1
|
Soydal C, Demir B, Celebioglu EC, Dursun E, Inal G, Kucuk NO, Bilgic MS. Assessment of Hypoxia Before Radioembolization Treatment With 18F-FMISO PET: ARTE-MISO Trial. Clin Nucl Med 2025:00003072-990000000-01687. [PMID: 40296277 DOI: 10.1097/rlu.0000000000005918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/17/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Transarterial radioembolization (TARE) is a therapeutic option for patients with liver tumors. However, factors responsible for treatment resistance in TARE remain largely unknown. In this study, we aimed to investigate the role of hypoxia in the treatment response of liver tumors using 18F-FMISO PET imaging before TARE. PATIENTS AND METHODS This single-center prospective study included 25 patients with primary or metastatic liver tumors imaged with 18F-FMISO PET/CT before TARE and treated with 90Y resin microspheres. Posttreatment response was assessed with 18F-FDG PET imaging. Hypoxia status was evaluated by calculating the tumor-to-muscle (T/M) and tumor-to-blood pool (T/BP) ratios. Absorbed dose metrics were derived from 90Y PET/MRI imaging post-procedure. Lesions were categorized by response as complete responders (CR), partial responders (PR), stable disease (SD), and progressive disease (PD). Statistical analyses included ROC curve analysis, χ2 tests, and regression models to determine predictors of treatment response. RESULTS Among 25 patients (mean age: 60.4 ± 12 y, 56% males), 54 18F-FDG-avid lesions were evaluated. The median absorbed dose (Dmean) was 114.8 Gy for CR, 98.9 Gy for PR, 56.7 Gy for SD, and 78.3 Gy for PD. Significant differences in Dmean (P = 0.013) and T/BP ratios (P = 0.011) were observed between responder and nonresponder groups. High Dmean lesions (>89 Gy) had a response rate of 86%, compared with 56% in low Dmean lesions. Hypoxic lesions (T/BP >1.29) showed a 57% response rate, while non-hypoxic lesions (T/BP <1.29) showed a 91% response rate. In combined analyses, while non-hypoxic/high Dmean lesions had the highest response rates (93%), hypoxic/low-dose had the lowest response rate (39%). CONCLUSIONS In this study, we have observed that both mean absorbed radiation dose and hypoxia status are significant predictors of response to treatment after radioembolization of liver tumors. While larger studies are needed to confirm these findings, this pilot study may pave the way for further personalized treatments to achieve better results for radioembolization.
Collapse
Affiliation(s)
- Cigdem Soydal
- Department of Nuclear Medicine, Ankara University Medical School, Ankara
| | - Burak Demir
- Department of Nuclear Medicine, Sanliurfa Mehmet Akif Inan Research and Education Hospital, Sanliurfa
| | | | - Ecenur Dursun
- Department of Nuclear Medicine, Ankara University Medical School, Ankara
| | - Gizem Inal
- Department of Nuclear Medicine, Ankara University Medical School, Ankara
| | - Nuriye Ozlem Kucuk
- Department of Nuclear Medicine, Ankara University Medical School, Ankara
| | | |
Collapse
|
2
|
Shi L, Wang X, Si H, Song W. PDE4D inhibitors: Opening a new era of PET diagnostics for Alzheimer's disease. Neurochem Int 2025; 182:105903. [PMID: 39647702 DOI: 10.1016/j.neuint.2024.105903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 12/10/2024]
Abstract
As the incidence of Alzheimer's disease (AD) continues to rise, the need for an effective PET radiotracer to facilitate early diagnosis has become more pressing than ever before in modern medicine. Phosphodiesterase (PDE) is closely related to cognitive impairment and neuroinflammatory processes in AD. Current research progress shows that specific PDE4D inhibitors radioligands can bind specifically to the PDE4D enzyme in the brain, thereby showing pathology-related signal enhancement in AD animal models, indicating the potential of these ligands as effective radiotracers. At the same time, we need to pay attention to the important role computer aided drug design (CADD) plays in advancing AD drug design and PET imaging. Future research will verify the potential of these ligands in clinical applications through computer simulation techniques, providing patients with timely intervention and treatment, which is of great significance.
Collapse
Affiliation(s)
- Luyang Shi
- College of Life Science, Qingdao University, Qingdao, China
| | - Xue Wang
- College of Life Science, Qingdao University, Qingdao, China
| | - Hongzong Si
- Laboratory of New Fibrous Materials and Modern Textile, The State Key Laboratory, Qingdao University, Qingdao, China.
