1
|
Peivasteh-Roudsari L, Karami M, Barzegar-Bafrouei R, Samiee S, Karami H, Tajdar-Oranj B, Mahdavi V, Alizadeh AM, Sadighara P, Oliveri Conti G, Mousavi Khaneghah A. Toxicity, metabolism, and mitigation strategies of acrylamide: a comprehensive review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1-29. [PMID: 36161963 DOI: 10.1080/09603123.2022.2123907] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Acrylamide, a food-borne chemical toxicant, has raised global concern in recent decades. It mainly originated from reducing sugar and free amino acid interactions in the carbohydrate-rich foodstuffs heated at high temperatures. Due to the neurotoxicity and carcinogenicity of AA, the mechanism of formation, toxic effects on health, and mitigation strategies, including conventional approaches and innovative technologies, have been of great interest since its discovery in food. Potato products (especially French fries and crisps), coffee, and cereals(bread and biscuit) are renowned contributors to AA's daily intake. The best preventive methods discussed in the literature include time/temperature optimization, blanching, enzymatic treatment, yeast treatment, additives, pulsed electric fields, ultrasound, vacuum roasting, air frying, and irradiation, exhibiting a high efficacy in AA elimination in food products.
Collapse
Affiliation(s)
| | - Marziyeh Karami
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Raziyeh Barzegar-Bafrouei
- Department of Food Safety and Hygiene, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Samane Samiee
- Food and Drug Administration, Iran Ministry of Health and Medical Education, Tehran, Iran
| | - Hadis Karami
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrouz Tajdar-Oranj
- Food and Drug Administration, Iran Ministry of Health and Medical Education, Tehran, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Adel Mirza Alizadeh
- Social Determinants of Health Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parisa Sadighara
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Gea Oliveri Conti
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia," Hygiene and Public Health, University of Catania, Catania, Italy
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
2
|
Neophytou CM, Katsonouri A, Christodoulou MI, Papageorgis P. In Vivo Investigation of the Effect of Dietary Acrylamide and Evaluation of Its Clinical Relevance in Colon Cancer. TOXICS 2023; 11:856. [PMID: 37888706 PMCID: PMC10610724 DOI: 10.3390/toxics11100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
Dietary exposure to acrylamide (AA) has been linked with carcinogenicity in the gastrointestinal (GI) tract. However, epidemiologic data on AA intake in relation to cancer risk are limited and contradictory, while the potential cancer-inducing molecular pathways following AA exposure remain elusive. In this study, we collected mechanistic information regarding the induction of carcinogenesis by dietary AA in the colon, using an established animal model. Male Balb/c mice received AA orally (0.1 mg/kg/day) daily for 4 weeks. RNA was extracted from colon tissue samples, followed by RNA sequencing. Comparative transcriptomic analysis between AA and mock-treated groups revealed a set of differentially expressed genes (DEGs) that were further processed using different databases through the STRING-DB portal, to reveal deregulated protein-protein interaction networks. We found that genes implicated in RNA metabolism, processing and formation of the ribosomal subunits and protein translation and metabolism are upregulated in AA-exposed colon tissue; these genes were also overexpressed in human colon adenocarcinoma samples and were negatively correlated with patient overall survival (OS), based on publicly available datasets. Further investigation of the potential role of these genes during the early stages of colon carcinogenesis may shed light into the underlying mechanisms induced by dietary AA exposure.
Collapse
Affiliation(s)
- Christiana M Neophytou
- Tumor Microenvironment, Metastasis and Experimental Therapeutics Group, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, 2404 Nicosia, Cyprus
- State General Laboratory, Ministry of Health, 2081 Nicosia, Cyprus
| | | | - Maria-Ioanna Christodoulou
- State General Laboratory, Ministry of Health, 2081 Nicosia, Cyprus
- Tumor Immunology and Biomarkers Group, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, 2404 Nicosia, Cyprus
| | - Panagiotis Papageorgis
- Tumor Microenvironment, Metastasis and Experimental Therapeutics Group, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, 2404 Nicosia, Cyprus
- State General Laboratory, Ministry of Health, 2081 Nicosia, Cyprus
| |
Collapse
|
3
|
Zhao FF, Wang XL, Lei YT, Li HQ, Li ZM, Hao XX, Ma WW, Wu YH, Wang SY. A systematic review: on the mercaptoacid metabolites of acrylamide, N-acetyl-S-(2-carbamoylethyl)-L-cysteine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88350-88365. [PMID: 37458885 DOI: 10.1007/s11356-023-28714-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/06/2023] [Indexed: 08/11/2023]
Abstract
Acrylamide is widely found in a variety of fried foods and cigarettes and is not only neurotoxic and carcinogenic, but also has many potential toxic effects. The current assessment of acrylamide intake through dietary questionnaires is confounded by a variety of factors, which poses limitations to safety assessment. In this review, we focus on the levels of AAMA, the urinary metabolite of acrylamide in humans, and its association with other diseases, and discuss the current research gaps in AAMA and the future needs. We reviewed a total of 25 studies from eight countries. In the general population, urinary AAMA levels were higher in smokers than in non-smokers, and higher in children than in adults; the highest levels of AAMA were found in the population from Spain, compared with the general population from other countries. In addition, AAMA is associated with several diseases, especially cardiovascular system diseases. Therefore, AAMA, as a biomarker of internal human exposure, can reflect acrylamide intake in the short term, which is of great significance for tracing acrylamide-containing foods and setting the allowable intake of acrylamide in foods.
