1
|
Tonelli TP, Eickhoff JC, Johnson LE, Liu G, McNeel DG. Long-term follow up of patients treated with a DNA vaccine (pTVG-hp) for PSA-recurrent prostate cancer. Hum Vaccin Immunother 2024; 20:2395680. [PMID: 39208856 PMCID: PMC11364063 DOI: 10.1080/21645515.2024.2395680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/25/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
We have previously reported two single-agent phase I trials, evaluating the dose or schedule, of a DNA vaccine (pTVG-HP) encoding prostatic acid phosphatase (PAP) administered with GM-CSF as the adjuvant. These were in patients with PSA-recurrent, radiographically non-metastatic, prostate cancer (PCa). We report here the long-term safety and overall survival of these patients. Specifically, 22 patients with non-metastatic, castration-sensitive PCa (nmCSPC) were treated with pTVG-HP, 100-1500 µg, administered over 12 weeks and followed for 15 y. 17 patients with non-metastatic castration-resistant PCa (nmCRPC) were treated with 100 µg pTVG-HP with different schedules of administration over 1 y and followed for 5 y. No adverse events were detected in long-term follow-up from either trial that were deemed possibly related to vaccination. Patients with nmCSPC had a median overall survival of 12.3 y, with 5/22 (23%) alive at 15 y. 8/22 (36%) died due to prostate cancer with a median survival of 11.0 y, and 9/22 (41%) died of other causes. Patients with nmCRPC had a median overall survival of 4.5 y, with 8/17 (47%) alive at 5 y. The presence of T-cells specific for the PAP target antigen was detectable in 6/10 (60%) individuals with nmCSPC, and 3/5 (60%) individuals with nmCRPC, many years after immunization. The detection of immune responses to the vaccine target years after immunization suggests durable immunity can be elicited in patients using a DNA vaccine encoding a tumor-associated antigen.Trial Registration: NCT00582140 and NCT00849121.
Collapse
Affiliation(s)
- Tommaso P. Tonelli
- University of Wisconsin Carbone Comprehensive Cancer Center, Madison, WI, USA
| | - Jens C. Eickhoff
- University of Wisconsin Carbone Comprehensive Cancer Center, Madison, WI, USA
- Department of Biostatistics, University of Wisconsin, Madison, WI, USA
| | - Laura E. Johnson
- University of Wisconsin Carbone Comprehensive Cancer Center, Madison, WI, USA
| | - Glenn Liu
- University of Wisconsin Carbone Comprehensive Cancer Center, Madison, WI, USA
- Department of Medicine, University of Wisconsin, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
| | - Douglas G. McNeel
- University of Wisconsin Carbone Comprehensive Cancer Center, Madison, WI, USA
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
2
|
Panaiyadiyan S, Kumar R. Prostate cancer nomograms and their application in Asian men: a review. Prostate Int 2024; 12:1-9. [PMID: 38523898 PMCID: PMC10960090 DOI: 10.1016/j.prnil.2023.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 03/26/2024] Open
Abstract
Nomograms help to predict outcomes in individual patients rather than whole populations and are an important part of evaluation and treatment decision making. Various nomograms have been developed in malignancies to predict and prognosticate clinical outcomes such as severity of disease, overall survival, and recurrence-free survival. In prostate cancer, nomograms were developed for determining need for biopsy, disease course, need for adjuvant therapy, and outcomes. Most of these predictive nomograms were based on Caucasian populations. Prostate cancer is significantly affected by race, and Asian men have a significantly different racial and genetic susceptibility compared to Caucasians, raising the concern in generalizability of these nomograms. We reviewed the existing literature for nomograms in prostate cancer and their application in Asian men. There are very few studies that have evaluated the applicability and validity of the existing nomograms in these men. Most have found significant differences in the performance in this population. Thus, more studies evaluating the existing nomograms in Asian men or suggesting modifications for this population are required.
Collapse
Affiliation(s)
- Sridhar Panaiyadiyan
- Department of Urology, All India Institute of Medical Sciences, New Delhi, India
| | - Rajeev Kumar
- Department of Urology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
3
|
Kim WT, Kim J, Kim WJ. How can we best manage biochemical failure after radical prostatectomy? Investig Clin Urol 2022; 63:592-601. [PMID: 36347548 PMCID: PMC9643724 DOI: 10.4111/icu.20220294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
Biochemical recurrence (BCR) is common after radical prostatectomy, but effective treatment options for men with BCR after curative treatment remain controversial. Although prostate-specific antigen is widely used as a surrogate marker for prostate cancer survival, it cannot fully differentiate between prostate-cancer-specific survival and overall survival. Thus, it is challenging for physicians to determine the timing of treatment to halt or slow the clinical progression of disease in patients with BCR while avoiding overtreatment for patients whose disease may not progress beyond BCR. Adjuvant therapy for radical prostatectomy or radiotherapy in intermediate- or high-risk localized prostate cancer has a benefit in terms of disease progression and survival but is not recommended in low-risk prostate cancer because of the significant adverse effects related to radiotherapy and androgen-deprivation therapy (ADT). Salvage radiotherapy (SRT) is also recommended for patients with BCR after radical prostatectomy. Several options for management of BCR after radical prostatectomy include SRT to the prostatic bed and/or pelvis, continuous or intermittent ADT, or observation. Patients' comorbidity, preferences, and cancer-related factors must be considered when deciding the best management strategy. Modern imaging technology such as positron emission tomography imaging of prostate-specific membrane antigen-positive regions enables earlier detection of disease progression, thus enhancing decision making for future disease management.
Collapse
Affiliation(s)
- Won Tae Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Jiyeon Kim
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Wun-Jae Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea.,Institute of Urotech, Cheongju, Korea
| |
Collapse
|
4
|
Autio KA, Antonarakis ES, Mayer TM, Shevrin DH, Stein MN, Vaishampayan UN, Morris MJ, Slovin SF, Heath EI, Tagawa ST, Rathkopf DE, Milowsky MI, Harrison MR, Beer TM, Balar AV, Armstrong AJ, George DJ, Paller CJ, Apollo A, Danila DC, Graff JN, Nordquist L, Dayan Cohn ES, Tse K, Schreiber NA, Heller G, Scher HI. Randomized Phase 2 Trial of Abiraterone Acetate Plus Prednisone, Degarelix, or the Combination in Men with Biochemically Recurrent Prostate Cancer After Radical Prostatectomy. EUR UROL SUPPL 2021; 34:70-78. [PMID: 34934969 PMCID: PMC8655386 DOI: 10.1016/j.euros.2021.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/11/2022] Open
Abstract
Background Phase 2 trial endpoints that can be utilized in high-risk biochemical recurrence (BCR) after prostatectomy as a way of more rapidly identifying treatments for phase 3 trials are urgently needed. The efficacy of abiraterone acetate plus prednisone (AAP) in BCR is unknown. Objective To compare the rates of complete biochemical responses after testosterone recovery after 8 mo of AAP and degarelix, a gonadotropin-releasing hormone antagonist, alone or in combination. Design, setting, and participants Patients with BCR (prostate-specific antigen [PSA] ≥1.0 ng/ml, PSA doubling time ≤9 mo, no metastases on standard imaging, and testosterone ≥150 ng/dl) after prostatectomy (with or without prior radiotherapy) were included in this study. Intervention Patients were randomized to AAP (arm 1), AAP with degarelix (arm 2), or degarelix (arm 3) for 8 mo, and monitored for 18 mo. Outcome measurements and statistical analysis The primary endpoint was undetectable PSA with testosterone >150 ng/dl at 18 mo. Secondary endpoints were undetectable PSA at 8 mo and time to testosterone recovery. Results and limitations For the 122 patients enrolled, no difference was found between treatments for the primary endpoint (arm 1: 5.1% [95% confidence interval {CI}: 1–17%], arm 2: 17.1% [95% CI: 7–32%], arm 3: 11.9% [95% CI: 4–26%]; arm 1 vs 2, p = 0.93; arm 2 vs 3, p = 0.36). AAP therapy showed the shortest median time to testosterone recovery (36.0 wk [95% CI: 35.9–36.1]) relative to degarelix (52.9 wk [95% CI: 49.0–56.0], p < 0.001). Rates of undetectable PSA at 8 mo differed between AAP with degarelix and degarelix alone (p = 0.04), but not between AAP alone and degarelix alone (p = 0.12). Limitations of this study include a lack of long-term follow-up. Conclusions Rates of undetectable PSA levels with testosterone recovery were similar between arms, suggesting that increased androgen suppression with AAP and androgen deprivation therapy (ADT) is unlikely to eradicate recurrent disease compared with ADT alone. Patient summary We evaluated the use of abiraterone acetate plus prednisone (AAP) and androgen deprivation therapy (ADT), AAP alone, or ADT alone in men with biochemically recurrent, nonmetastatic prostate cancer. While more men who received the combination had an undetectable prostate-specific antigen (PSA) level at 8 mo on treatment, once men came off treatment and testosterone level rose, there was no difference in the rates of undetectable PSA levels. This suggests that the combination is not able to eradicate disease any better than ADT alone.
Collapse
Affiliation(s)
- Karen A Autio
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | | | - Tina M Mayer
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | | | - Mark N Stein
- Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | | | - Michael J Morris
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Susan F Slovin
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | | | | | - Dana E Rathkopf
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Matthew I Milowsky
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Michael R Harrison
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC, USA
| | - Tomasz M Beer
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | | | - Andrew J Armstrong
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC, USA
| | - Daniel J George
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC, USA
| | - Channing J Paller
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Arlyn Apollo
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel C Danila
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julie N Graff
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Luke Nordquist
- Urology Cancer Center and GU Research Network, Omaha, NE, USA
| | - Erica S Dayan Cohn
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kin Tse
- Columbia University, New York, NY, USA
| | | | - Glenn Heller
- Biostatistics Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Howard I Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA.,Prostate Cancer Clinical Trials Consortium, New York, NY, USA
| |
Collapse
|
5
|
Nicolini A, Ferrari P, Morganti R, Carpi A. Treatment of Metastatic or High-Risk Solid Cancer Patients by Targeting the Immune System and/or Tumor Burden: Six Cases Reports. Int J Mol Sci 2019; 20:ijms20235986. [PMID: 31795079 PMCID: PMC6929121 DOI: 10.3390/ijms20235986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 12/30/2022] Open
Abstract
This article summarizes the histories of six patients with different solid tumors treated with a new strategy based on tumor burden reduction and immune evasion as potential targets. All six patients were at a high risk of relapse and were likely to have a minimal residual disease following conventional therapy: biochemical recurrence (BCR) following radical prostatectomy (RP) (two prostate cancers patients), removal of distant metastases (one colorectal and one breast cancer), and complete response (CR) of distant metastases to conventional therapy (one breast cancer and one esophageal–gastric junction cancer). Four of the patients, two after RP and BCR, one after removal of a single pulmonary metastasis from breast cancer, and one after CR to chemotherapy of peritoneal metastases and ascites from an esophageal–gastric junction primary cancer, regularly received cycles of a new drug schedule with the aim of inhibiting immune suppression (IT). In these four patients, preliminary laboratory tests of peripheral blood suggested an interleukin (IL)-2/IL-12 mediated stimulation of cellular immune response with a concomitant decrease in vascular endothelial growth factor (VEGF) immune suppression. The fifth case was a breast cancer patient with distant metastases in CR, while receiving beta-interferon and interleukin-2 in addition to conventional hormone therapy. To date, all five patients are alive and doing well and they have been unexpectedly disease-free for 201 and 78 months following BCR, 28 months following the removal of a single pulmonary metastases, 32 months following CR to chemotherapy of peritoneal metastases and ascites, and 140 months following diagnosis of multiple bone metastases, respectively. The sixth patient, who had colorectal cancer and multiple synchronous liver metastases and underwent nine surgical interventions for metastatic disease, although not disease-free, is doing well 98 months after primary surgery. Our six cases reports can be interpreted with the hypothesis that immune manipulation and/or a concomitant low tumor burden favored their clinical outcome.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantation and New technologies in Medicine, University of Pisa, 56100 Pisa, Italy;
- Correspondence:
| | - Paola Ferrari
- Department of Oncology, Transplantation and New technologies in Medicine, University of Pisa, 56100 Pisa, Italy;
| | - Riccardo Morganti
- Section of Statistics, University Hospital of Pisa, 56100 Pisa, Italy;
| | - Angelo Carpi
- Department of Clinical and Experimental Medicine, University of Pisa, 56100 Pisa, Italy;
| |
Collapse
|
6
|
McNeel DG, Eickhoff JC, Johnson LE, Roth AR, Perk TG, Fong L, Antonarakis ES, Wargowski E, Jeraj R, Liu G. Phase II Trial of a DNA Vaccine Encoding Prostatic Acid Phosphatase (pTVG-HP [MVI-816]) in Patients With Progressive, Nonmetastatic, Castration-Sensitive Prostate Cancer. J Clin Oncol 2019; 37:3507-3517. [PMID: 31644357 DOI: 10.1200/jco.19.01701] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE We previously reported the safety and immunologic effects of a DNA vaccine (pTVG-HP [MVI-816]) encoding prostatic acid phosphatase (PAP) in patients with recurrent, nonmetastatic prostate cancer. The current trial evaluated the effects of this vaccine on metastatic progression. PATIENTS AND METHODS Ninety-nine patients with castration-sensitive prostate cancer and prostate-specific antigen (PSA) doubling time (DT) of less than 12 months were randomly assigned to treatment with either pTVG-HP co-administered intradermally with 200 μg granulocyte-macrophage colony-stimulating factor (GM-CSF) adjuvant or 200 μg GM-CSF alone six times at 14-day intervals and then quarterly for 2 years. The primary end point was 2-year metastasis-free survival (MFS). Secondary and exploratory end points were median MFS, changes in PSA DT, immunologic effects, and changes in quantitative 18F-sodium fluoride (NaF) positron emission tomography/computed tomography (PET/CT) imaging. RESULTS Two-year MFS was not different between study arms (41.8% vaccine v 42.3%; P = .97). Changes in PSA DT and median MFS were not different between study arms (18.9 v 18.3 months; hazard ratio [HR], 1.6; P = .13). Preplanned subset analysis identified longer MFS in vaccine-treated patients with rapid (< 3 months) pretreatment PSA DT (12.0 v 6.1 months; n = 21; HR, 4.4; P = .03). PAP-specific T cells were detected in both cohorts, including multifunctional PAP-specific T-helper 1-biased T cells. Changes in total activity (total standardized uptake value) on 18F-NaF PET/CT from months 3 to 6 increased 50% in patients treated with GM-CSF alone and decreased 23% in patients treated with pTVG-HP (n = 31; P = .07). CONCLUSION pTVG-HP treatment did not demonstrate an overall increase in 2-year MFS in patients with castration-sensitive prostate cancer, with the possible exception of a subgroup with rapidly progressive disease. Prespecified 18F-NaF PET/CT imaging conducted in a subset of patients suggests that vaccination had detectable effects on micrometastatic bone disease. Additional trials using pTVG-HP in combination with PD-1 blockade are under way.