| | - Wangdi Song
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| |
Collapse
|
3
|
Chvetsov AV, Pugachev A. Biological effectiveness of uniform and nonuniform dose distributions in radiotherapy for tumors with intermediate oxygen levels. Biomed Phys Eng Express 2024; 10:065048. [PMID: 39419065 DOI: 10.1088/2057-1976/ad87f8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Objective. We propose a criterion of biological effectiveness of nonuniform hypoxia-targeted dose distributions in heterogeneous hypoxic tumors based on equivalent uniform aerobic dose (EUAD). We demonstrate the utility of this criterion by applying it to the model problems in radiotherapy for tumors with different levels of oxygen enhancement ratio (OER) and different degrees of dose nonuniformity.Approach. The EUAD is defined as the uniform dose that, under well-oxygenated conditions, produces equal integrated survival of clonogenic cells in radiotherapy for heterogeneous hypoxic tumors with a non-uniform dose distribution. We define the dose nonuniformity effectiveness (DNE) in heterogeneous tumors as the ratio of the EUAD(DN) for a non-uniform distributionDNand the reference EUAD(DU) for the uniform dose distributionDUwith equal integral tumor dose. The DNE concept is illustrated in a radiotherapy model problem for non-small cell lung cancer treated with hypoxia targeted dose escalation. A two-level cell population tumor model was used to consider the hypoxic and oxygenated tumor cells.Results. Theoretical analysis of the DNE shows that the entire region of the OER can be separated in two regions by a threshold OERth: (1) OER > OERthwhere DNE > 1 indicating higher effectiveness of nonuniform dose distributions and (2) OER < OERthwhere DNE < 1 indicating higher effectiveness of uniform dose distributions. Our simulations show that the value of the threshold OERthin radiotherapy with conventional fractionation is significant in the range of about 1.2-1.6 depending on selected radiotherapy parameters. In general, the OERthincreases with reoxygenation rate, relative hypoxic volume and dose escalation factor. The threshold value of OERthis smaller of about 1.1 for hypofractionated radiotherapy.Significance. The analysis of dose distributions using the DNE shows that the uniform dose distributions may improve biological cell killing effect in heterogeneous tumors with intermediate oxygen levels compared to targeted nonuniform dose distribution.
Collapse
Affiliation(s)
- Alexei V Chvetsov
- Department of Radiation Oncology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195-6043, United States of America
| | - Andrei Pugachev
- Department of Radiation Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, United States of America
| |
Collapse
|
4
|
Wray R, Mauguen A, Michaud L, Leithner D, Yeh R, Riaz N, Mirtcheva R, Sherman E, Wong R, Humm J, Lee N, Schöder H. Development of 18F-Fluoromisonidazole Hypoxia PET/CT Diagnostic Interpretation Criteria and Validation of Interreader Reliability, Reproducibility, and Performance. J Nucl Med 2024; 65:1526-1532. [PMID: 39266287 PMCID: PMC11448606 DOI: 10.2967/jnumed.124.267775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/23/2024] [Indexed: 09/14/2024] Open
Abstract
Tumor hypoxia, an integral biomarker to guide radiotherapy, can be imaged with 18F-fluoromisonidazole (18F-FMISO) hypoxia PET. One major obstacle to its broader application is the lack of standardized interpretation criteria. We sought to develop and validate practical interpretation criteria and a dedicated training protocol for nuclear medicine physicians to interpret 18F-FMISO hypoxia PET. Methods: We randomly selected 123 patients with human papillomavirus-positive oropharyngeal cancer enrolled in a phase II trial who underwent 123 18F-FDG PET/CT and 134 18F-FMISO PET/CT scans. Four independent nuclear medicine physicians with no 18F-FMISO experience read the scans. Interpretation by a fifth nuclear medicine physician with over 2 decades of 18F-FMISO experience was the reference standard. Performance was evaluated after initial instruction and subsequent dedicated training. Scans were considered positive for hypoxia by visual assessment if 18F-FMISO uptake was greater than floor-of-mouth uptake. Additionally, SUVmax was determined to evaluate whether quantitative assessment using tumor-to-background ratios could be helpful to define hypoxia positivity. Results: Visual assessment produced a mean sensitivity and specificity of 77.3% and 80.9%, with fair interreader agreement (κ = 0.34), after initial instruction. After dedicated training, mean sensitivity and specificity improved to 97.6% and 86.9%, with almost perfect agreement (κ = 0.86). Quantitative assessment with an estimated best SUVmax ratio threshold of more than 1.2 to define hypoxia positivity produced a mean sensitivity and specificity of 56.8% and 95.9%, respectively, with substantial interreader agreement (κ = 0.66), after initial instruction. After dedicated training, mean sensitivity improved to 89.6% whereas mean specificity remained high at 95.3%, with near-perfect interreader agreement (κ = 0.86). Conclusion: Nuclear medicine physicians without 18F-FMISO hypoxia PET reading experience demonstrate much improved interreader agreement with dedicated training using specific interpretation criteria.
Collapse
Affiliation(s)
- Rick Wray
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Audrey Mauguen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Laure Michaud
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Doris Leithner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Randy Yeh
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rosna Mirtcheva
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eric Sherman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard Wong
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - John Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nancy Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York;
| |
Collapse
|
5
|
Lorenzo G, Ahmed SR, Hormuth DA, Vaughn B, Kalpathy-Cramer J, Solorio L, Yankeelov TE, Gomez H. Patient-Specific, Mechanistic Models of Tumor Growth Incorporating Artificial Intelligence and Big Data. Annu Rev Biomed Eng 2024; 26:529-560. [PMID: 38594947 DOI: 10.1146/annurev-bioeng-081623-025834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Despite the remarkable advances in cancer diagnosis, treatment, and management over the past decade, malignant tumors remain a major public health problem. Further progress in combating cancer may be enabled by personalizing the delivery of therapies according to the predicted response for each individual patient. The design of personalized therapies requires the integration of patient-specific information with an appropriate mathematical model of tumor response. A fundamental barrier to realizing this paradigm is the current lack of a rigorous yet practical mathematical theory of tumor initiation, development, invasion, and response to therapy. We begin this review with an overview of different approaches to modeling tumor growth and treatment, including mechanistic as well as data-driven models based on big data and artificial intelligence. We then present illustrative examples of mathematical models manifesting their utility and discuss the limitations of stand-alone mechanistic and data-driven models. We then discuss the potential of mechanistic models for not only predicting but also optimizing response to therapy on a patient-specific basis. We describe current efforts and future possibilities to integrate mechanistic and data-driven models. We conclude by proposing five fundamental challenges that must be addressed to fully realize personalized care for cancer patients driven by computational models.