Collapse
Affiliation(s)
- Fang-Fang Zhao
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Xiao-Li Wang
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Ya-Ting Lei
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Hong-Qiu Li
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Zhi-Ming Li
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Xiao-Xiao Hao
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Wei-Wei Ma
- Harbin Railway Center for Disease Control and Prevention, Harbin, People's Republic of China
| | - Yong-Hui Wu
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Sheng-Yuan Wang
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China.
| |
Collapse
|
4
|
Narii N, Kito K, Sobue T, Zha L, Kitamura T, Matsui Y, Matsuda T, Kotemori A, Nakadate M, Iwasaki M, Inoue M, Yamaji T, Tsugane S, Ishihara J, Sawada N. Acrylamide and Glycidamide Hemoglobin Adduct Levels and Breast Cancer Risk in Japanese Women: A Nested Case-Control Study in the JPHC. Cancer Epidemiol Biomarkers Prev 2023; 32:415-421. [PMID: 36535654 DOI: 10.1158/1055-9965.epi-22-0904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/27/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Acrylamide (AA) is classified as "probably carcinogenic to humans (class 2A)" by the International Agency for Research on Cancer. AA causes cancer owing to its mutagenic and genotoxic metabolite, glycidamide (GA), and its effects on sex hormones. Both AA and GA can interact with hemoglobin to hemoglobin adducts (HbAA and HbGA, respectively), which are considered appropriate biomarkers of internal exposure of AA. However, few epidemiologic studies reported an association of HbAA and HbGA with breast cancer. METHODS We conducted a nested case-control study within the Japan Public Health Center-based Prospective Study cohort (125 cases and 250 controls). Cases and controls were categorized into tertiles (lowest, middle, and highest) using the distribution of HbAA or HbGA levels in the control group and estimated ORs and 95% confidence intervals (CI) using conditional logistic regression, adjusting for potential confounders. RESULTS No association was observed between HbAA (ORHighestvs.Lowest, 1.34; 95% CI, 0.69-2.59), HbGA (ORHighest vs. Lowest, 1.46; 95% CI, 0.79-2.69), their sum HbAA+HbGA (ORHighest vs. Lowest, 1.36; 95% CI, 0.72-2.58) and breast cancer; however, some evidence of positive association was observed between their ratio, HbGA/HbAA, and breast cancer (ORHighest vs. Lowest, 2.19; 95% CI, 1.11-4.31). CONCLUSIONS There was no association between biomarkers of AA and breast cancer. IMPACT It is unlikely that AA increases breast cancer risk; however, the association of AA with breast cancer may need to be evaluated, with a focus not only on the absolute amount of HbAA or HbGA but also on HbGA/HbAA and the activity of metabolic genes.
Collapse
Affiliation(s)
- Nobuhiro Narii
- Department of Social and Environmental Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kumiko Kito
- School of Life and Environmental Science, Azabu University, Kanagawa, Japan.,Division of Cohort research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Tomotaka Sobue
- Department of Social and Environmental Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ling Zha
- Department of Social and Environmental Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tetsuhisa Kitamura
- Department of Social and Environmental Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasuto Matsui
- Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | | | - Ayaka Kotemori
- School of Life and Environmental Science, Azabu University, Kanagawa, Japan
| | - Misako Nakadate
- School of Life and Environmental Science, Azabu University, Kanagawa, Japan
| | - Motoki Iwasaki
- Division of Cohort research, National Cancer Center Institute for Cancer Control, Tokyo, Japan.,Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Manami Inoue
- Division of Cohort research, National Cancer Center Institute for Cancer Control, Tokyo, Japan.,Division of Prevention, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Taiki Yamaji
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Shoichiro Tsugane
- Division of Cohort research, National Cancer Center Institute for Cancer Control, Tokyo, Japan.,National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Junko Ishihara
- School of Life and Environmental Science, Azabu University, Kanagawa, Japan
| | - Norie Sawada
- Division of Cohort research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| |
Collapse
|
5
|
Guth S, Baum M, Cartus AT, Diel P, Engel KH, Engeli B, Epe B, Grune T, Haller D, Heinz V, Hellwig M, Hengstler JG, Henle T, Humpf HU, Jäger H, Joost HG, Kulling SE, Lachenmeier DW, Lampen A, Leist M, Mally A, Marko D, Nöthlings U, Röhrdanz E, Roth A, Spranger J, Stadler R, Steinberg P, Vieths S, Wätjen W, Eisenbrand G. Evaluation of the genotoxic potential of acrylamide: Arguments for the derivation of a tolerable daily intake (TDI value). Food Chem Toxicol 2023; 173:113632. [PMID: 36708862 DOI: 10.1016/j.fct.2023.113632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
This opinion of the Senate Commission on Food Safety (SKLM) of the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) presents arguments for an updated risk assessment of diet-related exposure to acrylamide (AA), based on a critical review of scientific evidence relevant to low dose exposure. The SKLM arrives at the conclusion that as long as an appropriate exposure limit for AA is not exceeded, genotoxic effects resulting in carcinogenicity are unlikely to occur. Based on the totality of the evidence, the SKLM considers it scientifically justified to derive a tolerable daily intake (TDI) as a health-based guidance value.
Collapse
Affiliation(s)
- Sabine Guth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139, Dortmund, Germany.
| | - Matthias Baum
- Solenis Germany Industries GmbH, Fütingsweg 20, 47805 Krefeld, Germany.
| | | | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.
| | - Karl-Heinz Engel
- Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany.
| | - Barbara Engeli
- Federal Food Safety and Veterinary Office (FSVO), Risk Assessment Division, Schwarzenburgstrasse 155, 3003, Bern, Switzerland.
| | - Bernd Epe
- Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudinger Weg 5, 55128, Mainz, Germany.
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Dirk Haller
- ZIEL - Institute for Food & Health, Technical University of Munich, 85354, Freising, Germany; Technical University of Munich, Gregor-Mendel-Str. 2, 85354, Freising, Germany.
| | - Volker Heinz
- German Institute of Food Technologies (DIL), Prof.-von-Klitzing-Str. 7, 49610, Quakenbrück, Germany.
| | - Michael Hellwig
- Technische Universität Dresden, Bergstraße 66, 01062, Dresden, Germany.
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139, Dortmund, Germany.
| | - Thomas Henle
- Department of Food Chemistry, TU Dresden, Bergstrasse 66, 01062, Dresden, Germany.
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149, Münster, Germany.
| | - Henry Jäger
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria.
| | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany.
| | - Dirk W Lachenmeier
- Chemisches und Veterinäruntersuchungsamt Karlsruhe, Weißenburger Str. 3, 76187, Karlsruhe, Germany.
| | - Alfonso Lampen
- University of Veterinary Medicine Hannover, Institute for Food Quality and Food Safety, Bischofsholer Damm 15, 30173, Hannover, Germany.
