping Review. J Med Internet Res 2025; 27:e55015. [PMID: 39778199 PMCID: PMC11754991 DOI: 10.2196/55015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/17/2024] [Accepted: 10/28/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The health care industry must align with new digital technologies to respond to existing and new challenges. Digital twins (DTs) are an emerging technology for digital transformation and applied intelligence that is rapidly attracting attention. DTs are virtual representations of products, systems, or processes that interact bidirectionally in real time with their actual counterparts. Although DTs have diverse applications from personalized care to treatment optimization, misconceptions persist regarding their definition and the extent of their implementation within health systems. OBJECTIVE This study aimed to review DT applications in health care, particularly for clinical decision-making (CDM) and operational decision-making (ODM). It provides a definition and framework for DTs by exploring their unique elements and characteristics. Then, it assesses the current advances and extent of DT applications to support CDM and ODM using the defined DT characteristics. METHODS We conducted a scoping review following the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) protocol. We searched multiple databases, including PubMed, MEDLINE, and Scopus, for original research articles describing DT technologies applied to CDM and ODM in health systems. Papers proposing only ideas or frameworks or describing DT capabilities without experimental data were excluded. We collated several available types of information, for example, DT characteristics, the environment that DTs were tested within, and the main underlying method, and used descriptive statistics to analyze the synthesized data. RESULTS Out of 5537 relevant papers, 1.55% (86/5537) met the predefined inclusion criteria, all published after 2017. The majority focused on CDM (75/86, 87%). Mathematical modeling (24/86, 28%) and simulation techniques (17/86, 20%) were the most frequently used methods. Using International Classification of Diseases, 10th Revision coding, we identified 3 key areas of DT applications as follows: factors influencing diseases of the circulatory system (14/86, 16%); health status and contact with health services (12/86, 14%); and endocrine, nutritional, and metabolic diseases (10/86, 12%). Only 16 (19%) of 86 studies tested the developed system in a real environment, while the remainder were evaluated in simulated settings. Assessing the studies against defined DT characteristics reveals that the developed systems have yet to materialize the full capabilities of DTs. CONCLUSIONS This study provides a comprehensive review of DT applications in health care, focusing on CDM and ODM. A key contribution is the development of a framework that defines important elements and characteristics of DTs in the context of related literature. The DT applications studied in this paper reveal encouraging results that allow us to envision that, in the near future, they will play an important role not only in the diagnosis and prevention of diseases but also in other areas, such as efficient clinical trial design, as well as personalized and optimized treatments.
Collapse
Affiliation(s)
- Vahid Riahi
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Melbourne, Australia
| | - Ibrahima Diouf
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Melbourne, Australia
| | - Sankalp Khanna
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia
| | - Justin Boyle
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia
| | - Hamed Hassanzadeh
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia
| |
Collapse
|
8
|
Vishwanath K, Choi H, Gupta M, Zhou R, Sorace AG, Yankeelov TE, Lima EABF. Modeling tumor dynamics and predicting response to chemo-, targeted-, and immune-therapies in a murine model of pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.03.631015. [PMID: 39803494 PMCID: PMC11722293 DOI: 10.1101/2025.01.03.631015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
We seek to establish a parsimonious mathematical framework for understanding the interaction and dynamics of the response of pancreatic cancer to the NGC triple chemotherapy regimen (mNab-paclitaxel, gemcitabine, and cisplatin), stromal-targeting drugs (calcipotriol and losartan), and an immune checkpoint inhibitor (anti-PD-L1). We developed a set of ordinary differential equations describing changes in tumor size (growth and regression) under the influence of five cocktails of treatments. Model calibration relies on three tumor volume measurements obtained over a 14-day period in a genetically engineered pancreatic cancer model (KrasLSLG12D-Trp53LSLR172H-Pdx1-Cre). Our model reproduces tumor growth in the control and treatment scenarios with an average concordance correlation coefficient (CCC) of 0.99±0.01. We conduct leave-one-out predictions (average CCC=0.74±0.06), mouse-specific predictions (average CCC=0.75±0.02), and hybrid, group-informed, mouse-specific predictions (average CCC=0.85±0.04). The developed mathematical model demonstrates high accuracy in fitting the experimental tumor data and a robust ability to predict tumor response to treatment. This approach has important implications for optimizing combination NGC treatment strategies.
Collapse
Affiliation(s)
- Krithik Vishwanath
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas, 78712
- Department of Mathematics, The University of Texas at Austin, Austin, Texas, 78712
| | - Hoon Choi
- Department of Radiology, Institute of Regenerative Medicine, Institute of Translational Medicine and Therapeutics, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Mamta Gupta
- Department of Radiology, Institute of Regenerative Medicine, Institute of Translational Medicine and Therapeutics, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Rong Zhou
- Department of Radiology, Institute of Regenerative Medicine, Institute of Translational Medicine and Therapeutics, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Anna G Sorace
- Department of Radiology, Department of Biomedical Engineering The University of Alabama, Birmingham, Birmingham, Alabama, 35223
| | - Thomas E Yankeelov
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, Texas, 78712
- Department of Oncology, The University of Texas at Austin, Austin, Texas, 78712
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, 78712
- Livestrong Cancer Institutes The University of Texas at Austin, Austin, Texas, 78712
- Department of Imaging Physics The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030
| | - Ernesto A B F Lima
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, 78712
- Texas Advanced Computing Center Austin, Texas, 78758
| |
Collapse
|
9
|
Mei X, Huang M. Integrating Deep Learning with Biology: A New Frontier in Triple-Negative Breast Cancer Treatment Prediction? Radiol Artif Intell 2025; 7:e240740. [PMID: 39660996 DOI: 10.1148/ryai.240740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Affiliation(s)
- Xueyan Mei
- From the BioMedical Engineering and Imaging Institute (X.M.), Department of Diagnostic, Molecular, and Interventional Radiology (X.M., M.H.), and Windreich Department of Artificial Intelligence and Human Health (X.M.), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY 10029-6574
| | - Mingqian Huang
- From the BioMedical Engineering and Imaging Institute (X.M.), Department of Diagnostic, Molecular, and Interventional Radiology (X.M., M.H.), and Windreich Department of Artificial Intelligence and Human Health (X.M.), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY 10029-6574
| |
Collapse
|
10
|
Stowers CE, Wu C, Xu Z, Kumar S, Yam C, Son JB, Ma J, Tamir JI, Rauch GM, Yankeelov TE. Combining Biology-based and MRI Data-driven Modeling to Predict Response to Neoadjuvant Chemotherapy in Patients with Triple-Negative Breast Cancer. Radiol Artif Intell 2025; 7:e240124. [PMID: 39503605 PMCID: PMC11791743 DOI: 10.1148/ryai.240124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/16/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024]
Abstract
Purpose To combine deep learning and biology-based modeling to predict the response of locally advanced, triple-negative breast cancer before initiating neoadjuvant chemotherapy (NAC). Materials and Methods In this retrospective study, a biology-based mathematical model of tumor response to NAC was constructed and calibrated on a patient-specific basis using imaging data from patients enrolled in the MD Anderson A Robust TNBC Evaluation FraMework to Improve Survival trial (ARTEMIS; ClinicalTrials.gov registration no. NCT02276443) between April 2018 and May 2021. To relate the calibrated parameters in the biology-based model and pretreatment MRI data, a convolutional neural network (CNN) was employed. The CNN predictions of the calibrated model parameters were used to estimate tumor response at the end of NAC. CNN performance in the estimations of total tumor volume (TTV), total tumor cellularity (TTC), and tumor status was evaluated. Model-predicted TTC and TTV measurements were compared with MRI-based measurements using the concordance correlation coefficient and area under the receiver operating characteristic curve (for predicting pathologic complete response at the end of NAC). Results The study included 118 female patients (median age, 51 years [range, 29-78 years]). For comparison of CNN predicted to measured change in TTC and TTV over the course of NAC, the concordance correlation coefficient values were 0.95 (95% CI: 0.90, 0.98) and 0.94 (95% CI: 0.87, 0.97), respectively. CNN-predicted TTC and TTV had an area under the receiver operating characteristic curve of 0.72 (95% CI: 0.34, 0.94) and 0.72 (95% CI: 0.40, 0.95) for predicting tumor status at the time of surgery, respectively. Conclusion Deep learning integrated with a biology-based mathematical model showed good performance in predicting the spatial and temporal evolution of a patient's tumor during NAC using only pre-NAC MRI data. Keywords: Triple-Negative Breast Cancer, Neoadjuvant Chemotherapy, Convolutional Neural Network, Biology-based Mathematical Model Supplemental material is available for this article. Clinical trial registration no. NCT02276443 ©RSNA, 2024 See also commentary by Mei and Huang in this issue.
