1
|
Hill M, Stapleton S, Nguyen PT, Sais D, Deutsch F, Gay VC, Marsh DJ, Tran N. The potential regulation of the miR-17-92a cluster by miR-21. Int J Biochem Cell Biol 2025; 178:106705. [PMID: 39615668 DOI: 10.1016/j.biocel.2024.106705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 12/16/2024]
Abstract
MicroRNAs (miRNA,miRs) are small noncoding RNAs that are ubiquitously expressed in all mammalian cells. Their primary function is the regulation of nascent RNA transcripts by direct binding to regions on the target. There is now exciting data to suggest that these miRNAs can bind to other miRNAs, and this may have a broader impact on gene regulation in disease states. The oncomiR miR-21 is one of the highest-expressing miRNAs in cancer cells, and in this study, we characterise which miRNAs could be potential targets of miR-21. In cancer cells delivered with a miR-21 mimic, there was an observable shift of the miRNA milieu. We demonstrate that the miR-17-92a cluster, which harbours six miRNA members, may be a target for miR-21 regulation. Additionally, the primary transcript of miR-17-92a was reduced in the presence of miR-21. In the broader context of miR:miR regulation, overexpression of miR-21 shifted the expression of more than 150 miRNAs, including those known to regulate genes in cancer pathways such as the MAPK signalling and FoxO pathways. This study expands upon our limited understanding of miR:miR regulatory network and reinforces the concept that miRNAs can regulate each other, thereby influencing broader gene networks.
Collapse
Affiliation(s)
- Meredith Hill
- School of Biomedical Engineering, Faculty of Engineering, and Information Technology, University of Technology Sydney, Australia
| | - Sarah Stapleton
- School of Biomedical Engineering, Faculty of Engineering, and Information Technology, University of Technology Sydney, Australia
| | | | - Dayna Sais
- School of Biomedical Engineering, Faculty of Engineering, and Information Technology, University of Technology Sydney, Australia
| | - Fiona Deutsch
- School of Biomedical Engineering, Faculty of Engineering, and Information Technology, University of Technology Sydney, Australia
| | - Valerie C Gay
- School of Electrical and Data Engineering, Faculty of Engineering, and Information Technology, University of Technology Sydney, Australia
| | - Deborah J Marsh
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Australia
| | - Nham Tran
- School of Biomedical Engineering, Faculty of Engineering, and Information Technology, University of Technology Sydney, Australia.
| |
Collapse
|
2
|
Jia L, Meng Q, Xu X. Autophagy-related miRNAs, exosomal miRNAs, and circRNAs in tumor progression and drug-and radiation resistance in colorectal cancer. Pathol Res Pract 2024; 263:155597. [PMID: 39426141 DOI: 10.1016/j.prp.2024.155597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/16/2024] [Accepted: 09/20/2024] [Indexed: 10/21/2024]
Abstract
Targeted therapies are often more tolerable than traditional cytotoxic ones. Nurses play a critical role in providing patients and caregivers with information about the disease, available therapies, and the kind, severity, and identification of any potential adverse events. By doing this, it may be possible to ensure that any adverse effects are managed quickly, maximizing the therapeutic benefit. In colorectal cancer (CRC), autophagy-related activities are significantly influenced by miRNAs and exosomal miRNAs. CRC development and treatment resistance have been associated with the cellular process of autophagy. miRNAs, which are short non-coding RNA molecules, have the ability to control the expression of genes by binding to the 3' untranslated region (UTR) of target mRNAs and either preventing or suppressing translation. It has been discovered that several miRNAs are significant regulators of CRC autophagy. By preventing autophagy, these miRNAs enhance the survival and growth of cancer cells. Exosomes are small membrane vesicles that are released by cells and include miRNAs among other bioactive compounds. Exosomes have the ability to modify recipient cells' biological processes by delivering their cargo, which includes miRNAs. It has been demonstrated that exosomal miRNAs control autophagy in CRC in both autocrine and paracrine ways. We will discuss the potential roles of miRNAs, exosomal miRNAs, and circRNAs in CRC autophagy processes and how nursing care can reduce unfavorable outcomes.
Collapse
Affiliation(s)
- Liting Jia
- Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing 102413, China
| | - Qingyun Meng
- Gastroenterology Department, Qingdao Municipal Hospital, Qingdao 266000, China
| | - Xiaofeng Xu
- Thoracic Surgery, Qingdao Municipal Hospital, Qingdao 266000, China.
| |
Collapse
|
3
|
Singh S, Sinha T, Panda AC. Regulation of microRNA by circular RNA. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023:e1820. [PMID: 37783567 DOI: 10.1002/wrna.1820] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023]
Abstract
Circular (circ)RNAs have emerged as novel regulators of gene expression through various mechanisms. However, most publications focus on functional circRNAs regulating target gene expression by interacting with micro (mi)RNAs and acting as competing endogenous RNAs (ceRNAs). Although the theory of miRNA sponging by ceRNAs suggests the inhibition of miRNA activity, many studies are biased toward the selection of miRNAs showing a reverse expression pattern compared with circRNA expression. Although several computational tools and molecular assays have been used to predict and validate the interaction of miRNAs with circRNAs, the actual validation of functional in vivo interactions needs careful consideration of molecular experiments with specific controls. As extensive research is being performed on circRNA, many questions arise on the functional significance of circRNA-miRNA interactions. We hope the critical discussion on the criteria for selecting circRNA-miRNA pairs for functional analysis and providing standard methods for validating circRNA-miRNA interactions will advance our understanding of circRNAs as novel gene regulators. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs Translation > Regulation RNA Methods > RNA Analyses in Cells.
Collapse
Affiliation(s)
- Suman Singh
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
| | - Tanvi Sinha
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
| | - Amaresh C Panda
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
| |
Collapse
|
4
|
Liu J, Fu N, Yang Z, Li A, Wu H, Jin Y, Song Q, Ji S, Xu H, Zhang Z, Zhang X. The genetic and epigenetic regulation of CD55 and its pathway analysis in colon cancer. Front Immunol 2023; 13:947136. [PMID: 36741376 PMCID: PMC9889927 DOI: 10.3389/fimmu.2022.947136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Background CD55 plays an important role in the development of colon cancer. This study aims to evaluate the expression of CD55 in colon cancer and discover how it is regulated by transcriptional factors and miRNA. Methods The expression of CD55 was explored by TIMER2.0, UALCAN, and Human Protein Atlas (HPA) databases. TRANSFAC and Contra v3 were used to predict the potential binding sites of transcription factors in the CD55 promoter. TargetScan and starBase v2.0 were used to predict the potential binding ability of miRNAs to the 3' untranslated region (3'UTR) of CD55. SurvivalMeth was used to explore the differentially methylated sites in the CD55 promoter. Western blotting was used to detect the expression of TFCP2 and CD55. Dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay were performed to determine the targeting relationship of TFCP2, NF-κB, or miR-27a-3p with CD55. CD55-related genes were explored by constructing a protein-protein interaction (PPI) network and performing pathway analysis by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Results CD55 was highly expressed in colon cancer tissues. The mRNA and protein expression levels of TFCP2 were reduced by si-TFCP2. NF-κB mRNA was obviously reduced by NF-κB inhibitor and increased by NF-κB activator. CD55 protein was also inhibited by miR-27a-3p. Dual-luciferase reporter assays showed that after knocking down TFCP2 or inhibiting NF-κB, the promoter activity of CD55 was decreased by 21% and 70%, respectively; after activating NF-κB, the promoter activity of CD55 increased by 2.3 times. As TFCP2 or NF-κB binding site was mutated, the transcriptional activity of CD55 was significantly decreased. ChIP assay showed that TFCP2 and NF-κB combined to the promoter of CD55. The luciferase activity of CD55 3'UTR decreased after being co-transfected with miR-27a-3p mimics and increased by miR-27a-3p antagomir. As the miR-27a-3p binding site was mutated, we did not find any significant effect of miR-27a-3p on reporter activity. PPI network assay revealed a set of CD55-related genes, which included CFP, CFB, C4A, and C4B. GO and KEGG analyses revealed that the target genes occur more frequently in immune-related pathways. Conclusion Our results indicated that CD55 is regulated by TFCP2, NF-κB, miR-27a-3p, and several immune-related genes, which in turn affects colon cancer.
Collapse
Affiliation(s)
- Jiawei Liu
- Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, China
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Ning Fu
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Zhenbang Yang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Ang Li
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Hongjiao Wu
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Ye Jin
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Qinqin Song
- Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, China
| | - Shanshan Ji
- Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, China
| | - Hongxue Xu
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Zhi Zhang
- Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, China
| | - Xuemei Zhang
- College of Life Science, North China University of Science and Technology, Tangshan, China
- School of Public Health, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
5
|
MURATA M, KOMATSU S, MIYAMOTO E, OKA C, LIN I, KUMAZOE M, YAMASHITA S, FUJIMURA Y, TACHIBANA H. Quercetin up-regulates the expression of tumor-suppressive microRNAs in human cervical cancer. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 42:87-93. [PMID: 36660602 PMCID: PMC9816044 DOI: 10.12938/bmfh.2022-056] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022]
Abstract
Quercetin, a flavonol present in many vegetables and fruits, has been identified as a chemoprevention agent in several cancer models. However, the molecular mechanism of quercetin's anticancer activity is not entirely understood. MicroRNAs (miRNAs), small noncoding RNAs, have been reported to play key roles in various biological processes by regulating their target genes. We hypothesized that quercetin can exert an anticancer effect through the regulation of miRNAs. To test this hypothesis, we investigated the effects of quercetin on the expression of tumor-suppressive miRNAs in cervical cancer. Quercetin up-regulated the in vivo and in vitro expression of tumor-suppressive miRNAs miR-26b, miR-126, and miR-320a. Quercetin suppressed the level of β-catenin, encoded by catenin beta 1 (CTNNB1), by up-regulating miR-320a in HeLa cells. Moreover, quercetin increased the expression of mir-26b, mir-126, and mir-320a precursors in HeLa cells. The results from this study show that quercetin has the potential to prevent cervical cancer by regulating the expression of tumor-suppressive miRNAs.
Collapse
Affiliation(s)
- Motoki MURATA
- Division of Applied Biological Chemistry, Department of
Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka
Nishi-ku Fukuoka 819-0395, Japan,Advanced Research Support Center (ADRES), Ehime University,
10-13 Dogo-himata, Matsuyama, Ehime 790-8577, Japan
| | - Satomi KOMATSU
- Division of Applied Biological Chemistry, Department of
Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka
Nishi-ku Fukuoka 819-0395, Japan
| | - Emi MIYAMOTO
- Division of Applied Biological Chemistry, Department of
Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka
Nishi-ku Fukuoka 819-0395, Japan
| | - Chihiro OKA
- Division of Applied Biological Chemistry, Department of
Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka
Nishi-ku Fukuoka 819-0395, Japan
| | - Ichian LIN
- Division of Applied Biological Chemistry, Department of
Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka
Nishi-ku Fukuoka 819-0395, Japan
| | - Motofumi KUMAZOE
- Division of Applied Biological Chemistry, Department of
Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka
Nishi-ku Fukuoka 819-0395, Japan
| | - Shuya YAMASHITA
- Division of Applied Biological Chemistry, Department of
Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka
Nishi-ku Fukuoka 819-0395, Japan
| | - Yoshinori FUJIMURA
- Division of Applied Biological Chemistry, Department of
Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka
Nishi-ku Fukuoka 819-0395, Japan
| | - Hirofumi TACHIBANA
- Division of Applied Biological Chemistry, Department of
Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka
Nishi-ku Fukuoka 819-0395, Japan,*Corresponding author. Hirofumi Tachibana (E-mail: )
| |
Collapse
|
6
|
Yuen JG, Fesler A, Hwang GR, Chen LB, Ju J. Development of 5-FU-modified tumor suppressor microRNAs as a platform for novel microRNA-based cancer therapeutics. Mol Ther 2022; 30:3450-3461. [PMID: 35933584 PMCID: PMC9637772 DOI: 10.1016/j.ymthe.2022.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/20/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
MicroRNA (miRNAs) are pleiotropic post-transcriptional modulators of gene expression. Their inherently pleiotropic nature makes miRNAs strong candidates for the development of cancer therapeutics, yet despite their potential, there remains a challenge to deliver nucleic acid-based therapies into cancer cells. We developed a novel approach to modify miRNAs by replacing the uracil bases with 5-fluorouracil (5-FU) in the guide strand of tumor suppressor miRNAs, thereby combining the therapeutic effect of 5-FU with tumor-suppressive effect of miRNAs to create a potent, multi-targeted therapeutic molecule without altering its native RNAi function. To demonstrate the general applicability of this approach to other tumor-suppressive miRNAs, we screened a panel of 12 novel miRNA mimetics in several cancer types, including leukemia, breast, gastric, lung, and pancreatic cancer. Our results show that 5-FU-modified miRNA mimetics have increased potency (low nanomolar range) in inhibiting cancer cell proliferation and that these mimetics can be delivered into cancer cells without delivery vehicle both in vitro and in vivo, thus representing significant advancements in the development of therapeutic miRNAs for cancer. This work demonstrates the potential of fluoropyrimidine modifications that can be broadly applicable and may serve as a platform technology for future miRNA and nucleic acid-based therapeutics.