Collapse
Affiliation(s)
- Guillermo Lorenzo
- Oden Institute for Computational Engineering and Sciences, University of Texas, Austin, Texas, USA
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Syed Rakin Ahmed
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
- Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Harvard Graduate Program in Biophysics, Harvard Medical School, Harvard University, Cambridge, Massachusetts, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David A Hormuth
- Livestrong Cancer Institutes, University of Texas, Austin, Texas, USA
- Oden Institute for Computational Engineering and Sciences, University of Texas, Austin, Texas, USA
| | - Brenna Vaughn
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA;
| | | | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA;
| | - Thomas E Yankeelov
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, Texas, USA
- Department of Biomedical Engineering, Department of Oncology, and Department of Diagnostic Medicine, University of Texas, Austin, Texas, USA
- Livestrong Cancer Institutes, University of Texas, Austin, Texas, USA
- Oden Institute for Computational Engineering and Sciences, University of Texas, Austin, Texas, USA
| | - Hector Gomez
- School of Mechanical Engineering and Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA;
| |
Collapse
|
6
|
Prakash C, Singh R. Microwave‐Assisted Synthesis of Fluorinated 5‐Membered Nitrogen Heterocycles. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202401376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/02/2024] [Indexed: 01/11/2025]
Abstract
AbstractThe fluorinated 5‐membered N‐containing heterocyclic compounds have wide utility in varied fields. The importance of these compounds has encouraged researchers to explore environment‐friendly synthetic techniques for their synthesis. In this context, microwave‐assisted synthesis has proved beneficial for the synthesis of fluorinated 5‐membered N‐heterocycles in an environmentally benign and energy‐efficient manner. Compared to conventional heating, it offers several advantages, including quick heating, short reaction times, higher yields, and fewer side reactions. This article highlights the microwave‐assisted fluorination of 5‐membered N‐heterocyclic compounds along with the synthesis of fluorinated 5‐membered N‐heterocyclic compounds using fluorinated starting materials.
Collapse
Affiliation(s)
- Chandra Prakash
- Department of Applied Chemistry Delhi Technological University Delhi India
- Centre for Fire, Explosive and Environment Safety, DRDO, Timarpur Delhi 110054 India
| | - Ram Singh
- Department of Applied Chemistry Delhi Technological University Delhi India
| |
Collapse
|
7
|
Lee H, Hwang KH. Focal incidental colorectal fluorodeoxyglucose uptake: Should it be spotlighted? World J Clin Cases 2024; 12:2466-2474. [PMID: 38817235 PMCID: PMC11135452 DOI: 10.12998/wjcc.v12.i15.2466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/17/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024] Open
Abstract
Fluorine-18 fluorodeoxyglucose (F-18 FDG) positron emission tomography/computed tomography (PET/CT) has emerged as a cornerstone in cancer evaluation imaging, with a well-established history spanning several years. This imaging modality, encompassing the examination of the body from the base of the skull to the upper thighs, comprehensively covers the chest and abdominopelvic regions in a singular scan, allowing for a holistic assessment of nearly the entire body, including areas of marginal interest. The inherent advantage of this expansive scan range lies in its potential to unveil unexpected incidental abnormal hypermetabolic areas. The identification of incidental focal FDG uptake within colorectal regions during PET/CT scans is not an uncommon occurrence, albeit fraught with challenges associated with non-specific FDG uptake. The presence of benign colorectal lesions or physiological uptake poses a particular obstacle, as these may manifest with FDG uptake levels that mimic malignancy. Consequently, physicians are confronted with a diagnostic dilemma when encountering abnormal FDG uptake in unexpected colorectal areas. Existing studies have presented divergent results concerning these uptakes. Standardized uptake value and its derivatives have served as pivotal metrics in quantifying FDG uptake in PET images. In this article, we aim to succinctly explore the distinctive characteristics of FDG, delve into imaging findings, and elucidate the clinical significance of incidental focal colorectal uptake. This discussion aims to contribute valuable insights into the nuanced interpretation of such findings, fostering a comprehensive understanding.