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department Inaugurated By the Doerenkamp-Zbinden Foundation, University of Konstanz, Box 657, 78457, Konstanz, Germany.
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany.
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria.
| | - Ute Nöthlings
- Department of Nutrition and Food Sciences, Nutritional Epidemiology, Rheinische Friedrich-Wilhelms University Bonn, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany.
| | - Elke Röhrdanz
- Unit Reproductive and Genetic Toxicology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger Allee 3, 53175, Bonn, Germany.
| | - Angelika Roth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139, Dortmund, Germany.
| | - Joachim Spranger
- Department of Endocrinology and Metabolic Medicine, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12200, Berlin, Germany.
| | - Richard Stadler
- Institute of Food Safety and Analytical Sciences, Nestlé Research Centre, Route du Jorat 57, 1000, Lausanne, 26, Switzerland.
| | - Pablo Steinberg
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany.
| | - Stefan Vieths
- Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany.
| | - Wim Wätjen
- Institut für Agrar- und Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 22, 06120, Halle (Saale), Germany.
| | | |
Collapse
|
6
|
Yedier SK, Şekeroğlu ZA, Şekeroğlu V, Aydın B. Cytotoxic, genotoxic, and carcinogenic effects of acrylamide on human lung cells. Food Chem Toxicol 2022; 161:112852. [DOI: 10.1016/j.fct.2022.112852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 10/19/2022]
|
7
|
Pedersen M, Vryonidis E, Joensen A, Törnqvist M. Hemoglobin adducts of acrylamide in human blood - What has been done and what is next? Food Chem Toxicol 2022; 161:112799. [PMID: 34995709 DOI: 10.1016/j.fct.2021.112799] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022]
Abstract
Acrylamide forms in many commonly consumed foods. In animals, acrylamide causes tumors, neurotoxicity, developmental and reproductive effects. Acrylamide crosses the placenta and has been associated with restriction of intrauterine growth and certain cancers. The impact on human health is poorly understood and it is impossible to say what level of dietary exposure to acrylamide can be deemed safe as the assessment of exposure is uncertain. The determination of hemoglobin (Hb) adducts from acrylamide is increasingly being used to improve the exposure assessment of acrylamide. We aim to outline the literature on Hb adduct levels from acrylamide in humans and discuss methodological issues and research gaps. A total of 86 studies of 27,966 individuals from 19 countries were reviewed. Adduct levels were highest in occupationally exposed individuals and smokers. Levels ranged widely from 3 to 210 pmol/g Hb in non-smokers and this wide range suggests that dietary exposure to acrylamide varies largely. Non-smokers from the US and Canada had slightly higher levels as compared with non-smokers from elsewhere, but differences within studies were larger than between studies. Large studies with exposure assessment of acrylamide and related adduct forming compounds from diet during early-life are encouraged for the evaluation of health effects.
Collapse
Affiliation(s)
- Marie Pedersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | | | - Andrea Joensen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Margareta Törnqvist
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| |
Collapse
|
8
|
Dietary acrylamide intake and risk of women's cancers: a systematic review and meta-analysis of prospective cohort studies. Br J Nutr 2021; 126:1355-1363. [PMID: 33413725 DOI: 10.1017/s0007114520005255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This systematic review and meta-analysis was done to review earlier publications on the association between dietary acrylamide intake and risk of breast, endometrial and ovarian cancers. We performed a systematic search in the online databases of PubMed, ISI Web of Science and Scopus for relevant publications up to August 2020. Prospective cohort studies that considered dietary acrylamide as the exposure variable and breast, endometrial or ovarian cancer as the main outcome variable or as one of the outcome variables were included in this systematic review and meta-analysis. A total of fourteen cohort studies were included in the meta-analysis. We found no significant association between dietary acrylamide intake and the risk of breast (relative risk (RR) 0·95; 95 % CI 0·90, 1·01), endometrial (RR 1·03; 95 % CI 0·89, 1·19) and ovarian cancers (RR 1·02; 95 % CI 0·84, 1·24). In addition, we observed no significant association between dietary acrylamide intake and the risk of breast, endometrial and ovarian cancers in different subgroup analyses by smoking status, menopausal status, BMI status and different types of breast cancer. In conclusion, no significant association was found between dietary acrylamide intake and the risk of breast, endometrial and ovarian cancers.
Collapse
|
9
|
Yamamoto J, Ishihara J, Matsui Y, Matsuda T, Kotemori A, Zheng Y, Nakajima D, Terui M, Shinohara A, Adachi S, Kawahara J, Sobue T. Acrylamide-Hemoglobin Adduct Levels in a Japanese Population and Comparison with Acrylamide Exposure Assessed by the Duplicated Method or a Food Frequency Questionnaire. Nutrients 2020; 12:E3863. [PMID: 33348772 PMCID: PMC7767078 DOI: 10.3390/nu12123863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/17/2022] Open
Abstract
The levels of hemoglobin adducts of acrylamide (AA-Hb), a biomarker of acrylamide exposure, have not been reported for Japanese subjects. Herein, we determined the AA-Hb levels in a Japanese population and compared them with the estimated dietary intake from the duplicate diet method (DM) and a food frequency questionnaire (FFQ). One-day DM samples, FFQ, and blood samples were collected from 89 participants and analyzed for acrylamide. AA-Hb was analyzed using liquid chromatography tandem mass spectrometry and the N-alkyl Edman method. Participants were divided into tertiles of estimated acrylamide intake and geometric means (GMs) of AA-Hb adjusted for sex and smoking status. A stratified analysis according to smoking status was also performed. The average AA-Hb levels for all participants, never, past, and current smokers were 46, 38, 65, and 86 pmol/g Hb, respectively. GMs of AA-Hb levels in all participants were significantly associated with tertiles of estimated acrylamide intake from DM (p for trend = 0.02) and FFQ (p for trend = 0.04), although no association with smokers was observed. AA-Hb levels reflected smoking status, which were similar to values reported in Western populations, and they were associated with estimated dietary intake of acrylamide when adjusted for sex and smoking status.