Collapse
Affiliation(s)
- Casey E. Stowers
- From the Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Tex (C.E.S., C.W., J.I.T., T.E.Y.); Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Tex (S.K., J.I.T.); Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Tex (T.E.Y.); Departments of Imaging Physics (C.W., Z.X., J.B.S., J.M., T.E.Y.), Abdominal Imaging (G.M.R.), Breast Imaging (C.W., G.M.R.), Breast Medical Oncology (C.Y.), Biostatistics (C.W.), and Institute for Data Science in Oncology (C.W.), The University of Texas MD Anderson Cancer Center, Houston, Tex; and Departments of Biomedical Engineering (C.W., T.E.Y.), Diagnostic Medicine (J.I.T., T.E.Y.), and Oncology (T.E.Y.), The University of Texas at Austin, 107 W Dean Keeton St, Stop C0800, Austin, TX 78712
| | - Chengyue Wu
- From the Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Tex (C.E.S., C.W., J.I.T., T.E.Y.); Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Tex (S.K., J.I.T.); Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Tex (T.E.Y.); Departments of Imaging Physics (C.W., Z.X., J.B.S., J.M., T.E.Y.), Abdominal Imaging (G.M.R.), Breast Imaging (C.W., G.M.R.), Breast Medical Oncology (C.Y.), Biostatistics (C.W.), and Institute for Data Science in Oncology (C.W.), The University of Texas MD Anderson Cancer Center, Houston, Tex; and Departments of Biomedical Engineering (C.W., T.E.Y.), Diagnostic Medicine (J.I.T., T.E.Y.), and Oncology (T.E.Y.), The University of Texas at Austin, 107 W Dean Keeton St, Stop C0800, Austin, TX 78712
| | - Zhan Xu
- From the Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Tex (C.E.S., C.W., J.I.T., T.E.Y.); Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Tex (S.K., J.I.T.); Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Tex (T.E.Y.); Departments of Imaging Physics (C.W., Z.X., J.B.S., J.M., T.E.Y.), Abdominal Imaging (G.M.R.), Breast Imaging (C.W., G.M.R.), Breast Medical Oncology (C.Y.), Biostatistics (C.W.), and Institute for Data Science in Oncology (C.W.), The University of Texas MD Anderson Cancer Center, Houston, Tex; and Departments of Biomedical Engineering (C.W., T.E.Y.), Diagnostic Medicine (J.I.T., T.E.Y.), and Oncology (T.E.Y.), The University of Texas at Austin, 107 W Dean Keeton St, Stop C0800, Austin, TX 78712
| | - Sidharth Kumar
- From the Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Tex (C.E.S., C.W., J.I.T., T.E.Y.); Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Tex (S.K., J.I.T.); Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Tex (T.E.Y.); Departments of Imaging Physics (C.W., Z.X., J.B.S., J.M., T.E.Y.), Abdominal Imaging (G.M.R.), Breast Imaging (C.W., G.M.R.), Breast Medical Oncology (C.Y.), Biostatistics (C.W.), and Institute for Data Science in Oncology (C.W.), The University of Texas MD Anderson Cancer Center, Houston, Tex; and Departments of Biomedical Engineering (C.W., T.E.Y.), Diagnostic Medicine (J.I.T., T.E.Y.), and Oncology (T.E.Y.), The University of Texas at Austin, 107 W Dean Keeton St, Stop C0800, Austin, TX 78712
| | - Clinton Yam
- From the Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Tex (C.E.S., C.W., J.I.T., T.E.Y.); Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Tex (S.K., J.I.T.); Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Tex (T.E.Y.); Departments of Imaging Physics (C.W., Z.X., J.B.S., J.M., T.E.Y.), Abdominal Imaging (G.M.R.), Breast Imaging (C.W., G.M.R.), Breast Medical Oncology (C.Y.), Biostatistics (C.W.), and Institute for Data Science in Oncology (C.W.), The University of Texas MD Anderson Cancer Center, Houston, Tex; and Departments of Biomedical Engineering (C.W., T.E.Y.), Diagnostic Medicine (J.I.T., T.E.Y.), and Oncology (T.E.Y.), The University of Texas at Austin, 107 W Dean Keeton St, Stop C0800, Austin, TX 78712
| | - Jong Bum Son
- From the Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Tex (C.E.S., C.W., J.I.T., T.E.Y.); Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Tex (S.K., J.I.T.); Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Tex (T.E.Y.); Departments of Imaging Physics (C.W., Z.X., J.B.S., J.M., T.E.Y.), Abdominal Imaging (G.M.R.), Breast Imaging (C.W., G.M.R.), Breast Medical Oncology (C.Y.), Biostatistics (C.W.), and Institute for Data Science in Oncology (C.W.), The University of Texas MD Anderson Cancer Center, Houston, Tex; and Departments of Biomedical Engineering (C.W., T.E.Y.), Diagnostic Medicine (J.I.T., T.E.Y.), and Oncology (T.E.Y.), The University of Texas at Austin, 107 W Dean Keeton St, Stop C0800, Austin, TX 78712
| | - Jingfei Ma
- From the Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Tex (C.E.S., C.W., J.I.T., T.E.Y.); Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Tex (S.K., J.I.T.); Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Tex (T.E.Y.); Departments of Imaging Physics (C.W., Z.X., J.B.S., J.M., T.E.Y.), Abdominal Imaging (G.M.R.), Breast Imaging (C.W., G.M.R.), Breast Medical Oncology (C.Y.), Biostatistics (C.W.), and Institute for Data Science in Oncology (C.W.), The University of Texas MD Anderson Cancer Center, Houston, Tex; and Departments of Biomedical Engineering (C.W., T.E.Y.), Diagnostic Medicine (J.I.T., T.E.Y.), and Oncology (T.E.Y.), The University of Texas at Austin, 107 W Dean Keeton St, Stop C0800, Austin, TX 78712
| | - Jonathan I. Tamir
- From the Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Tex (C.E.S., C.W., J.I.T., T.E.Y.); Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Tex (S.K., J.I.T.); Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Tex (T.E.Y.); Departments of Imaging Physics (C.W., Z.X., J.B.S., J.M., T.E.Y.), Abdominal Imaging (G.M.R.), Breast Imaging (C.W., G.M.R.), Breast Medical Oncology (C.Y.), Biostatistics (C.W.), and Institute for Data Science in Oncology (C.W.), The University of Texas MD Anderson Cancer Center, Houston, Tex; and Departments of Biomedical Engineering (C.W., T.E.Y.), Diagnostic Medicine (J.I.T., T.E.Y.), and Oncology (T.E.Y.), The University of Texas at Austin, 107 W Dean Keeton St, Stop C0800, Austin, TX 78712
| | - Gaiane M. Rauch
- From the Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Tex (C.E.S., C.W., J.I.T., T.E.Y.); Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Tex (S.K., J.I.T.); Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Tex (T.E.Y.); Departments of Imaging Physics (C.W., Z.X., J.B.S., J.M., T.E.Y.), Abdominal Imaging (G.M.R.), Breast Imaging (C.W., G.M.R.), Breast Medical Oncology (C.Y.), Biostatistics (C.W.), and Institute for Data Science in Oncology (C.W.), The University of Texas MD Anderson Cancer Center, Houston, Tex; and Departments of Biomedical Engineering (C.W., T.E.Y.), Diagnostic Medicine (J.I.T., T.E.Y.), and Oncology (T.E.Y.), The University of Texas at Austin, 107 W Dean Keeton St, Stop C0800, Austin, TX 78712
| | - Thomas E. Yankeelov
- From the Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Tex (C.E.S., C.W., J.I.T., T.E.Y.); Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Tex (S.K., J.I.T.); Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Tex (T.E.Y.); Departments of Imaging Physics (C.W., Z.X., J.B.S., J.M., T.E.Y.), Abdominal Imaging (G.M.R.), Breast Imaging (C.W., G.M.R.), Breast Medical Oncology (C.Y.), Biostatistics (C.W.), and Institute for Data Science in Oncology (C.W.), The University of Texas MD Anderson Cancer Center, Houston, Tex; and Departments of Biomedical Engineering (C.W., T.E.Y.), Diagnostic Medicine (J.I.T., T.E.Y.), and Oncology (T.E.Y.), The University of Texas at Austin, 107 W Dean Keeton St, Stop C0800, Austin, TX 78712
| |
Collapse
|
11
|
Metzcar J, Guenter R, Wang Y, Baker KM, Lines KE. Improving neuroendocrine tumor treatments with mathematical modeling: lessons from other endocrine cancers. ENDOCRINE ONCOLOGY (BRISTOL, ENGLAND) 2025; 5:e240025. [PMID: 39949335 PMCID: PMC11825163 DOI: 10.1530/eo-24-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/11/2024] [Accepted: 01/08/2025] [Indexed: 02/16/2025]
Abstract
Neuroendocrine tumors (NETs) occur sporadically or as part of rare endocrine tumor syndromes (RETSs) such as multiple endocrine neoplasia 1 and von Hippel-Lindau syndromes. Due to their relative rarity and lack of model systems, NETs and RETSs are difficult to study, hindering advancements in therapeutic development. Causal or mechanistic mathematical modeling is widely deployed in disease areas such as breast and prostate cancers, aiding the understanding of observations and streamlining in vitro and in vivo modeling efforts. Mathematical modeling, while not yet widely utilized in NET research, offers an opportunity to accelerate NET research and therapy development. To illustrate this, we highlight examples of how mathematical modeling associated with more common endocrine cancers has been successfully used in the preclinical, translational and clinical settings. We also provide a scope of the limited work that has been done in NETs and map how these techniques can be utilized in NET research to address specific outstanding challenges in the field. Finally, we include practical details such as hardware and data requirements, present advantages and disadvantages of various mathematical modeling approaches and discuss challenges of using mathematical modeling. Through a cross-disciplinary approach, we believe that many currently difficult problems can be made more tractable by applying mathematical modeling and that the field of rare diseases in endocrine oncology is well poised to take advantage of these techniques.