Collapse
Affiliation(s)
- Haejun Lee
- Department of Nuclear Medicine, Gachon University College of Medicine, Gil Medical Center, Incheon 21565, South Korea
| | - Kyung-Hoon Hwang
- Department of Nuclear Medicine, Gachon University College of Medicine, Gil Medical Center, Incheon 21565, South Korea
| |
Collapse
|
8
|
Lee H, Hwang KH. Unexpected focal fluorodeoxyglucose uptake in main organs; pass through or pass by? World J Clin Cases 2024; 12:1885-1899. [PMID: 38660550 PMCID: PMC11036514 DOI: 10.12998/wjcc.v12.i11.1885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/31/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
Since the inception of fluorine-18 fluorodeoxyglucose (F-18 FDG), positron emission tomography/computed tomography (PET/CT) utilizing F-18 FDG has become widely accepted as a valuable imaging modality in the field of oncology, with global prevalence in clinical practice. Given that a single Torso PET/CT scan encompasses the anatomical region from the skull base to the upper thigh, the detection of incidental abnormal focal hypermetabolism in areas of limited clinical interest is both feasible and not uncommon. Numerous investigations have been undertaken to delineate the distinctive features of these findings, yet the outcomes have proven inconclusive. The incongruent results of these studies present a challenge for physicians, leaving them uncertain about the appropriate course of action. This article provides a succinct overview of the characteristics of fluorodeoxyglucose, followed by a comprehensive discussion of the imaging findings and clinical significance associated with incidental focal abnormal F-18 FDG activity in several representative organs. In conclusion, while the prevalence of unrecognized malignancy varies across organs, malignancies account for a substantial proportion, ranging from approximately one-third to over half, of incidental focal uptake. In light of these rates, physicians are urged to exercise vigilance in not disregarding unexpected uptake, facilitating more assured clinical decisions, and advocating for further active evaluation.
Collapse
Affiliation(s)
- Haejun Lee
- Department of Nuclear Medicine, Gachon University College of Medicine, Gil Medical Center, Incheon 21565, South Korea
| | - Kyung-Hoon Hwang
- Department of Nuclear Medicine, Gachon University College of Medicine, Gil Medical Center, Incheon 21565, South Korea
| |
Collapse
|
9
|
Sambasivan K, Barrington SF, Connor SE, Witney TH, Blower PJ, Urbano TG. Is there a role for [ 18F]-FMISO PET to guide dose adaptive radiotherapy in head and neck cancer? A review of the literature. Clin Transl Imaging 2024; 12:137-155. [PMID: 39286295 PMCID: PMC7616449 DOI: 10.1007/s40336-023-00607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/12/2023] [Indexed: 09/19/2024]
Abstract
Purpose Hypoxia is a major cause of radioresistance in head and neck cancer (HNC), resulting in treatment failure and disease recurrence. 18F-fluoromisonidazole [18F]FMISO PET has been proposed as a means of localising intratumoural hypoxia in HNC so that radiotherapy can be specifically escalated in hypoxic regions. This concept may not be deliverable in routine clinical practice, however, given that [18F]FMISO PET is costly, time consuming and difficult to access. The aim of this review was to summarise clinical studies involving [18F]FMISO PET to ascertain whether it can be used to guide radiotherapy treatment in HNC. Methods A comprehensive literature search was conducted on PubMed and Web of Science databases. Studies investigating [18F]FMISO PET in newly diagnosed HNC patients were considered eligible for review. Results We found the following important results from our literature review: 1)Studies have focussed on comparing [18F]FMISO PET to other hypoxia biomarkers, but currently there is no evidence of a strong correlation between [18F]FMISO and these biomarkers.2)The results of [18F]FMISO PET imaging are not necessarily repeatable, and the location of uptake may vary during treatment.3)Tumour recurrences do not always occur within the pretreatment hypoxic volume on [18F]FMISO PET.4)Dose modification studies using [18F]FMISO PET are in a pilot phase and so far, none have demonstrated the efficacy of radiotherapy dose painting according to [18F]FMISO uptake on PET. Conclusions Our results suggest it is unlikely [18F]FMISO PET will be suitable for radiotherapy dose adaptation in HNC in a routine clinical setting. Part of the problem is that hypoxia is a dynamic phenomenon, and thus difficult to delineate on a single scan. Currently, it is anticipated that [18F]FMISO PET will remain useful within the research setting only.
Collapse
Affiliation(s)
- Khrishanthne Sambasivan
- Department of Clinical Oncology, Guy's and St Thomas' NHS Foundation Trust, London, UK; School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Sally F Barrington
- King's College London and Guy's and St Thomas' PET Centre; School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, London, UK
| | - Steve Ej Connor
- Department of Neuroradiology, King's College Hospital NHS Foundation Trust, London, UK Department of Radiology, Guy's and St Thomas' NHS Foundation Trust, London, UK; School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, UK
| | - Timothy H Witney
- King's College London, School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, London, United Kingdom
| | - Philip J Blower
- King's College London, School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, London, United Kingdom
| | - Teresa Guerrero Urbano
- Department of Clinical Oncology, Guy's and St Thomas' NHS Foundation Trust, London, UK; Faculty of Dentistry, Oral & Craniofacial Sciences and School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| |
Collapse
|
10
|
Moskalik MY. Monofluoromethylation of N-Heterocyclic Compounds. Int J Mol Sci 2023; 24:17593. [PMID: 38139426 PMCID: PMC10744182 DOI: 10.3390/ijms242417593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
The review focuses on recent advances in the methodologies for the formation or introduction of the CH2F moiety in N-heterocyclic substrates over the past 5 years. The monofluoromethyl group is one of the most versatile fluorinated groups used to modify the properties of molecules in synthetic medical chemistry. The review summarizes two strategies for the monofluoromethylation of N-containing heterocycles: direct monofluoromethylation with simple XCH2F sources (for example, ICH2F) and the assembly of N-heterocyclic structures from CH2F-containing substrates. The review describes the monofluoromethylation of pharmaceutically important three-, five- and six-membered N-heterocycles: pyrrolidines, pyrroles, indoles, imidazoles, triazoles, benzothiazoles, carbazoles, indazoles, pyrazoles, oxazoles, piperidines, morpholines, pyridines, quinolines and pyridazines. Assembling of 6-fluoromethylphenanthridine, 5-fluoromethyl-2-oxazolines, C5-monofluorinated isoxazoline N-oxides, and α-fluoromethyl-α-trifluoromethylaziridines is also shown. Fluoriodo-, fluorchloro- and fluorbromomethane, FCH2SO2Cl, monofluoromethyl(aryl)sulfoniummethylides, monofluoromethyl sulfides, (fluoromethyl)triphenylphosphonium iodide and 2-fluoroacetic acid are the main fluoromethylating reagents in recent works. The replacement of atoms and entire functional groups with a fluorine atom(s) leads to a change and often improvement in activity, chemical or biostability, and pharmacokinetic properties. The monofluoromethyl group is a bioisoster of -CH3, -CH2OH, -CH2NH2, -CH2CH3, -CH2NO2 and -CH2SH moieties. Bioisosteric replacement with the CH2F group is both an interesting task for organic synthesis and a pathway to modify drugs, agrochemicals and useful intermediates.