Collapse
Affiliation(s)
- John G Yuen
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Ga-Ram Hwang
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lan-Bo Chen
- Curamir Therapeutics Inc., Woburn, MA 01801, USA
| | - Jingfang Ju
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Curamir Therapeutics Inc., Woburn, MA 01801, USA.
| |
Collapse
|
7
|
Aliabadi P, Sadri M, Siri G, Ebrahimzadeh F, Yazdani Y, Gusarov AM, Kharkouei SA, Asadi F, Adili A, Mardi A, Mohammadi H. Restoration of miR-648 overcomes 5-FU-resistance through targeting ET-1 in gastric cancer cells in-vitro. Pathol Res Pract 2022; 239:154139. [PMID: 36191447 DOI: 10.1016/j.prp.2022.154139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/02/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Endothelin-1 (ET-1) is a peptide overexpressed in gastric cancer (GC) and linked to carcinogenesis and resistance to chemotherapy. Applying microRNAs (miRNAs/miRs) to downregulate ET-1 and reverse resistance to commonly used chemotherapy drugs such as 5-fluorouracil (5-FU) is practical. METHODS The current study sought to evaluate the miR-648 expression in GC and any plausibility of its replacement, either with or without the combination of chemo agents to downregulate ET-1 expression through interaction with its target gene. To this end, miR-648 and ET-1 expression levels were assessed in GC tissues and adjacent non-tumor tissues driven from 65 patients who had already undergone surgery, fifteen of which had received 5-FU before surgery. The impact of miR-648 and chemo agents on ET-1 expression was measured using qPCR and Western blotting. Further, an MTT assay was conducted to assess its association with cell viability. Ultimately, the association of miR-648 and ET-1 with clinicopathological characteristics was evaluated. RESULTS The current study revealed that miR-648 was considerably down-regulated, while ET-1 was substantially up-regulated in patients with GC. The 5-FU caused a significant increase in miR-648 and reduced ET-1 expression. It was also determined that overexpression of miR-648 suppressed ET-1 production, notably when combined with 5-FU, leading to survival reduction. These results further showed that miR-648 replacement could sensitize chemoresistant GC cells. Besides, a significant association between ET-1 and miR-648 with clinicopathological features was discovered CONCLUSIONS: miR-648 replacement may serve as a potential oncosuppressive therapeutic approach that warrants further investigation to translate into an effective GC treatment.
Collapse
Affiliation(s)
- Parsa Aliabadi
- Department of Immunology and Biology, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Maryam Sadri
- Department of Internal Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Goli Siri
- Department of Internal Medicine, Amir Alam Hospital, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Yalda Yazdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Artem Maximovich Gusarov
- Department of Maxillofacial Surgery, I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Sahar Afzali Kharkouei
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Islamic Republic of Iran
| | - Fatemeh Asadi
- Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Islamic Republic of Iran
| | - Ali Adili
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, Tampa, FL, USA; Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Amirhossein Mardi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Islamic Republic of Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Islamic Republic of Iran.
| |
Collapse
|
8
|
Peciuliene I, Jakubauskiene E, Vilys L, Zinkeviciute R, Kvedaraviciute K, Kanopka A. Short-Term Hypoxia in Cells Induces Expression of Genes Which Are Enhanced in Stressed Cells. Genes (Basel) 2022; 13:genes13091596. [PMID: 36140764 PMCID: PMC9498350 DOI: 10.3390/genes13091596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022] Open
Abstract
All living organisms must respond to, and defend against, environmental stresses. Depending on the extent and severity of stress, cells try to alter their metabolism and adapt to a new state. Changes in alternative splicing of pre-mRNA are a crucial regulation mechanism through which cells are able to respond to a decrease in oxygen tension in the cellular environment. Currently, only limited data are available in the literature on how short-term hypoxia influences mRNA isoform formation. In this work, we discovered that expressions of the same genes that are activated during cellular stress are also activated in cells under short-term hypoxic conditions. Our results demonstrate that short-term hypoxia influences the splicing of genes associated with cell stress and apoptosis; however, the mRNA isoform formation patterns from the same pre-mRNAs in cells under short-term hypoxic conditions and prolonged hypoxia are different. Obtained data also show that short-term cellular hypoxia increases protein phosphatase but not protein kinase expression. Enhanced levels of protein phosphatase expression in cells are clearly important for changing mRNA isoform formation.
Collapse
Affiliation(s)
- Inga Peciuliene
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, LT 10257 Vilnius, Lithuania
| | - Egle Jakubauskiene
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, LT 10257 Vilnius, Lithuania
| | - Laurynas Vilys
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, LT 10257 Vilnius, Lithuania
| | - Ruta Zinkeviciute
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Life Sciences Center, Vilnius University, LT 10257 Vilnius, Lithuania
| | - Kotryna Kvedaraviciute
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, LT 10257 Vilnius, Lithuania
| | - Arvydas Kanopka
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, LT 10257 Vilnius, Lithuania
- Correspondence: ; Tel.: +370-5-2602124
| |
Collapse
|
9
|
MicroRNAs and drug resistance in colorectal cancer with special focus on 5-fluorouracil. Mol Biol Rep 2022; 49:5165-5178. [PMID: 35212928 DOI: 10.1007/s11033-022-07227-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/03/2022] [Indexed: 02/08/2023]
Abstract
Colorectal cancer is globally one of the most common cancers in all age groups. The current chemotherapy combinations for colorectal cancer treatment include 5-fluorouracil-based regimens; however, drug resistance remains one of the main reasons for chemotherapy failure and disease recurrence. Many studies have determined colorectal cancer chemoresistance mechanisms such as drug efflux, cell cycle arrest, DNA damage repair, apoptosis, autophagy, vital enzymes, epigenetic, epithelial-mesenchymal transition, stem cells, and immune system suppression. Several microRNAs affect drug resistance by regulating the drug resistance-related target genes in colorectal cancer. These drug resistance-related miRNAs may be used as promising biomarkers for predicting drug response or as potential therapeutic targets for treating patients with colorectal cancer. This work reviews and discuss the role of selected microRNAs in 5-fluorouracil resistance and their molecular mechanisms in colorectal cancer.
Collapse
|
10
|
Cui D, Qu R, Liu D, Xiong X, Liang T, Zhao Y. The Cross Talk Between p53 and mTOR Pathways in Response to Physiological and Genotoxic Stresses. Front Cell Dev Biol 2021; 9:775507. [PMID: 34869377 PMCID: PMC8638743 DOI: 10.3389/fcell.2021.775507] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/03/2021] [Indexed: 12/25/2022] Open
Abstract
The tumor suppressor p53 is activated upon multiple cellular stresses, including DNA damage, oncogene activation, ribosomal stress, and hypoxia, to induce cell cycle arrest, apoptosis, and senescence. Mammalian target of rapamycin (mTOR), an evolutionarily conserved serine/threonine protein kinase, serves as a central regulator of cell growth, proliferation, and survival by coordinating nutrients, energy, growth factors, and oxygen levels. p53 dysfunction and mTOR pathway hyperactivation are hallmarks of human cancer. The balance between response to stresses or commitment to cell proliferation and survival is governed by various regulatory loops between the p53 and mTOR pathways. In this review, we first briefly introduce the tumor suppressor p53 and then describe the upstream regulators and downstream effectors of the mTOR pathway. Next, we discuss the role of p53 in regulating the mTOR pathway through its transcriptional and non-transcriptional effects. We further describe the complicated role of the mTOR pathway in modulating p53 activity. Finally, we discuss the current knowledge and future perspectives on the coordinated regulation of the p53 and mTOR pathways.
Collapse
Affiliation(s)
- Danrui Cui
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Ruirui Qu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Dian Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiufang Xiong
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Yongchao Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Liu X, Ma R, Yi B, Riker AI, Xi Y. MicroRNAs are involved in the development and progression of gastric cancer. Acta Pharmacol Sin 2021; 42:1018-1026. [PMID: 33037405 PMCID: PMC8208993 DOI: 10.1038/s41401-020-00540-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are recognized as an essential component of the RNA family, exerting multiple and intricate biological functions, particularly in the process of tumorigenesis, proliferation, and metastatic progression. MiRNAs are altered in gastric cancer (GC), showing activity as both tumor suppressors and oncogenes, although their true roles have not been fully understood. This review will focus upon the recent advances of miRNA studies related to the regulatory mechanisms of gastric tumor cell proliferation, apoptosis, and cell cycle. We hope to provide an in-depth insight into the mechanistic role of miRNAs in GC development and progression. In particular, we summarize the latest studies relevant to miRNAs' impact upon the epithelial-mesenchymal transition, tumor microenvironment, and chemoresistance in GC cells. We expect to elucidate the molecular mechanisms involving miRNAs for better understanding the etiology of GC, and facilitating the development of new treatment regimens for the treatment of GC.
Collapse
Affiliation(s)
- Xiaolin Liu
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Department of Oncology, the First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Ruixia Ma
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221000, China
| | - Bin Yi
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Adam I Riker
- Geaton and JoAnn DeCesaris Cancer Institute, Department of Surgery, Anne Arundel Medical Center, Cancer Service Line, Luminis Health, Annapolis, MD, USA.
| | - Yaguang Xi
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
12
|
Assessment of Serum MicroRNA-21 Gene Expression for Diagnosis and Prognosis of Colorectal Cancer. J Gastrointest Cancer 2021; 51:818-823. [PMID: 31482406 DOI: 10.1007/s12029-019-00306-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are small, non-coding RNAs that are involved in carcinogenesis through posttranscriptional gene regulatory activity. The current study aimed to evaluate serum miR-21 expression levels as potential biomarkers for diagnosis and prognosis of colorectal cancer (CRC) patients. METHODS Quantitative real-time RT-PCR was applied to determine the relative expression level of miR-21 in serum. At the same time, the sensitivity and specificity of this marker were evaluated by receiver operating characteristic (ROC) curve analysis. RESULTS miR-21 expression levels of serum were 3.4 and 1.25 in patient and control, respectively (p < 0.05). The sensitivity and specificity of miR-21 were found to be 95.8% and 91.7%, respectively. The high expression level of serum miR-21 were associated with higher local recurrence, TNM staging, PT staging, venous invasion, liver metastasis, and recurrence (p < 0.05). CONCLUSION The results of this study indicated that miR-21 expression levels in serum can be considered as a novel non-invasive biomarker for early detection and prognosis of CRC patients.