Collapse
Affiliation(s)
- John Metzcar
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, Indiana, USA
- Department of Informatics, Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, Indiana, USA
- Therapy Modeling and Development Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
| | - Rachael Guenter
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yafei Wang
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, Indiana, USA
| | - Kimberly M Baker
- Department of Biology, Shaheen College of Arts and Sciences, University of Indianapolis, Indianapolis, Indiana, USA
| | - Kate E Lines
- OCDEM, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
- Department of Medical and Biological Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|
12
|
Miniere HJM, Lima EABF, Lorenzo G, Hormuth II DA, Ty S, Brock A, Yankeelov TE. A mathematical model for predicting the spatiotemporal response of breast cancer cells treated with doxorubicin. Cancer Biol Ther 2024; 25:2321769. [PMID: 38411436 PMCID: PMC11057790 DOI: 10.1080/15384047.2024.2321769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 02/18/2024] [Indexed: 02/28/2024] Open
Abstract
Tumor heterogeneity contributes significantly to chemoresistance, a leading cause of treatment failure. To better personalize therapies, it is essential to develop tools capable of identifying and predicting intra- and inter-tumor heterogeneities. Biology-inspired mathematical models are capable of attacking this problem, but tumor heterogeneity is often overlooked in in-vivo modeling studies, while phenotypic considerations capturing spatial dynamics are not typically included in in-vitro modeling studies. We present a data assimilation-prediction pipeline with a two-phenotype model that includes a spatiotemporal component to characterize and predict the evolution of in-vitro breast cancer cells and their heterogeneous response to chemotherapy. Our model assumes that the cells can be divided into two subpopulations: surviving cells unaffected by the treatment, and irreversibly damaged cells undergoing treatment-induced death. MCF7 breast cancer cells were previously cultivated in wells for up to 1000 hours, treated with various concentrations of doxorubicin and imaged with time-resolved microscopy to record spatiotemporally-resolved cell count data. Images were used to generate cell density maps. Treatment response predictions were initialized by a training set and updated by weekly measurements. Our mathematical model successfully calibrated the spatiotemporal cell growth dynamics, achieving median [range] concordance correlation coefficients of > .99 [.88, >.99] and .73 [.58, .85] across the whole well and individual pixels, respectively. Our proposed data assimilation-prediction approach achieved values of .97 [.44, >.99] and .69 [.35, .79] for the whole well and individual pixels, respectively. Thus, our model can capture and predict the spatiotemporal dynamics of MCF7 cells treated with doxorubicin in an in-vitro setting.
Collapse
Affiliation(s)
- Hugo J. M. Miniere
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, USA
| | - Ernesto A. B. F. Lima
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, USA
| | - Guillermo Lorenzo
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, USA
- Department of Civil Engineering and Architecture, University of Pavia, Lombardy, Italy
| | - David A. Hormuth II
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, USA
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, USA
| | - Sophia Ty
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, USA
| | - Amy Brock
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, USA
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, USA
| | - Thomas E. Yankeelov
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, USA
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, USA
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, USA
- Department of Oncology, The University of Texas at Austin, Austin, USA
- Division of Diagnostic Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, USA
| |
Collapse
|
13
|
Wang H, Arulraj T, Ippolito A, Popel AS. Quantitative Systems Pharmacology Modeling in Immuno-Oncology: Hypothesis Testing, Dose Optimization, and Efficacy Prediction. Handb Exp Pharmacol 2024. [PMID: 39707022 DOI: 10.1007/164_2024_735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Despite an increasing number of clinical trials, cancer is one of the leading causes of death worldwide in the past decade. Among all complex diseases, clinical trials in oncology have among the lowest success rates, in part due to the high intra- and inter-tumoral heterogeneity. There are more than a thousand cancer drugs and treatment combinations being investigated in ongoing clinical trials for various cancer subtypes, germline mutations, metastasis, etc. Particularly, treatments relying on the (re)activation of the immune system have become increasingly present in the clinical trial pipeline. However, the complexities of the immune response and cancer-immune interactions pose a challenge to the development of these therapies. Quantitative systems pharmacology (QSP), as a computational approach to predict tumor response to treatments of interest, can be used to conduct in silico clinical trials with virtual patients (and emergent use of digital twins) in place of real patients, thus lowering the time and cost of clinical trials. In line with improved mechanistic understanding of the human immune system and promising results from recent cancer immunotherapy, QSP models can play critical roles in model-informed drug development in immuno-oncology. In this chapter, we discuss how QSP models were designed to serve different study objectives, including hypothesis testing, dose optimization, and efficacy prediction, via case studies in immuno-oncology.
Collapse
Affiliation(s)
- Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Theinmozhi Arulraj
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alberto Ippolito
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
Drummond D, Gonsard A. Definitions and Characteristics of Patient Digital Twins Being Developed for Clinical Use: Scoping Review. J Med Internet Res 2024; 26:e58504. [PMID: 39536311 PMCID: PMC11602770 DOI: 10.2196/58504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/31/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The concept of digital twins, widely adopted in industry, is entering health care. However, there is a lack of consensus on what constitutes the digital twin of a patient. OBJECTIVE The objective of this scoping review was to analyze definitions and characteristics of patient digital twins being developed for clinical use, as reported in the scientific literature. METHODS We searched PubMed, Scopus, Embase, IEEE, and Google Scholar for studies claiming digital twin development or evaluation until August 2023. Data on definitions, characteristics, and development phase were extracted. Unsupervised classification of claimed digital twins was performed. RESULTS We identified 86 papers representing 80 unique claimed digital twins, with 98% (78/80) in preclinical phases. Among the 55 papers defining "digital twin," 76% (42/55) described a digital replica, 42% (23/55) mentioned real-time updates, 24% (13/55) emphasized patient specificity, and 15% (8/55) included 2-way communication. Among claimed digital twins, 60% (48/80) represented specific organs (primarily heart: 15/48, 31%; bones or joints: 10/48, 21%; lung: 6/48, 12%; and arteries: 5/48, 10%); 14% (11/80) embodied biological systems such as the immune system; and 26% (21/80) corresponded to other products (prediction models, etc). The patient data used to develop and run the claimed digital twins encompassed medical imaging examinations (35/80, 44% of publications), clinical notes (15/80, 19% of publications), laboratory test results (13/80, 16% of publications), wearable device data (12/80, 15% of publications), and other modalities (32/80, 40% of publications). Regarding data flow between patients and their virtual counterparts, 16% (13/80) claimed that digital twins involved no flow from patient to digital twin, 73% (58/80) used 1-way flow from patient to digital twin, and 11% (9/80) enabled 2-way data flow between patient and digital twin. Based on these characteristics, unsupervised classification revealed 3 clusters: simulation patient digital twins in 54% (43/80) of publications, monitoring patient digital twins in 28% (22/80) of publications, and research-oriented models unlinked to specific patients in 19% (15/80) of publications. Simulation patient digital twins used computational modeling for personalized predictions and therapy evaluations, mostly for one-time assessments, and monitoring digital twins harnessed aggregated patient data for continuous risk or outcome forecasting and care optimization. CONCLUSIONS We propose defining a patient digital twin as "a viewable digital replica of a patient, organ, or biological system that contains multidimensional, patient-specific information and informs decisions" and to distinguish simulation and monitoring digital twins. These proposed definitions and subtypes offer a framework to guide research into realizing the potential of these personalized, integrative technologies to advance clinical care.