Collapse
Affiliation(s)
- Junpei Yamamoto
- School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan; (J.Y.); (A.K.)
| | - Junko Ishihara
- School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan; (J.Y.); (A.K.)
| | - Yasuto Matsui
- Graduate School of Engineering, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan; (Y.M.); (T.M.)
| | - Tomonari Matsuda
- Graduate School of Engineering, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan; (Y.M.); (T.M.)
| | - Ayaka Kotemori
- School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan; (J.Y.); (A.K.)
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yazhi Zheng
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan; (Y.Z.); (D.N.); (J.K.)
| | - Daisuke Nakajima
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan; (Y.Z.); (D.N.); (J.K.)
| | - Miho Terui
- Department of Public Health, Faculty of Nutritional Science, Sagami Women’s University, 2-1-1 Bunkyo, Minami-ku, Sagamihara, Kanagawa 252-0383, Japan; (M.T.); (A.S.); (S.A.)
| | - Akiko Shinohara
- Department of Public Health, Faculty of Nutritional Science, Sagami Women’s University, 2-1-1 Bunkyo, Minami-ku, Sagamihara, Kanagawa 252-0383, Japan; (M.T.); (A.S.); (S.A.)
| | - Shuichi Adachi
- Department of Public Health, Faculty of Nutritional Science, Sagami Women’s University, 2-1-1 Bunkyo, Minami-ku, Sagamihara, Kanagawa 252-0383, Japan; (M.T.); (A.S.); (S.A.)
| | - Junko Kawahara
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan; (Y.Z.); (D.N.); (J.K.)
| | - Tomotaka Sobue
- Department of Environmental Medicine and Population Sciences, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan;
| |
Collapse
|
10
|
Witkowska A, Mirończuk-Chodakowska I, Terlikowska K, Kulesza K, Zujko M. Coffee and its Biologically Active Components: Is There a Connection to Breast, Endometrial, and Ovarian Cancer? - a Review. POL J FOOD NUTR SCI 2020. [DOI: 10.31883/pjfns/120017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
11
|
Adani G, Filippini T, Wise LA, Halldorsson TI, Blaha L, Vinceti M. Dietary Intake of Acrylamide and Risk of Breast, Endometrial, and Ovarian Cancers: A Systematic Review and Dose-Response Meta-analysis. Cancer Epidemiol Biomarkers Prev 2020; 29:1095-1106. [PMID: 32169997 DOI: 10.1158/1055-9965.epi-19-1628] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/25/2020] [Accepted: 03/10/2020] [Indexed: 11/16/2022] Open
Abstract
Acrylamide is a probable human carcinogen. Aside from occupational exposures and smoking, diet is the main source of exposure in humans. We performed a systematic review of the association between estimated dietary intake of acrylamide and risk of female breast, endometrial, and ovarian cancers in nonexperimental studies published through February 25, 2020, and conducted a dose-response meta-analysis. We identified 18 papers covering 10 different study populations: 16 cohort and two case-control studies. Acrylamide intake was associated with a slightly increased risk of ovarian cancer, particularly among never smokers. For endometrial cancer, risk was highest at intermediate levels of exposure, whereas the association was more linear and positive among never smokers. For breast cancer, we found evidence of a null or inverse relation between exposure and risk, particularly among never smokers and postmenopausal women. In a subgroup analysis limited to premenopausal women, breast cancer risk increased linearly with acrylamide intake starting at 20 μg/day of intake. High acrylamide intake was associated with increased risks of ovarian and endometrial cancers in a relatively linear manner, especially among never smokers. Conversely, little association was observed between acrylamide intake and breast cancer risk, with the exception of premenopausal women.
Collapse
Affiliation(s)
- Giorgia Adani
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - Thorhallur I Halldorsson
- Centre for Fetal Programming, Department of Epidemiology Research, Copenhagen, Denmark.,Unit for Nutrition Research, Faculty of Food Science and Nutrition, University of Iceland, Reykjavík, Iceland
| | - Ludek Blaha
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy. .,Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| |
Collapse
|
12
|
Koshiyama M. The Effects of the Dietary and Nutrient Intake on Gynecologic Cancers. Healthcare (Basel) 2019; 7:healthcare7030088. [PMID: 31284691 PMCID: PMC6787610 DOI: 10.3390/healthcare7030088] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/23/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022] Open
Abstract
The contribution of diet to cancer risk has been considered to be higher in advanced countries than in developing countries. In this paper, I review the current issues (a review of the relevant literature), and the effects of the dietary and nutrient intake on three types of gynecologic cancer (cervical, endometrial and ovarian cancers). In cervical cancer, the most important roles of diet/nutrition in relation to cancer are prophylaxis and countermeasures against human papillomavirus (HPV) infection. The main preventive and reductive factors of cervical cancer are antioxidants, such as vitamin A, C, D and E, carotenoids, vegetables and fruits. These antioxidants may have different abilities to intervene in the natural history of diseases associated with HPV infection. For endometrial cancer, the increase in peripheral estrogens as a result of the aromatization of androgens to estrogens in adipose tissue in obese women and insulin resistance are risk factors. Thus, we must mainly take care to avoid the continuous intake of fat energy and sugar. In ovarian cancer, the etiology has not been fully understood. To the best of our knowledge, the long-term consumption of pro-inflammatory foods, including saturated fat, carbohydrates and animal proteins is a risk factor. The intake of acrylamide is also a risk factor for both endometrial and ovarian cancer. Most papers have been epidemiological studies. Thus, further research using in vitro and in vivo approaches is needed to clarify the effects of the dietary and nutrient intake in detail.