Collapse
Affiliation(s)
- Mikhail Yu Moskalik
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Division of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia
| |
Collapse
|
11
|
Trada Y, Keall P, Jameson M, Moses D, Lin P, Chlap P, Holloway L, Min M, Forstner D, Fowler A, Lee MT. Changes in serial multiparametric MRI and FDG-PET/CT functional imaging during radiation therapy can predict treatment response in patients with head and neck cancer. Eur Radiol 2023; 33:8788-8799. [PMID: 37405500 PMCID: PMC10667402 DOI: 10.1007/s00330-023-09843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 07/06/2023]
Abstract
OBJECTIVES To test if tumour changes measured using combination of diffusion-weighted imaging (DWI) MRI and FDG-PET/CT performed serially during radiotherapy (RT) in mucosal head and neck carcinoma can predict treatment response. METHODS Fifty-five patients from two prospective imaging biomarker studies were analysed. FDG-PET/CT was performed at baseline, during RT (week 3), and post RT (3 months). DWI was performed at baseline, during RT (weeks 2, 3, 5, 6), and post RT (1 and 3 months). The ADCmean from DWI and FDG-PET parameters SUVmax, SUVmean, metabolic tumour volume (MTV), and total lesion glycolysis (TLG) were measured. Absolute and relative change (%∆) in DWI and PET parameters were correlated to 1-year local recurrence. Patients were categorised into favourable, mixed, and unfavourable imaging response using optimal cut-off (OC) values of DWI and FDG-PET parameters and correlated to local control. RESULTS The 1-year local, regional, and distant recurrence rates were 18.2% (10/55), 7.3% (4/55), and 12.7% (7/55), respectively. ∆Week 3 ADCmean (AUC 0.825, p = 0.003; OC ∆ > 24.4%) and ∆MTV (AUC 0.833, p = 0.001; OC ∆ > 50.4%) were the best predictors of local recurrence. Week 3 was the optimal time point for assessing DWI imaging response. Using a combination of ∆ADCmean and ∆MTV improved the strength of correlation to local recurrence (p ≤ 0.001). In patients who underwent both week 3 MRI and FDG-PET/CT, significant differences in local recurrence rates were seen between patients with favourable (0%), mixed (17%), and unfavourable (78%) combined imaging response. CONCLUSIONS Changes in mid-treatment DWI and FDG-PET/CT imaging can predict treatment response and could be utilised in the design of future adaptive clinical trials. CLINICAL RELEVANCE STATEMENT Our study shows the complementary information provided by two functional imaging modalities for mid-treatment response prediction in patients with head and neck cancer. KEY POINTS •FDG-PET/CT and DWI MRI changes in tumour during radiotherapy in head and neck cancer can predict treatment response. •Combination of FDG-PET/CT and DWI parameters improved correlation to clinical outcome. •Week 3 was the optimal time point for DWI MRI imaging response assessment.
Collapse
Affiliation(s)
- Yuvnik Trada
- Department of Radiation Oncology, Calvary Mater Newcastle, Edith St, Waratah, NSW, 2298, Australia.
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.