Collapse
Affiliation(s)
| | | | | | | | | | - Lawrence Fong
- University of California, San Francisco, San Francisco, CA
| | | | | | | | - Glenn Liu
- University of Wisconsin, Madison, WI
| |
Collapse
|
7
|
Steele EM, Holmes JA. A review of salvage treatment options for disease progression after radiation therapy for localized prostate cancer. Urol Oncol 2019; 37:582-598. [PMID: 31133370 DOI: 10.1016/j.urolonc.2019.04.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 10/26/2022]
Abstract
Recurrence of prostate cancer after initial treatment with radiation therapy (RT) is highly dependent on pretreatment risk group and unfortunately, a proportion of patients fail primary treatment. The treatment of recurrence after primary radiation is rapidly changing with advances in imaging and it is important to distinguish those with a local failure from those with distant failure. If disease remains locally confined, salvage treatment with a variety of techniques can still provide a potential cure. Patients with distant failure are often treated with androgen deprivation, or in those with a shorter life expectancy, conservative management. In patients with a higher burden of metastatic disease, there is emerging evidence that chemotherapy and advanced androgen therapy can improve survival. We review the relevant literature on available salvage treatment options and appropriate patient selection for patients with recurrent prostate cancer after RT. We report on the efficacy and adverse effects of the currently available local salvage modalities including salvage radical prostatectomy, high dose rate and low dose rate brachytherapy, cryotherapy, high intensity focused ultrasound, and stereotactic body RT. We additionally discuss diagnosis of oligometastatic disease on imaging and current approaches to treatment with either radiation or surgery. While a full review of chemotherapy and advanced androgen therapies is beyond the scope of this article we briefly discuss their use in the treatment of newly diagnosed recurrence after radiation.
Collapse
Affiliation(s)
- Ethan M Steele
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN
| | - Jordan A Holmes
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN; Indiana University Simon Cancer Center, Indianapolis, IN.
| |
Collapse
|
8
|
Maeng H, Terabe M, Berzofsky JA. Cancer vaccines: translation from mice to human clinical trials. Curr Opin Immunol 2018; 51:111-122. [PMID: 29554495 DOI: 10.1016/j.coi.2018.03.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/13/2018] [Accepted: 03/01/2018] [Indexed: 01/22/2023]
Abstract
Therapeutic cancer vaccines have been a long-sought approach to harness the exquisite specificity of the immune system to treat cancer, but until recently have not had much success as single agents in clinical trials. However, new understanding of the immunoregulatory mechanisms exploited by cancers has allowed the development of approaches to potentiate the effect of vaccines by removing the brakes while the vaccines step on the accelerator. Thus, vaccines that had induced a strong T cell response but no clinical therapeutic effect may now reach their full potential. Here, we review a number of promising approaches to cancer vaccines developed initially in mouse models and their translation into clinical trials, along with combinations of vaccines with other therapies that might allow cancer vaccines to finally achieve clinical efficacy against many types of cancer.
Collapse
Affiliation(s)
- Hoyoung Maeng
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, United States
| | - Masaki Terabe
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, United States
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, United States.
| |
Collapse
|
9
|
Cancer vaccine strategies: translation from mice to human clinical trials. Cancer Immunol Immunother 2017; 67:1863-1869. [PMID: 29143114 DOI: 10.1007/s00262-017-2084-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/19/2017] [Indexed: 12/21/2022]
Abstract
We translated two cancer vaccine strategies from mice into human clinical trials. (1) In preclinical studies on TARP, an antigen expressed in most prostate cancers, we mapped epitopes presented by HLA-A*0201, modified them to increase affinity and immunogenicity in HLA transgenic mice, and induced human T cells that killed human cancer cells ("epitope enhancement"). In a clinical trial, HLA-A2+ prostate cancer patients with PSA biochemical recurrence (Stage D0) were vaccinated with two peptides either in Montanide-ISA51 or on autologous dendritic cells (DCs). In stage D0, the Prostate-Specific Antigen (PSA) slope is prognostic of time to radiographic evidence of metastases and death. With no difference between arms, 74% of combined subjects had a decreased PSA slope at 1 year compared to their own baseline slopes (p = 0.0004). For patients vaccinated with DCs, response inversely correlated with a tolerogenic DC signature. A randomized placebo-controlled phase II trial is underway. (2) HER2 is a driver surface oncogene product expressed in multiple tumors. We made an adenoviral vector vaccine expressing the extracellular and transmembrane domains of HER2 and cured mice with large established HER2+ tumors, dependent on antibodies to HER2, not T cells. The mechanism differed from that of trastuzumab. We tested a human version in advanced metastatic cancer patients naïve to HER2-directed therapies. At the second and third dose levels, 45% of evaluable patients showed clinical benefit. Circulating tumor cells also declined in some vaccinated patients. Thus, cancer vaccines developed in mice were successfully translated to humans with promising early results.
Collapse
|
10
|
Knuuttila M, Mehmood A, Huhtaniemi R, Yatkin E, Häkkinen MR, Oksala R, Laajala TD, Ryberg H, Handelsman DJ, Aittokallio T, Auriola S, Ohlsson C, Laiho A, Elo LL, Sipilä P, Mäkelä SI, Poutanen M. Antiandrogens Reduce Intratumoral Androgen Concentrations and Induce Androgen Receptor Expression in Castration-Resistant Prostate Cancer Xenografts. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:216-228. [PMID: 29126837 DOI: 10.1016/j.ajpath.2017.08.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/15/2017] [Accepted: 08/28/2017] [Indexed: 10/18/2022]
Abstract
The development of castration-resistant prostate cancer (CRPC) is associated with the activation of intratumoral androgen biosynthesis and an increase in androgen receptor (AR) expression. We recently demonstrated that, similarly to the clinical CRPC, orthotopically grown castration-resistant VCaP (CR-VCaP) xenografts express high levels of AR and retain intratumoral androgen concentrations similar to tumors grown in intact mice. Herein, we show that antiandrogen treatment (enzalutamide or ARN-509) significantly reduced (10-fold, P < 0.01) intratumoral testosterone and dihydrotestosterone concentrations in the CR-VCaP tumors, indicating that the reduction in intratumoral androgens is a novel mechanism by which antiandrogens mediate their effects in CRPC. Antiandrogen treatment also altered the expression of multiple enzymes potentially involved in steroid metabolism. Identical to clinical CRPC, the expression levels of the full-length AR (twofold, P < 0.05) and the AR splice variants 1 (threefold, P < 0.05) and 7 (threefold, P < 0.01) were further increased in the antiandrogen-treated tumors. Nonsignificant effects were observed in the expression of certain classic androgen-regulated genes, such as TMPRSS2 and KLK3, despite the low levels of testosterone and dihydrotestosterone. However, other genes recently identified to be highly sensitive to androgen-regulated AR action, such as NOV and ST6GalNAc1, were markedly altered, which indicated reduced androgen action. Taken together, the data indicate that, besides blocking AR, antiandrogens modify androgen signaling in CR-VCaP xenografts at multiple levels.
Collapse
Affiliation(s)
- Matias Knuuttila
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland; Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Arfa Mehmood
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Riikka Huhtaniemi
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland; Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland; R&D Oncology Research, Orion Pharma, Turku, Finland
| | - Emrah Yatkin
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland; Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Merja R Häkkinen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | | | - Teemu D Laajala
- Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland; Department of Mathematics and Statistics, University of Turku, Turku, Finland; Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Henrik Ryberg
- Center for Bone and Arthritis Research, The Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - David J Handelsman
- ANZAC Research Institute, University of Sydney, Concord, New South Wales, Australia
| | - Tero Aittokallio
- Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland; Department of Mathematics and Statistics, University of Turku, Turku, Finland; Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Claes Ohlsson
- Center for Bone and Arthritis Research, The Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Asta Laiho
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Laura L Elo
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland; Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Petra Sipilä
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland; Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sari I Mäkelä
- Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland; Functional Foods Forum, University of Turku, Turku, Finland
| | - Matti Poutanen
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland; Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland; Center for Bone and Arthritis Research, The Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden.
| |
Collapse
|
11
|
Roviello G, Corona SP, Bonetta A, Cappelletti MR, Generali D. Circulating tumor cells correlate with patterns of recurrence in patients with hormone-sensitive prostate cancer. Onco Targets Ther 2017; 10:3811-3815. [PMID: 28814879 PMCID: PMC5546825 DOI: 10.2147/ott.s143020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The aim of this study was to evaluate the correlation between circulating tumor cells (CTCs) and patterns of recurrence in patients with hormone-sensitive prostate cancer. The study involved patients with histologically confirmed, advanced prostatic adenocarcinoma, who were tested for CTCs (Veridex®) when they developed recurrence after radical prostatectomy or external beam radiation between 2008 and 2014. Forty-two prostate cancer patients were evaluated. CTCs were detected in 14 out of 42 (33.3%) patients (Group A), while the remaining 28 (66.7%) showed undetectable levels of CTCs (Group B). The mean prostate-specific antigen value was higher in Group A in comparison to Group B (6.2 vs 3.3 ng/dL) (P=0.48). Presence of bone metastases alone or along with nodal metastases was more common in Group A (57.1%) in comparison to Group B (25%) (P=0.04). In a univariate analysis, the presence of CTCs at diagnosis correlated with the development of bone recurrence (OR: 4; 95% CI: 1.0-15.9; P=0.05). Even if the study enrolled only a small number of patients, the detection of CTCs in the blood appears to correlate with the pattern of progression in patients with hormone-sensitive prostate cancer, suggesting a possible role in anticipating recurrence at the bone in men with higher tumor load. Further prospective studies are warranted in this setting.