Collapse
Affiliation(s)
- Masafumi Koshiyama
- Department of Women's Health, Graduate School of Human Nursing, The University of Shiga Prefecture, Shiga 522-8533, Japan.
| |
Collapse
|
13
|
Glycidamide Promotes the Growth and Migratory Ability of Prostate Cancer Cells by Changing the Protein Expression of Cell Cycle Regulators and Epithelial-to-Mesenchymal Transition (EMT)-Associated Proteins with Prognostic Relevance. Int J Mol Sci 2019; 20:ijms20092199. [PMID: 31060254 PMCID: PMC6540322 DOI: 10.3390/ijms20092199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 12/28/2022] Open
Abstract
Acrylamide (AA) and glycidamide (GA) can be produced in carbohydrate-rich food when heated at a high temperature, which can induce a malignant transformation. It has been demonstrated that GA is more mutagenic than AA. It has been shown that the proliferation rate of some cancer cells are increased by treatment with GA; however, the exact genes that are induced by GA in most cancer cells are not clear. In the present study, we demonstrated that GA promotes the growth of prostate cancer cells through induced protein expression of the cell cycle regulator. In addition, we also found that GA promoted the migratory ability of prostate cancer cells through induced epithelial-to-mesenchymal transition (EMT)-associated protein expression. In order to understand the potential prognostic relevance of GA-mediated regulators of the cell cycle and EMT, we present a three-gene signature to evaluate the prognosis of prostate cancer patients. Further investigations suggested that the three-gene signature (CDK4, TWIST1 and SNAI2) predicted the chances of survival better than any of the three genes alone for the first time. In conclusion, we suggested that the three-gene signature model can act as marker of GA exposure. Hence, this multi-gene panel may serve as a promising outcome predictor and potential therapeutic target in prostate cancer patients.
Collapse
|
14
|
Zhivagui M, Ng AWT, Ardin M, Churchwell MI, Pandey M, Renard C, Villar S, Cahais V, Robitaille A, Bouaoun L, Heguy A, Guyton KZ, Stampfer MR, McKay J, Hollstein M, Olivier M, Rozen SG, Beland FA, Korenjak M, Zavadil J. Experimental and pan-cancer genome analyses reveal widespread contribution of acrylamide exposure to carcinogenesis in humans. Genome Res 2019; 29:521-531. [PMID: 30846532 PMCID: PMC6442384 DOI: 10.1101/gr.242453.118] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/01/2019] [Indexed: 02/06/2023]
Abstract
Humans are frequently exposed to acrylamide, a probable human carcinogen found in commonplace sources such as most heated starchy foods or tobacco smoke. Prior evidence has shown that acrylamide causes cancer in rodents, yet epidemiological studies conducted to date are limited and, thus far, have yielded inconclusive data on association of human cancers with acrylamide exposure. In this study, we experimentally identify a novel and unique mutational signature imprinted by acrylamide through the effects of its reactive metabolite glycidamide. We next show that the glycidamide mutational signature is found in a full one-third of approximately 1600 tumor genomes corresponding to 19 human tumor types from 14 organs. The highest enrichment of the glycidamide signature was observed in the cancers of the lung (88% of the interrogated tumors), liver (73%), kidney (>70%), bile duct (57%), cervix (50%), and, to a lesser extent, additional cancer types. Overall, our study reveals an unexpectedly extensive contribution of acrylamide-associated mutagenesis to human cancers.
Collapse
Affiliation(s)
- Maria Zhivagui
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Alvin W T Ng
- Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Singapore
| | - Maude Ardin
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Mona I Churchwell
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079, USA
| | - Manuraj Pandey
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Claire Renard
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Stephanie Villar
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Vincent Cahais
- Epigenetics Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Alexis Robitaille
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Liacine Bouaoun
- Environment and Radiation Section, International Agency for Research on Cancer, Lyon 69008, France
| | - Adriana Heguy
- Department of Pathology and Genome Technology Center, New York University, Langone Medical Center, New York, New York 10016, USA
| | - Kathryn Z Guyton
- IARC Monographs Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Martha R Stampfer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - James McKay
- Genetic Cancer Susceptibility Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Monica Hollstein
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
- Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
- Faculty of Medicine and Health, University of Leeds, LIGHT Laboratories, Leeds LS2 9JT, United Kingdom
| | - Magali Olivier
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Steven G Rozen
- Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Singapore
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079, USA
| | - Michael Korenjak
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Jiri Zavadil
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| |
Collapse
|
15
|
Kotemori A, Ishihara J, Zha L, Liu R, Sawada N, Iwasaki M, Sobue T, Tsugane S. Dietary acrylamide intake and the risk of endometrial or ovarian cancers in Japanese women. Cancer Sci 2018; 109:3316-3325. [PMID: 30063274 PMCID: PMC6172050 DOI: 10.1111/cas.13757] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 12/25/2022] Open
Abstract
A meta-analysis published in 2015 noted a marginally increased risk of endometrial and ovarian cancers in non-smoking women with dietary acrylamide intake, but only a few studies were included, and they were limited to Western countries. The aim of this study was to investigate the association between dietary acrylamide intake and endometrial or ovarian cancer risk in the Japan Public Health Center-based Prospective Study (JPHC Study). In this prospective cohort study, 47 185 participants aged 45-74 years at the follow-up starting point in the JPHC Study were enrolled. Dietary acrylamide intake was assessed using a validated food frequency questionnaire. Cox proportional hazards regression models were used to estimate hazard ratios (HR) and 95% confidence intervals (95%CI). In participants with endometrial and ovarian cancer, the average follow-up periods were 15.5 and 15.6 years, respectively, and 161 and 122 cases of endometrial and ovarian cancer were diagnosed, respectively. Energy-adjusted dietary acrylamide intake was negatively associated with endometrial cancer, but the association disappeared after adjusting for coffee consumption with an adjusted HR for the highest vs lowest tertile of 0.85 (95%CI: 0.54-1.33). No association was observed, however, for ovarian cancer (adjusted HR, 0.77; 95%CI: 0.49-1.23). Furthermore, after stratifying by smoking status, coffee consumption, alcohol consumption, body mass index, and menopause status, no association was observed. Dietary acrylamide intake was not associated with the risk of endometrial or ovarian cancer in Japanese women with a relatively lower dietary intake of acrylamide compared with Western populations.