| | - Paul Keall
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- ACRF Image X Institute, University of Sydney, Sydney, NSW, Australia
| | - Michael Jameson
- GenesisCare St Vincents Hospital, Sydney, NSW, Australia
- St Vincents Clinical School, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Daniel Moses
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, Australia
- Department of Medical Imaging, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Peter Lin
- Department of Nuclear Medicine and PET, Liverpool Hospital, Liverpool, NSW, Australia
- School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Phillip Chlap
- Department of Radiation Oncology, Cancer Therapy Centre, Liverpool Hospital, Liverpool, NSW, Australia
- South Western Clinical School, School of Medicine, University of New South Wales, Sydney, NSW, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Lois Holloway
- Department of Radiation Oncology, Cancer Therapy Centre, Liverpool Hospital, Liverpool, NSW, Australia
- South Western Clinical School, School of Medicine, University of New South Wales, Sydney, NSW, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Myo Min
- University of Sunshine Coast, Birtinya, QLD, Australia
- Sunshine Coast University Hospital, Sunshine Coast, QLD, Australia
- Griffith University, Sunshine Coast, QLD, Australia
| | - Dion Forstner
- GenesisCare St Vincents Hospital, Sydney, NSW, Australia
- St Vincents Clinical School, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Allan Fowler
- Department of Radiation Oncology, Cancer Therapy Centre, Liverpool Hospital, Liverpool, NSW, Australia
| | - Mark T Lee
- Department of Radiation Oncology, Cancer Therapy Centre, Liverpool Hospital, Liverpool, NSW, Australia
- South Western Clinical School, School of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
12
|
De Zio S, Becconi M, Soldà A, Malferrari M, Lesch A, Rapino S. Glucose micro-biosensor for scanning electrochemical microscopy characterization of cellular metabolism in hypoxic microenvironments. Bioelectrochemistry 2023; 150:108343. [PMID: 36608371 DOI: 10.1016/j.bioelechem.2022.108343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Mapping of the metabolic activity of tumor tissues represents a fundamental approach to better identify the tumor type, elucidate metastatic mechanisms and support the development of targeted cancer therapies. The spatially resolved quantification of Warburg effect key metabolites, such as glucose and lactate, is essential. Miniaturized electrochemical biosensors scanned over cancer cells and tumor tissue to visualize the metabolic characteristics of a tumor is attractive but very challenging due to the limited oxygen availability in the hypoxic environments of tumors that impedes the reliable applicability of glucose oxidase-based glucose micro-biosensors. Herein, the development and application of a new glucose micro-biosensor is presented that can be reliably operated under hypoxic conditions. The micro-biosensor is fabricated in a one-step synthesis by entrapping during the electrochemically driven growth of a polymeric matrix on a platinum microelectrode glucose oxidase and a catalytically active Prussian blue type aggregate and mediator. The as-obtained functionalization improves significantly the sensitivity of the developed micro-biosensor for glucose detection under hypoxic conditions compared to normoxic conditions. By using the micro-biosensor as non-invasive sensing probe in Scanning Electrochemical Microscopy (SECM), the glucose uptake by a breast metastatic adenocarcinoma cell line, with an epithelial morphology, is measured.
Collapse
Affiliation(s)
- Simona De Zio
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Maila Becconi
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Alice Soldà
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Marco Malferrari
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Andreas Lesch
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Stefania Rapino
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
13
|
Dai J, Wang H, Xu Y, Chen X, Tian R. Clinical application of AI-based PET images in oncological patients. Semin Cancer Biol 2023; 91:124-142. [PMID: 36906112 DOI: 10.1016/j.semcancer.2023.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Based on the advantages of revealing the functional status and molecular expression of tumor cells, positron emission tomography (PET) imaging has been performed in numerous types of malignant diseases for diagnosis and monitoring. However, insufficient image quality, the lack of a convincing evaluation tool and intra- and interobserver variation in human work are well-known limitations of nuclear medicine imaging and restrict its clinical application. Artificial intelligence (AI) has gained increasing interest in the field of medical imaging due to its powerful information collection and interpretation ability. The combination of AI and PET imaging potentially provides great assistance to physicians managing patients. Radiomics, an important branch of AI applied in medical imaging, can extract hundreds of abstract mathematical features of images for further analysis. In this review, an overview of the applications of AI in PET imaging is provided, focusing on image enhancement, tumor detection, response and prognosis prediction and correlation analyses with pathology or specific gene mutations in several types of tumors. Our aim is to describe recent clinical applications of AI-based PET imaging in malignant diseases and to focus on the description of possible future developments.
Collapse
Affiliation(s)
- Jiaona Dai
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hui Wang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuchao Xu
- School of Nuclear Science and Technology, University of South China, Hengyang City 421001, China
| | - Xiyang Chen
- Division of Vascular Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
14
|
Mendez-Encinas MA, Carvajal-Millan E. Theranostic nanogels. DESIGN AND APPLICATIONS OF THERANOSTIC NANOMEDICINES 2023:27-51. [DOI: 10.1016/b978-0-323-89953-6.00003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Park J, Choi J, Lee JE, Choi H, Im HJ. Spatial Transcriptomics-Based Identification of Molecular Markers for Nanomedicine Distribution in Tumor Tissue. SMALL METHODS 2022; 6:e2201091. [PMID: 36180396 DOI: 10.1002/smtd.202201091] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 06/16/2023]
Abstract
The intratumoral accumulation of nanomedicine has been considered a passive process, referred to as the enhanced permeability and retention effect. Recent studies have suggested that the tumor uptake of nanomedicines follows an energy-dependent pathway rather than being a passive process. Herein, to explore the factor candidates that are associated with nanomedicine tumor uptake, a molecular marker identification platform is developed by integrating microscopic fluorescence images of a nanomedicine distribution with spatial transcriptomics information. When this approach is applied to PEGylated liposomes, molecular markers related to hypoxia, glycolysis, and apoptosis can be identified as being related to the intratumoral distribution of the nanomedicine. It is expected that the method can be applied to explain the distribution of a wide range of nanomedicines and that the data obtained from this analysis can enhance the precise utilization of nanomedicines.