Collapse
Affiliation(s)
- Giandomenico Roviello
- Medical Oncology Unit, Department of Oncology, San Donato Hospital, Arezzo
- Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Silvia Paola Corona
- Radiation Oncology Department, Peter MacCallum Cancer Centre, Moorabbin Campus, East Bentleigh, VIC, Australia
| | | | | | - Daniele Generali
- Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- Breast Cancer Unit, Azienda Socio-Sanitaria Territoriale di Cremona, Cremona, Italy
| |
Collapse
|
12
|
Wood LV, Fojo A, Roberson BD, Hughes MSB, Dahut W, Gulley JL, Madan RA, Arlen PM, Sabatino M, Stroncek DF, Castiello L, Trepel JB, Lee MJ, Parnes HL, Steinberg SM, Terabe M, Wilkerson J, Pastan I, Berzofsky JA. TARP vaccination is associated with slowing in PSA velocity and decreasing tumor growth rates in patients with Stage D0 prostate cancer. Oncoimmunology 2016; 5:e1197459. [PMID: 27622067 DOI: 10.1080/2162402x.2016.1197459] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 05/30/2016] [Indexed: 12/22/2022] Open
Abstract
T-cell receptor alternate reading frame protein (TARP) is a 58-residue protein over-expressed in prostate and breast cancer. We investigated TARP peptide vaccination's impact on the rise in PSA (expressed as Slope Log(PSA) or PSA Doubling Time (PSADT)), validated tumor growth measures, and tumor growth rate in men with Stage D0 prostate cancer. HLA-A*0201 positive men were randomized to receive epitope-enhanced (29-37-9V) and wild-type (27-35) TARP peptides administered as a Montanide/GM-CSF peptide emulsion or as an autologous peptide-pulsed dendritic cell vaccine every 3 weeks for a total of five vaccinations with an optional 6th dose of vaccine at 36 weeks based on immune response or PSADT criteria with a booster dose of vaccine for all patients at 48 and 96 weeks. 41 patients enrolled with median on-study duration of 75 weeks at the time of this analysis. Seventy-two percent of patients reaching 24 weeks and 74% reaching 48 weeks had a decreased Slope Log(PSA) compared to their pre-vaccination baseline (p = 0.0012 and p = 0.0004 for comparison of overall changes in Slope Log(PSA), respectively). TARP vaccination also resulted in a 50% decrease in median tumor growth rate (g): pre-vaccine g = 0.0042/day, post-vaccine g = 0.0021/day (p = 0.003). 80% of subjects exhibited new vaccine-induced TARP-specific IFNγ ELISPOT responses but they did not correlate with decreases in Slope Log(PSA). Thus, vaccination with TARP peptides resulted in significant slowing in PSA velocity and reduction in tumor growth rate in a majority of patients with PSA biochemical recurrence.
Collapse
Affiliation(s)
- Lauren V Wood
- Vaccine Branch, Center for Cancer Research, NCI , Bethesda, MD, USA
| | - Antonio Fojo
- Genitourinary Malignancies Branch, Center for Cancer Research, NCI , Bethesda, MD, USA
| | | | | | - William Dahut
- Genitourinary Malignancies Branch, Center for Cancer Research, NCI , Bethesda, MD, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, NCI , Bethesda, MD, USA
| | - Ravi A Madan
- Genitourinary Malignancies Branch, Center for Cancer Research, NCI , Bethesda, MD, USA
| | - Philip M Arlen
- Genitourinary Malignancies Branch, Center for Cancer Research, NCI , Bethesda, MD, USA
| | - Marianna Sabatino
- Cell Processing Section, Department of Transfusion Medicine, NIH Clinical Center , Bethesda, MD, USA
| | - David F Stroncek
- Cell Processing Section, Department of Transfusion Medicine, NIH Clinical Center , Bethesda, MD, USA
| | - Luciano Castiello
- Cell Processing Section, Department of Transfusion Medicine, NIH Clinical Center , Bethesda, MD, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, NCI , Bethesda, MD, USA
| | - Min-Jung Lee
- Developmental Therapeutics Branch, Center for Cancer Research, NCI , Bethesda, MD, USA
| | | | - Seth M Steinberg
- Biostatistics and Data Management Section, Center for Cancer Research, NCI , Bethesda, MD, USA
| | - Masaki Terabe
- Vaccine Branch, Center for Cancer Research, NCI , Bethesda, MD, USA
| | - Julia Wilkerson
- Genitourinary Malignancies Branch, Center for Cancer Research, NCI , Bethesda, MD, USA
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, NCI , Bethesda, MD, USA
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, NCI , Bethesda, MD, USA
| |
Collapse
|
13
|
Zhao B, Grivas PD. Contemporary Systemic Therapy for Urologic Malignancies in Geriatric Patients. Clin Geriatr Med 2015; 31:645-65. [PMID: 26476122 DOI: 10.1016/j.cger.2015.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Current data on systemic therapy in geriatric populations with genitourinary malignancies are largely derived from retrospective analyses of prospectively conducted trials or retrospective reviews. Although extrapolation of these data to real-world patients should be cautious, patients aged 65 years or older with good functional status and minimal comorbidities seem to enjoy similar survival benefit from therapy as their younger counterparts. Chronologic age alone should generally not be used to guide management decisions. Comprehensive geriatric assessment tools and prospective studies in older adults integrating comprehensive geriatric assessment can shed light on the optimal management of urologic malignancies in this population.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Hematology/Oncology, Taussig Cancer Institute, Cleveland Clinic, Desk R30, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Petros D Grivas
- Department of Hematology/Oncology, Taussig Cancer Institute, Cleveland Clinic, Desk R35, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
14
|
Warner A, Pickles T, Crook J, Martin AG, Souhami L, Catton C, Lukka H, Rodrigues G. Development of ProCaRS Clinical Nomograms for Biochemical Failure-free Survival Following Either Low-Dose Rate Brachytherapy or Conventionally Fractionated External Beam Radiation Therapy for Localized Prostate Cancer. Cureus 2015; 7:e276. [PMID: 26180700 PMCID: PMC4494461 DOI: 10.7759/cureus.276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/11/2015] [Indexed: 11/27/2022] Open
Abstract
Purpose: Although several clinical nomograms predictive of biochemical failure-free survival (BFFS) for localized prostate cancer exist in the medical literature, making valid comparisons can be challenging due to variable definitions of biochemical failure, the disparate distribution of prognostic factors, and received treatments in patient populations. The aim of this investigation was to develop and validate clinically-based nomograms for 5-year BFFS using the ASTRO II “Phoenix” definition for two patient cohorts receiving low-dose rate (LDR) brachytherapy or conventionally fractionated external beam radiation therapy (EBRT) from a large Canadian multi-institutional database. Methods and Materials: Patients were selected from the GUROC (Genitourinary Radiation Oncologists of Canada) Prostate Cancer Risk Stratification (ProCaRS) database if they received (1) LDR brachytherapy ≥ 144 Gy (n=4208) or (2) EBRT ≥ 70 Gy (n=822). Multivariable Cox regression analysis for BFFS was performed separately for each cohort and used to generate clinical nomograms predictive of 5-year BFFS. Nomograms were validated using calibration plots of nomogram predicted probability versus observed probability via Kaplan-Meier estimates. Results: Patients receiving LDR brachytherapy had a mean age of 64 ± 7 years, a mean baseline PSA of 6.3 ± 3.0 ng/mL, 75% had a Gleason 6, and 15% had a Gleason 7, whereas patients receiving EBRT had a mean age of 70 ± 6 years, a mean baseline PSA of 11.6 ± 10.7 ng/mL, 30% had a Gleason 6, 55% had a Gleason 7, and 14% had a Gleason 8-10. Nomograms for 5-year BFFS included age, use and duration of androgen deprivation therapy (ADT), baseline PSA, T stage, and Gleason score for LDR brachytherapy and an ADT (months), baseline PSA, Gleason score, and biological effective dose (Gy) for EBRT. Conclusions: Clinical nomograms examining 5-year BFFS were developed for patients receiving either LDR brachytherapy or conventionally fractionated EBRT and may assist clinicians in predicting an outcome. Future work should be directed at examining the role of additional prognostic factors, comorbidities, and toxicity in predicting survival outcomes.
Collapse
Affiliation(s)
- Andrew Warner
- Radiation Oncology, London Health Sciences Centre, London, Ontario, CA
| | - Tom Pickles
- Radiation Oncology, BC Cancer Agency, Vancouver Centre, University of British Columbia
| | | | - Andre-Guy Martin
- Radiation Oncology, Centre Hospitalier Universitaire de Québec - L'Hôtel-Dieu de Québec, Québec, QC
| | - Luis Souhami
- Department of Oncology, Division of Radiation Oncology, McGill University Health Center
| | - Charles Catton
- Radiation Oncology, University of Toronto and Universitry Health Network
| | - Himu Lukka
- Radiation Oncology, Juravinski Cancer Centre, Hamilton, ON
| | - George Rodrigues
- Department of Oncology, London Health Sciences Centre; Schulich School of Medicine & Dentistry, Western University, London, Ontario, CA
| |
Collapse
|
15
|
Predicting bone scan positivity in non-metastatic castration-resistant prostate cancer. Prostate Cancer Prostatic Dis 2015; 18:333-7. [PMID: 26171882 PMCID: PMC4640947 DOI: 10.1038/pcan.2015.25] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/13/2015] [Accepted: 04/19/2015] [Indexed: 12/05/2022]
Abstract
Objectives To evaluate PSA levels and kinetic cutoffs to predict positive bone scans for men with non-metastatic castrate resistant prostate cancer (CRPC) from the Shared Equal Access Regional Cancer Hospital (SEARCH) cohort. Methods Retrospective analysis of 531 bone scans of 312 clinically CRPC patients with no known metastases at baseline treated with a variety of primary treatment types in the SEARCH database. The association of patients’ demographics, pathological features, PSA levels and kinetics with risk of a positive scan was tested using generalized estimating equations. Results A total of 149 (28%) scans were positive. Positive scans were associated with younger age (OR=0.98; P=0.014), higher Gleason scores (relative to Gleason 2-6, Gleason 3+4: OR=2.03, P=0.035; Gleason 4+3 and 8-10: OR=1.76, P=0.059), higher pre-scan PSA (OR=2.11; P<0.001), shorter pre-scan PSA doubling time (PSADT; OR=0.53; P<0.001), higher PSA velocity (OR=1.74; P<0.001) and more remote scan year (OR=0.92; P=0.004). Scan positivity was 6%, 14%, 29% and 57% for men with PSA <5, 5-14.9, 15-49.9 and ≥50ng/mL, respectively (P-trend <0.001). Men with PSADT ≥15, 9-14.9, 3-8.9 and <3 months had a scan positivity of 11%, 22%, 34% and 47%, correspondingly (P-trend <0.001). Tables were constructed using PSA and PSADT to predict the likelihood of a positive bone scan. Conclusions PSA levels and kinetics were associated with positive bone scans. We developed tables to predict the risk of positive bone scans by PSA and PSADT. Combining PSA levels and kinetics may help select patients with CRPC for bone scans.
Collapse
|
16
|
Kattan MW, O'Rourke C, Yu C, Chagin K. The Wisdom of Crowds of Doctors: Their Average Predictions Outperform Their Individual Ones. Med Decis Making 2015; 36:536-40. [PMID: 25878196 DOI: 10.1177/0272989x15581615] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 02/20/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Evidence suggests that the average prediction across groups is more accurate than for individuals. Our goals were therefore to investigate accuracy of the average predictions for groups of clinicians and to compare this accuracy with a published statistical prediction model. METHODS Twenty-four expert clinicians attending an advisory board meeting were asked to make predictions for 25 patients from a research registry regarding the probability of having a positive bone scan 1 year from today if left untreated. Comparisons were made between the accuracy of average responses and that of an appropriate previously published statistical prediction model. RESULTS This study suggests that the mean of the clinicians' predictions can quickly approach the accuracy of the best clinician using as few as 5 clinicians. When all 24 clinicians' predictions were averaged, the concordance index reached 0.750, still far below that of the published statistical model with 0.812. CONCLUSIONS Averaging clinician predictions may have merit over individual clinician predictions but still not reasonably replace a carefully built statistical model. However, averaging clinician predictions could prove helpful in situations where statistical models do not yet exist or where existing models are inadequate.