Collapse
Affiliation(s)
- Ayaka Kotemori
- Epidemiology and Prevention GroupCenter for Public Health SciencesNational Cancer CenterTokyoJapan
| | - Junko Ishihara
- Department of Food and Life ScienceAzabu UniversityKanagawaJapan
| | - Ling Zha
- Department of Environmental Medicine and Population SciencesGraduate School of MedicineOsaka UniversityOsakaJapan
| | - Rong Liu
- Department of Environmental Medicine and Population SciencesGraduate School of MedicineOsaka UniversityOsakaJapan
| | - Norie Sawada
- Epidemiology and Prevention GroupCenter for Public Health SciencesNational Cancer CenterTokyoJapan
| | - Motoki Iwasaki
- Epidemiology and Prevention GroupCenter for Public Health SciencesNational Cancer CenterTokyoJapan
| | - Tomotaka Sobue
- Department of Environmental Medicine and Population SciencesGraduate School of MedicineOsaka UniversityOsakaJapan
| | - Shoichiro Tsugane
- Epidemiology and Prevention GroupCenter for Public Health SciencesNational Cancer CenterTokyoJapan
| | | |
Collapse
|
16
|
Zhang Y, Huang M, Zhuang P, Jiao J, Chen X, Wang J, Wu Y. Exposure to acrylamide and the risk of cardiovascular diseases in the National Health and Nutrition Examination Survey 2003-2006. ENVIRONMENT INTERNATIONAL 2018; 117:154-163. [PMID: 29753146 DOI: 10.1016/j.envint.2018.04.047] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Long-term exposure to acrylamide (AA) from diet sources may induce oxidative stress and chronic inflammation. However, the association between AA exposure and the prevalence of cardiovascular diseases (CVD) remains unclear. OBJECTIVES We aimed to examine the association between blood exposure levels of AA biomarkers and the prevalence of main types of CVD in a general population of US adults. METHODS We analyzed the associations between AA hemoglobin biomarkers [hemoglobin adducts of acrylamide (HbAA) and glycidamide (HbGA), sum of HbAA and HbGA (HbAA+HbGA), and ratio of HbGA to HbAA (HbGA:HbAA)] and self-reported diagnosis of CVD in 8290 adults (≥20 years of age) from the National Health and Nutrition Examination Survey (NHANES) 2003-2006. Multivariable logistic regression models were employed for estimating the associations in three groups classified by the combination of smoking status and serum cotinine levels. RESULTS In people exposed to environmental tobacco smoke (n = 4670), HbGA, HbAA+HbGA, and HbGA:HbAA were significantly and inversely associated with the prevalence of total CVD (p < 0.0001, p = 0.0155, and p = 0.0014 for trend, respectively) after adjusting for various covariates. The odd ratios (ORs) for total CVD in the highest quartiles of HbGA, HbAA+HbGA, and HbGA:HbAA were 0.311 [95% confidence interval (CI): 0.193-0.500], 0.664 (95% CI: 0.485-0.911), and 0.495 (95% CI: 0.326-0.752) when compared with the individual lowest quartiles. In active smokers (n = 2432), HbAA was positively associated with CVD risk (p = 0.0088 for trend), while HbGA:HbAA was inversely related to total CVD (p = 0.0137 for trend). However, no significant associations of any AA hemoglobin biomarker with total and individual CVD prevalence were observed in the nonsmoking group (n = 1188). CONCLUSIONS AA hemoglobin biomarkers are significantly associated with CVD in the active smoking group and the group exposed to environmental tobacco smoke but not in the nonsmoking group. Further prospective studies should clarify the causal relationship between HbAA and HbGA and the prevalence of CVD.
Collapse
Affiliation(s)
- Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengmeng Huang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pan Zhuang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinyu Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongning Wu
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China.
| |
Collapse
|
17
|
Huang M, Jiao J, Wang J, Chen X, Zhang Y. Associations of hemoglobin biomarker levels of acrylamide and all-cause and cardiovascular disease mortality among U.S. adults: National Health and Nutrition Examination Survey 2003-2006. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:852-858. [PMID: 29627755 DOI: 10.1016/j.envpol.2018.03.109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 02/10/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The potential hazards of acrylamide (AA) have been proposed due to its lifelong exposure. However, the association between AA exposure and mortality remains unclear. OBJECTIVES We evaluated the prospective association of AA hemoglobin adducts (HbAA and HbGA) with all-cause and cardiovascular disease (CVD) mortality in U.S. population from National Health and Nutrition Examination Survey (NHANES) 2003-2006. METHODS We followed 5504 participants who were ≥25 years of age for an average of 6.7 years at the baseline examination with annual linkage to the NHANES statistics database. Using AA hemoglobin biomarkers [HbAA, HbGA, sum of HbAA and HbGA (HbAA + HbGA), and ratio of HbGA to HbAA (HbGA/HbAA)], we determined mortality from all-causes and CVD through Cox proportional hazard regression analysis with multivariable adjustments both in non-smoker group and smoker group. In addition, subgroup analyses and sensitivity analyses were further conducted. RESULTS After adjusting for sociodemographic, life behavioral and cardiovascular risk factors in non-smoker group, HbAA was positively associated with all-cause mortality (p for trend = 0.0197) and non-CVD mortality (p for trend = 0.0124). HbGA and HbGA/HbAA were inversely associated with all-cause mortality (p for trend = 0.0117 and 0.0098, respectively) and CVD mortality (p for trend=0.0009 and 0.0036, respectively). The multivariable adjusted hazard ratios (HRs) [95% confidence intervals (CIs)] of the upper three quartiles were 0.472 (95% CI: 0.283-0.786), 0.517 (95% CI: 0.299-0.894) and 0.470 (95% CI: 0.288-0.766) between HbGA/HbAA and all-cause mortality comparing with the lowest quartile, respectively. No significant associations were found between HbAA + HbGA and mortality in non-smoker group, and between all AA hemoglobin biomarkers and mortality in smoker group. CONCLUSIONS Hemoglobin biomarker levels of AA were strongly associated with mortality in general U.S. non-smoker adults. These findings proposed a continuous public health concern in relation to environmental and dietary exposure to AA.