Collapse
Affiliation(s)
- David Drummond
- Health Data- and Model-Driven Knowledge Acquisition Team, National Institute for Research in Digital Science and Technology, Paris, France
- Faculté de Médecine, Université Paris Cité, Paris, France
- Department of Pediatric Pulmonology and Allergology, University Hospital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
- Inserm UMR 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Apolline Gonsard
- Department of Pediatric Pulmonology and Allergology, University Hospital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| |
Collapse
|
15
|
Zhang K, Zhou HY, Baptista-Hon DT, Gao Y, Liu X, Oermann E, Xu S, Jin S, Zhang J, Sun Z, Yin Y, Razmi RM, Loupy A, Beck S, Qu J, Wu J. Concepts and applications of digital twins in healthcare and medicine. PATTERNS (NEW YORK, N.Y.) 2024; 5:101028. [PMID: 39233690 PMCID: PMC11368703 DOI: 10.1016/j.patter.2024.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The digital twin (DT) is a concept widely used in industry to create digital replicas of physical objects or systems. The dynamic, bi-directional link between the physical entity and its digital counterpart enables a real-time update of the digital entity. It can predict perturbations related to the physical object's function. The obvious applications of DTs in healthcare and medicine are extremely attractive prospects that have the potential to revolutionize patient diagnosis and treatment. However, challenges including technical obstacles, biological heterogeneity, and ethical considerations make it difficult to achieve the desired goal. Advances in multi-modal deep learning methods, embodied AI agents, and the metaverse may mitigate some difficulties. Here, we discuss the basic concepts underlying DTs, the requirements for implementing DTs in medicine, and their current and potential healthcare uses. We also provide our perspective on five hallmarks for a healthcare DT system to advance research in this field.
Collapse
Affiliation(s)
- Kang Zhang
- National Clinical Eye Research Center, Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
- Institute for Clinical Data Science, Wenzhou Medical University, Wenzhou 325000, China
- Institute for AI in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
- Institute for Advanced Study on Eye Health and Diseases, Wenzhou Medical University, Wenzhou 325000, China
| | - Hong-Yu Zhou
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02138, USA
| | - Daniel T. Baptista-Hon
- Institute for AI in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
- School of Medicine, University of Dundee, DD1 9SY Dundee, UK
| | - Yuanxu Gao
- Department of Big Data and Biomedical AI, College of Future Technology, Peking University, Beijing 100000, China
| | - Xiaohong Liu
- Cancer Institute, University College London, WC1E 6BT London, UK
| | - Eric Oermann
- NYU Langone Medical Center, New York University, New York, NY 10016, USA
| | - Sheng Xu
- Department of Chemical Engineering and Nanoengineering, University of California San Diego, San Diego, CA 92093, USA
| | - Shengwei Jin
- Institute for Clinical Data Science, Wenzhou Medical University, Wenzhou 325000, China
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Jian Zhang
- National Clinical Eye Research Center, Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhuo Sun
- Institute for Advanced Study on Eye Health and Diseases, Wenzhou Medical University, Wenzhou 325000, China
| | - Yun Yin
- Faculty of Business and Health Science Institute, City University of Macau, Macau 999078, China
| | | | - Alexandre Loupy
- Université Paris Cité, INSERM U970 PARCC, Paris Institute for Transplantation and Organ Regeneration, 75015 Paris, France
| | - Stephan Beck
- Cancer Institute, University College London, WC1E 6BT London, UK
| | - Jia Qu
- National Clinical Eye Research Center, Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
- Institute for Clinical Data Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Joseph Wu
- Cardiovascular Research Institute, Stanford University, Standford, CA 94305, USA
| | - International Consortium of Digital Twins in Medicine
- National Clinical Eye Research Center, Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
- Institute for Clinical Data Science, Wenzhou Medical University, Wenzhou 325000, China
- Institute for AI in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02138, USA
- Department of Big Data and Biomedical AI, College of Future Technology, Peking University, Beijing 100000, China
- Cancer Institute, University College London, WC1E 6BT London, UK
- NYU Langone Medical Center, New York University, New York, NY 10016, USA
- Department of Chemical Engineering and Nanoengineering, University of California San Diego, San Diego, CA 92093, USA
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325000, China
- Institute for Advanced Study on Eye Health and Diseases, Wenzhou Medical University, Wenzhou 325000, China
- Faculty of Business and Health Science Institute, City University of Macau, Macau 999078, China
- Zoi Capital, New York, NY 10013, USA
- Université Paris Cité, INSERM U970 PARCC, Paris Institute for Transplantation and Organ Regeneration, 75015 Paris, France
- Cardiovascular Research Institute, Stanford University, Standford, CA 94305, USA
- School of Medicine, University of Dundee, DD1 9SY Dundee, UK
| |
Collapse
|
16
|
Huang Y, Dai H, Xu J, Wei R, Sun L, Guo Y, Guo J, Bian J. Evolution of digital twins in precision health applications: a scoping review study. RESEARCH SQUARE 2024:rs.3.rs-4612942. [PMID: 39149471 PMCID: PMC11326392 DOI: 10.21203/rs.3.rs-4612942/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
An increasing amount of research is incorporating the concept of Digital twin (DT) in biomedical and health care applications. This scoping review aims to summarize existing research and identify gaps in the development and use of DTs in the health care domain. The focus of this study lies on summarizing: the different types of DTs, the techniques employed in DT development, the DT applications in health care, and the data resources used for creating DTs. We identified fifty studies, which mainly focused on creating organ- (n=15) and patient-specific twins (n=30). The research predominantly centers on cardiology, endocrinology, orthopedics, and infectious diseases. Only a few studies used real-world datasets for developing their DTs. However, there remain unresolved questions and promising directions that require further exploration. This review provides valuable reference material and insights for researchers on DTs in health care and highlights gaps and unmet needs in this field.
Collapse
Affiliation(s)
- Yu Huang
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Hao Dai
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Jie Xu
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Ruoqi Wei
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Leyang Sun
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Yi Guo
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Jingchuan Guo
- Department of Pharmaceutical Outcomes and Policy, University of Florida, Gainesville, FL, USA
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Wang H, Arulraj T, Ippolito A, Popel AS. From virtual patients to digital twins in immuno-oncology: lessons learned from mechanistic quantitative systems pharmacology modeling. NPJ Digit Med 2024; 7:189. [PMID: 39014005 PMCID: PMC11252162 DOI: 10.1038/s41746-024-01188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
Virtual patients and digital patients/twins are two similar concepts gaining increasing attention in health care with goals to accelerate drug development and improve patients' survival, but with their own limitations. Although methods have been proposed to generate virtual patient populations using mechanistic models, there are limited number of applications in immuno-oncology research. Furthermore, due to the stricter requirements of digital twins, they are often generated in a study-specific manner with models customized to particular clinical settings (e.g., treatment, cancer, and data types). Here, we discuss the challenges for virtual patient generation in immuno-oncology with our most recent experiences, initiatives to develop digital twins, and how research on these two concepts can inform each other.