Collapse
Affiliation(s)
- Michael W Kattan
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH (MWK, COR, CY, KC)
| | - Colin O'Rourke
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH (MWK, COR, CY, KC)
| | - Changhong Yu
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH (MWK, COR, CY, KC)
| | - Kevin Chagin
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH (MWK, COR, CY, KC)
| |
Collapse
|
17
|
Kjölhede H, Ahlgren G, Almquist H, Liedberg F, Lyttkens K, Ohlsson T, Bratt O. 18F-choline PET/CT for early detection of metastases in biochemical recurrence following radical prostatectomy. World J Urol 2015; 33:1749-52. [DOI: 10.1007/s00345-015-1547-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/23/2015] [Indexed: 10/23/2022] Open
|
18
|
Identification and validation of potential new biomarkers for prostate cancer diagnosis and prognosis using 2D-DIGE and MS. BIOMED RESEARCH INTERNATIONAL 2015; 2015:454256. [PMID: 25667921 PMCID: PMC4312578 DOI: 10.1155/2015/454256] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 09/05/2014] [Accepted: 09/05/2014] [Indexed: 12/14/2022]
Abstract
This study was designed to identify and validate potential new biomarkers for prostate cancer and to distinguish patients with and without biochemical relapse. Prostate tissue samples analyzed by 2D-DIGE (two-dimensional difference in gel electrophoresis) and mass spectrometry (MS) revealed downregulation of secernin-1 (P < 0.044) in prostate cancer, while vinculin showed significant upregulation (P < 0.001). Secernin-1 overexpression in prostate tissue was validated using Western blot and immunohistochemistry while vinculin expression was validated using immunohistochemistry. These findings indicate that secernin-1 and vinculin are potential new tissue biomarkers for prostate cancer diagnosis and prognosis, respectively. For validation, protein levels in urine were also examined by Western blot analysis. Urinary vinculin levels in prostate cancer patients were significantly higher than in urine from nontumor patients (P = 0.006). Using multiple reaction monitoring-MS (MRM-MS) analysis, prostatic acid phosphatase (PAP) showed significant higher levels in the urine of prostate cancer patients compared to controls (P = 0.012), while galectin-3 showed significant lower levels in the urine of prostate cancer patients with biochemical relapse, compared to those without relapse (P = 0.017). Three proteins were successfully differentiated between patients with and without prostate cancer and patients with and without relapse by using MRM. Thus, this technique shows promise for implementation as a noninvasive clinical diagnostic technique.
Collapse
|
19
|
Toth R, Traughber B, Ellis R, Kurhanewicz J, Madabhushi A. A Domain Constrained Deformable (DoCD) Model for Co-registration of Pre- and Post-Radiated Prostate MRI. Neurocomputing 2014; 114:3-12. [PMID: 25267873 DOI: 10.1016/j.neucom.2014.01.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
External beam radiation treatment (EBRT) is a popular method for treating prostate cancer (CaP) involving destroying tumor cells with ionizing radiation. Following EBRT, biochemical failure has been linked with disease recurrence. However, there is a need for methods for evaluating early treatment related changes to allow for an early intervention in case of incomplete disease response. One method for looking at treatment evaluation is to detect changes in MRI markers on a voxel-by-voxel basis following treatment. Changes in MRI markers may be correlated with disease recurrence and complete or partial response. In order to facilitate voxel-by-voxel imaging related treatment changes, and also to evaluate morphologic changes in the gland post treatment, the pre- and post-radiated MRI must first be brought into spatial alignment via image registration. However, EBRT induces changes in the prostate volume and distortion to the internal anatomy of the prostate following radiation treatment. The internal substructures of the prostate, the central gland (CG) and peripheral zone (PZ), may respond to radiation differently, and their resulting shapes may change drastically. Biomechanical models of the prostate that have been previously proposed tend to focus on how external forces affect the surface of the prostate (not the internals), and assume that the prostate is a volume-preserving entity. In this work we present DoCD, a biomechanical model for automatically registering pre-, post-EBRT MRI with the aim of expressly modeling the (1) changes in volume, and (2) changes to the CG and PZ. DoCD was applied to a cohort of 30 patients and achieved a root mean square error of 2.994 mm, which was statistically significantly better a traditional biomechanical model which did not consider changes to the internal anatomy of the prostate (mean of 5.071 mm).
Collapse
Affiliation(s)
- Robert Toth
- Rutgers, The State University of New Jersey. New Brunswick, NJ ; Case Western Reserve University, Cleveland, OH
| | | | | | - John Kurhanewicz
- Department of Radiology, University of California, San Francisco, CA
| | | |
Collapse
|
20
|
Gotto GT, Yu C, Bernstein M, Eastham JA, Kattan MW. Development of a nomogram model predicting current bone scan positivity in patients treated with androgen-deprivation therapy for prostate cancer. Front Oncol 2014; 4:296. [PMID: 25386410 PMCID: PMC4209823 DOI: 10.3389/fonc.2014.00296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/10/2014] [Indexed: 11/29/2022] Open
Abstract
PURPOSE To develop a nomogram predictive of current bone scan positivity in patients receiving androgen-deprivation therapy (ADT) for advanced prostate cancer; to augment clinical judgment and highlight patients in need of additional imaging investigations. MATERIALS AND METHODS A retrospective chart review of bone scan records (conventional (99m)Tc-scintigraphy) of 1,293 patients who received ADT at the Memorial Sloan-Kettering Cancer Center from 2000 to 2011. Multivariable logistic regression analysis was used to identify variables suitable for inclusion in the nomogram. The probability of current bone scan positivity was determined using these variables and the predictive accuracy of the nomogram was quantified by concordance index. RESULTS In total, 2,681 bone scan records were analyzed and 636 patients had a positive result. Overall, the median pre-scan prostate-specific antigen (PSA) level was 2.4 ng/ml; median PSA doubling time (PSADT) was 5.8 months. At the time of a positive scan, median PSA level was 8.2 ng/ml; 53% of patients had PSA <10 ng/ml; median PSADT was 4.0 months. Five variables were included in the nomogram: number of previous negative bone scans after initiating ADT, PSA level, Gleason grade sum, and history of radical prostatectomy and radiotherapy. A concordance index value of 0.721 was calculated for the nomogram. This was a retrospective study based on limited data in patients treated in a large cancer center who underwent conventional (99m)Tc bone scans, which themselves have inherent limitations. CONCLUSION This is the first nomogram to predict current bone scan positivity in ADT-treated prostate cancer patients, providing high predictive accuracy.
Collapse
Affiliation(s)
- Geoffrey T. Gotto
- Southern Alberta Institute of Urology, University of Calgary, Calgary, AB, Canada
| | - Changhong Yu
- Department of Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Melanie Bernstein
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James A. Eastham
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael W. Kattan
- Department of Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
21
|
Nomogram Predicting Prostate Cancer-specific Mortality for Men with Biochemical Recurrence After Radical Prostatectomy. Eur Urol 2014; 67:1160-1167. [PMID: 25301759 DOI: 10.1016/j.eururo.2014.09.019] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 09/12/2014] [Indexed: 01/02/2023]
Abstract
BACKGROUND The natural history of prostate-specific antigen (PSA)-defined biochemical recurrence (BCR) of prostate cancer (PCa) after definitive local therapy is highly variable. Validated prediction models for PCa-specific mortality (PCSM) in this population are needed for treatment decision-making and clinical trial design. OBJECTIVE To develop and validate a nomogram to predict the probability of PCSM from the time of BCR among men with rising PSA levels after radical prostatectomy. DESIGN, SETTING, AND PARTICIPANTS Between 1987 and 2011, 2254 men treated by radical prostatectomy at one of five high-volume hospitals experienced BCR, defined as three successive PSA rises (final value >0.2 ng/ml), single PSA >0.4 ng/ml, or use of secondary therapy administered for detectable PSA >0.1 ng/ml. Clinical information and follow-up data were modeled using competing-risk regression analysis to predict PCSM from the time of BCR. INTERVENTION Radical prostatectomy for localized prostate cancer and subsequent PCa BCR. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS PCSM. RESULTS AND LIMITATIONS The 10-yr PCSM and mortality from competing causes was 19% (95% confidence interval [CI] 16-21%) and 17% (95% CI 14-19%), respectively. A nomogram predicting PCSM for all patients had an internally validated concordance index of 0.774. Inclusion of PSA doubling time (PSADT) in a nomogram based on standard parameters modestly improved predictive accuracy (concordance index 0.763 vs 0.754). Significant parameters in the models were preoperative PSA, pathological Gleason score, extraprostatic extension, seminal vesicle invasion, time to PCa BCR, PSA level at PCa BCR, and PSADT (all p<0.05). CONCLUSIONS We constructed and validated a nomogram to predict the risk of PCSM at 10 yr among men with PCa BCR after radical prostatectomy. The nomogram may be used for patient counseling and the design of clinical trials for PCa. PATIENT SUMMARY For men with biochemical recurrence of prostate cancer after radical prostatectomy, we have developed a model to predict the long-term risk of death from prostate cancer.
Collapse
|
22
|
Andersen S, Richardsen E, Nordby Y, Ness N, Størkersen O, Al-Shibli K, Donnem T, Bertilsson H, Busund LT, Angelsen A, Bremnes RM. Disease-specific outcomes of radical prostatectomies in Northern Norway; a case for the impact of perineural infiltration and postoperative PSA-doubling time. BMC Urol 2014; 14:49. [PMID: 24929427 PMCID: PMC4067377 DOI: 10.1186/1471-2490-14-49] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 05/28/2014] [Indexed: 12/26/2022] Open
Abstract
Background Prostate cancer is the most common male malignancy and a mayor cause of mortality in the western world. The impact of clinicopathological variables on disease related outcomes have mainly been reported from a few large US series, most of them not reporting on perineural infiltration. We therefore wanted to investigate relevant cancer outcomes in patients undergoing radical prostatectomy in two Norwegian health regions with an emphasis on the impact of perineural infiltration (PNI) and prostate specific antigen- doubling time (PSA-DT). Methods We conducted a retrospective analysis of 535 prostatectomy patients at three hospitals between 1995 and 2005 estimating biochemical failure- (BFFS), clinical failure- (CFFS) and prostate cancer death-free survival (PCDFS) with the Kaplan-Meier method. We investigated clinicopathological factors influencing risk of events using cox proportional hazard regression. Results After a median follow-up of 89 months, 170 patients (32%) experienced biochemical failure (BF), 36 (7%) experienced clinical failure and 15 (3%) had died of prostate cancer. pT-Stage (p = 0.001), preoperative PSA (p = 0.047), Gleason Score (p = 0.032), non-apical positive surgical margins (PSM) (p = 0.003) and apical PSM (p = 0.031) were all independently associated to BFFS. Gleason score (p = 0.019), PNI (p = 0.012) and non-apical PSM (p = 0.002) were all independently associated to CFFS while only PNI (P = 0.047) and subgroups of Gleason score were independently associated to PCDFS. After BF, patients with a shorter PSA-DT had independent and significant worse event-free survivals than patients with PSA-DT > 15 months (PSA-DT = 3-9 months, CFFS HR = 6.44, p < 0.001, PCDFS HR = 13.7, p = 0.020; PSA-DT < 3 months, CFFS HR = 11.2, p < 0.001, PCDFS HR = 27.5, p = 0.006). Conclusions After prostatectomy, CFFS and PCDFS are variable, but both are strongly associated to Gleason score and PNI. In patients with BF, PSA-DT was most strongly associated to CF and PCD. Our study adds weight to the importance of PSA-DT and re-launches PNI as a strong prognosticator for clinically relevant endpoints.
Collapse
Affiliation(s)
- Sigve Andersen
- Institute of Clinical Medicine, The Arctic University of Norway, Tromso, Norway.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Value of fused 18F-Choline-PET/MRI to evaluate prostate cancer relapse in patients showing biochemical recurrence after EBRT: preliminary results. BIOMED RESEARCH INTERNATIONAL 2014; 2014:103718. [PMID: 24877053 PMCID: PMC4022120 DOI: 10.1155/2014/103718] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/10/2014] [Indexed: 11/17/2022]
Abstract
Purpose. We compared the accuracy of 18F-Choline-PET/MRI with that of multiparametric MRI (mMRI), 18F-Choline-PET/CT, 18F-Fluoride-PET/CT, and contrast-enhanced CT (CeCT) in detecting relapse in patients with suspected relapse of prostate cancer (PC) after external beam radiotherapy (EBRT). We assessed the association between standard uptake value (SUV) and apparent diffusion coefficient (ADC). Methods. We evaluated 21 patients with biochemical relapse after EBRT. Patients underwent 18F-Choline-PET/contrast-enhanced (Ce)CT, 18F-Fluoride-PET/CT, and mMRI. Imaging coregistration of PET and mMRI was performed. Results. 18F-Choline-PET/MRI was positive in 18/21 patients, with a detection rate (DR) of 86%. DRs of 18F-Choline-PET/CT, CeCT, and mMRI were 76%, 43%, and 81%, respectively. In terms of DR the only significant difference was between 18F-Choline-PET/MRI and CeCT. On lesion-based analysis, the accuracy of 18F-Choline-PET/MRI, 18F-Choline-PET/CT, CeCT, and mMRI was 99%, 95%, 70%, and 85%, respectively. Accuracy, sensitivity, and NPV of 18F-Choline-PET/MRI were significantly higher than those of both mMRI and CeCT. On whole-body assessment of bone metastases, the sensitivity of 18F-Choline-PET/CT and 18F-Fluoride-PET/CT was significantly higher than that of CeCT. Regarding local and lymph node relapse, we found a significant inverse correlation between ADC and SUV-max. Conclusion. 18F-Choline-PET/MRI is a promising technique in detecting PC relapse.