Collapse
Affiliation(s)
- Jeongbin Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinyeong Choi
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Eun Lee
- Portrai Inc, Seoul, 03136, Republic of Korea
| | - Hongyoon Choi
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Hyung-Jun Im
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
16
|
Bastrakov M, Starosotnikov A. Recent Progress in the Synthesis of Drugs and Bioactive Molecules Incorporating Nitro(het)arene Core. Pharmaceuticals (Basel) 2022; 15:ph15060705. [PMID: 35745627 PMCID: PMC9228974 DOI: 10.3390/ph15060705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/20/2022] [Accepted: 05/31/2022] [Indexed: 12/10/2022] Open
Abstract
Aromatic nitro compounds play a unique role in the synthesis of drugs and pharmaceutically oriented molecules. This field of organic chemistry continues to be in demand and relevant. A significant number of papers are published annually on new general methods for the synthesis of nitrodrugs and related biomolecules. This review is an analysis of the literature on methods for the synthesis of both new and already-known aromatic and heteroaromatic nitrodrugs covering the period from 2010 to the present.
Collapse
|
17
|
Sun X, Chen T, Xie C, Liu L, Lei B, Wang L, Ruan M, Yan H, Zhang Q, Chang C, Xie W. Relationships between SUVmax of lung adenocarcinoma and different T stages, histological grades and pathological subtypes: a retrospective cohort study in China. BMJ Open 2022; 12:e056804. [PMID: 35580966 PMCID: PMC9114855 DOI: 10.1136/bmjopen-2021-056804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES Cancer cell has aberrant metabolism. The purpose of this study aimed to investigate relationships between maximum standard uptake value (SUVmax)of 18fluoro-2-deoxy-d-glucose and T stages, histological grades and pathological subtypes of lung adenocarcinoma. DESIGN Retrospective cohort study, employing the Kruskal-Wallis, Bonferroni-Dunn and Mann-Whitney tests to compare SUVmax of different T stages, histological grades and pathological subtypes of lung adenocarcinoma. SETTING The outpatients who had aberrant positron emission tomography/CT (PET/CT) images in chest were enrolled this study from August 2016 to November 2018 in Shanghai, China. PARTICIPANT Initial 11 270 patients with suspected lung cancer who underwent PET/CT examinations were surveyed. A total of 1454 patients who were diagnosed as lung adenocarcinoma by pathologist were included in this project. PRIMARY OUTCOME MEASURES SUVmax value at different tumour-node-metastasis stages of lung adenocarcinoma before surgery. RESULTS The mean SUVmax of patients with lung adenocarcinoma was significantly elevated with the increase in T stages. There were significant evident differences in SUVmax among T1a-T1c (p<0.05). However, after the staging of patients was more than T1 stage, SUVmax of T2a, T2b, T2 visceral pleural invasion, T3 and T4 had not dramatic changes. SUVmax value of lung adenocarcinoma in the same T stage group was the highest in patients with the high grade of malignancy and solid-predominant invasive adenocarcinoma. CONCLUSIONS SUVmax value was significantly associated with T stages, grades of malignancy and pathological subtypes of lung adenocarcinoma.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Tianxiang Chen
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China, Shanghai, China
| | - Chun Xie
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Liu Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bei Lei
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lihua Wang
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Maomei Ruan
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Yan
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Zhang
- Department of Nuclear Medicine, Anhui Chest Hospital, Anhui, China
| | - Cheng Chang
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhui Xie
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Balma M, Liberini V, Racca M, Laudicella R, Bauckneht M, Buschiazzo A, Nicolotti DG, Peano S, Bianchi A, Albano G, Quartuccio N, Abgral R, Morbelli SD, D'Alessandria C, Terreno E, Huellner MW, Papaleo A, Deandreis D. Non-conventional and Investigational PET Radiotracers for Breast Cancer: A Systematic Review. Front Med (Lausanne) 2022; 9:881551. [PMID: 35492341 PMCID: PMC9039137 DOI: 10.3389/fmed.2022.881551] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
Breast cancer is one of the most common malignancies in women, with high morbidity and mortality rates. In breast cancer, the use of novel radiopharmaceuticals in nuclear medicine can improve the accuracy of diagnosis and staging, refine surveillance strategies and accuracy in choosing personalized treatment approaches, including radioligand therapy. Nuclear medicine thus shows great promise for improving the quality of life of breast cancer patients by allowing non-invasive assessment of the diverse and complex biological processes underlying the development of breast cancer and its evolution under therapy. This review aims to describe molecular probes currently in clinical use as well as those under investigation holding great promise for personalized medicine and precision oncology in breast cancer.