Collapse
Affiliation(s)
- Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Theinmozhi Arulraj
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alberto Ippolito
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Departments of Medicine and Oncology, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Lorenzo G, Ahmed SR, Hormuth DA, Vaughn B, Kalpathy-Cramer J, Solorio L, Yankeelov TE, Gomez H. Patient-Specific, Mechanistic Models of Tumor Growth Incorporating Artificial Intelligence and Big Data. Annu Rev Biomed Eng 2024; 26:529-560. [PMID: 38594947 DOI: 10.1146/annurev-bioeng-081623-025834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Despite the remarkable advances in cancer diagnosis, treatment, and management over the past decade, malignant tumors remain a major public health problem. Further progress in combating cancer may be enabled by personalizing the delivery of therapies according to the predicted response for each individual patient. The design of personalized therapies requires the integration of patient-specific information with an appropriate mathematical model of tumor response. A fundamental barrier to realizing this paradigm is the current lack of a rigorous yet practical mathematical theory of tumor initiation, development, invasion, and response to therapy. We begin this review with an overview of different approaches to modeling tumor growth and treatment, including mechanistic as well as data-driven models based on big data and artificial intelligence. We then present illustrative examples of mathematical models manifesting their utility and discuss the limitations of stand-alone mechanistic and data-driven models. We then discuss the potential of mechanistic models for not only predicting but also optimizing response to therapy on a patient-specific basis. We describe current efforts and future possibilities to integrate mechanistic and data-driven models. We conclude by proposing five fundamental challenges that must be addressed to fully realize personalized care for cancer patients driven by computational models.
Collapse
Affiliation(s)
- Guillermo Lorenzo
- Oden Institute for Computational Engineering and Sciences, University of Texas, Austin, Texas, USA
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Syed Rakin Ahmed
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
- Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Harvard Graduate Program in Biophysics, Harvard Medical School, Harvard University, Cambridge, Massachusetts, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David A Hormuth
- Livestrong Cancer Institutes, University of Texas, Austin, Texas, USA
- Oden Institute for Computational Engineering and Sciences, University of Texas, Austin, Texas, USA
| | - Brenna Vaughn
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA;
| | | | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA;
| | - Thomas E Yankeelov
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, Texas, USA
- Department of Biomedical Engineering, Department of Oncology, and Department of Diagnostic Medicine, University of Texas, Austin, Texas, USA
- Livestrong Cancer Institutes, University of Texas, Austin, Texas, USA
- Oden Institute for Computational Engineering and Sciences, University of Texas, Austin, Texas, USA
| | - Hector Gomez
- School of Mechanical Engineering and Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA;
| |
Collapse
|
19
|
Conte M, Woodall RT, Gutova M, Chen BT, Shiroishi MS, Brown CE, Munson JM, Rockne RC. Structural and practical identifiability of contrast transport models for DCE-MRI. PLoS Comput Biol 2024; 20:e1012106. [PMID: 38748755 PMCID: PMC11132485 DOI: 10.1371/journal.pcbi.1012106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/28/2024] [Accepted: 04/24/2024] [Indexed: 05/28/2024] Open
Abstract
Contrast transport models are widely used to quantify blood flow and transport in dynamic contrast-enhanced magnetic resonance imaging. These models analyze the time course of the contrast agent concentration, providing diagnostic and prognostic value for many biological systems. Thus, ensuring accuracy and repeatability of the model parameter estimation is a fundamental concern. In this work, we analyze the structural and practical identifiability of a class of nested compartment models pervasively used in analysis of MRI data. We combine artificial and real data to study the role of noise in model parameter estimation. We observe that although all the models are structurally identifiable, practical identifiability strongly depends on the data characteristics. We analyze the impact of increasing data noise on parameter identifiability and show how the latter can be recovered with increased data quality. To complete the analysis, we show that the results do not depend on specific tissue characteristics or the type of enhancement patterns of contrast agent signal.
Collapse
Affiliation(s)
- Martina Conte
- Department of Mathematical Sciences “G. L. Lagrange”, Politecnico di Torino, Torino, Italy
- Division of Mathematical Oncology and Computational Systems Biology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Ryan T. Woodall
- Division of Mathematical Oncology and Computational Systems Biology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Margarita Gutova
- Department of Stem Cell Biology and Regenerative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Bihong T. Chen
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, California, United States of America
| | - Mark S. Shiroishi
- Department of Radiology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Christine E. Brown
- Departments of Hematology & Hematopoietic Cell Transplantation and Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center Duarte, California, United States of America
| | - Jennifer M. Munson
- Fralin Biomedical Research Institute, Virginia Tech, Roanoke, Virginia, United States of America
| | - Russell C. Rockne
- Division of Mathematical Oncology and Computational Systems Biology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| |
Collapse
|
20
|
Katsoulakis E, Wang Q, Wu H, Shahriyari L, Fletcher R, Liu J, Achenie L, Liu H, Jackson P, Xiao Y, Syeda-Mahmood T, Tuli R, Deng J. Digital twins for health: a scoping review. NPJ Digit Med 2024; 7:77. [PMID: 38519626 PMCID: PMC10960047 DOI: 10.1038/s41746-024-01073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
The use of digital twins (DTs) has proliferated across various fields and industries, with a recent surge in the healthcare sector. The concept of digital twin for health (DT4H) holds great promise to revolutionize the entire healthcare system, including management and delivery, disease treatment and prevention, and health well-being maintenance, ultimately improving human life. The rapid growth of big data and continuous advancement in data science (DS) and artificial intelligence (AI) have the potential to significantly expedite DT research and development by providing scientific expertise, essential data, and robust cybertechnology infrastructure. Although various DT initiatives have been underway in the industry, government, and military, DT4H is still in its early stages. This paper presents an overview of the current applications of DTs in healthcare, examines consortium research centers and their limitations, and surveys the current landscape of emerging research and development opportunities in healthcare. We envision the emergence of a collaborative global effort among stakeholders to enhance healthcare and improve the quality of life for millions of individuals worldwide through pioneering research and development in the realm of DT technology.
Collapse
Affiliation(s)
- Evangelia Katsoulakis
- VA Informatics and Computing Infrastructure, Salt Lake City, UT, 84148, USA
- Department of Radiation Oncology, University of South Florida, Tampa, FL, 33606, USA
| | - Qi Wang
- Department of Mathematics, University of South Carolina, Columbia, SC, 29208, USA
| | - Huanmei Wu
- Department of Health Services Administration and Policy, Temple University, Philadelphia, PA, 19122, USA
| | - Leili Shahriyari
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Richard Fletcher
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02139, USA
| | - Jinwei Liu
- Department of Computer and Information Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Luke Achenie
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Hongfang Liu
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Pamela Jackson
- Precision Neurotherapeutics Innovation Program & Department of Neurosurgery, Mayo Clinic, Phoenix, AZ, 85003, USA
| | - Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Richard Tuli
- Department of Radiation Oncology, University of South Florida, Tampa, FL, 33606, USA
| | - Jun Deng
- Department of Therapeutic Radiology, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
21
|
Laubenbacher R, Adler F, An G, Castiglione F, Eubank S, Fonseca LL, Glazier J, Helikar T, Jett-Tilton M, Kirschner D, Macklin P, Mehrad B, Moore B, Pasour V, Shmulevich I, Smith A, Voigt I, Yankeelov TE, Ziemssen T. Toward mechanistic medical digital twins: some use cases in immunology. Front Digit Health 2024; 6:1349595. [PMID: 38515550 PMCID: PMC10955144 DOI: 10.3389/fdgth.2024.1349595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
A fundamental challenge for personalized medicine is to capture enough of the complexity of an individual patient to determine an optimal way to keep them healthy or restore their health. This will require personalized computational models of sufficient resolution and with enough mechanistic information to provide actionable information to the clinician. Such personalized models are increasingly referred to as medical digital twins. Digital twin technology for health applications is still in its infancy, and extensive research and development is required. This article focuses on several projects in different stages of development that can lead to specific-and practical-medical digital twins or digital twin modeling platforms. It emerged from a two-day forum on problems related to medical digital twins, particularly those involving an immune system component. Open access video recordings of the forum discussions are available.