Collapse
|
24
|
Sundi D, Wang VM, Pierorazio PM, Han M, Bivalacqua TJ, Ball MW, Antonarakis ES, Partin AW, Schaeffer EM, Ross AE. Very-high-risk localized prostate cancer: definition and outcomes. Prostate Cancer Prostatic Dis 2014; 17:57-63. [PMID: 24189998 PMCID: PMC3945953 DOI: 10.1038/pcan.2013.46] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 08/18/2013] [Accepted: 08/29/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Outcomes in men with National Comprehensive Cancer Network (NCCN) high-risk prostate cancer (PCa) can vary substantially-some will have excellent cancer-specific survival, whereas others will experience early metastasis even after aggressive local treatments. Current nomograms, which yield continuous risk probabilities, do not separate high-risk PCa into distinct sub-strata. Here, we derive a binary definition of very-high-risk (VHR) localized PCa to aid in risk stratification at diagnosis and selection of therapy. METHODS We queried the Johns Hopkins radical prostatectomy database to identify 753 men with NCCN high-risk localized PCa (Gleason sum 8-10, PSA >20 ng ml(-1), or clinical stage ≥T3). Twenty-eight alternate permutations of adverse grade, stage and cancer volume were compared by their hazard ratios for metastasis and cancer-specific mortality. VHR criteria with top-ranking hazard ratios were further evaluated by multivariable analyses and inclusion of a clinically meaningful proportion of the high-risk cohort. RESULTS The VHR cohort was best defined by primary pattern 5 present on biopsy, or ≥5 cores with Gleason sum 8-10, or multiple NCCN high-risk features. These criteria encompassed 15.1% of the NCCN high-risk cohort. Compared with other high-risk men, VHR men were at significantly higher risk for metastasis (hazard ratio 2.75) and cancer-specific mortality (hazard ratio 3.44) (P<0.001 for both). Among high-risk men, VHR men also had significantly worse 10-year metastasis-free survival (37% vs 78%) and cancer-specific survival (62% vs 90%). CONCLUSIONS Men who meet VHR criteria form a subgroup within the current NCCN high-risk classification who have particularly poor oncological outcomes. Use of these characteristics to distinguish VHR localized PCa may help in counseling and selection optimal candidates for multimodal treatments or clinical trials.
Collapse
Affiliation(s)
- D Sundi
- Brady Institute of Urology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - V M Wang
- Brady Institute of Urology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - P M Pierorazio
- Brady Institute of Urology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - M Han
- Brady Institute of Urology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - T J Bivalacqua
- Brady Institute of Urology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - M W Ball
- Brady Institute of Urology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - E S Antonarakis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - A W Partin
- Brady Institute of Urology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - E M Schaeffer
- Brady Institute of Urology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - A E Ross
- Brady Institute of Urology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
25
|
Adamis S, Varkarakis IM. Defining prostate cancer risk after radical prostatectomy. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2014; 40:496-504. [PMID: 24613741 DOI: 10.1016/j.ejso.2014.02.221] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 01/25/2014] [Accepted: 02/02/2014] [Indexed: 11/25/2022]
Abstract
Prostate cancer encompasses a wide spectrum of tumor phenotypes with differing prognoses and a part of these patients are at risk of experiencing tumor recurrence after initial treatment. This review discusses the parameters that determine PCa risk for failure after radical prostatectomy and also focuses on the ability of currently available post-treatment nomograms to predict treatment outcomes, and probability of treatment failure. The use of predictive nomograms may be therefore helpful in the complex decision making process.
Collapse
Affiliation(s)
- S Adamis
- 2nd Department of Urology, University of Athens, Medical School, Sismanoglion Hospital, Athens, Greece.
| | - I M Varkarakis
- 2nd Department of Urology, University of Athens, Medical School, Sismanoglion Hospital, Athens, Greece
| |
Collapse
|
26
|
Moreira DM, Cooperberg MR, Howard LE, Aronson WJ, Kane CJ, Terris MK, Amling CL, Kuchibhatla M, Freedland SJ. Predicting bone scan positivity after biochemical recurrence following radical prostatectomy in both hormone-naive men and patients receiving androgen-deprivation therapy: results from the SEARCH database. Prostate Cancer Prostatic Dis 2014; 17:91-6. [PMID: 24418913 DOI: 10.1038/pcan.2013.59] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/18/2013] [Accepted: 11/25/2013] [Indexed: 11/09/2022]
Abstract
BACKGROUND To evaluate the factors associated with positive bone scans after biochemical recurrence (BCR) following radical prostatectomy in both hormone-naive subjects and subjects after androgen-deprivation therapy (ADT). METHODS Retrospective analysis of 380 bone scans of 301 hormone-naive subjects and 214 bone scans of 137 subjects after ADT following BCR from the Shared Equal Access Regional Cancer Hospital database. Generalized estimating equations and local regression plots were used to evaluate bone scan positivity by patients' demographics, pathological features, PSA levels and kinetics. RESULTS Among hormone-naive subjects and subjects on ADT, bone scan positivity was seen in 24 (6%) and 65 (30%) subjects, respectively. In hormone-naive subjects, the higher prescan PSA, higher PSA velocity (PSAV) and shorter PSA doubling time (PSADT) were significantly associated with positive scans (P=0.008, P<0.001 and P<0.001, respectively). In subjects after ADT, the prescan PSA, PSAV and PSADT were significantly associated with positive scans (P=0.011, P<0.001 and P=0.002, respectively). Regression plots showed increased scan positivity with increasing PSA levels and shortening PSADT (all P<0.001) for both hormone-naive subjects and subjects after ADT. For a given PSA level and PSADT, subjects on ADT had higher bone scan positivity. CONCLUSIONS In both hormone-naive subjects and subjects after ADT, more aggressive and advanced disease identified by higher PSA levels, higher PSAV and shorter PSADT were associated with higher bone scan positivity. For the same PSA level and PSADT, subjects after ADT had higher bone scan positivity than hormone-naive subjects. Therefore, PSA levels and kinetics may be used as selection criteria for bone scan in these patients.
Collapse
Affiliation(s)
- D M Moreira
- The Arthur Smith Institute for Urology, North Shore Long Island Jewish Health System, New Hyde Park, NY, USA
| | - M R Cooperberg
- Departments of Urology, and Epidemiology and Biostatistics, University of California, San Francisco and Urology Section, Department of Surgery, Veterans Affairs Medical Center, San Francisco, CA, USA
| | - L E Howard
- 1] Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA [2] Urology Section, Veterans Affairs Medical Center, Durham, NC, USA
| | - W J Aronson
- 1] Urology Section, Department of Surgery, Veterans Affairs Medical Center, Los Angeles, CA, USA [2] Department of Urology, University of California at Los Angeles Medical Center, Los Angeles, CA, USA
| | - C J Kane
- Division of Urology, Department of Surgery, University of California at San Diego Medical Center, San Diego, CA, USA
| | - M K Terris
- 1] Urology Section, Veterans Affairs Medical Center, Durham, NC, USA [2] Urology Section, Division of Surgery, Veterans Affairs Medical Centers and Division of Urologic Surgery, Department of Surgery, Medical College of Georgia, Augusta, GA, USA
| | - C L Amling
- Division of Urology, Department of Surgery, Oregon Health and Science University, Portland, OR, USA
| | - M Kuchibhatla
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - S J Freedland
- 1] Urology Section, Veterans Affairs Medical Center, Durham, NC, USA [2] Division of Urology, Department of Surgery, and the Duke Prostate Center, Duke University School of Medicine, Durham, NC, USA [3] Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
27
|
Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der Kwast T, Mason M, Matveev V, Wiegel T, Zattoni F, Mottet N. EAU guidelines on prostate cancer. Part II: Treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol 2013; 65:467-79. [PMID: 24321502 DOI: 10.1016/j.eururo.2013.11.002] [Citation(s) in RCA: 1043] [Impact Index Per Article: 86.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 11/01/2013] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To present a summary of the 2013 version of the European Association of Urology (EAU) guidelines on the treatment of advanced, relapsing, and castration-resistant prostate cancer (CRPC). EVIDENCE ACQUISITION The working panel performed a literature review of the new data (2011-2013). The guidelines were updated, and levels of evidence and/or grades of recommendation were added to the text based on a systematic review of the literature that included a search of online databases and bibliographic reviews. EVIDENCE SYNTHESIS Luteinising hormone-releasing hormone (LHRH) agonists are the standard of care in metastatic prostate cancer (PCa). LHRH antagonists decrease testosterone without any testosterone surge, and they may be associated with an oncologic benefit compared with LHRH analogues. Complete androgen blockade has a small survival benefit of about 5%. Intermittent androgen deprivation results in noninferior oncologic efficacy when compared with continuous androgen-deprivation therapy (ADT) in well-selected populations. In locally advanced and metastatic PCa, early ADT does not result in a significant survival advantage when compared with delayed ADT. Relapse after local therapy is defined by prostate-specific antigen (PSA) values >0.2 ng/ml following radical prostatectomy (RP) and >2 ng/ml above the nadir and after radiation therapy (RT). Therapy for PSA relapse after RP includes salvage RT (SRT) at PSA levels <0.5 ng/ml and SRP or cryosurgical ablation of the prostate in radiation failures. Endorectal magnetic resonance imaging and 11C-choline positron emission tomography/computed tomography (PET/CT) are of limited importance if the PSA is <1.0 ng/ml; bone scans and CT can be omitted unless PSA is >20 ng/ml. Follow-up after ADT should include analysis of PSA and testosterone levels, and screening for cardiovascular disease and metabolic syndrome. Treatment of CRPC includes sipuleucel-T, abiraterone acetate plus prednisone (AA/P), or chemotherapy with docetaxel at 75mg/m(2) every 3 wk. Cabazitaxel, AA/P, enzalutamide, and radium-223 are available for second-line treatment of CRPC following docetaxel. Zoledronic acid and denosumab can be used in men with CRPC and osseous metastases to prevent skeletal-related complications. CONCLUSIONS The knowledge in the field of advanced, metastatic, and castration-resistant PCa is rapidly changing. These EAU guidelines on PCa summarise the most recent findings and put them into clinical practice. A full version is available at the EAU office or at www.uroweb.org. PATIENT SUMMARY We present a summary of the 2013 version of the European Association of Urology guidelines on treatment of advanced, relapsing, and castration-resistant prostate cancer (CRPC). Luteinising hormone-releasing hormone (LHRH) agonists are the standard of care in metastatic prostate cancer (PCa). LHRH antagonists decrease testosterone without any testosterone surge, and they might be associated with an oncologic benefit compared with LHRH analogues. Complete androgen blockade has a small survival benefit of about 5%. Intermittent androgen deprivation results in noninferior oncologic efficacy when compared with continuous androgen-deprivation therapy (ADT) in well-selected populations. In locally advanced and metastatic PCa, early ADT does not result in a significant survival advantage when compared with delayed ADT. Relapse after local therapy is defined by prostate-specific antigen (PSA) values >0.2 ng/ml following radical prostatectomy (RP) and >2 ng/ml above the nadir and after radiation therapy. Therapy for PSA relapse after RP includes salvage radiation therapy at PSA levels <0.5 ng/ml and salvage RP or cryosurgical ablation of the prostate in radiation failures. Multiparametric magnetic resonance imaging and 11C-choline positron emission tomography/computed tomography (PET/CT) are of limited importance if the PSA is <1.0 ng/ml; bone scans, and CT can be omitted unless PSA is >20 ng/ml. Follow-up after ADT should include analysis of PSA and testosterone levels, and screening for cardiovascular disease and metabolic syndrome. Treatment of castration-resistant CRPC includes sipuleucel-T, abiraterone acetate plus prednisone (AA/P), or chemotherapy with docetaxel 75 mg/m(2) every 3 wk. Cabazitaxel, AA/P, enzalutamide, and radium-223 are available for second-line treatment of CRPC following docetaxel. Zoledronic acid and denosumab can be used in men with CRPC and osseous metastases to prevent skeletal-related complications. The guidelines reported should be adhered to in daily routine to improve the quality of care in PCa patients. As we have shown recently, guideline compliance is only in the area of 30-40%.