Collapse
|
13
|
Ren Y, Zhang L, Zhang W, Gao Y. MiR-30a suppresses clear cell renal cell carcinoma proliferation and metastasis by targeting LRP6. Hum Cell 2021; 34:598-606. [PMID: 33400244 DOI: 10.1007/s13577-020-00472-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/06/2020] [Indexed: 10/22/2022]
Abstract
Recently, the role of miR-30a in tumor development has attracted extensive attention. In this study, we aimed to elucidate the role of miR-30a and its associated target low-density lipoprotein receptor-related protein 6 (LRP6) in clear cell renal cell carcinoma (ccRCC) cells. Here, miR-30a was markedly down-regulated in ccRCC tissues and cells, and was correlated with the advanced TNM stage and poor prognosis. By contrast, LRP6 protein level was increased in ccRCC specimens and cell lines, and inversely correlated with miR-30a expression. Stable overexpression of miR-30a suppressed cell proliferation in vitro, impeded tumor growth in vivo, prevented migration and invasion, and triggered apoptosis of ccRCC cells. Also, over-expression of miR-30a in ccRCC cells promoted the expression of the epithelial marker E-cadherin and reduced the levels of mesenchymal markers. Mechanistically, the dual-luciferase reporter, RNA immunoprecipitation and western blot assays confirmed that miR-30a directly targeted the 3'-untranslated regions of LRP6 to inhibit its expression. Further, miR-30a-mediated effect was partially reversed by co-transfection with LRP6 plasmids or enhanced by silencing of LRP6. In conclusion, miR-30a exhibits effective antitumor properties by targeting LRP6 in proliferation and metastasis of ccRCC. This study could provide new insights into the treatment of ccRCC.
Collapse
Affiliation(s)
- Yanjun Ren
- Department of Spine Surgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Li Zhang
- Department of Ultrasound, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Wei Zhang
- Department of Intensive Care Unit, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, No.11, Central Wuying Hill Road, Jinan, 250031, Shandong, China
| | - Yikai Gao
- Department of Intensive Care Unit, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, No.11, Central Wuying Hill Road, Jinan, 250031, Shandong, China.
| |
Collapse
|
14
|
Azar MRMH, Aghazadeh H, Mohammed HN, Sara MRS, Hosseini A, Shomali N, Tamjidifar R, Tarzi S, Mansouri M, Sarand SP, Marofi F, Akbari M, Xu H, Shotorbani SS. miR-193a-5p as a promising therapeutic candidate in colorectal cancer by reducing 5-FU and Oxaliplatin chemoresistance by targeting CXCR4. Int Immunopharmacol 2021; 92:107355. [PMID: 33429333 DOI: 10.1016/j.intimp.2020.107355] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/26/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most common causes of cancer-related deaths worldwide. The role of microRNAs (miRNAs/miRs) as small (19-25 nucleotides in length) non-coding RNA molecules that modify gene expression has been shown in several types of cancer. 5-Fluorouracil (5-FU) and oxaliplatin (Ox) are two common chemotherapeutic agents used to treat cancer. The present study aimed to evaluate the expression levels of miR-193a-5p in CRC, and its effect on the C-X-C Motif Chemokine Receptor 4 (CXCR4) target gene alone and in combination with chemotherapeutic drugs, to determine its possible role in chemoresistance. CRC tissues and adjacent non-cancerous tissue were obtained from 67 patients who had undergone surgery to determine the expression levels of miR-193a-5p and CXCR4. Subsequently, qPCR and Western blotting were performed to determine the effect of miR-193a-5p and chemotherapy drugs on CXCR4. َAlso, MTT assay, and flow cytometry was performed to determine their role in cell viability and apoptosis. Besides, the relationship between miR-193a-5p and CXCR4 with patients' clinical features was investigated. The results of the present study showed that miR-193a-5p was significantly downregulated, whereas CXCR4 was significantly upregulated in tumor tissues obtained from patients with CRC compared with the adjacent non-tumor healthy controls. In addition, the upregulation of miR-193-5p reduced the expression levels of CXCR4, particularly in combination with 5-FU and OX. Besides, using rescue experiments, the present study showed that miR-193a-5p replacement was able to suppress CXCR4-induced CRC cell proliferation by directly targeting CXCR4. Furthermore, there was a significant association between miR-193a-5p and CXCR4 with certain clinicopathological characteristics, particularly with metastasis-related features. These results suggest that miR-193a-5p serves a tumor-suppressive function in CRC and can directly target CXCR4 and decrease its mRNA and protein expression levels. Additionally, miR-193a-5p in combination with 5-FU and Ox potentiated reducing CXR4 expression, which may reveal its contribution to tumor chemoresistance. In conclusion, miR-193-5p may be applicable as a prognostic and diagnostic marker, and also serve as a therapeutic factor by reducing CXCR4 in combination with chemotherapeutic drugs.
Collapse
Affiliation(s)
| | - Hamed Aghazadeh
- Pharmaceutical Engineering Department, Faculty of Chemical Engineering, University of Tehran, Tehran 1417414418, Iran
| | | | - Mehdi Rezai Seghin Sara
- Department of Biochemistry, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | - Arezoo Hosseini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | - Rozita Tamjidifar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; Department of Biology Ahar Branch, Islamic Azad University, Ahar 5451116714, Iran
| | - Saeed Tarzi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; Department of Biology Ahar Branch, Islamic Azad University, Ahar 5451116714, Iran
| | - Mahmoud Mansouri
- University of Tehran, Master of Sciences in Applied Chemistry, Tehran 1417414418, Iran
| | - Sahar Pashaei Sarand
- Amirkabir University of Technology (Polytechnic of Tehran), Master of Sciences in Applied Chemistry, Tehran 441315875, Iran
| | - Faroogh Marofi
- Department of Hematology, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | - Huaxi Xu
- Department of Immunology, Center of Clinical Medicine and Laboratory, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| | - Siamak Sandoghchian Shotorbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; Department of Immunology, Center of Clinical Medicine and Laboratory, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| |
Collapse
|
15
|
Sun JL, Zhao LL, He K, Liu Q, Luo J, Zhang DM, Liang J, Liao L, Ma JD, Yang S. MicroRNA regulation in hypoxic environments: differential expression of microRNAs in the liver of largemouth bass (Micropterus salmoides). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2227-2242. [PMID: 32948974 DOI: 10.1007/s10695-020-00877-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Environmental changes in intensive aquaculture commonly lead to hypoxic stress for cultured largemouth bass (Micropterus salmoides). To better to understand the hypoxic stress response mechanisms, the miRNA expression profiles of the livers of largemouth bass exposed for 24 h to three different dissolved oxygen levels (7.0 ± 0.2 mg/L as control, 3.0 ± 0.2 mg/L and 1.2 ± 0.2 mg/L) were compared. In this study, a total of 266 known miRNAs were identified, 84 of which were differentially expressed compared with the control group. Thirteen of the differentially expressed miRNAs (miR-15b-5p, miR-30a-3p, miR-133a-3p, miR-19d-5p, miR-1288-3p, miR456, miR-96-5p, miR-23a-3p, miR-23b-5p, miR-214, miR-24, miR-20a-3p, and miR-2188-5p) were significantly enriched in VEGF signaling pathway, MAPK signaling pathway, and phosphatidylinositol signaling system. These miRNAs were significantly downregulated during stress, especially after a 4-h exposure to hypoxia. In contrast, their target genes (vegfa, pla2g4a, raf1a, pik3c2a, clam2a, inpp1, pi4k2b, mtmr14, ip6k, itpkca, map3k7, and Jun) were significant upregulated after 4 h of hypoxic stress. Moreover, two potential hypoxia-tolerance signal transduction pathways (MAPK signaling pathway and phosphatidylinositol signaling system) were revealed, both of which may play important roles in responding to acute hypoxic stress. We see that miRNAs played an important role in regulating gene expression related to physiological responses to hypoxia. Potential functional network regulated by miRNAs under hypoixic stress in the liver of largemouth bass (Micropterus salmoides). Blue boxes indicated that the expression of miRNA or target genes were down-regulated. Red boxes indicated that the expression of miRNA or target genes wasere up-regulated.
Collapse
Affiliation(s)
- Jun Long Sun
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan University, Haikou, 570228, Hainan, China
| | - Liu Lan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Dong Mei Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ji Liang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lei Liao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ji Deng Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
16
|
Integrative p53, micro-RNA and Cathepsin Protease Co-Regulatory Expression Networks in Cancer. Cancers (Basel) 2020; 12:cancers12113454. [PMID: 33233599 PMCID: PMC7699684 DOI: 10.3390/cancers12113454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/05/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary This article describes an emerging area of significant interest in cancer and cell death and the relationships shared by these through the transcriptional regulation of cathepsin protease genes by micro-RNAs that are connected to p53 activation. While it has been demonstrated that the p53 protein can directly regulate some cathepsin genes and the expression of their upstream regulatory micro-RNAs, very little is known about what input the p53 isoform proteins may have in regulating this relationship. Herein, we draw attention to this important regulatory aspect in the context of describing mechanisms that are being established for the micro-RNA regulation of cathepsin protease genes and their collective use in diagnostic or prognostic assays. Abstract As the direct regulatory role of p53 and some of its isoform proteins are becoming established in modulating gene expression in cancer research, another aspect of this mode of gene regulation that has captured significant interest over the years is the mechanistic interplay between p53 and micro-RNA transcriptional regulation. The input of this into modulating gene expression for some of the cathepsin family members has been viewed as carrying noticeable importance based on their biological effects during normal cellular homeostasis and cancer progression. While this area is still in its infancy in relation to general cathepsin gene regulation, we review the current p53-regulated micro-RNAs that are generating significant interest through their regulation of cathepsin proteases, thereby strengthening the link between activated p53 forms and cathepsin gene regulation. Additionally, we extend our understanding of this developing relationship to how such micro-RNAs are being utilized as diagnostic or prognostic tools and highlight their future uses in conjunction with cathepsin gene expression as potential biomarkers within a clinical setting.
Collapse
|
17
|
Wang N, Zhou P, Chen Y, Qu H, Lu K, Xia J. MicroRNA-149: A review of its role in digestive system cancers. Pathol Res Pract 2020; 216:153266. [PMID: 33197838 DOI: 10.1016/j.prp.2020.153266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/18/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are a group of highly conserved, short (18-25 nucleotide long) non-coding RNAs which play important functional roles in cellular differentiation, biological development, pathogenesis and disease susceptibility and have been linked to both tumorigenesis and the malignant progression of various cancers. miRNAs primarily exert their function through the negative regulation of their target gene's transcription via the specific recognition of their 3' untranslated region. A single miRNA can regulate multiple target genes and most miRNAs are controlled by several factors. Recent studies have shown that microRNA-149 (miR-149) plays a pivotal role in the pathogenesis of digestive system cancers and may act as a potential diagnostic marker and therapeutic target. In this review, we summarize and discuss the most recent reports describing miR-149 in digestive system cancers, including its single nucleotide polymorphisms, expression levels, target genes, drug sensitivity and clinical significance.