Collapse
Affiliation(s)
| | - Fred Adler
- Department of Mathematics and School of Biological Sciences, University of Utah, Salt Lake, UT, United States
| | - Gary An
- Department of Surgery, University of Vermont, Burlington, VT, United States
| | - Filippo Castiglione
- Biotechnology Research Center, Technology Innovation Institute, Abu Dhabi, United Arab Emirates
| | - Stephen Eubank
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, VA, United States
| | - Luis L. Fonseca
- Department of Medicine, University of Florida, Gainesville, FL, United States
| | - James Glazier
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, United States
| | - Tomas Helikar
- Department of Biochemistry, University of Nebraska, Lincoln, NE, United States
| | - Marti Jett-Tilton
- U.S. Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Denise Kirschner
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
| | - Paul Macklin
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, United States
| | - Borna Mehrad
- Department of Medicine, University of Florida, Gainesville, FL, United States
| | - Beth Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
| | - Virginia Pasour
- U.S. Army Research Office, Research Triangle Park, NC, United States
| | | | - Amber Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Isabel Voigt
- Center for Clinical Neuroscience, Carl Gustav Carus University Hospital, Dresden, Germany
| | - Thomas E. Yankeelov
- Department of Biomedical Engineering, Oden Institute for Computational Engineering and Sciences, Austin, TX, United States
- Departments of Biomedical Engineering, Diagnostic Medicine, Oncology, The University of Texas, Austin, TX, United States
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Austin, TX, United States
| | - Tjalf Ziemssen
- Center for Clinical Neuroscience, Carl Gustav Carus University Hospital, Dresden, Germany
| |
Collapse
|
22
|
Lorenzo G, Heiselman JS, Liss MA, Miga MI, Gomez H, Yankeelov TE, Reali A, Hughes TJ. A Pilot Study on Patient-specific Computational Forecasting of Prostate Cancer Growth during Active Surveillance Using an Imaging-informed Biomechanistic Model. CANCER RESEARCH COMMUNICATIONS 2024; 4:617-633. [PMID: 38426815 PMCID: PMC10906139 DOI: 10.1158/2767-9764.crc-23-0449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/15/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Active surveillance (AS) is a suitable management option for newly diagnosed prostate cancer, which usually presents low to intermediate clinical risk. Patients enrolled in AS have their tumor monitored via longitudinal multiparametric MRI (mpMRI), PSA tests, and biopsies. Hence, treatment is prescribed when these tests identify progression to higher-risk prostate cancer. However, current AS protocols rely on detecting tumor progression through direct observation according to population-based monitoring strategies. This approach limits the design of patient-specific AS plans and may delay the detection of tumor progression. Here, we present a pilot study to address these issues by leveraging personalized computational predictions of prostate cancer growth. Our forecasts are obtained with a spatiotemporal biomechanistic model informed by patient-specific longitudinal mpMRI data (T2-weighted MRI and apparent diffusion coefficient maps from diffusion-weighted MRI). Our results show that our technology can represent and forecast the global tumor burden for individual patients, achieving concordance correlation coefficients from 0.93 to 0.99 across our cohort (n = 7). In addition, we identify a model-based biomarker of higher-risk prostate cancer: the mean proliferation activity of the tumor (P = 0.041). Using logistic regression, we construct a prostate cancer risk classifier based on this biomarker that achieves an area under the ROC curve of 0.83. We further show that coupling our tumor forecasts with this prostate cancer risk classifier enables the early identification of prostate cancer progression to higher-risk disease by more than 1 year. Thus, we posit that our predictive technology constitutes a promising clinical decision-making tool to design personalized AS plans for patients with prostate cancer. SIGNIFICANCE Personalization of a biomechanistic model of prostate cancer with mpMRI data enables the prediction of tumor progression, thereby showing promise to guide clinical decision-making during AS for each individual patient.
Collapse
Affiliation(s)
- Guillermo Lorenzo
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas
| | - Jon S. Heiselman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Michael A. Liss
- Department of Urology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Michael I. Miga
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Neurological Surgery, Radiology, and Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hector Gomez
- School of Mechanical Engineering, Weldon School of Biomedical Engineering, and Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Thomas E. Yankeelov
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas
- Livestrong Cancer Institutes and Departments of Biomedical Engineering, Diagnostic Medicine, and Oncology, The University of Texas at Austin, Austin, Texas
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alessandro Reali
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Thomas J.R. Hughes
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
23
|
Sahu M. Twin studies as an innovative approach to address research questions in cancer care within primary care settings. Fam Med Community Health 2024; 12:e002623. [PMID: 38341219 PMCID: PMC10862323 DOI: 10.1136/fmch-2023-002623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024] Open
Abstract
This paper proposes the utilisation of twin studies as a novel and powerful methodological approach to investigate critical research questions pertaining to cancer prevention, screening, diagnosis, treatment and survivorship within primary care contexts. The inherent genetic similarity between monozygotic (MZ) (identical) twins provides a unique opportunity to disentangle genetic and environmental influences on cancer-related outcomes. MZ twins share virtually identical genetic makeup, offering a unique opportunity to discern the relative contributions of genetic and environmental factors to cancer-related outcomes. In contrast, dizygotic (DZ) twins, also known as fraternal twins, develop from two separate eggs fertilised by two different sperm and share on average 50% of their genetic material, the same level of genetic similarity found in non-twin siblings. Comparisons between MZ and DZ twins enable researchers to disentangle hereditary factors from shared environmental influences. This methodology has the potential to advance our understanding of the multifaceted interplay between genetic predisposition, lifestyle factors and healthcare interventions in the context of cancer care. This paper outlines the rationale, design considerations and potential applications of twin studies in primary care-based cancer research.
Collapse
Affiliation(s)
- Monalisha Sahu
- Department of Occupational Health, All India Institute of Hygiene and Public Health, Kolkata, India
- Department of Preventive & Social Medicine, All India Institute of Hygiene and Public Health, Kolkata, India
| |
Collapse
|
24
|
Yankeelov TE, Hormuth DA, Lima EA, Lorenzo G, Wu C, Okereke LC, Rauch GM, Venkatesan AM, Chung C. Designing clinical trials for patients who are not average. iScience 2024; 27:108589. [PMID: 38169893 PMCID: PMC10758956 DOI: 10.1016/j.isci.2023.108589] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
The heterogeneity inherent in cancer means that even a successful clinical trial merely results in a therapeutic regimen that achieves, on average, a positive result only in a subset of patients. The only way to optimize an intervention for an individual patient is to reframe their treatment as their own, personalized trial. Toward this goal, we formulate a computational framework for performing personalized trials that rely on four mathematical techniques. First, mathematical models that can be calibrated with patient-specific data to make accurate predictions of response. Second, digital twins built on these models capable of simulating the effects of interventions. Third, optimal control theory applied to the digital twins to optimize outcomes. Fourth, data assimilation to continually update and refine predictions in response to therapeutic interventions. In this perspective, we describe each of these techniques, quantify their "state of readiness", and identify use cases for personalized clinical trials.
Collapse
Affiliation(s)
- Thomas E. Yankeelov
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Oncology, The University of Texas at Austin, Austin, TX 78712, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX 78712, USA
- Division of Diagnostic Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - David A. Hormuth
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ernesto A.B.F. Lima
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
- Texas Advanced Computer Center, The University of Texas at Austin, Austin, TX 78712, USA
| | - Guillermo Lorenzo
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy
| | - Chengyue Wu
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Lois C. Okereke
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Gaiane M. Rauch
- Department of Abdominal Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Aradhana M. Venkatesan
- Department of Abdominal Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Caroline Chung
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
25
|
Conte M, Woodall RT, Gutova M, Chen BT, Shiroishi MS, Brown CE, Munson JM, Rockne RC. Structural and practical identifiability of contrast transport models for DCE-MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572294. [PMID: 38187554 PMCID: PMC10769233 DOI: 10.1101/2023.12.19.572294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Compartment models are widely used to quantify blood flow and transport in dynamic contrast-enhanced magnetic resonance imaging. These models analyze the time course of the contrast agent concentration, providing diagnostic and prognostic value for many biological systems. Thus, ensuring accuracy and repeatability of the model parameter estimation is a fundamental concern. In this work, we analyze the structural and practical identifiability of a class of nested compartment models pervasively used in analysis of MRI data. We combine artificial and real data to study the role of noise in model parameter estimation. We observe that although all the models are structurally identifiable, practical identifiability strongly depends on the data characteristics. We analyze the impact of increasing data noise on parameter identifiability and show how the latter can be recovered with increased data quality. To complete the analysis, we show that the results do not depend on specific tissue characteristics or the type of enhancement patterns of contrast agent signal.