Collapse
Affiliation(s)
| | | | - Joaquim Bellmunt
- Department of Medical Oncology, University Hospital Del Mar, Barcelona, Spain
| | - Michel Bolla
- Department of Radiation Therapy, CHU Grenoble, Grenoble, France
| | - Steven Joniau
- Department of Urology, University Hospital, Leuven, Belgium
| | | | - Malcolm Mason
- Department of Oncology and Palliative Medicine, Velindre Hospital, Cardiff, UK
| | - Vsevolod Matveev
- Department of Urology, Russian Academy of Medical Science, Cancer Research Center, Moscow, Russia
| | - Thomas Wiegel
- Department of Radiation Oncology, University Hospital, Ulm, Germany
| | - Filiberto Zattoni
- Department of Urology, Santa Maria Della Misericordia Hospital, Udine, Italy
| | - Nicolas Mottet
- Department of Urology, University Hospital St Etienne, France
| | | |
Collapse
|
28
|
Salvage high-intensity focused ultrasound ablation for prostate cancer local recurrence after external-beam radiation therapy: Prognostic value of prostate MRI. Clin Radiol 2013; 68:661-7. [DOI: 10.1016/j.crad.2012.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/17/2012] [Accepted: 12/19/2012] [Indexed: 11/21/2022]
|
29
|
Sartor O, Eisenberger M, Kattan MW, Tombal B, Lecouvet F. Unmet needs in the prediction and detection of metastases in prostate cancer. Oncologist 2013; 18:549-57. [PMID: 23650019 DOI: 10.1634/theoncologist.2013-0027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The therapeutic landscape for the treatment of advanced prostate cancer is rapidly evolving, especially for those patients with metastatic castration-resistant prostate cancer (CPRC). Despite advances in therapy options, the diagnostic landscape has remained relatively static, with few guidelines or reviews addressing the optimal timing or methodology for the radiographic detection of metastatic disease. Given recent reports indicating a substantial proportion of patients with CRPC thought to be nonmetastatic (M0) are in fact metastatic (M1), there is now a clear opportunity and need for improvement in detection practices. Herein, we discuss the current status of predicting the presence of metastatic disease, with a particular emphasis on the detection of the M0 to M1 transition. In addition, we review current data on newer imaging technologies that are changing the way metastases are detected. Whether earlier detection of metastatic disease will ultimately improve patient outcomes is unknown, but given that the therapeutic options for those with metastatic and nonmetastatic CPRC vary, there are considerable implications of how and when metastases are detected.
Collapse
Affiliation(s)
- Oliver Sartor
- Tulane Cancer Center, New Orleans, Louisiana 70112, USA.
| | | | | | | | | |
Collapse
|
30
|
Horwich A, Hugosson J, de Reijke T, Wiegel T, Fizazi K, Kataja V, Parker C, Bellmunt J, Berthold D, Bill-Axelson A, Carlsson S, Daugaard G, De Meerleer G, de Reijke T, Dearnaley D, Fizazi K, Fonteyne V, Gillessen S, Heinrich D, Horwich A, Hugosson J, Kataja V, Kwiatkowski M, Nilsson S, Padhani A, Papandreou C, Parker C, Roobol M, Sella A, Valdagni R, Van der Kwast T, Verhagen P, Wiegel T. Prostate cancer: ESMO Consensus Conference Guidelines 2012. Ann Oncol 2013; 24:1141-62. [DOI: 10.1093/annonc/mds624] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
31
|
Kattan MW, Yu C, Stephenson AJ, Sartor O, Tombal B. Clinicians Versus Nomogram: Predicting Future Technetium-99m Bone Scan Positivity in Patients With Rising Prostate-specific Antigen After Radical Prostatectomy for Prostate Cancer. Urology 2013; 81:956-61. [DOI: 10.1016/j.urology.2012.12.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 12/03/2012] [Accepted: 12/09/2012] [Indexed: 11/25/2022]
|
32
|
Risk Stratification after Biochemical Failure following Curative Treatment of Locally Advanced Prostate Cancer: Data from the TROG 96.01 Trial. Prostate Cancer 2012; 2012:814724. [PMID: 23320177 PMCID: PMC3540903 DOI: 10.1155/2012/814724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/03/2012] [Accepted: 11/12/2012] [Indexed: 11/18/2022] Open
Abstract
Purpose. Survival following biochemical failure is highly variable. Using a randomized trial dataset, we sought to define a risk stratification scheme in men with locally advanced prostate cancer (LAPC). Methods. The TROG 96.01 trial randomized 802 men with LAPC to radiation ± neoadjuvant androgen suppression therapy (AST) between 1996 and 2000. Ten-year follow-up data was used to develop three-tier post-biochemical failure risk stratification schemes based on cutpoints of time to biochemical failure (TTBF) and PSA doubling time (PSADT). Schemes were evaluated in univariable, competing risk models for prostate cancer-specific mortality. The performance was assessed by c-indices and internally validated by the simple bootstrap method. Performance rankings were compared in sensitivity analyses using multivariable models and variations in PSADT calculation. Results. 485 men developed biochemical failure. c-indices ranged between 0.630 and 0.730. The most discriminatory scheme had a high risk category defined by PSADT < 4 months or TTBF < 1 year and low risk category by PSADT > 9 months or TTBF > 3 years. Conclusion. TTBF and PSADT can be combined to define risk stratification schemes after biochemical failure in men with LAPC treated with short-term AST and radiotherapy. External validation, particularly in long-term AST and radiotherapy datasets, is necessary.
Collapse
|
33
|
Olson BM, Jankowska-Gan E, Becker JT, Vignali DAA, Burlingham WJ, McNeel DG. Human prostate tumor antigen-specific CD8+ regulatory T cells are inhibited by CTLA-4 or IL-35 blockade. THE JOURNAL OF IMMUNOLOGY 2012; 189:5590-601. [PMID: 23152566 DOI: 10.4049/jimmunol.1201744] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Regulatory T cells play important roles in cancer development and progression by limiting the generation of innate and adaptive anti-tumor immunity. We hypothesized that in addition to natural CD4(+)CD25(+) regulatory T cells (Tregs) and myeloid-derived suppressor cells, tumor Ag-specific Tregs interfere with the detection of anti-tumor immunity after immunotherapy. Using samples from prostate cancer patients immunized with a DNA vaccine encoding prostatic acid phosphatase (PAP) and a trans-vivo delayed-type hypersensitivity (tvDTH) assay, we found that the detection of PAP-specific effector responses after immunization was prevented by the activity of PAP-specific regulatory cells. These regulatory cells were CD8(+)CTLA-4(+), and their suppression was relieved by blockade of CTLA-4, but not IL-10 or TGF-β. Moreover, Ag-specific CD8(+) Tregs were detected prior to immunization in the absence of PAP-specific effector responses. These PAP-specific CD8(+)CTLA-4(+) suppressor T cells expressed IL-35, which was decreased after blockade of CTLA-4, and inhibition of either CTLA-4 or IL-35 reversed PAP-specific suppression of tvDTH response. PAP-specific CD8(+)CTLA-4(+) T cells also suppressed T cell proliferation in an IL-35-dependent, contact-independent fashion. Taken together, these findings suggest a novel population of CD8(+)CTLA-4(+) IL-35-secreting tumor Ag-specific Tregs arise spontaneously in some prostate cancer patients, persist during immunization, and can prevent the detection of Ag-specific effector responses by an IL-35-dependent mechanism.
Collapse
Affiliation(s)
- Brian M Olson
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
| | | | | | | | | | | |
Collapse
|
34
|
Miyake H, Fujisawa M. Prognostic prediction following radical prostatectomy for prostate cancer using conventional as well as molecular biological approaches. Int J Urol 2012; 20:301-11. [DOI: 10.1111/j.1442-2042.2012.03175.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 08/29/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Hideaki Miyake
- Division of Urology; Kobe University Graduate School of Medicine; Kobe; Japan
| | - Masato Fujisawa
- Division of Urology; Kobe University Graduate School of Medicine; Kobe; Japan
| |
Collapse
|
35
|
Recent advances in developing synthetic carbohydrate-based vaccines for cancer immunotherapies. Future Med Chem 2012; 4:545-84. [DOI: 10.4155/fmc.11.193] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cancer cells can often be distinguished from healthy cells by the expression of unique carbohydrate sequences decorating the cell surface as a result of aberrant glycosyltransferase activity occurring within the cell; these unusual carbohydrates can be used as valuable immunological targets in modern vaccine designs to raise carbohydrate-specific antibodies. Many tumor antigens (e.g., GM2, Ley, globo H, sialyl Tn and TF) have been identified to date in a variety of cancers. Unfortunately, carbohydrates alone evoke poor immunogenicity, owing to their lack of ability in inducing T-cell-dependent immune responses. In order to enhance their immunogenicity and promote long-lasting immune responses, carbohydrates are often chemically modified to link to an immunogenic protein or peptide fragment for eliciting T-cell-dependent responses. This review will present a summary of efforts and advancements made to date on creating carbohydrate-based anticancer vaccines, and will include novel approaches to overcoming the poor immunogenicity of carbohydrate-based vaccines.
Collapse
|
36
|
Postoperative radiotherapy after radical prostatectomy: indications and open questions. Prostate Cancer 2012; 2012:963417. [PMID: 22530131 PMCID: PMC3316943 DOI: 10.1155/2012/963417] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 11/18/2022] Open
Abstract
Biochemical relapse after radical prostatectomy occurs in approximately 15–40% of patients within 5 years. Postoperative radiotherapy is the only curative treatment for these patients. After radical prostatectomy, two different strategies can be offered, adjuvant or salvage radiotherapy. Adjuvant radiotherapy is defined as treatment given directly after surgery in the presence of risk factors (R1 resection, pT3) before biochemical relapse occurs. It consists of 60–64 Gy and was shown to increase biochemical relapse-free survival in three randomized controlled trials and to increase overall survival after a median followup of 12.7 years in one of these trials. Salvage radiotherapy, on the other hand, is given upon biochemical relapse and is the preferred option, by many centers as it does not include patients who might be cured by surgery alone. As described in only retrospective studies the dose for salvage radiotherapy ranges from 64 to 72 Gy and is usually dependent on the absence or presence of macroscopic recurrence. Randomized trials are currently investigating the role of adjuvant and salvage radiotherapy. Patients with biochemical relapse after prostatectomy should at the earliest sign of relapse be referred to salvage radiotherapy and should preferably be treated within a clinical trial.
Collapse
|
37
|
McNeel DG, Smith HA, Eickhoff JC, Lang JM, Staab MJ, Wilding G, Liu G. Phase I trial of tremelimumab in combination with short-term androgen deprivation in patients with PSA-recurrent prostate cancer. Cancer Immunol Immunother 2011; 61:1137-47. [PMID: 22210552 DOI: 10.1007/s00262-011-1193-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 12/19/2011] [Indexed: 11/26/2022]
Abstract
CTLA-4 blockade has demonstrated antitumor efficacy in human clinical trials. The antitumor mechanism is presumably mediated in part by the expansion of tumor-specific T cells. Androgen deprivation, the cornerstone of treatment for patients with metastatic prostate cancer, has been shown to elicit prostate tissue apoptosis and lymphocytic inflammation. We hypothesized that treatment with androgen deprivation, followed by an anti-CTLA-4 antibody, could augment a tumor-specific immune response elicited by androgen deprivation. We report here the results of a phase I trial evaluating a humanized monoclonal antibody targeting CTLA-4, CP-675,206 (tremelimumab), in combination with androgen deprivation using an antiandrogen. Eligible patients were those with PSA-recurrent prostate cancer after primary surgery and/or radiation therapy, not previously treated with androgen deprivation, and without radiographic evidence of metastatic disease. Subjects were treated in two cycles, 3 months apart, in which they received bicalutamide 150 mg daily days 1-28 and tremelimumab on day 29. The primary endpoint of the trial was safety. Secondary endpoints included measures of PSA kinetics and identification of a maximum tolerated dose. Eleven patients were enrolled and completed at least 1 year of follow-up. Dose-limiting toxicities included grade 3 diarrhea and skin rash. No favorable changes in PSA doubling time were observed in a period shortly after completing treatment; however, three patients experienced a prolongation in PSA doubling time detectable several months after completing treatment. The identification of delayed, prolonged favorable changes in serum PSA suggests that future studies could explore this combination in studies evaluating time to disease progression.