Collapse
Affiliation(s)
- Mengmeng Huang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinyu Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
18
|
Kumar J, Das S, Teoh SL. Dietary Acrylamide and the Risks of Developing Cancer: Facts to Ponder. Front Nutr 2018; 5:14. [PMID: 29541638 PMCID: PMC5835509 DOI: 10.3389/fnut.2018.00014] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/12/2018] [Indexed: 12/18/2022] Open
Abstract
Acrylamide (AA) is a water soluble white crystalline solid commonly used in industries. It was listed as an industrial chemical with potential carcinogenic properties. However to date, AA was used to produce polyacrylamide polymer, which was widely used as a coagulant in water treatment; additives during papermaking; grouting material for dams, tunnels, and other underground building constructions. AA in food could be formed during high-temperature cooking via several mechanisms, i.e., formation via acrylic acid which may be derived from the degradation of lipid, carbohydrates, or free amino acids; formation via the dehydration/decarboxylation of organic acids (malic acid, lactic acid, and citric acid); and direct formation from amino acids. The big debate is whether this compound is toxic to human beings or not. In the present review, we discuss the formation of AA in food products, its consumption, and possible link to the development of any cancers. We discuss the body enzymatic influence on AA and mechanism of action of AA on hormone, calcium signaling pathways, and cytoskeletal filaments. We also highlight the deleterious effects of AA on nervous system, reproductive system, immune system, and the liver. The present and future mitigation strategies are also discussed. The present review on AA may be beneficial for researchers, food industry, and also medical personnel.
Collapse
Affiliation(s)
- Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Zhang Y, Wang Q, Zhang G, Jia W, Ren Y, Wu Y. Biomarker analysis of hemoglobin adducts of acrylamide and glycidamide enantiomers for mid-term internal exposure assessment by isotope dilution ultra-high performance liquid chromatography tandem mass spectrometry. Talanta 2018; 178:825-833. [DOI: 10.1016/j.talanta.2017.09.092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/16/2017] [Accepted: 09/30/2017] [Indexed: 11/26/2022]
|
20
|
Qin L, Zhang YY, Xu XB, Wang XS, Liu HW, Zhou DY, Zhu BW, Thornton M. Isotope dilution HPLC-MS/MS for simultaneous quantification of acrylamide and 5-hydroxymethylfurfural (HMF) in thermally processed seafood. Food Chem 2017; 232:633-638. [DOI: 10.1016/j.foodchem.2017.04.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/03/2017] [Accepted: 04/09/2017] [Indexed: 11/29/2022]
|
21
|
Interactions between dietary acrylamide intake and genes for ovarian cancer risk. Eur J Epidemiol 2017; 32:431-441. [PMID: 28391539 PMCID: PMC5506210 DOI: 10.1007/s10654-017-0244-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/30/2017] [Indexed: 01/03/2023]
Abstract
Some epidemiological studies observed a positive association between dietary acrylamide intake and ovarian cancer risk but the causality needs to be substantiated. By analyzing gene-acrylamide interactions for ovarian cancer risk for the first time, we aimed to contribute to this. The prospective Netherlands Cohort Study on diet and cancer includes 62,573 women, aged 55–69 years. At baseline in 1986, a random subcohort of 2589 women was sampled from the total cohort for a case cohort analysis approach. Dietary acrylamide intake of subcohort members and ovarian cancer cases (n = 252, based on 20.3 years of follow-up) was assessed with a food frequency questionnaire. We selected single nucleotide polymorphisms (SNPs) in genes in acrylamide metabolism and in genes involved in the possible mechanisms of acrylamide-induced carcinogenesis (effects on sex steroid systems, oxidative stress and DNA damage). Genotyping was done on DNA from toenails through Agena’s MassARRAY iPLEX platform. Multiplicative interaction between acrylamide intake and SNPs was assessed with Cox proportional hazards analysis. Among the results for 57 SNPs and 2 gene deletions, there were no statistically significant interactions between acrylamide and gene variants after adjustment for multiple testing. However, there were several nominally statistically significant interactions between acrylamide intake and SNPs in the HSD3B1/B2 gene cluster: (rs4659175 (p interaction = 0.04), rs10923823 (p interaction = 0.06) and its proxy rs7546652 (p interaction = 0.05), rs1047303 (p interaction = 0.005), and rs6428830 (p interaction = 0.05). Although in need of confirmation, results of this study suggest that acrylamide may cause ovarian cancer through effects on sex hormones.
Collapse
|
22
|
Obón-Santacana M, Lujan-Barroso L, Freisling H, Cadeau C, Fagherazzi G, Boutron-Ruault MC, Kaaks R, Fortner RT, Boeing H, Ramón Quirós J, Molina-Montes E, Chamosa S, Castaño JMH, Ardanaz E, Khaw KT, Wareham N, Key T, Trichopoulou A, Lagiou P, Naska A, Palli D, Grioni S, Tumino R, Vineis P, De Magistris MS, Bueno-de-Mesquita HB, Peeters PH, Wennberg M, Bergdahl IA, Vesper H, Riboli E, Duell EJ. Dietary and lifestyle determinants of acrylamide and glycidamide hemoglobin adducts in non-smoking postmenopausal women from the EPIC cohort. Eur J Nutr 2017; 56:1157-1168. [PMID: 26850269 PMCID: PMC5576523 DOI: 10.1007/s00394-016-1165-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/22/2016] [Indexed: 01/12/2023]
Abstract
PURPOSE Acrylamide was classified as 'probably carcinogenic' to humans in 1994 by the International Agency for Research on Cancer. In 2002, public health concern increased when acrylamide was identified in starchy, plant-based foods, processed at high temperatures. The purpose of this study was to identify which food groups and lifestyle variables were determinants of hemoglobin adduct concentrations of acrylamide (HbAA) and glycidamide (HbGA) in 801 non-smoking postmenopausal women from eight countries in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. METHODS Biomarkers of internal exposure were measured in red blood cells (collected at baseline) by high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) . In this cross-sectional analysis, four dependent variables were evaluated: HbAA, HbGA, sum of total adducts (HbAA + HbGA), and their ratio (HbGA/HbAA). Simple and multiple regression analyses were used to identify determinants of the four outcome variables. All dependent variables (except HbGA/HbAA) and all independent variables were log-transformed (log2) to improve normality. Median (25th-75th percentile) HbAA and HbGA adduct levels were 41.3 (32.8-53.1) pmol/g Hb and 34.2 (25.4-46.9) pmol/g Hb, respectively. RESULTS The main food group determinants of HbAA, HbGA, and HbAA + HbGA were biscuits, crackers, and dry cakes. Alcohol intake and body mass index were identified as the principal determinants of HbGA/HbAA. The total percent variation in HbAA, HbGA, HbAA + HbGA, and HbGA/HbAA explained in this study was 30, 26, 29, and 13 %, respectively. CONCLUSIONS Dietary and lifestyle factors explain a moderate proportion of acrylamide adduct variation in non-smoking postmenopausal women from the EPIC cohort.