Collapse
|
26
|
Duan J, Zhao Y, Sun Q, Liang D, Liu Z, Chen X, Li Z. Imaging-proteomic analysis for prediction of neoadjuvant chemotherapy responses in patients with breast cancer. Cancer Med 2023; 12:21256-21269. [PMID: 37962087 PMCID: PMC10726892 DOI: 10.1002/cam4.6704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/08/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Optimizing patient selection for neoadjuvant chemotherapy in patients with breast cancer remains an unmet clinical need. Quantitative features from medical imaging were reported to be predictive of treatment responses. However, the biologic meaning of these latent features is poorly understood, preventing the clinical use of such noninvasive imaging markers. The study aimed to develop a deep learning signature (DLS) from pretreatment magnetic resonance imaging (MRI) for predicting responses to neoadjuvant chemotherapy in patients with breast cancer and to further investigate the biologic meaning of the DLS by identifying its underlying pathways using paired MRI and proteomic sequencing data. METHODS MRI-based DLS was constructed (radiogenomic training dataset, n = 105) and validated (radiogenomic validation dataset, n = 26) for the prediction of pathologic complete response (pCR) to neoadjuvant chemotherapy. Proteomic sequencing revealed biological functions facilitating pCR (n = 139). Their associations with DLS were uncovered by radiogenomic analysis. RESULTS The DLS achieved a prediction accuracy of 0.923 with an AUC of 0.958, higher than the performance of the model trained by transfer learning. Cellular membrane formation, endocytosis, insulin-like growth factor binding, protein localization to membranes, and cytoskeleton-dependent trafficking were differentially regulated in patients showing pCR. Oncogenic signaling pathways, features correlated with human phenotypes, and features correlated with general biological processes were significantly correlated with DLS in both training and validation dataset (p.adj < 0.05). CONCLUSIONS Our study offers a biologically interpretable DLS for the prediction of pCR to neoadjuvant chemotherapy in patients with breast cancer, which may guide personalized medication.
Collapse
Affiliation(s)
- Jingxian Duan
- Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Yuanshen Zhao
- Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Qiuchang Sun
- Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Dong Liang
- Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of SciencesShenzhenChina
- National Innovation Center for Advanced Medical DevicesShenzhenChina
- Shenzhen United Imaging Research Institute of Innovative Medical EquipmentShenzhenChina
| | - Zaiyi Liu
- Department of RadiologyGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and ApplicationGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
| | - Xin Chen
- Department of Radiology, Guangzhou First People's Hospital, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Zhi‐Cheng Li
- Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of SciencesShenzhenChina
- National Innovation Center for Advanced Medical DevicesShenzhenChina
- Shenzhen United Imaging Research Institute of Innovative Medical EquipmentShenzhenChina
| |
Collapse
|
27
|
Hong GS, Jang M, Kyung S, Cho K, Jeong J, Lee GY, Shin K, Kim KD, Ryu SM, Seo JB, Lee SM, Kim N. Overcoming the Challenges in the Development and Implementation of Artificial Intelligence in Radiology: A Comprehensive Review of Solutions Beyond Supervised Learning. Korean J Radiol 2023; 24:1061-1080. [PMID: 37724586 PMCID: PMC10613849 DOI: 10.3348/kjr.2023.0393] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/01/2023] [Accepted: 07/30/2023] [Indexed: 09/21/2023] Open
Abstract
Artificial intelligence (AI) in radiology is a rapidly developing field with several prospective clinical studies demonstrating its benefits in clinical practice. In 2022, the Korean Society of Radiology held a forum to discuss the challenges and drawbacks in AI development and implementation. Various barriers hinder the successful application and widespread adoption of AI in radiology, such as limited annotated data, data privacy and security, data heterogeneity, imbalanced data, model interpretability, overfitting, and integration with clinical workflows. In this review, some of the various possible solutions to these challenges are presented and discussed; these include training with longitudinal and multimodal datasets, dense training with multitask learning and multimodal learning, self-supervised contrastive learning, various image modifications and syntheses using generative models, explainable AI, causal learning, federated learning with large data models, and digital twins.
Collapse
Affiliation(s)
- Gil-Sun Hong
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Miso Jang
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sunggu Kyung
- Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyungjin Cho
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jiheon Jeong
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Grace Yoojin Lee
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Keewon Shin
- Laboratory for Biosignal Analysis and Perioperative Outcome Research, Biomedical Engineering Center, Asan Institute of Lifesciences, Asan Medical Center, Seoul, Republic of Korea
| | - Ki Duk Kim
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung Min Ryu
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Joon Beom Seo
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang Min Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Namkug Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
28
|
Chen Y, Qi Y, Wang K. Neoadjuvant chemotherapy for breast cancer: an evaluation of its efficacy and research progress. Front Oncol 2023; 13:1169010. [PMID: 37854685 PMCID: PMC10579937 DOI: 10.3389/fonc.2023.1169010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Neoadjuvant chemotherapy (NAC) for breast cancer is widely used in the clinical setting to improve the chance of surgery, breast conservation and quality of life for patients with advanced breast cancer. A more accurate efficacy evaluation system is important for the decision of surgery timing and chemotherapy regimen implementation. However, current methods, encompassing imaging techniques such as ultrasound and MRI, along with non-imaging approaches like pathological evaluations, often fall short in accurately depicting the therapeutic effects of NAC. Imaging techniques are subjective and only reflect macroscopic morphological changes, while pathological evaluation is the gold standard for efficacy assessment but has the disadvantage of delayed results. In an effort to identify assessment methods that align more closely with real-world clinical demands, this paper provides an in-depth exploration of the principles and clinical applications of various assessment approaches in the neoadjuvant chemotherapy process.
Collapse
Affiliation(s)
- Yushi Chen
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, Basic Medical School, Central South University, Changsha, Hunan, China
| | - Yu Qi
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, Basic Medical School, Central South University, Changsha, Hunan, China
| | - Kuansong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, Basic Medical School, Central South University, Changsha, Hunan, China
| |
Collapse
|
29
|
Hervas-Raluy S, Wirthl B, Guerrero PE, Robalo Rei G, Nitzler J, Coronado E, Font de Mora Sainz J, Schrefler BA, Gomez-Benito MJ, Garcia-Aznar JM, Wall WA. Tumour growth: An approach to calibrate parameters of a multiphase porous media model based on in vitro observations of Neuroblastoma spheroid growth in a hydrogel microenvironment. Comput Biol Med 2023; 159:106895. [PMID: 37060771 DOI: 10.1016/j.compbiomed.2023.106895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/09/2023] [Accepted: 04/09/2023] [Indexed: 04/17/2023]
Abstract
To unravel processes that lead to the growth of solid tumours, it is necessary to link knowledge of cancer biology with the physical properties of the tumour and its interaction with the surrounding microenvironment. Our understanding of the underlying mechanisms is however still imprecise. We therefore developed computational physics-based models, which incorporate the interaction of the tumour with its surroundings based on the theory of porous media. However, the experimental validation of such models represents a challenge to its clinical use as a prognostic tool. This study combines a physics-based model with in vitro experiments based on microfluidic devices used to mimic a three-dimensional tumour microenvironment. By conducting a global sensitivity analysis, we identify the most influential input parameters and infer their posterior distribution based on Bayesian calibration. The resulting probability density is in agreement with the scattering of the experimental data and thus validates the proposed workflow. This study demonstrates the huge challenges associated with determining precise parameters with usually only limited data for such complex processes and models, but also demonstrates in general how to indirectly characterise the mechanical properties of neuroblastoma spheroids that cannot feasibly be measured experimentally.