Collapse
Affiliation(s)
- Douglas G McNeel
- University of Wisconsin Carbone Cancer Center, Madison, 53792, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Mankoo PK, Shen R, Schultz N, Levine DA, Sander C. Time to recurrence and survival in serous ovarian tumors predicted from integrated genomic profiles. PLoS One 2011; 6:e24709. [PMID: 22073136 PMCID: PMC3207809 DOI: 10.1371/journal.pone.0024709] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 08/17/2011] [Indexed: 12/29/2022] Open
Abstract
Background Serous ovarian cancer (SeOvCa) is an aggressive disease with differential and often inadequate therapeutic outcome after standard treatment. The Cancer Genome Atlas (TCGA) has provided rich molecular and genetic profiles from hundreds of primary surgical samples. These profiles confirm mutations of TP53 in ∼100% of patients and an extraordinarily complex profile of DNA copy number changes with considerable patient-to-patient diversity. This raises the joint challenge of exploiting all new available datasets and reducing their confounding complexity for the purpose of predicting clinical outcomes and identifying disease relevant pathway alterations. We therefore set out to use multi-data type genomic profiles (mRNA, DNA methylation, DNA copy-number alteration and microRNA) available from TCGA to identify prognostic signatures for the prediction of progression-free survival (PFS) and overall survival (OS). Methodology/Principal Findings We implemented a multivariate Cox Lasso model and median time-to-event prediction algorithm and applied it to two datasets integrated from the four genomic data types. We (1) selected features through cross-validation; (2) generated a prognostic index for patient risk stratification; and (3) directly predicted continuous clinical outcome measures, that is, the time to recurrence and survival time. We used Kaplan-Meier p-values, hazard ratios (HR), and concordance probability estimates (CPE) to assess prediction performance, comparing separate and integrated datasets. Data integration resulted in the best PFS signature (withheld data: p-value = 0.008; HR = 2.83; CPE = 0.72). Conclusions/Significance We provide a prediction tool that inputs genomic profiles of primary surgical samples and generates patient-specific predictions for the time to recurrence and survival, along with outcome risk predictions. Using integrated genomic profiles resulted in information gain for prediction of outcomes. Pathway analysis provided potential insights into functional changes affecting disease progression. The prognostic signatures, if prospectively validated, may be useful for interpreting therapeutic outcomes for clinical trials that aim to improve the therapy for SeOvCa patients.
Collapse
Affiliation(s)
- Parminder K. Mankoo
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| | - Ronglai Shen
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Nikolaus Schultz
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Douglas A. Levine
- Gynecology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Chris Sander
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| |
Collapse
|
39
|
Mottet N, Bellmunt J, Bolla M, Joniau S, Mason M, Matveev V, Schmid H, van der Kwast T, Wiegel T, Zattoni F, Heidenreich A. EAU guidelines on prostate cancer. Part II: Treatment of advanced, relapsing, and castration-resistant prostate cancer. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.acuroe.2012.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
40
|
Mottet N, Bellmunt J, Bolla M, Joniau S, Mason M, Matveev V, Schmid H, van der Kwast T, Wiegel T, Zattoni F, Heidenreich A. [EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer]. Actas Urol Esp 2011; 35:565-79. [PMID: 21757258 DOI: 10.1016/j.acuro.2011.03.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 03/14/2011] [Indexed: 10/26/2022]
Abstract
OBJECTIVES Our aim is to present a summary of the 2010 version of the European Association of Urology (EAU) guidelines on the treatment of advanced, relapsing, and castration-resistant prostate cancer (CRPC). METHODS The working panel performed a literature review of the new data emerging from 2007 to 2010. The guidelines were updated, and the levels of evidence (LEs) and/or grades of recommendation (GR) were added to the text based on a systematic review of the literature, which included a search of online databases and bibliographic reviews. RESULTS Luteinising hormone-releasing hormone (LHRH) agonists are the standard of care in metastatic prostate cancer (PCa). Although LHRH antagonists decrease testosterone without any testosterone surge, their clinical benefit remains to be determined. Complete androgen blockade has a small survival benefit of about 5%. Intermittent androgen deprivation (IAD) results in equivalent oncologic efficacy when compared with continuous androgen-deprivation therapy (ADT) in well-selected populations. In locally advanced and metastatic PCa, early ADT does not result in a significant survival advantage when compared with delayed ADT. Relapse after local therapy is defined by prostate-specific antigen (PSA) values > 0.2 ng/ml following radical prostatectomy (RP) and > 2 ng/ml above the nadir after radiation therapy (RT). Therapy for PSA relapse after RP includes salvage RT at PSA levels < 0.5 ng/ml and salvage RP or cryosurgical ablation of the prostate in radiation failures. Endorectal magnetic resonance imaging and 11C-choline positron emission tomography/computed tomography (CT) are of limited importance if the PSA is < 2.5 ng/ml; bone scans and CT can be omitted unless PSA is >20 ng/ml. Follow-up after ADT should include screening for the metabolic syndrome and an analysis of PSA and testosterone levels. Treatment of castration-resistant prostate cancer (CRPC) includes second-line hormonal therapy, novel agents, and chemotherapy with docetaxel at 75 mg/m(2) every 3 wk. Cabazitaxel as a second-line therapy for relapse after docetaxel might become a future option. Zoledronic acid and denusomab can be used in men with CRPC and osseous metastases to prevent skeletal-related complications. CONCLUSION The knowledge in the field of advanced, metastatic, and CRPC is rapidly changing. These EAU guidelines on PCa summarise the most recent findings and put them into clinical practice. A full version is available at the EAU office or online at www.uroweb.org.
Collapse
|
41
|
Chade DC, Shariat SF, Cronin AM, Savage CJ, Karnes RJ, Blute ML, Briganti A, Montorsi F, van der Poel HG, Van Poppel H, Joniau S, Godoy G, Hurtado-Coll A, Gleave ME, Dall'Oglio M, Srougi M, Scardino PT, Eastham JA. Salvage radical prostatectomy for radiation-recurrent prostate cancer: a multi-institutional collaboration. Eur Urol 2011; 60:205-10. [PMID: 21420229 PMCID: PMC3124574 DOI: 10.1016/j.eururo.2011.03.011] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 03/07/2011] [Indexed: 11/18/2022]
Abstract
BACKGROUND Oncologic outcomes in men with radiation-recurrent prostate cancer (PCa) treated with salvage radical prostatectomy (SRP) are poorly defined. OBJECTIVE To identify predictors of biochemical recurrence (BCR), metastasis, and death following SRP to help select patients who may benefit from SRP. DESIGN, SETTING, AND PARTICIPANTS This is a retrospective, international, multi-institutional cohort analysis. There was a median follow-up of 4.4 yr following SRP performed on 404 men with radiation-recurrent PCa from 1985 to 2009 in tertiary centers. INTERVENTION Open SRP. MEASUREMENTS BCR after SRP was defined as a serum prostate-specific antigen (PSA) ≥ 0.1 or ≥ 0.2 ng/ml (depending on the institution). Secondary end points included progression to metastasis and cancer-specific death. RESULTS AND LIMITATIONS Median age at SRP was 65 yr of age, and median pre-SRP PSA was 4.5 ng/ml. Following SRP, 195 patients experienced BCR, 64 developed metastases, and 40 died from PCa. At 10 yr after SRP, BCR-free survival, metastasis-free survival, and cancer-specific survival (CSS) probabilities were 37% (95% confidence interval [CI], 31-43), 77% (95% CI, 71-82), and 83% (95% CI, 76-88), respectively. On preoperative multivariable analysis, pre-SRP PSA and Gleason score at postradiation prostate biopsy predicted BCR (p = 0.022; global p < 0.001) and metastasis (p = 0.022; global p < 0.001). On postoperative multivariable analysis, pre-SRP PSA and pathologic Gleason score at SRP predicted BCR (p = 0.014; global p < 0.001) and metastasis (p < 0.001; global p < 0.001). Lymph node involvement (LNI) also predicted metastasis (p = 0.017). The main limitations of this study are its retrospective design and the follow-up period. CONCLUSIONS In a select group of patients who underwent SRP for radiation-recurrent PCa, freedom from clinical metastasis was observed in >75% of patients 10 yr after surgery. Patients with lower pre-SRP PSA levels and lower postradiation prostate biopsy Gleason score have the highest probability of cure from SRP.
Collapse
Affiliation(s)
- Daher C Chade
- Urology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Antonarakis ES, Feng Z, Trock BJ, Humphreys EB, Carducci MA, Partin AW, Walsh PC, Eisenberger MA. The natural history of metastatic progression in men with prostate-specific antigen recurrence after radical prostatectomy: long-term follow-up. BJU Int 2011; 109:32-9. [PMID: 21777360 DOI: 10.1111/j.1464-410x.2011.10422.x] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To describe metastasis-free survival (MFS) in men with prostate-specific antigen (PSA) recurrence following radical prostatectomy, and to define clinical prognostic factors modifying metastatic risk. PATIENTS AND METHODS We conducted a retrospective analysis of 450 men treated with prostatectomy at a tertiary hospital between July 1981 and July 2010 who developed PSA recurrence (≥0.2 ng/mL) and never received adjuvant or salvage therapy before the development of metastatic disease. We estimated MFS using the Kaplan-Meier method, and investigated factors influencing the risk of metastasis using Cox proportional hazards regression. RESULTS Median follow-up after prostatectomy was 8.0 years, and after biochemical recurrence was 4.0 years. At last follow-up, 134 of 450 patients (29.8%) had developed metastases, while median MFS was 10.0 years. Using multivariable regressions, two variables emerged as independently predictive of MFS: PSA doubling time (<3.0 vs 3.0-8.9 vs 9.0-14.9 vs ≥15.0 months) and Gleason score (≤6 vs 7 vs 8-10). Using these stratifications of Gleason score and PSA doubling time, tables were constructed to predict median, 5- and 10-year MFS after PSA recurrence. In different patient subsets, median MFS ranged from 1 to 15 years. CONCLUSIONS In men undergoing prostatectomy, MFS after PSA recurrence is variable and is most strongly influenced by PSA doubling time and Gleason score. These parameters serve to stratify men into different risk groups with respect to metastatic progression. Our findings may provide the background for appropriate selection of patients, treatments and endpoints for clinical trials.
Collapse
Affiliation(s)
- Emmanuel S Antonarakis
- Prostate Cancer Research Program, Sidney Kimmel Comprehensive Cancer Center, Brady Urological Institute, Johns Hopkins University, Baltimore, MD 21231, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Is it time to tailor the prediction of radio-induced toxicity in prostate cancer patients? Building the first set of nomograms for late rectal syndrome. Int J Radiat Oncol Biol Phys 2011; 82:1957-66. [PMID: 21640511 DOI: 10.1016/j.ijrobp.2011.03.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 02/21/2011] [Accepted: 03/24/2011] [Indexed: 12/26/2022]
Abstract
PURPOSE Development of user-friendly tools for the prediction of single-patient probability of late rectal toxicity after conformal radiotherapy for prostate cancer. METHODS AND MATERIALS This multicenter protocol was characterized by the prospective evaluation of rectal toxicity through self-assessed questionnaires (minimum follow-up, 36 months) by 718 adult men in the AIROPROS 0102 trial. Doses were between 70 and 80 Gy. Nomograms were created based on multivariable logistic regression analysis. Three endpoints were considered: G2 to G3 late rectal bleeding (52/718 events), G3 late rectal bleeding (24/718 events), and G2 to G3 late fecal incontinence (LINC, 19/718 events). RESULTS Inputs for the nomogram for G2 to G3 late rectal bleeding estimation were as follows: presence of abdominal surgery before RT, percentage volume of rectum receiving >75 Gy (V75Gy), and nomogram-based estimation of the probability of G2 to G3 acute gastrointestinal toxicity (continuous variable, which was estimated using a previously published nomogram). G3 late rectal bleeding estimation was based on abdominal surgery before RT, V75Gy, and NOMACU. Prediction of G2 to G3 late fecal incontinence was based on abdominal surgery before RT, presence of hemorrhoids, use of antihypertensive medications (protective factor), and percentage volume of rectum receiving >40 Gy. CONCLUSIONS We developed and internally validated the first set of nomograms available in the literature for the prediction of radio-induced toxicity in prostate cancer patients. Calculations included dosimetric as well as clinical variables to help radiation oncologists predict late rectal morbidity, thus introducing the possibility of RT plan corrections to better tailor treatment to the patient's characteristics, to avoid unnecessary worsening of quality of life, and to provide support to the patient in selecting the best therapeutic approach.