Collapse
Affiliation(s)
- Mireia Obón-Santacana
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (ICO-IDIBELL), Avda Gran Via Barcelona 199-203, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Leila Lujan-Barroso
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (ICO-IDIBELL), Avda Gran Via Barcelona 199-203, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Heinz Freisling
- Dietary Exposure Assessment Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372, Lyon, France
| | - Claire Cadeau
- Centre for Research in Epidemiology and Population Health (CESP), U1018, Nutrition, Hormones and Women's Health Team, Inserm, 94805, Villejuif, France
- UMRS 1018, Université Paris Sud, 94805, Villejuif, France
- Institut Gustave Roussy, 94805, Villejuif, France
| | - Guy Fagherazzi
- Centre for Research in Epidemiology and Population Health (CESP), U1018, Nutrition, Hormones and Women's Health Team, Inserm, 94805, Villejuif, France
- UMRS 1018, Université Paris Sud, 94805, Villejuif, France
- Institut Gustave Roussy, 94805, Villejuif, France
| | - Marie-Christine Boutron-Ruault
- Centre for Research in Epidemiology and Population Health (CESP), U1018, Nutrition, Hormones and Women's Health Team, Inserm, 94805, Villejuif, France
- UMRS 1018, Université Paris Sud, 94805, Villejuif, France
- Institut Gustave Roussy, 94805, Villejuif, France
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Renée T Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114/116, 14558, Nuthetal, Germany
| | - J Ramón Quirós
- Public Health and Participation Directorate, Ciriaco Miguel Vigil 9, 33009, Asturias, Spain
| | - Esther Molina-Montes
- Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria ibs. GRANADA, Hospitales Universitarios de Granada, Universidad de Granada, Cuesta del Observatorio, 4, Campus Universitario de Cartuja, 18080, Granada, Spain
- CIBER Epidemiology and Public Health CIBERESP, Melchor Fernández Almagro 3-5, 28029, Madrid, Spain
| | - Saioa Chamosa
- Public Health Division of Gipuzkoa-BIODONOSTIA, Basque Regional Health Department, Avda. Navarra, 4, 20013, San Sebastián, Spain
| | - José María Huerta Castaño
- CIBER Epidemiology and Public Health CIBERESP, Melchor Fernández Almagro 3-5, 28029, Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Authority, Ronda de Levante, 11, 30008, Murcia, Spain
| | - Eva Ardanaz
- CIBER Epidemiology and Public Health CIBERESP, Melchor Fernández Almagro 3-5, 28029, Madrid, Spain
- Navarre Public Health Institute, Polígono de Landaben C/F, 31012, Pamplona, Spain
| | - Kay-Tee Khaw
- University of Cambridge School of Clinical Medicine, Robinson Way, Cambridge, CB2 0SR, UK
| | - Nick Wareham
- MRC Epidemiology Unit, University of Cambridge, 184 Hills Road, Cambridge, CB2 8PQ, UK
| | - Tim Key
- Cancer Epidemiology Unit, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
| | - Antonia Trichopoulou
- Hellenic Health Foundation, 13 Kaisareias Street, 115 27, Athens, Greece
- Bureau of Epidemiologic Research, Academy of Athens, 23 Alexandroupoleos Street, 115 27, Athens, Greece
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, 75 M. Asias Street, Goudi, 115 27, Athens, Greece
- Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Androniki Naska
- Hellenic Health Foundation, 13 Kaisareias Street, 115 27, Athens, Greece
- Department of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, 75 M. Asias Street, Goudi, 115 27, Athens, Greece
| | - Domenico Palli
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, Ponte Nuovo, Via delle Oblate n.2, 50141, Florence, Italy
| | - Sara Grioni
- Epidemiology and Prevention Unit, Fondazione IRCSS Istituto Nazionale dei Tumori, Via Venezian, 1, 20133, Milan, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Unit, "Civic-M.P.Arezzo" Hospital, Via Civile, 97100, Ragusa, Italy
| | - Paolo Vineis
- Human Genetics Foundation (HuGeF), Via Nizza 52, 10126, Turin, Italy
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Maria Santucci De Magistris
- Department of Clinical and Experimental Medicine, Federico II University, Corso Umberto I, 40bis, 80138, Naples, Italy
| | - H B Bueno-de-Mesquita
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Jalan Universiti, 50603, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Petra H Peeters
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center, Huispost Str. 6.131, 3508GA, Utrecht, The Netherlands
| | - Maria Wennberg
- Department of Public Health and Clinical Medicine, Umeå University, 1A, 9 tr, Kirurgcentrum, 952, 901 85, Umeå, Sweden
| | - Ingvar A Bergdahl
- Department of Biobank Research, Umeå University, 1A, 9 tr, Kirurgcentrum, 952, 901 85, Umeå, Sweden
| | - Hubert Vesper
- Centers for Disease Control and Prevention, MS F25, 4770 Buford Hwy NE, Atlanta, GA, 30341, USA
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Eric J Duell
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (ICO-IDIBELL), Avda Gran Via Barcelona 199-203, L'Hospitalet de Llobregat, 08908, Barcelona, Spain.
| |
Collapse
|