Collapse
Affiliation(s)
- Ning Wang
- Department of General Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wu Xi, Jiangsu, China
| | - Peng Zhou
- Department of General Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wu Xi, Jiangsu, China
| | - Yigang Chen
- Department of General Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wu Xi, Jiangsu, China
| | - Huiheng Qu
- Department of General Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wu Xi, Jiangsu, China
| | - Keyu Lu
- Department of General Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wu Xi, Jiangsu, China
| | - Jiazeng Xia
- Department of General Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wu Xi, Jiangsu, China.
| |
Collapse
|
18
|
Salah M, Shaheen I, El-Shanawany P, Eid Saad N, Saad R, El Guibaly M, Momen N. Detection of miR-1246, miR-23a and miR-451 in sera of colorectal carcinoma patients: a case-control study in Cairo University hospital. Afr Health Sci 2020; 20:1283-1291. [PMID: 33402976 PMCID: PMC7751536 DOI: 10.4314/ahs.v20i3.33] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Colorectal cancer (CRC) has high morbidity and mortality rates. Invasive techniques and other laboratory tests with variable sensitivity and specificity are currently used in diagnosis. Micro ribonucleic acids (miRNAs) have bio vital roles in cell proliferation and apoptosis. Dys-regulation of miRNAs is linked to tumour genesis. The objective of this study was to evaluate the specificity and sensitivity of serum non-invasive biomarkers (micro-RNAs), miR-1246, miR-23a, and miR-451in CRC patients. Methods Peripheral expression of three miRNAs (miR-1246, miR-23a and miR-451) was investigated in sera of 37 CRC Egyptian patients and 30 healthy controls, using quantitative real-time polymerase chain reaction trying to reach the optimal non-invasive combination of miRNAs. Results Serum miR-1246 was up-regulated in sera of CRC patients compared to normal controls (fold change = 3.55; P<0.001) and showed 100% sensitivity and 80% specificity in diagnosis of CRC. Serum miR-451 was significantly down-regulated in CRC patients (fold change = -4.86; p= 0.014), whereas, miR-23a was down-regulated but this was not statistically significant. Conclusion Up-regulation of miR-1246 and down-regulation of miR-451 in the sera of primary CRC Egyptian patients were confirmed with high sensitivity and specificity. Large-scale studies on a wider spectrum of miRNAs in Egyptian CRC patients are needed.
Collapse
|
19
|
EGF-mediated reduced miR-92a-1-5p controls HTR-8/SVneo cell invasion through activation of MAPK8 and FAS which in turn increase MMP-2/-9 expression. Sci Rep 2020; 10:12274. [PMID: 32703964 PMCID: PMC7378053 DOI: 10.1038/s41598-020-68966-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/03/2020] [Indexed: 02/08/2023] Open
Abstract
The members of human miR-17-92 cluster are implicated in several cancers and are known to increase cancer cells invasiveness. The present study reports reduced expression of miR-92a-1-5p in EGF treated HTR-8/SVneo trophoblastic cells by NGS and qRT-PCR. Overexpression of miR-92a-1-5p led to significantly reduced EGF-mediated HTR-8/SVneo cells invasion. MAPK8 and FAS were predicted to be miR-92a-1-5p targets, and confirmed to be reduced by qRT-PCR and Western blotting in trophoblast cells overexpressing miR-92a-1-5p. The binding of miR-92a-1-5p to MAPK8 and FAS 3'-UTR was confirmed by Luciferase reporter assay and Rescue assay. EGF increases MMP-2 & MMP-9 expression and reduces TIMP1 expression in HTR-8/SVneo cells. Inhibition of MAPK8 (by SP600125) reduced EGF-mediated MMP-9/TIMP1 ratio and invasion. Similarly, silencing of FAS by siRNA reduced EGF-mediated MMP-2/TIMP1 ratio and invasion. Treatment of HTR-8/SVneo cells with STAT1/3 inhibitors or siRNAs led to loss of EGF-mediated reduction in miR-92a-1-5p levels. Inserting the predicted binding sites of STAT3 present in promoter region of miR-92a-1-5p upstream of Luciferase promoter reduced its expression in presence of STAT3 expression vector. Thus, EGF leads to reduced miR-92a-1-5p expression which may be regulated by STAT1/STAT3 and controls HTR-8/SVneo cells invasion by targeting MAPK8 and FAS, which in turn increases MMP-2/MMP-9 expression.
Collapse
|
20
|
Hui L, Zheng F, Bo Y, Sen-Lin M, Ai-Jun L, Wei-Ping Z, Yong-Jie Z, Lei Y. MicroRNA let-7b inhibits cell proliferation via upregulation of p21 in hepatocellular carcinoma. Cell Biosci 2020; 10:83. [PMID: 32626571 PMCID: PMC7329548 DOI: 10.1186/s13578-020-00443-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most malignant tumor types and has a high incidence and mortality. Many miRNAs play important roles in the development of HCC. Identification of these miRNAs and their targets is increasingly urgent for a better understandingof miRNA function in both physiological and pathological contexts. Many studies have shown that the expression of let-7 is often downregulated in the process of tumorigenesis, suggesting that let-7 may participate in this process as an oncogene. Methods Immunochemistry staining was used to observe the expression of let-7b in HCC tissues. A CCK-8 assay was employed to detect the role of let-7b in the proliferation of HCC cells. The cell cycle of HCC cells was examined by flow cytometry. BALB/c nu/nu mice were used to detect the tumorigenesis potential of HCC cells; western blot and real-time PCR were employed to observe the expression of p21 in HCC cells. Results In our previous studies investigating HCC tissue samples obtained from the national tissue samples bank of liver cancer in Eastern Hepatobiliary Surgery Hospital, we found one abnormal expression of miRNA (let-7b), which was significantly downregulated in HCC tissue. In the current work, we studied the relationship between let-7b and HCC to potentially provide invaluable information for developing novel therapeutic strategies for treating HCC. Based on our findings, let-7b expression was absent in HCC tumors, and its lower expression was associated with poor prognosis of HCC. In further experiments, we found that let-7b inhibited HCC cell proliferation through upregulation of p21. Conclusion The results of our study suggested that let-7b might inhibit the proliferation of HCC cells by upregulating p21.
Collapse
Affiliation(s)
- Li Hui
- The Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai, 200438 China
| | - Fang Zheng
- The Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438 China
| | - Yuan Bo
- The Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438 China
| | - Ma Sen-Lin
- The Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438 China
| | - Li Ai-Jun
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438 China
| | - Zhou Wei-Ping
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438 China
| | - Zhang Yong-Jie
- The Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438 China
| | - Yin Lei
- The Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438 China
| |
Collapse
|
21
|
Allouch S, Malki A, Allouch A, Gupta I, Vranic S, Al Moustafa AE. High-Risk HPV Oncoproteins and PD-1/PD-L1 Interplay in Human Cervical Cancer: Recent Evidence and Future Directions. Front Oncol 2020; 10:914. [PMID: 32695664 PMCID: PMC7338567 DOI: 10.3389/fonc.2020.00914] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer is the fourth most common malignancy in women worldwide and a leading cause of cancer-related mortality in developing countries. Important etiological factors in this cancer are high-risk human papillomaviruses (HPV), as roughly 96% of cervical cancer cases are positive for these oncoviruses. On the other hand, it has been recently pointed out that E6/E7 oncoproteins of high-risk HPV can upregulate the programmed cell death-1/programmed cell death-ligand 1 (PD-1/PD-L1) axis. Likewise, several recent reports showed that checkpoint blockades targeting PD-1/PD-L1 pathways have achieved efficient clinical responses via suppressing cancer progression and improving survival in several types of human cancers including metastatic cervical cancer. In this review, we summarize recent advances in our understanding of the PD-1/PD-L1 signaling pathway and its interaction with high-risk HPV and their oncoproteins, which could have an important impact on the management of HPV-associated cancers including cervical.
Collapse
Affiliation(s)
- Soumaya Allouch
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ahmed Malki
- Biomedical Science Department, College of Health Sciences, QU-Health, Qatar University, Doha, Qatar
| | - Asma Allouch
- Biomedical Science Department, College of Health Sciences, QU-Health, Qatar University, Doha, Qatar
| | - Ishita Gupta
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
22
|
Vodenkova S, Buchler T, Cervena K, Veskrnova V, Vodicka P, Vymetalkova V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol Ther 2019; 206:107447. [PMID: 31756363 DOI: 10.1016/j.pharmthera.2019.107447] [Citation(s) in RCA: 558] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023]
Abstract
5-Fluorouracil (5-FU) is an essential component of systemic chemotherapy for colorectal cancer (CRC) in the palliative and adjuvant settings. Over the past four decades, several modulation strategies including the implementation of 5-FU-based combination regimens and 5-FU pro-drugs have been developed and tested to increase the anti-tumor activity of 5-FU and to overcome the clinical resistance. Despite the encouraging progress in CRC therapy to date, the patients' response rates to therapy continue to remain low and the patients' benefit from 5-FU-based therapy is frequently compromised by the development of chemoresistance. Inter-individual differences in the treatment response in CRC patients may originate in the unique genetic and epigenetic make-up of each individual. The critical element in the current trend of personalized medicine is the proper comprehension of causes and mechanisms contributing to the low or lack of sensitivity of tumor tissue to 5-FU-based therapy. The identification and validation of predictive biomarkers for existing 5-FU-based and new targeted therapies for CRC treatment will likely improve patients' outcomes in the future. Herein we present a comprehensive review summarizing options of CRC treatment and the mechanisms of 5-FU action at the molecular level, including both anabolic and catabolic ways. The main part of this review comprises the currently known molecular mechanisms underlying the chemoresistance in CRC patients. We also focus on various 5-FU pro-drugs developed to increase the amount of circulating 5-FU and to limit toxicity. Finally, we propose future directions of personalized CRC therapy according to the latest published evidence.
Collapse
Affiliation(s)
- Sona Vodenkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic; Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruska 2411/87, 100 00 Prague, Czech Republic
| | - Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 140 59 Prague, Czech Republic
| | - Klara Cervena
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
| | - Veronika Veskrnova
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 140 59 Prague, Czech Republic
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic.
| |
Collapse
|
23
|
Chen P, Feng Y, Zhang H, Shi X, Li B, Ju W, Yu X, Zhang N, Luo X. MicroRNA‑192 inhibits cell proliferation and induces apoptosis in human breast cancer by targeting caveolin 1. Oncol Rep 2019; 42:1667-1676. [PMID: 31485620 PMCID: PMC6775803 DOI: 10.3892/or.2019.7298] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 01/25/2019] [Indexed: 12/11/2022] Open
Abstract
It has been demonstrated that microRNA-192 (miR-192) serves important roles in different cancer types, including breast cancer, prostate cancer and colorectal cancer. However, its biological role and function in breast cancer remains largely unknown. The present study aimed to determine the role of miR-192 in breast cancer. In the present study, one normal breast and two breast tumor cells lines were used, which included the normal mammary fibroblast cell line Hs578Bst, a more aggressive breast tumor cell line MDA-MB-231 and a less aggressive breast tumor cell line MCF-7. The effect of miR-192 on proliferation of breast cancer cells was detected with an MTT assay. Western blot analysis was performed to determine protein expression of caveolin 1 (CAV1). A lentiviral vector that overexpresses pre-miR-192 and control lentiviral packaging plasmids were used in the present study. The Student's t-test was performed to analyze the significance of differences between samples. In the present study, it was determined that the expression of miR-192 is downregulated in breast cancer, compared with the adjacent normal tissues. Overexpression of miR-192 significantly inhibited cell proliferation, and induced cell apoptosis and cell cycle arrest in MCF7 and MDA-MB-231 cells. Using a bioinformatics method, CAV1 was considered a potential target of miR-192. Furthermore, it was demonstrated that CAV1 is a direct target of miR-192 and its protein expression is negatively regulated by miR-192. Therefore, the present study demonstrated that miR-192 serves an important role as a regulator in breast cancer and the miR-192/CAV1 axis has a potential as a therapeutic target for treatment of breast cancer.