Collapse
Affiliation(s)
- Silvia Hervas-Raluy
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, University of Zaragoza, Aragon Institute for Engineering Research (I3A), Maria de Luna 3, Zaragoza, 50018, Spain.
| | - Barbara Wirthl
- Institute for Computational Mechanics, Technical University of Munich, TUM School of Engineering and Design, Department of Engineering Physics & Computation, Boltzmannstraße 15, Garching b. Munich, 85748, Germany
| | - Pedro E Guerrero
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, University of Zaragoza, Aragon Institute for Engineering Research (I3A), Maria de Luna 3, Zaragoza, 50018, Spain
| | - Gil Robalo Rei
- Institute for Computational Mechanics, Technical University of Munich, TUM School of Engineering and Design, Department of Engineering Physics & Computation, Boltzmannstraße 15, Garching b. Munich, 85748, Germany
| | - Jonas Nitzler
- Institute for Computational Mechanics, Technical University of Munich, TUM School of Engineering and Design, Department of Engineering Physics & Computation, Boltzmannstraße 15, Garching b. Munich, 85748, Germany; Professorship for Data-Driven Materials Modeling, Technical University of Munich, TUM School of Engineering and Design, Department of Engineering Physics & Computation, Boltzmannstraße 15, Garching b. Munich, 85748, Germany
| | - Esther Coronado
- Clinical and Translational Oncology Research Group, Instituto de Investigación La Fe,, Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Jaime Font de Mora Sainz
- Clinical and Translational Oncology Research Group, Instituto de Investigación La Fe,, Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Bernhard A Schrefler
- Department of Civil, Environmental and Architectural Engineering, University of Padua, Marzolo 9, Padua, 35131, Italy; Institute for Advanced Study, Technical University of Munich, Boltzmannstraße 15, Garching b. Munich, 85748, Germany
| | - Maria Jose Gomez-Benito
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, University of Zaragoza, Aragon Institute for Engineering Research (I3A), Maria de Luna 3, Zaragoza, 50018, Spain
| | - Jose Manuel Garcia-Aznar
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, University of Zaragoza, Aragon Institute for Engineering Research (I3A), Maria de Luna 3, Zaragoza, 50018, Spain
| | - Wolfgang A Wall
- Institute for Computational Mechanics, Technical University of Munich, TUM School of Engineering and Design, Department of Engineering Physics & Computation, Boltzmannstraße 15, Garching b. Munich, 85748, Germany
| |
Collapse
|
30
|
Huang Y, Zhu T, Zhang X, Li W, Zheng X, Cheng M, Ji F, Zhang L, Yang C, Wu Z, Ye G, Lin Y, Wang K. Longitudinal MRI-based fusion novel model predicts pathological complete response in breast cancer treated with neoadjuvant chemotherapy: a multicenter, retrospective study. EClinicalMedicine 2023; 58:101899. [PMID: 37007742 PMCID: PMC10050775 DOI: 10.1016/j.eclinm.2023.101899] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 04/04/2023] Open
Abstract
Background Accurate identification of pCR to neoadjuvant chemotherapy (NAC) is essential for determining appropriate surgery strategy and guiding resection extent in breast cancer. However, a non-invasive tool to predict pCR accurately is lacking. Our study aims to develop ensemble learning models using longitudinal multiparametric MRI to predict pCR in breast cancer. Methods From July 2015 to December 2021, we collected pre-NAC and post-NAC multiparametric MRI sequences per patient. We then extracted 14,676 radiomics and 4096 deep learning features and calculated additional delta-value features. In the primary cohort (n = 409), the inter-class correlation coefficient test, U-test, Boruta and the least absolute shrinkage and selection operator regression were used to select the most significant features for each subtype of breast cancer. Five machine learning classifiers were then developed to predict pCR accurately for each subtype. The ensemble learning strategy was used to integrate the single-modality models. The diagnostic performances of models were evaluated in the three external cohorts (n = 343, 170 and 340, respectively). Findings A total of 1262 patients with breast cancer from four centers were enrolled in this study, and pCR rates were 10.6% (52/491), 54.3% (323/595) and 37.5% (66/176) in HR+/HER2-, HER2+ and TNBC subtype, respectively. Finally, 20, 15 and 13 features were selected to construct the machine learning models in HR+/HER2-, HER2+ and TNBC subtypes, respectively. The multi-Layer Perception (MLP) yields the best diagnostic performances in all subtypes. For the three subtypes, the stacking model integrating pre-, post- and delta-models yielded the highest AUCs of 0.959, 0.974 and 0.958 in the primary cohort, and AUCs of 0.882-0.908, 0.896-0.929 and 0.837-0.901 in the external validation cohorts, respectively. The stacking model had accuracies of 85.0%-88.9%, sensitivities of 80.0%-86.3%, and specificities of 87.4%-91.5% in the external validation cohorts. Interpretation Our study established a novel tool to predict the responses of breast cancer to NAC and achieve excellent performance. The models could help to determine post-NAC surgery strategy for breast cancer. Funding This study is supported by grants from the National Natural Science Foundation of China (82171898, 82103093), the Deng Feng project of high-level hospital construction (DFJHBF202109), the Guangdong Basic and Applied Basic Research Foundation (grant number, 2020A1515010346, 2022A1515012277), the Science and Technology Planning Project of Guangzhou City (202002030236), the Beijing Medical Award Foundation (YXJL-2020-0941-0758), and the Beijing Science and Technology Innovation Medical Development Foundation (KC2022-ZZ-0091-5). Funding sources were not involved in the study design, data collection, analysis and interpretation, writing of the report, or decision to submit the article for publication.
Collapse
Affiliation(s)
- YuHong Huang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080 Guangdong, China
| | - Teng Zhu
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080 Guangdong, China
| | - XiaoLing Zhang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Li
- Department of Breast Cancer, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - XingXing Zheng
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080 Guangdong, China
| | - MinYi Cheng
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080 Guangdong, China
| | - Fei Ji
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080 Guangdong, China
| | - LiuLu Zhang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080 Guangdong, China
| | - CiQiu Yang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080 Guangdong, China
| | - ZhiYong Wu
- Diagnosis and Treatment Center of Breast Diseases, Shantou Central Hospital, Shantou, China
- Corresponding author. Diagnosis and Treatment Center of Breast Diseases, Shantou Central Hospital, Shantou, China
| | - GuoLin Ye
- Department of Breast Cancer, The First People's Hospital of Foshan, Foshan, Guangdong, China
- Corresponding author. Department of Breast Cancer, The First People's Hospital of Foshan, Foshan, 528000, China.
| | - Ying Lin
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Corresponding author. Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Kun Wang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080 Guangdong, China
- Corresponding author. Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| |
Collapse
|
31
|
Lan A, Chen J, Li C, Jin Y, Wu Y, Dai Y, Jiang L, Li H, Peng Y, Liu S. Development and Assessment of a Novel Core Biopsy-Based Prediction Model for Pathological Complete Response to Neoadjuvant Chemotherapy in Women with Breast Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1617. [PMID: 36674372 PMCID: PMC9867383 DOI: 10.3390/ijerph20021617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Purpose: Pathological complete response (pCR), the goal of NAC, is considered a surrogate for favorable outcomes in breast cancer (BC) patients administrated neoadjuvant chemotherapy (NAC). This study aimed to develop and assess a novel nomogram model for predicting the probability of pCR based on the core biopsy. Methods: This was a retrospective study involving 920 BC patients administered NAC between January 2012 and December 2018. The patients were divided into a primary cohort (769 patients from January 2012 to December 2017) and a validation cohort (151 patients from January 2017 to December 2018). After converting continuous variables to categorical variables, variables entering the model were sequentially identified via univariate analysis, a multicollinearity test, and binary logistic regression analysis, and then, a nomogram model was developed. The performance of the model was assessed concerning its discrimination, accuracy, and clinical utility. Results: The optimal predictive threshold for estrogen receptor (ER), Ki67, and p53 were 22.5%, 32.5%, and 37.5%, respectively (all p < 0.001). Five variables were selected to develop the model: clinical T staging (cT), clinical nodal (cN) status, ER status, Ki67 status, and p53 status (all p ≤ 0.001). The nomogram showed good discrimination with the area under the curve (AUC) of 0.804 and 0.774 for the primary and validation cohorts, respectively, and good calibration. Decision curve analysis (DCA) showed that the model had practical clinical value. Conclusions: This study constructed a novel nomogram model based on cT, cN, ER status, Ki67 status, and p53 status, which could be applied to personalize the prediction of pCR in BC patients treated with NAC.
Collapse
Affiliation(s)
- Ailin Lan
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Junru Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Chao Li
- Department of Vascular Surgery, Southwest Hospital, Army Medical University, 38 Main Street, Gaotanyan, Shapingba, Chongqing 400038, China
| | - Yudi Jin
- Department of Pathology, Chongqing University Cancer Hospital, No. 181, Hanyu Road, Shapingba District, Chongqing 400030, China
| | - Yinan Wu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Yuran Dai
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Linshan Jiang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Han Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Yang Peng
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Shengchun Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| |
Collapse
|