Collapse
|
44
|
Mottet N, Bellmunt J, Bolla M, Joniau S, Mason M, Matveev V, Schmid HP, Van der Kwast T, Wiegel T, Zattoni F, Heidenreich A. EAU guidelines on prostate cancer. Part II: Treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol 2011; 59:572-83. [PMID: 21315502 DOI: 10.1016/j.eururo.2011.01.025] [Citation(s) in RCA: 405] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 01/13/2011] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Our aim is to present a summary of the 2010 version of the European Association of Urology (EAU) guidelines on the treatment of advanced, relapsing, and castration-resistant prostate cancer (CRPC). METHODS The working panel performed a literature review of the new data emerging from 2007 to 2010. The guidelines were updated, and the levels of evidence (LEs) and/or grades of recommendation (GR) were added to the text based on a systematic review of the literature, which included a search of online databases and bibliographic reviews. RESULTS Luteinising hormone-releasing hormone (LHRH) agonists are the standard of care in metastatic prostate cancer (PCa). Although LHRH antagonists decrease testosterone without any testosterone surge, their clinical benefit remains to be determined. Complete androgen blockade has a small survival benefit of about 5%. Intermittent androgen deprivation (IAD) results in equivalent oncologic efficacy when compared with continuous androgen-deprivation therapy (ADT) in well-selected populations. In locally advanced and metastatic PCa, early ADT does not result in a significant survival advantage when compared with delayed ADT. Relapse after local therapy is defined by prostate-specific antigen (PSA) values >0.2 ng/ml following radical prostatectomy (RP) and >2 ng/ml above the nadir after radiation therapy (RT). Therapy for PSA relapse after RP includes salvage RT at PSA levels <0.5 ng/ml and salvage RP or cryosurgical ablation of the prostate in radiation failures. Endorectal magnetic resonance imaging and (11)C-choline positron emission tomography/computed tomography (CT) are of limited importance if the PSA is <2.5 ng/ml; bone scans and CT can be omitted unless PSA is >20 ng/ml. Follow-up after ADT should include screening for the metabolic syndrome and an analysis of PSA and testosterone levels. Treatment of castration-resistant prostate cancer (CRPC) includes second-line hormonal therapy, novel agents, and chemotherapy with docetaxel at 75 mg/m(2) every 3 wk. Cabazitaxel as a second-line therapy for relapse after docetaxel might become a future option. Zoledronic acid and denusomab can be used in men with CRPC and osseous metastases to prevent skeletal-related complications. CONCLUSION The knowledge in the field of advanced, metastatic, and CRPC is rapidly changing. These EAU guidelines on PCa summarise the most recent findings and put them into clinical practice. A full version is available at the EAU office or online at www.uroweb.org.
Collapse
Affiliation(s)
- Nicolas Mottet
- Department of Urology, Clinique Mutualiste de la Loire, Saint Etienne, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lughezzani G, Briganti A, Karakiewicz PI, Kattan MW, Montorsi F, Shariat SF, Vickers AJ. Predictive and prognostic models in radical prostatectomy candidates: a critical analysis of the literature. Eur Urol 2010; 58:687-700. [PMID: 20727668 PMCID: PMC4119802 DOI: 10.1016/j.eururo.2010.07.034] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 07/26/2010] [Indexed: 11/23/2022]
Abstract
CONTEXT Numerous predictive and prognostic tools have recently been developed for risk stratification of prostate cancer (PCa) patients who are candidates for or have been treated with radical prostatectomy (RP). OBJECTIVE To critically review the currently available predictive and prognostic tools for RP patients and to describe the criteria that should be applied in selecting the most accurate and appropriate tool for a given clinical scenario. EVIDENCE ACQUISITION A review of the literature was performed using the Medline, Scopus, and Web of Science databases. Relevant reports published between 1996 and January 2010 identified using the keywords prostate cancer, radical prostatectomy, predictive tools, predictive models, and nomograms were critically reviewed and summarised. EVIDENCE SYNTHESIS We identified 16 predictive and 22 prognostic validated tools that address a variety of end points related to RP. The majority of tools are prediction models, while a few consist of risk-stratification schemes. Regardless of their format, the tools can be distinguished as preoperative or postoperative. Preoperative tools focus on either predicting pathologic tumour characteristics or assessing the probability of biochemical recurrence (BCR) after RP. Postoperative tools focus on cancer control outcomes (BCR, metastatic progression, PCa-specific mortality [PCSM], overall mortality). Finally, a novel category of tools focuses on functional outcomes. Prediction tools have shown better performance in outcome prediction than the opinions of expert clinicians. The use of these tools in clinical decision-making provides more accurate and highly reproducible estimates of the outcome of interest. Efforts are still needed to improve the available tools' accuracy and to provide more evidence to further justify their routine use in clinical practice. In addition, prediction tools should be externally validated in independent cohorts before they are applied to different patient populations. CONCLUSIONS Predictive and prognostic tools represent valuable aids that are meant to consistently and accurately provide most evidence-based estimates of the end points of interest. More accurate, flexible, and easily accessible tools are needed to simplify the practical task of prediction.
Collapse
|
46
|
Freedland SJ. Screening, risk assessment, and the approach to therapy in patients with prostate cancer. Cancer 2010; 117:1123-35. [PMID: 20960523 DOI: 10.1002/cncr.25477] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 05/06/2010] [Accepted: 05/10/2010] [Indexed: 12/22/2022]
Abstract
The major challenge in prostate cancer is to identify patients at higher risk of death and to distinguish them from those more likely to die from other causes. Stratification of patients into risk groups can be used to guide management decisions at each disease stage. This review discusses the measures, tools, and nomograms available for risk assessment in prostate cancer. For patients with localized hormone-sensitive disease, the choice is between active surveillance and radical treatment, with focal therapy an emerging option. Current guidelines recommend treatment of patients with a life expectancy ≥10 years, although active surveillance is being used with increasing frequency for low-risk patients, even with a long life expectancy. A number of risk stratification methods have been devised to assess the risk of biochemical recurrence (BCR) after treatment, with prostate-specific antigen (PSA) level, Gleason score, clinical stage, and tumor mass/volume all shown to be predictive of BCR. Among men with BCR after treatment, PSA doubling time (PSADT) was the best predictor of further progression. Although studies in patients with castration-resistant prostate cancer have shown that PSA level and PSADT are associated with a risk of developing metastatic disease, there is currently no clear surrogate for disease progression or overall survival for this patient group and no standard second- or third-line therapy after progression on first-line chemotherapy. The use of newly developed risk-stratification models and markers of disease progression should assist in the earlier identification of disease progression, allowing the optimal treatment of such patients.
Collapse
Affiliation(s)
- Stephen J Freedland
- Department of Surgery, Durham VA Medical Center, Duke Prostate Center, Durham, North Carolina 27710, USA.
| |
Collapse
|
47
|
Capitanio U, Briganti A, Gallina A, Suardi N, Karakiewicz PI, Montorsi F, Scattoni V. Predictive models before and after radical prostatectomy. Prostate 2010; 70:1371-8. [PMID: 20623635 DOI: 10.1002/pros.21159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
CONTEXT In the last 10 years, several user-friendly predictive tools have been developed to help clinicians in decision-making process before and after radical prostatectomy. OBJECTIVE To review the most known and used predictive models in pre-operative and post-operative setting. EVIDENCE ACQUISITION A structured, comprehensive literature review was performed using data retrieved from recent review articles, original articles, and abstracts. Used keywords were predictive models, nomograms, look-up tables, classification and regression-tree analysis, artificial neural networks, and radical prostatectomy. EVIDENCE SYNTHESIS A great amount of predictive models has been provided in oncology setting: nomograms, look-up tables, classification and regression-tree analysis, propensity scores, risk-group stratification models, and artificial neural networks. Pre-surgery predictive tools offer the opportunity of getting the most evidence-based and individualized selection of available treatment alternatives. Post-operative predictive models usually provide higher accuracy relative to the pre-surgery models. CONCLUSIONS Decisions and treatment should be tailored to each individual patient and to the specific characteristics of patients. A number of available predictive models represent a tool to provide accurate prediction of cancer natural history and to improve patients' care.
Collapse
Affiliation(s)
- Umberto Capitanio
- Department of Urology, Hospital San Raffaele, University Vita-Salute, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
48
|
Jeldres C, Sun M, Lughezzani G, Isbarn H, Shariat SF, Widmer H, Graefen M, Montorsi F, Perrotte P, Karakiewicz PI. Highly predictive survival nomogram after upper urinary tract urothelial carcinoma. Cancer 2010; 116:3774-84. [DOI: 10.1002/cncr.25122] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Yu EY, Gulati R, Telesca D, Jiang P, Tam S, Russell KJ, Nelson PS, Etzioni RD, Higano CS. Duration of first off-treatment interval is prognostic for time to castration resistance and death in men with biochemical relapse of prostate cancer treated on a prospective trial of intermittent androgen deprivation. J Clin Oncol 2010; 28:2668-73. [PMID: 20421544 DOI: 10.1200/jco.2009.25.1330] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE This was an exploratory analysis of a trial of intermittent androgen deprivation (IAD) in men with biochemical relapse (BR) to establish first cycle characteristics prognostic for progression to castration-resistant prostate cancer (CRPC) and death. PATIENTS AND METHODS Men with BR of prostate cancer after radical prostatectomy (RP) or radiation (RT) were treated with androgen deprivation therapy (ADT) comprised of leuprolide and flutamide. After 9 months on treatment, ADT was stopped, and monthly prostate-specific antigen (PSA) levels were observed during the off-treatment interval. When the PSA reached a threshold value (1 ng/mL for RP, 4 ng/mL for RT), ADT was resumed in a new cycle. Patients were treated intermittently in this manner until CRPC, which was defined as > or = two consecutive increasing PSA values while on ADT with castrate testosterone levels. RESULTS Seventy-two of 100 patients enrolled onto the study met criteria for this analysis. The duration of the first off-treatment interval (< or = v > 40 weeks) was associated with shorter time to CRPC (hazard ratio = 2.9; 95% CI, 1.1 to 7.7; P = .03) and death (hazard ratio = 3.8; 95% CI, 1.1 to 13.6; P = .04) after adjusting for age, stage, grade, and PSA at diagnosis. CONCLUSION In patients who completed the first cycle of IAD, a duration of the first off-treatment interval of < or = 40 weeks defines a subset of patients at higher risk of CRPC and death. Conversely, patients with an off-treatment interval of more than 40 weeks have a significantly better long-term prognosis.
Collapse
Affiliation(s)
- Evan Y Yu
- Department of Medicine, Division of Oncology, University of Washington, 825 Eastlake Ave E., Seattle, WA 98109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mallett S, Royston P, Dutton S, Waters R, Altman DG. Reporting methods in studies developing prognostic models in cancer: a review. BMC Med 2010; 8:20. [PMID: 20353578 PMCID: PMC2856521 DOI: 10.1186/1741-7015-8-20] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 03/30/2010] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Development of prognostic models enables identification of variables that are influential in predicting patient outcome and the use of these multiple risk factors in a systematic, reproducible way according to evidence based methods. The reliability of models depends on informed use of statistical methods, in combination with prior knowledge of disease. We reviewed published articles to assess reporting and methods used to develop new prognostic models in cancer. METHODS We developed a systematic search string and identified articles from PubMed. Forty-seven articles were included that satisfied the following inclusion criteria: published in 2005; aiming to predict patient outcome; presenting new prognostic models in cancer with outcome time to an event and including a combination of at least two separate variables; and analysing data using multivariable analysis suitable for time to event data. RESULTS In 47 studies, prospective cohort or randomised controlled trial data were used for model development in only 33% (15) of studies. In 30% (14) of the studies insufficient data were available, having fewer than 10 events per variable (EPV) used in model development. EPV could not be calculated in a further 40% (19) of the studies. The coding of candidate variables was only reported in 68% (32) of the studies. Although use of continuous variables was reported in all studies, only one article reported using recommended methods of retaining all these variables as continuous without categorisation. Statistical methods for selection of variables in the multivariate modelling were often flawed. A method that is not recommended, namely, using statistical significance in univariate analysis as a pre-screening test to select variables for inclusion in the multivariate model, was applied in 48% (21) of the studies. CONCLUSIONS We found that published prognostic models are often characterised by both use of inappropriate methods for development of multivariable models and poor reporting. In addition, models are limited by the lack of studies based on prospective data of sufficient sample size to avoid overfitting. The use of poor methods compromises the reliability of prognostic models developed to provide objective probability estimates to complement clinical intuition of the physician and guidelines.
Collapse
Affiliation(s)
- Susan Mallett
- Centre for Statistics in Medicine, University of Oxford, Linton Rd, Oxford, UK.
| | | | | | | | | |
Collapse
|