Collapse
Affiliation(s)
- Pinjia Chen
- Department of Oncology, The Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang, Henan 471000, P.R. China
| | - Yun Feng
- Surgical Department, The Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang, Henan 471000, P.R. China
| | - Haige Zhang
- Department of Oncology, The Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang, Henan 471000, P.R. China
| | - Xinpeng Shi
- Department of Oncology, The Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang, Henan 471000, P.R. China
| | - Bin Li
- Department of Oncology, The Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang, Henan 471000, P.R. China
| | - Wencui Ju
- Department of Oncology, The Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang, Henan 471000, P.R. China
| | - Xiurong Yu
- Department of Oncology, The Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang, Henan 471000, P.R. China
| | - Nan Zhang
- Department of Oncology, The Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang, Henan 471000, P.R. China
| | - Xiaoyong Luo
- Department of Oncology, The Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang, Henan 471000, P.R. China
| |
Collapse
|
24
|
Quan X, Li X, Yin Z, Ren Y, Zhou B. p53/miR-30a-5p/ SOX4 feedback loop mediates cellular proliferation, apoptosis, and migration of non-small-cell lung cancer. J Cell Physiol 2019; 234:22884-22895. [PMID: 31124131 DOI: 10.1002/jcp.28851] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/31/2022]
Abstract
Many microRNAs (miRNAs) play vital roles in the tumorigenesis and development of cancers. In this study, we aimed to identify the differentially expressed miRNAs and their specific mechanisms in non-small-cell lung cancer (NSCLC). Based on data from the GSE56036 database, miR-30a-5p expression was identified to be downregulated in NSCLC. Further investigations showed that overexpression of miR-30a-5p inhibited cell proliferation, migration, and promoted apoptosis in NSCLC. Increase of miR-30a-5p level could induce the increase of Bax protein level and decrease of Bcl-2 protein level. In addition, chromatin immunoprecipitation assays showed that miR-30a-5p expression was induced by binding of p53 to the promoter of MIR30A. Bioinformatics prediction indicated that miR-30a-5p targets SOX4, and western blot analysis indicated that overexpression of the miRNA decreases the SOX4 protein expression level, which in turn regulated the level of p53. Thus, this study provides evidence for the existence of a p53/miR-30a-5p/SOX4 feedback loop, which likely plays a key role in the regulation of proliferation, apoptosis, and migration in NSCLC, highlighting a new therapeutic target.
Collapse
Affiliation(s)
- Xiaowei Quan
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Department of Education, Liaoning, China
| | - Xuelian Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Department of Education, Liaoning, China
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Department of Education, Liaoning, China
| | - Yangwu Ren
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Department of Education, Liaoning, China
| | - Baosen Zhou
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Department of Education, Liaoning, China
| |
Collapse
|
25
|
Zhang J, Knight R, Wang Y, Sawyer TW, Martyniuk CJ, Langlois VS. Hair follicle miRNAs: a novel biomarker for primary blast Induced-Mild traumatic brain injury. Biomarkers 2018; 24:166-179. [DOI: 10.1080/1354750x.2018.1531929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jing Zhang
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada
| | - Rosalinda Knight
- Canadian River Institute, University of New Brunswick, Fredericton, NB, Canada
| | - Yushan Wang
- Suffield Research Centre, Defence Research and Development Canada, Medicine Hat, AB, Canada
| | - Thomas W. Sawyer
- Suffield Research Centre, Defence Research and Development Canada, Medicine Hat, AB, Canada
| | | | - Valérie S. Langlois
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada
| |
Collapse
|
26
|
Wang YC, Yang X, Wei WB, Xu XL. Role of microRNA-21 in uveal melanoma cell invasion and metastasis by regulating p53 and its downstream protein. Int J Ophthalmol 2018; 11:1258-1268. [PMID: 30140627 DOI: 10.18240/ijo.2018.08.03] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/24/2018] [Indexed: 01/29/2023] Open
Abstract
AIM To reveal the insight mechanism of liver metastasis in uveal melanoma, we investigated cell functions of microRNA-21 in three different uveal melanoma cell lines and analyze the relationship of target gene p53 and its downstream targets. METHODS Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect microRNA-21 expression in normal uveal tissue and uveal melanoma cell lines. Lenti-virus expression system was used to construct OCM-1, MuM-2B and M619 cell line with stable overexpression and inhibition of microRNA-21. In vitro cell function tests such as cell proliferation, cell apoptosis, cell circle and abilities of migration and invasion were examined by MTT, BrdU assay, flow cytometry, transwell assay and Matrigel invasion assay respectively. The target gene was predicted by bioinformatics and confirmed by using a dual luciferase reporter assay. The expression of p53 and its suspected downstream targets LIM and SH3 protein 1 (LASP1) and glutathione S transferase pi (GST-Pi) were determined by qRT-PCR in mRNA level and Western blotting analysis in protein level. Finally, the effect of microRNA-21 in a xenograft tumor model was assessed in four-week-old BALB/c nude mice. RESULTS Compared to normal uveal melanoma, expressions of microRNA-21 were significantly higher in uveal melanoma cell lines. Overexpression of microRNA-21 promoted proliferation, migration, and invasion of OCM-1, M619 and MuM-2B cells, while inhibition of microRNA-21 reveal opposite effects. Wild type p53 was identified as a target gene of microRNA-21-3p, and proved by dual luciferase reporter assay. Up-regulated microRNA-21 inhibited the expression of wild type p53 gene, and the increased expression of LASP1 in mRNA level and protein level, while down-regulated microRNA-21 presented opposite way. However, GST-pi showed the potential pattern as expected, but relative mRNA level showed no statistically significant difference in OCM-1 cells. Furthermore, the mRNA expression of GST-pi was decreased in microRNA-21 overexpressing MuM-2B, and increased in M619 cells with inhibition of microRNA-21. In vivo, inhibition of microRNA-21 reduced tumor growth with statistically significant difference. CONCLUSION These findings provide novel insight into molecular etiology of microRNA-21 in uveal melanoma cell lines, and suggest that microRNA-21 might be a potential candidate for the diagnosis and prognostic factor of human uveal melanoma.
Collapse
Affiliation(s)
- Ying-Chih Wang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xuan Yang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Wen-Bin Wei
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xiao-Lin Xu
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
27
|
Splicing factors as regulators of miRNA biogenesis – links to human disease. Semin Cell Dev Biol 2018; 79:113-122. [DOI: 10.1016/j.semcdb.2017.10.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 12/16/2022]
|
28
|
Hua K, Chen YT, Chen CF, Tang YS, Huang TT, Lin YC, Yeh TS, Huang KH, Lee HC, Hsu MT, Chi CW, Wu CW, Lin CH, Ping YH. MicroRNA-23a/27a/24-2 cluster promotes gastric cancer cell proliferation synergistically. Oncol Lett 2018; 16:2319-2325. [PMID: 30008935 PMCID: PMC6036456 DOI: 10.3892/ol.2018.8924] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 11/02/2017] [Indexed: 12/19/2022] Open
Abstract
Previous studies have indicated that certain microRNAs (miRNAs/miRs) function as either tumor suppressors or oncogenes in human cancer. The present study identified the miR-23a/27a/24-2 cluster, containing miR-23, miR-27a and miR-24, as an oncogene in gastric cancer. The expression of the miR-23a/27a/24-2 cluster was upregulated in clinical gastric cancer tissues. Transfection with inhibitors of miR-23a, miR-27a, or miR-24, either independently or together, repressed in vitro colony formation and in vivo tumor formation. The miR23a/27a/24-2 cluster inhibitors repressed the growth of gastric cancer cells in a synergistic manner. In addition, treatment with lower doses of the miRNA inhibitor mixture induced the formation of apoptotic bodies. According to computational predictions using TargetScan, suppressor of cytokine-induced signaling 6 (SOCS6) was identified as one of the downstream target genes of the miR-23a/27a/24-2 cluster. The expression of SOCS6 was significantly lower in tumor tissues than in matched normal tissues (P<0.01) and was associated with poor survival (P<0.00001). Taken together, these results strongly suggested that the miR-23a/27a/24-2 cluster may mediate the progression of gastric cancer through the suppression of SOCS6 expression. The present study also provides a novel molecular target for the development of an anti-gastric cancer agent.
Collapse
Affiliation(s)
- Kate Hua
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,VYM Genome Research Center, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Yu-Ting Chen
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Chian-Feng Chen
- VYM Genome Research Center, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Ya-Syuan Tang
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Tzu-Ting Huang
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,Department of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Yu-Cheng Lin
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Tien-Shun Yeh
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,Department of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Kuo-Hung Huang
- Department of Surgery, Taipei Veterans General Hospital, Taipei 11221, Taiwan, R.O.C.,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Ming-Ta Hsu
- VYM Genome Research Center, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Chin-Wen Chi
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,Department of Medical Research, Taipei Veterans General Hospital, Taipei 11221, Taiwan, R.O.C
| | - Chew-Wun Wu
- Department of Surgery, Taipei Veterans General Hospital, Taipei 11221, Taiwan, R.O.C
| | - Chi-Hung Lin
- VYM Genome Research Center, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Yueh-Hsin Ping
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,VYM Genome Research Center, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| |
Collapse
|
29
|
Cao C, Li L, Li H, He X, Wu G, Yu X. Cyclic biaxial tensile strain promotes bone marrow-derived mesenchymal stem cells to differentiate into cardiomyocyte-like cells by miRNA-27a. Int J Biochem Cell Biol 2018; 99:125-132. [PMID: 29627440 DOI: 10.1016/j.biocel.2018.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022]
Abstract
A physical stimuli, it has been reported that cyclic tensile strain can promote bone marrow-derived mesenchymal stem cells (BMSCs) to differentiate into cardiomyocytes, but the underlying mechanisms have been poorly elucidated so far. Here, we used a mimicking loading strain, cyclic biaxial tensile strain (CBTS), and found it can promote BMSCs to differentiate into cardiomyocytes. When the CBTS were loaded, the cells expressed cardiac-specific markers GATA4, TNNT2, MEF-2c, and Cx43, meanwhile we found miR-27a decreased and stem cell factor (SCF) increased. When we overexpressed miR-27a, the cardiac-specific markers were down-regulated; we got the same results when SCF was knocked down by siRNA. Interestingly, we found SCF is a potential target of miR-27a by a bioinformatic analysis. So, we overexpressed miR-27a, and found SCF decreased both in mRNA and protein level. And, When miR-27a was co-transfected with SCF-3'UTR, it significantly reduced the luciferase activity, but not when co-transfected with SCF-3'UTR mutation plasmid. Furthermore, after transfected both miR-27a and SCF siRNA, and the protein expression of the markers were more down-regulated than that of single of them. Taken together, we found CBTS can promote BMSCs to differentiate into cardiomyocytes, and miR-27a functions as a mechano-sensitive miRNA in this process by targeting SCF.
Collapse
Affiliation(s)
- Chengjian Cao
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, West China Center of Medical Sciences, Sichuan University, Chengdu, 610041 Sichuan, PR China
| | - Liang Li
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, West China Center of Medical Sciences, Sichuan University, Chengdu, 610041 Sichuan, PR China.
| | - Huiming Li
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, West China Center of Medical Sciences, Sichuan University, Chengdu, 610041 Sichuan, PR China
| | - Xueling He
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, West China Center of Medical Sciences, Sichuan University, Chengdu, 610041 Sichuan, PR China
| | - Geng Wu
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, West China Center of Medical Sciences, Sichuan University, Chengdu, 610041 Sichuan, PR China
| | - Xiaoqin Yu
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, West China Center of Medical Sciences, Sichuan University, Chengdu, 610041 Sichuan, PR China
| |
Collapse
|
30
|
Evert J, Pathak S, Sun XF, Zhang H. A Study on Effect of Oxaliplatin in MicroRNA Expression in Human Colon Cancer. J Cancer 2018; 9:2046-2053. [PMID: 29896290 PMCID: PMC5995942 DOI: 10.7150/jca.24474] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/14/2018] [Indexed: 12/26/2022] Open
Abstract
Colorectal cancer is a commonly diagnosed malignancy and also the major cause of death worldwide. Chemotherapy is the primary therapy for advanced colorectal cancer. Although oxaliplatin has potential effect in colorectal cancer therapy, the molecular mechanisms involved in its cytotoxic effects are not well elucidated. This study outlines the regulatory effects of oxaliplatin on miRNAs expression in colon cancer cells and correlates it with the changing microRNA expression with p53 and p73 expression status in cells. HCT116p53+/+ and HCT116p53-/- cells were exposed to oxaliplatin, and the cellular viability was determined by XTT. p73 was knocked down using siRNA and the tumor cells were then treated with oxaliplatin. The expression profile of 384 miRNAs was determined by TaqMan® human miRNA array and calculated by the ∆∆Ct method. Cellular viability was found to decrease after the treatment with oxaliplatin in a dose-dependent manner. The wild-type p53 cells were found to be more sensitive than the null-p53 derivatives. A selective set of miRNAs were either up-regulated or down-regulated in response to the oxaliplatin treatment with a presumable role of p53 and p73 proteins. The miRNAs expression is known to influence the pharmacodynamic mechanisms of oxaliplatin and these effects have been observed to be regulated by p53 and p73. Our results may therefore provide more evidence for identifying a suitable biomarker for the diagnosis of colon cancer.
Collapse
Affiliation(s)
- Jasmine Evert
- School of Medical Sciences, Örebro University, SE 70182 Örebro, Sweden
| | - Surajit Pathak
- Department of Oncology and Department of Clinical and Experimental Medicine, SE-581 83, Linköping University, Linköping, Sweden.,Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, India, 603 103
| | - Xiao-Feng Sun
- Department of Oncology and Department of Clinical and Experimental Medicine, SE-581 83, Linköping University, Linköping, Sweden
| | - Hong Zhang
- School of Medical Sciences, Örebro University, SE 70182 Örebro, Sweden
| |
Collapse
|
31
|
di Gennaro A, Damiano V, Brisotto G, Armellin M, Perin T, Zucchetto A, Guardascione M, Spaink HP, Doglioni C, Snaar-Jagalska BE, Santarosa M, Maestro R. A p53/miR-30a/ZEB2 axis controls triple negative breast cancer aggressiveness. Cell Death Differ 2018; 25:2165-2180. [PMID: 29666469 PMCID: PMC6262018 DOI: 10.1038/s41418-018-0103-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 02/20/2018] [Accepted: 03/09/2018] [Indexed: 12/16/2022] Open
Abstract
Inactivation of p53 contributes significantly to the dismal prognosis of breast tumors, most notably triple-negative breast cancers (TNBCs). How the relief from p53 tumor suppressive functions results in tumor cell aggressive behavior is only partially elucidated. In an attempt to shed light on the implication of microRNAs in this context, we discovered a new signaling axis involving p53, miR-30a and ZEB2. By an in silico approach we identified miR-30a as a putative p53 target and observed that in breast tumors reduced miR-30a expression correlated with p53 inactivation, lymph node positivity and poor prognosis. We demonstrate that p53 binds the MIR30A promoter and induces the transcription of both miRNA strands 5p and 3p. Both miR-30a-5p and -3p showed the capacity of targeting ZEB2, a transcription factor involved in epithelial–mesenchymal transition (EMT), tumor cell migration and drug resistance. Intriguingly, we found that p53 does restrain ZEB2 expression via miR-30a. Finally, we provide evidence that the new p53/miR-30a/ZEB2 axis controls tumor cell invasion and distal spreading and impinges upon miR-200c expression. Overall, this study highlights the existence of a novel axis linking p53 to EMT via miR-30a, and adds support to the notion that miRNAs represent key elements of the complex network whereby p53 inactivation affects TNBC clinical behavior.
Collapse
Affiliation(s)
- Alessandra di Gennaro
- Oncogenetics and Functional Oncogenomics Unit, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy
| | - Valentina Damiano
- Oncogenetics and Functional Oncogenomics Unit, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy
| | - Giulia Brisotto
- Oncogenetics and Functional Oncogenomics Unit, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy
| | - Michela Armellin
- Oncogenetics and Functional Oncogenomics Unit, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy
| | - Tiziana Perin
- Pathology Unit, CRO Aviano National Cancer Institute, Aviano (PN), via F. Gallini 2, Aviano, 33081, PN, Italy
| | - Antonella Zucchetto
- Unit of Cancer Epidemiology, CRO Aviano National Cancer Institute, Aviano (PN) via F. Gallini 2, Aviano, 33081, PN, Italy
| | - Michela Guardascione
- Medical Oncology Unit, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy
| | - Herman P Spaink
- Molecular Cell Biology Department, Institute of Biology, Leiden University, Leiden, 2333CC, The Netherlands
| | - Claudio Doglioni
- Ateneo Vita-Salute, Department of Pathology, IRCCS Scientific Institute San Raffaele, Milan, 20132, Italy
| | - B Ewa Snaar-Jagalska
- Molecular Cell Biology Department, Institute of Biology, Leiden University, Leiden, 2333CC, The Netherlands
| | - Manuela Santarosa
- Oncogenetics and Functional Oncogenomics Unit, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy.
| | - Roberta Maestro
- Oncogenetics and Functional Oncogenomics Unit, CRO Aviano National Cancer Institute, via F. Gallini 2, Aviano, 33081, PN, Italy.
| |
Collapse
|
32
|
Huang Q, Ma Q. MicroRNA-106a inhibits cell proliferation and induces apoptosis in colorectal cancer cells. Oncol Lett 2018; 15:8941-8944. [PMID: 29805629 PMCID: PMC5958685 DOI: 10.3892/ol.2018.8516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/09/2017] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) regulate mammalian cell growth, differentiation and apoptosis by altering the expression of other genes, and serve multiple roles in tumorigenesis and progression. miR-106a has been implicated in several types of malignancies. However, its role in colorectal cancer (CRC) remains unknown. The present study reported that in this particular cancer, miR-106a exhibits a tumor suppressive role. It was demonstrated that the high expression of miR-106a in CRC cells is negatively associated with E2F transcription factor 1 protein level and positively associated with caspase activation, suggesting a potential molecular switch.
Collapse
Affiliation(s)
- Qinghua Huang
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qunying Ma
- Department of Gastroenterology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| |
Collapse
|
33
|
Cui J, Gong C, Cao B, Li L. MicroRNA-27a participates in the pathological process of depression in rats by regulating VEGFA. Exp Ther Med 2018; 15:4349-4355. [PMID: 29731825 PMCID: PMC5921192 DOI: 10.3892/etm.2018.5942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/19/2018] [Indexed: 12/19/2022] Open
Abstract
The present study aimed to determine the expression of vascular endothelial growth factor A (VEGFA) and microRNA (miRNA/miR)-27a in hippocampal tissues, and serum from a depression model of rats. In addition, the present study aimed to understand the mechanism of regulation of miR-27a in depression. A total of 40 male rats were selected, and divided into the control and depression model groups. The rats in the model group were subjected to 14 types of stimulations to model depression. By determining the body weight, syrup consumption rate and open field test score, the extent of depression in the rats was evaluated. Quantitative-polymerase chain reaction was used to determine the expression of VEGFA mRNA and miR-27a in hippocampal tissues, and serum. ELISA was used to measure the content of VEGFA protein in serum, while western blotting was employed to determine the expression of VEGFA protein in hippocampal tissues. A dual luciferase assay was carried out to identify the interactions between VEGFA mRNA and miR-27a. The rats in the depression model group showed depression symptoms and the depression model was successfully constructed. Rats with depression had lower VEGFA mRNA and protein expression in the hippocampus, and peripheral blood compared with the control group. Rats in the depression model group had reduced levels of miR-27a in the hippocampus and peripheral blood, which may be associated with the levels of VEGFA. miR-27a was able to bind with the 3′-untranslated region of VEGFA mRNA to regulate its expression. The present study demonstrated that miR-27a expression in hippocampal tissues and blood from rats with depression is upregulated, while the expression of VEGFA mRNA and protein is downregulated. miR-27a may participate in the pathological process of depression in rats by regulating VEGFA.
Collapse
Affiliation(s)
- Jian Cui
- Department of Psychiatry, Jining Psychiatric Hospital, Jining, Shandong 272051, P.R. China
| | - Cunqi Gong
- Department of Psychiatry, Zaozhuang Mental Health Center, Zaozhuang, Shandong 277100, P.R. China
| | - Baorui Cao
- Department of Psychiatry, Zaozhuang Mental Health Center, Zaozhuang, Shandong 277100, P.R. China
| | - Longfei Li
- Department of Psychiatry, Jining Psychiatric Hospital, Jining, Shandong 272051, P.R. China
| |
Collapse
|
34
|
Xi Y, Formentini A, Chien M, Weir DB, Russo JJ, Ju J, Kornmann M, Ju J. Prognostic Values of microRNAs in Colorectal Cancer. Biomark Insights 2017. [DOI: 10.1177/117727190600100009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The functions of non-coding microRNAs (miRNAs) in tumorigenesis are just beginning to emerge. Previous studies from our laboratory have identified a number of miRNAs that were deregulated in colon cancer cell lines due to the deletion of the p53 tumor suppressor gene. In this study, the in vivo significance of some of these miRNAs was further evaluated using colorectal clinical samples. Ten miRNAs ( hsa-let-7b, hsa-let-7g, hsa-miR-15b, hsa-miR-181b, hsa-miR-191, hsa-miR-200c, hsa-miR-26a, hsa-miR-27a, hsa-miR-30a-5p and hsa-miR-30c) were evaluated for their potential prognostic value in colorectal cancer patients. Forty eight snap frozen clinical colorectal samples (24 colorectal cancer and 24 paired normal patient samples) with detailed clinical follow-up information were selected. The expression levels of 10 miRNAs were quantified via qRT-PCR analysis. The statistical significance of these markers for disease prognosis was evaluated using a two tailed paired Wilcoxon test. A Kaplan-Meier survival curve was generated followed by performing a Logrank test. Among the ten miRNAs, hsa-miR-15b (p = 0.0278), hsa-miR-181b (p = 0.0002), hsa-miR-191 (p = 0.0264) and hsa-miR-200c (p = 0.0017) were significantly over-expressed in tumors compared to normal colorectal samples. Kaplan-Meier survival analysis indicated that hsa-miR-200c was significantly associated with patient survival (p = 0.0122). The patients (n = 15) with higher hsa-miR-200c expression had a shorter survival time (median survival = 26 months) compared to patients (n = 9) with lower expression (median survival = 38 months). Sequencing analysis revealed that hsa-miR-181b (p = 0.0098) and hsa-miR-200c (p = 0.0322) expression were strongly associated with the mutation status of the p53 tumor suppressor gene. Some of these miRNAs may function as oncogenes due to their over-expression in tumors. hsa-miR-200c may be a potential novel prognostic factor in colorectal cancer.
Collapse
Affiliation(s)
- Yaguang Xi
- The Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36688
| | - Andrea Formentini
- Department of Visceral and Transplantation Surgery, University of Ulm, Steinhoevelstrasse 9, 89075 Ulm, Germany
| | - Minchen Chien
- Columbia Genome Center, Columbia University, New York, NY, 10032
| | - David B. Weir
- Columbia Genome Center, Columbia University, New York, NY, 10032
| | - James J. Russo
- Columbia Genome Center, Columbia University, New York, NY, 10032
| | - Jingyue Ju
- Columbia Genome Center, Columbia University, New York, NY, 10032
| | - Marko Kornmann
- Department of Visceral and Transplantation Surgery, University of Ulm, Steinhoevelstrasse 9, 89075 Ulm, Germany
| | - Jingfang Ju
- The Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36688
| |
Collapse
|
35
|
Heider T, Mutschelknaus L, Radulović V, Winkler K, Kimmel J, Anastasov N, Atkinson MJ, Moertl S. Radiation induced transcriptional and post-transcriptional regulation of the hsa-miR-23a ~ 27a ~ 24-2 cluster suppresses apoptosis by stabilizing XIAP. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:1127-1137. [DOI: 10.1016/j.bbagrm.2017.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/01/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022]
|
36
|
Overaccumulation of p53-mediated autophagy protects against betulinic acid-induced apoptotic cell death in colorectal cancer cells. Cell Death Dis 2017; 8:e3087. [PMID: 28981110 PMCID: PMC5682653 DOI: 10.1038/cddis.2017.485] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 12/18/2022]
Abstract
Betulinic acid (BA) exhibits cytotoxic activity against some cancer cells. However, the molecular mechanism of BA against CRC cells was little reported. Here, we proved that BA elicited CRC cells' growth inhibition and apoptosis in a dose-dependent manner. In addition, BA treatment induced autophagy via inhibiting the AKT-MTOR signaling pathway. Inhibition of autophagy by either administration of autophagic inhibitor chloroquine or siRNA-mediated knockdown of ATG5 could augment BA-induced apoptotic cell death as well as inhibition of cell proliferation. Moreover, we found that p53 was firstly activated by short exposure to BA and then was rapidly degraded via the ubiquitin-mediated degradation pathway in both wtp53 and mutp53 CRC cells. Notably, more preferential cytotoxicity of BA was obtained in mutp53 cells (IC50 values: HT29, 125 μM; SW480, 58 μM) rather than wtp53 cells (IC50 values: HCT116, 178 μM). Further experiments demonstrated that siRNA-mediated p53 knockdown attenuated BA-induced autophagy, and forced overexpression of p53 augmented BA-induced autophagy, indicating that p53-enhanced BA-induced autophagy. Moreover, BA enhanced the sensitivity of mutp53 cells to chemotherapy drugs such as 5-FU and ADR by degradation of mutp53. Overall, our study proved that BA could induce CRC cell death by inducing apoptosis and reduce the overaccumulation of BA-induced protective autophagy by degrading wtp53 and mutp53 dependent on the ubiquitin-mediated degradation pathway to achieve killer effect, suggesting that BA might serve as a novel desirable drug for mutp53 cancer therapy.
Collapse
|
37
|
Xi Y, Edwards JR, Ju J. Investigation of miRNA Biology by Bioinformatic Tools and Impact of miRNAs in Colorectal Cancer—Regulatory Relationship of c-Myc and p53 with miRNAs. Cancer Inform 2017. [DOI: 10.1177/117693510700300011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that mediate gene expression at the post-transcriptional and translational levels and have been demonstrated to be involved in diverse biological functions. Mounting evidence in recent years has shown that miRNAs play key roles in tumorigenesis due to abnormal expression of and mutations in miRNAs. High throughput miRNA expression profiling of several major tumor types has identified miRNAs associated with clinical diagnosis and prognosis of cancer treatment. Previously our group has discovered a novel regulatory relationship between tumor suppressor gene p53 with miRNAs expression and a number of miRNA promoters contain putative p53 binding sites. In addition, others have reported that c-myc can mediate a large number of miRNAs expression. In this review, we will emphasize algorithms to identify mRNA targets of miRNAs and the roles of miRNAs in colorectal cancer. In particular, we will discuss a novel regulatory relationship of miRNAs with tumor suppressor p53 and c-myc. miRNAs are becoming promising novel targets and biomarkers for future cancer therapeutic development and clinical molecular diagnosis.
Collapse
Affiliation(s)
- Yaguang Xi
- Cancer Genomics Laboratory, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36688, USA
| | - John R. Edwards
- Laboratory of DNA Sequencing and Chemical Biology, Columbia Genome Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jingfang Ju
- Cancer Genomics Laboratory, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
38
|
Sayadi M, Ajdary S, Nadali F, Rostami S, Edalati Fahtabad M. Tumor suppressive function of microRNA-192 in acute lymphoblastic leukemia. Bosn J Basic Med Sci 2017; 17:248-254. [PMID: 28488550 DOI: 10.17305/bjbms.2017.1921] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 11/16/2022] Open
Abstract
Non-coding RNAs play a critical role in gene regulation in cancer cells. Reduced expression of microRNA-192 (miR-192) has been detected in many cancers. In this study, we investigated the role of miR-192 in cell proliferation and cell cycle control in NALM-6 cell line, a model of acute lymphoblastic leukemia (ALL). Cell cycle analysis by DNA content using propidium iodide staining and cell apoptosis analysis using Annexin V assay were carried out. Cell proliferation changes were monitored using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. In addition, the relative changes in P53, BAX, CASP3, and BCL-2 gene expression were determined by quantitative reverse transcription PCR. Overexpression of miR-192 resulted in cell proliferation arrest in ALL cells. After 72 and 96 hours of transduction, apoptosis was significantly increased in the cells transduced with miR-192-overexpressing virus compared with control cells. The expression of P53, BAX, and CASP3 increased after 48 hours of transduction in miR-192-overexpressing cells, but no change was observed in BCL-2 expression. The G0/S and G1/S ratio changed to 7.5 and 4.5, respectively, in the cells overexpressing miR-192 compared with controls. The results of our study suggest, for the first time, tumor suppressive effects of miR-192 in ALL cells.
Collapse
Affiliation(s)
- Mahtab Sayadi
- Department of Hematology, Allied Medical School, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | |
Collapse
|
39
|
Fesler A, Guo S, Liu H, Wu N, Ju J. Overcoming chemoresistance in cancer stem cells with the help of microRNAs in colorectal cancer. Epigenomics 2017; 9:793-796. [DOI: 10.2217/epi-2017-0041] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
It has been recognized that acute resistance to chemotherapy mediated by post-transcriptional and translational control is crucial to influence response and survival in cancer treatment. Tumor cells are highly heterogeneous and have the ability to adapt a resistance phenotype through epigenetic regulations such as microRNAs. This poses a major challenge to the treatment of advanced stage colon cancer patients. Colon cancer stem cells have been identified as one of the major contributors to resistance of colon cancer to chemotherapy. Through various mechanisms, these cells are able to resist the effects of traditional chemotherapeutics. The challenge posed by these cells is further enhanced by their plastic nature, where cells can transition between non-stem cancer cells and cancer stem cells creating a moving target. In this editorial, we discuss some of the recent advancements in overcoming chemoresistance associated with colon cancer stem cells with the help of microRNAs.
Collapse
Affiliation(s)
- Andrew Fesler
- Department of Pathology, Stony Brook University, School of Medicine, Stony Brook, New York, 11794 NY, USA
| | - Shixiang Guo
- Department of Pathology, Stony Brook University, School of Medicine, Stony Brook, New York, 11794 NY, USA
| | - Hua Liu
- Department of Pathology, Stony Brook University, School of Medicine, Stony Brook, New York, 11794 NY, USA
| | - Ning Wu
- Department of Pathology, Stony Brook University, School of Medicine, Stony Brook, New York, 11794 NY, USA
| | - Jingfang Ju
- Department of Pathology, Stony Brook University, School of Medicine, Stony Brook, New York, 11794 NY, USA
| |
Collapse
|
40
|
Colorectal Cancer: From the Genetic Model to Posttranscriptional Regulation by Noncoding RNAs. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7354260. [PMID: 28573140 PMCID: PMC5442347 DOI: 10.1155/2017/7354260] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/16/2017] [Indexed: 12/11/2022]
Abstract
Colorectal cancer is the third most common form of cancer in developed countries and, despite the improvements achieved in its treatment options, remains as one of the main causes of cancer-related death. In this review, we first focus on colorectal carcinogenesis and on the genetic and epigenetic alterations involved. In addition, noncoding RNAs have been shown to be important regulators of gene expression. We present a general overview of what is known about these molecules and their role and dysregulation in cancer, with a special focus on the biogenesis, characteristics, and function of microRNAs. These molecules are important regulators of carcinogenesis, progression, invasion, angiogenesis, and metastases in cancer, including colorectal cancer. For this reason, miRNAs can be used as potential biomarkers for diagnosis, prognosis, and efficacy of chemotherapeutic treatments, or even as therapeutic agents, or as targets by themselves. Thus, this review highlights the importance of miRNAs in the development, progression, diagnosis, and therapy of colorectal cancer and summarizes current therapeutic approaches for the treatment of colorectal cancer.
Collapse
|
41
|
Shen H, Xing C, Cui K, Li Y, Zhang J, Du R, Zhang X, Li Y. MicroRNA-30a attenuates mutant KRAS-driven colorectal tumorigenesis via direct suppression of ME1. Cell Death Differ 2017; 24:1253-1262. [PMID: 28475173 DOI: 10.1038/cdd.2017.63] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/25/2017] [Accepted: 04/03/2017] [Indexed: 12/17/2022] Open
Abstract
Frequent KRAS mutations contribute to multiple cancers including ~40% of human colorectal cancers (CRCs). Systematic screening of 1255 microRNAs (miRNAs) identified miR-30a as a synthetic lethal in KRAS-mutant CRC cells. miR-30a was downregulated in CRCs and repressed by P65. miR-30a directly targeted malic enzyme 1 (ME1) and KRAS, and inhibited anchorage-independent growth and in vivo tumorigenesis by KRAS-mutant CRC cells. ME1 was significantly upregulated in KRAS-mutant CRCs. Eliminating ME1 by short hairpin RNA (shRNA) resulted in obviously decreased NADPH production, levels of triglyceride and fatty acid, and an inhibition of tumorigenicity of KRAS-mutant CRCs. miR-30a overexpression and ME1 suppression attenuated AOM/DSS-induced colorectal tumorigenesis. The critical roles of miR-30a and ME1 in the development of KRAS-mutant CRCs indicate therapy potentials for this subtype of cancer.
Collapse
Affiliation(s)
- Hongxing Shen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Chuan Xing
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Kaisa Cui
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Yunxiao Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Jinxiang Zhang
- Department of Surgery, Wuhan Union Hospital, Wuhan 430022, China
| | - Runlei Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaodong Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Youjun Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| |
Collapse
|
42
|
Shetty SK, Tiwari N, Marudamuthu AS, Puthusseri B, Bhandary YP, Fu J, Levin J, Idell S, Shetty S. p53 and miR-34a Feedback Promotes Lung Epithelial Injury and Pulmonary Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1016-1034. [PMID: 28273432 DOI: 10.1016/j.ajpath.2016.12.020] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/22/2016] [Accepted: 12/27/2016] [Indexed: 12/14/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease. The pathogenesis of interstitial lung diseases, including its most common form, IPF, remains poorly understood. Alveolar epithelial cell (AEC) apoptosis, proliferation, and accumulation of myofibroblasts and extracellular matrix deposition results in progressive loss of lung function in IPF. We found induction of tumor suppressor protein, p53, and apoptosis with suppression of urokinase-type plasminogen activator (uPA) and the uPA receptor in AECs from the lungs of IPF patients, and in mice with bleomycin, cigarette smoke, silica, or sepsis-induced lung injury. Treatment with the caveolin-1 scaffolding domain peptide (CSP) reversed these effects. Consistent with induction of p53, AECs from IPF lungs or mice with diverse types of lung injuries showed increased p53 acetylation and miR-34a expression with reduction in Sirt1. This was significantly reduced after treatment of wild-type mice with CSP, and uPA-deficient mice were unresponsive. Bleomycin failed to induce miR-34a in p53- or plasminogen activator inhibitor-1 (PAI-1)-deficient mice. CSP-mediated inhibition of miR-34a restored Sirt1, suppressed p53 acetylation and apoptosis in injured AECs, and prevented pulmonary fibrosis (PF). AEC-specific suppression of miR-34a inhibited bleomycin-induced p53, PAI-1, and apoptosis and prevented PF, whereas overexpression of precursor-miR-34a increased p53, PAI-1, and apoptosis in AECs of mice unexposed to bleomycin. Our study validates p53-miR-34a feedback as a potential therapeutic target in PF.
Collapse
Affiliation(s)
- Shwetha K Shetty
- Department of Medicine, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Nivedita Tiwari
- Department of Medicine, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Amarnath S Marudamuthu
- Department of Medicine, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Bijesh Puthusseri
- Department of Medicine, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Yashodhar P Bhandary
- Department of Medicine, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Jian Fu
- Center for Research on Environmental Disease and Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Jeffrey Levin
- Division of Occupational Medicine, Department of Medicine, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Steven Idell
- Department of Medicine, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Sreerama Shetty
- Department of Medicine, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas.
| |
Collapse
|
43
|
miR clusters target cellular functional complexes by defining their degree of regulatory freedom. Cancer Metastasis Rev 2017; 35:289-322. [PMID: 26970968 DOI: 10.1007/s10555-016-9617-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Using the two paralog miR-23∼27∼24 clusters as an example and combining experimental and clinical data in a systematical approach to microRNA (miR) function and dysregulation, a complex picture of their roles in cancer is drawn. Various findings appear to be contradictory to a larger extent and cannot be fully explained by the classical regulatory network models and feedback loops that are mainly considered by one-to-one regulatory interactions of the involved molecules. Here, we propose an extended model of the regulatory role of miRs that, at least, supplements the usually considered single/oligo-target regulation of certain miRs. The cellular availability of the participating miR members in this model reflects an upper hierarchy level of intracellular and extracellular environmental influences, such as neighboring cells, soluble factors, hypoxia, chemotherapeutic drugs, and irradiation, among others. The novel model is based on the understanding of cellular functional complexes, such as for apoptosis, migration, and proliferation. These complexes consist of many regulatory components that can be targeted by miR cluster members to a different extent but may affect the functional complex in different ways. We propose that the final miR-related effect is a result of the possible degree of regulatory freedom provided by the miR effects on the whole functional complex structure. This degree of regulatory freedom defines to which extent the cellular functional complex can react in response to regulatory triggers, also understood as sensitization (more regulatory response options) or de-sensitization (less regulatory response options) of the system rather than single molecules.
Collapse
|
44
|
Expression analysis of microRNA as prognostic biomarkers in colorectal cancer. Oncotarget 2016; 8:52403-52412. [PMID: 28881738 PMCID: PMC5581037 DOI: 10.18632/oncotarget.14175] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/19/2016] [Indexed: 11/29/2022] Open
Abstract
microRNA (miRNA) based biomarkers have unique advantages due to their critical regulatory function, superior stability, and relatively small number compared to mRNAs. A number of miRNAs play key roles in colon cancer stem cell chemoresistance and have clinical potential as prognostic biomarkers. The purpose of this study is to systematically validate the prognostic potential of miRNAs in colorectal cancer. In this study, we validated the prognostic potential of a panel of miRNAs using 205 stage II, III, and IV colorectal cancer specimens by qRT-PCR analysis. We cross validated our results using The Cancer Genome Atlas (TCGA) database. Many of the miRNAs we investigated have been functionally validated to be important in contributing to chemoresistance to 5-fluorouracil (5-FU) based chemotherapy. We determined that miR-16 is the most consistent miRNA for expression normalization in colorectal cancer. We have validated several miRNAs (miR-15b, miR-215, miR-145, miR-192, let-7g) that are significantly associated with progression free survival (PFS) and/or overall survival (OS) of colorectal cancer patients independent of tumor stage and age at diagnosis. These 5 miRNAs are significantly associated with OS of colorectal cancer even after tumor location (left side vs. right side) is adjusted for. Furthermore, the prognostic value of let-7g for overall survival was independently validated using the RNA-Seq results from TCGA colorectal cancer database. These results, taken together, establish a solid foundation towards miRNA based precision management of colorectal cancer.
Collapse
|
45
|
Liang Z, Xi Y. MicroRNAs mediate therapeutic and preventive effects of natural agents in breast cancer. Chin J Nat Med 2016; 14:881-887. [PMID: 28262114 PMCID: PMC5521805 DOI: 10.1016/s1875-5364(17)30012-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Indexed: 01/03/2023]
Abstract
MicroRNAs (miRNAs) are a set of non-coding small RNA molecules that play a critical role in regulation of protein coding genes in cells. MiRNAs have been extensively studied as novel biomarkers, therapeutic targets, and new drugs in various human diseases. Breast cancer is a one of the leading tumor types significantly affecting women health worldwide. Over the past decade, a number of natural agents, such as paclitaxel and curcumin, have been applied for treatment and prevention of breast cancer due to their relatively low toxicity. However, the mechanisms of action have not been completely understood. Investigation on miRNAs is able to potentially provide a novel insight into better understanding the anticancer activities of these natural products. Given that a single miRNA can target multiple genes, theoretically, those genes involved in a certain phenotype can be clustered with one or a few miRNAs. Therefore, pleiotropic activities of natural agents should be interpreted by interactions between selected miRNAs and their targets. In this review, we summarize the latest publications related to the alterations of miRNAs by two natural agents (paclitaxel and curcumin) that are currently used in intervention of breast cancer, and conclude that the mechanism involving the regulation of miRNA expression is one of the keys to understand pleiotropic activities of natural agents.
Collapse
Affiliation(s)
- Zhipin Liang
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Yaguang Xi
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| |
Collapse
|
46
|
Pathak S, Meng WJ, Nandy SK, Ping J, Bisgin A, Helmfors L, Waldmann P, Sun XF. Radiation and SN38 treatments modulate the expression of microRNAs, cytokines and chemokines in colon cancer cells in a p53-directed manner. Oncotarget 2016; 6:44758-80. [PMID: 26556872 PMCID: PMC4792590 DOI: 10.18632/oncotarget.5815] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023] Open
Abstract
Aberrant expression of miRNAs, cytokines and chemokines are involved in pathogenesis of colon cancer. However, the expression of p53 mediated miRNAs, cyto- and chemokines after radiation and SN38 treatment in colon cancer remains elusive. Here, human colon cancer cells, HCT116 with wild-type, heterozygous and a functionally null p53, were treated by radiation and SN38. The expression of 384 miRNAs was determined by using the TaqMan® miRNA array, and the expression of cyto- and chemokines was analyzed by Meso-Scale-Discovery instrument. Up- or down-regulations of miRNAs after radiation and SN38 treatments were largely dependent on p53 status of the cells. Cytokines, IL-6, TNF-α, IL-1β, Il-4, IL-10, VEGF, and chemokines, IL-8, MIP-1α were increased, and IFN-γ expression was decreased after radiation, whereas, IL-6, IFN-γ, TNF-α, IL-1β, Il-4, IL-10, IL-8 were decreased, and VEGF and MIP-1α were increased after SN38 treatment. Bioinformatic analysis pointed out that the highly up-regulated miRNAs, let-7f-5p, miR-455-3p, miR-98, miR-155-5p and the down-regulated miRNAs, miR-1, miR-127-5p, miR-142-5p, miR-202-5p were associated with colon cancer pathways and correlated with cyto- or chemokine expression. These miRNAs have the potential for use in colon cancer therapy as they are related to p53, pro- or anti-inflammatory cyto- or chemokines after the radiation and SN38 treatment.
Collapse
Affiliation(s)
- Surajit Pathak
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Wen-Jian Meng
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Suman Kumar Nandy
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, West Bengal, India
| | - Jie Ping
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Atil Bisgin
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Linda Helmfors
- Department of Molecular Biotechnology/IFM, Linköping University, Linköping, Sweden
| | - Patrik Waldmann
- Department of Computer and Information Science, Linköping University, Linköping, Sweden
| | - Xiao-Feng Sun
- Department of Oncology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
47
|
Mohammadi A, Mansoori B, Baradaran B. The role of microRNAs in colorectal cancer. Biomed Pharmacother 2016; 84:705-713. [PMID: 27701052 DOI: 10.1016/j.biopha.2016.09.099] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 01/30/2023] Open
Abstract
Colorectal cancer (CRC) is still the third most common cancer in the world. Mechanism of CRC tumorigenesis has been widely studied at the molecular levels, and has been recently entered the area of microRNAs. MicroRNAs are small 19 to 22 nucleotides of RNA that engage in the regulation of cell differentiation, apoptosis, and cell cycle progression. MicroRNAs are similar to small interfering RNA (siRNA), that post-transcriptionally regulate gene expression and control various cellular mechanisms. They are important factors in the carcinogenesis of CRC, one of the most important factors includes microRNA. MicroRNAs have been linked to CRC development, and these molecules have been recently studied as new potential biomarkers in diagnosis and treatment of CRC. Specific microRNA expression patterns help distinguish CRC from other colon related disease, and may be used as a prognostication factor in patients after treatment with different chemotherapy drugs. More over the newest molecular therapy via tumor suppressor micro RNA replacement can be new insight in molecular therapy of CRC. This review summarizes the potential roles of microRNAs as potential biomarkers for CRC diagnosis, and treatment.
Collapse
Affiliation(s)
- Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
48
|
Abstract
Microarray is a high throughput discovery tool that has been broadly used for genomic research. Probe-target hybridization is the central concept of this technology to determine the relative abundance of nucleic acid sequences through fluorescence-based detection. In microarray experiments, variations of expression measurements can be attributed to many different sources that influence the stability and reproducibility of microarray platforms. Normalization is an essential step to reduce non-biological errors and to convert raw image data from multiple arrays (channels) to quality data for further analysis. In general, for the traditional microarray analysis, most established normalization methods are based on two assumptions: (1) the total number of target genes is large enough (>10,000); and (2) the expression level of the majority of genes is kept constant. However, microRNA (miRNA) arrays are usually spotted in low density, due to the fact that the total number of miRNAs is less than 2,000 and the majority of miRNAs are weakly or not expressed. As a result, normalization methods based on the above two assumptions are not applicable to miRNA profiling studies. In this review, we discuss a few representative microarray platforms on the market for miRNA profiling and compare the traditional methods with a few novel strategies specific for miRNA microarrays.
Collapse
Affiliation(s)
- Bin Wang
- Department of Mathematics and Statistics, University of South Alabama, 411 University BLVD N, Room 325, Mobile, AL 36688, USA; E-Mail:
| | - Yaguang Xi
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: 1-251-445-9857; Fax: 1-251-460-6994
| |
Collapse
|
49
|
Bhattacharyya M, Nath J, Bandyopadhyay S. Identifying significant microRNA–mRNA pairs associated with breast cancer subtypes. Mol Biol Rep 2016; 43:591-9. [DOI: 10.1007/s11033-016-4021-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 05/23/2016] [Indexed: 01/03/2023]
|
50
|
Li Y, Li J, Sun X, Chen J, Sun X, Zheng J, Chen R. MicroRNA-27a functions as a tumor suppressor in renal cell carcinoma by targeting epidermal growth factor receptor. Oncol Lett 2016; 11:4217-4223. [PMID: 27313769 DOI: 10.3892/ol.2016.4500] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 01/13/2016] [Indexed: 01/27/2023] Open
Abstract
Numerous studies have suggested that microRNAs (miRNAs) are vital in the development of various types of human cancers, including renal cell carcinoma (RCC), and the regulation of tumor progression and invasion. However, the effect of miRNA-27a (miR-27a) on the tumorigenesis of RCC is unclear. The aim of the present study was to investigate the function of miR-27a and identify its possible target genes in RCC cells. In the present study, cell proliferation, migration and invasion and the percentage of apoptotic cells were detected by methylthiazol tetrazolium assays, Annexin V analysis, wound-healing assays and Transwell invasion assays. Western blot analysis was performed to validate the protein expression level and assess whether the epidermal growth factor receptor (EGFR) was a target gene of miR-27a. A tumor xenograft animal model was used to detect the role of miR-27a on RCC cell growth in vivo. The present study demonstrated that miR-27a significantly suppressed human RCC 786-O cell proliferation and induced cell apoptosis. Restoration of miR-27 also resulted in 786-O cell migration and invasion inhibition. Furthermore, upregulated miR-27a attenuated RCC tumor growth in the tumor xenograft animal model. The present results suggested that miR-27a functions as a tumor suppressor in RCC. The western blot analysis assay revealed that EGFR was a novel target of miR-27a. The growth suppression of RCC cells was attributed partly to the downregulation of the cell cycle by ERFR inhibition. The present findings may aid in the understanding of the molecular mechanism of miR-27a in the tumorigenesis of RCC, and may provide novel diagnostic and therapeutic options for RCC.
Collapse
Affiliation(s)
- Yueyan Li
- Department of Urology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Jie Li
- Department of Urology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Xiaolei Sun
- Department of Urology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Jiacun Chen
- Department of Urology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Xiaoqing Sun
- Department of Urology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Junnian Zheng
- Department of Urology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Renfu Chen
- Department of Urology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|