Collapse
Affiliation(s)
- Michele Balma
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | - Virginia Liberini
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
- Division of Nuclear Medicine, Department of Medical Science, University of Turin, Turin, Italy
| | - Manuela Racca
- Nuclear Medicine Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Riccardo Laudicella
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, Messina, Italy
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Nuclear Medicine Unit, Fondazione Istituto G. Giglio, Cefalù, Italy
| | - Matteo Bauckneht
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | - Ambra Buschiazzo
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | | | - Simona Peano
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | - Andrea Bianchi
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | - Giovanni Albano
- Nuclear Medicine Unit, Fondazione Istituto G. Giglio, Cefalù, Italy
| | - Natale Quartuccio
- Nuclear Medicine Unit, A.R.N.A.S. Civico di Cristina and Benfratelli Hospitals, Palermo, Italy
| | - Ronan Abgral
- Department of Nuclear Medicine, University Hospital of Brest, Brest, France
| | - Silvia Daniela Morbelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | | | - Enzo Terreno
- Department of Molecular Biotechnology and Health Sciences, Molecular & Preclinical Imaging Centers, University of Turin, Turin, Italy
| | - Martin William Huellner
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alberto Papaleo
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | - Désirée Deandreis
- Division of Nuclear Medicine, Department of Medical Science, University of Turin, Turin, Italy
| |
Collapse
|
19
|
Anan N, Zainon R, Tamal M. A review on advances in 18F-FDG PET/CT radiomics standardisation and application in lung disease management. Insights Imaging 2022; 13:22. [PMID: 35124733 PMCID: PMC8817778 DOI: 10.1186/s13244-021-01153-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Radiomics analysis quantifies the interpolation of multiple and invisible molecular features present in diagnostic and therapeutic images. Implementation of 18-fluorine-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) radiomics captures various disorders in non-invasive and high-throughput manner. 18F-FDG PET/CT accurately identifies the metabolic and anatomical changes during cancer progression. Therefore, the application of 18F-FDG PET/CT in the field of oncology is well established. Clinical application of 18F-FDG PET/CT radiomics in lung infection and inflammation is also an emerging field. Combination of bioinformatics approaches or textual analysis allows radiomics to extract additional information to predict cell biology at the micro-level. However, radiomics texture analysis is affected by several factors associated with image acquisition and processing. At present, researchers are working on mitigating these interrupters and developing standardised workflow for texture biomarker establishment. This review article focuses on the application of 18F-FDG PET/CT in detecting lung diseases specifically on cancer, infection and inflammation. An overview of different approaches and challenges encountered on standardisation of 18F-FDG PET/CT technique has also been highlighted. The review article provides insights about radiomics standardisation and application of 18F-FDG PET/CT in lung disease management.
Collapse
|
20
|
Vyas D, Patel M, Wairkar S. Strategies for active tumor targeting-an update. Eur J Pharmacol 2022; 915:174512. [PMID: 34555395 DOI: 10.1016/j.ejphar.2021.174512] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/03/2021] [Accepted: 09/17/2021] [Indexed: 01/26/2023]
Abstract
A complete cure for cancer is still the holy grail for scientists. The existing treatment of cancer is primarily focused on surgery, radiation and conventional chemotherapy. However, chemotherapeutic agents also affect healthy tissues or organs due to a lack of specificity. While passive targeting is studied for anticancer drugs focused on the enhanced permeability and retention effect, it failed to achieve drug accumulation at the tumor site and desired therapeutic efficacy. This review presents an outline of the current significant targets for active tumor drug delivery systems and provides insight into the direction of active tumor-targeting strategies. For this purpose, a systematic understanding of the physiological factors, tumor microenvironment and its components, overexpressed receptor and associated proteins are covered here. We focused on angiogenesis mediated targeting, receptor-mediated targeting and peptide targeting. This active targeting along with integration with nano delivery systems helps in achieving specific action, thus reducing the associated adverse effects to healthy tissues. Although the tumor-targeting methods and possibilities explored so far seem revolutionary in cancer treatment, in-depth clinical studies data is required for its commercial translation.
Collapse
Affiliation(s)
- Darshan Vyas
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Mital Patel
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
21
|
Tice RR, Bassan A, Amberg A, Anger LT, Beal MA, Bellion P, Benigni R, Birmingham J, Brigo A, Bringezu F, Ceriani L, Crooks I, Cross K, Elespuru R, Faulkner DM, Fortin MC, Fowler P, Frericks M, Gerets HHJ, Jahnke GD, Jones DR, Kruhlak NL, Lo Piparo E, Lopez-Belmonte J, Luniwal A, Luu A, Madia F, Manganelli S, Manickam B, Mestres J, Mihalchik-Burhans AL, Neilson L, Pandiri A, Pavan M, Rider CV, Rooney JP, Trejo-Martin A, Watanabe-Sailor KH, White AT, Woolley D, Myatt GJ. In Silico Approaches In Carcinogenicity Hazard Assessment: Current Status and Future Needs. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 20. [PMID: 35368437 DOI: 10.1016/j.comtox.2021.100191] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Historically, identifying carcinogens has relied primarily on tumor studies in rodents, which require enormous resources in both money and time. In silico models have been developed for predicting rodent carcinogens but have not yet found general regulatory acceptance, in part due to the lack of a generally accepted protocol for performing such an assessment as well as limitations in predictive performance and scope. There remains a need for additional, improved in silico carcinogenicity models, especially ones that are more human-relevant, for use in research and regulatory decision-making. As part of an international effort to develop in silico toxicological protocols, a consortium of toxicologists, computational scientists, and regulatory scientists across several industries and governmental agencies evaluated the extent to which in silico models exist for each of the recently defined 10 key characteristics (KCs) of carcinogens. This position paper summarizes the current status of in silico tools for the assessment of each KC and identifies the data gaps that need to be addressed before a comprehensive in silico carcinogenicity protocol can be developed for regulatory use.
Collapse
Affiliation(s)
- Raymond R Tice
- RTice Consulting, Hillsborough, North Carolina, 27278, USA
| | | | - Alexander Amberg
- Sanofi Preclinical Safety, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Lennart T Anger
- Genentech, Inc., South San Francisco, California, 94080, USA
| | - Marc A Beal
- Healthy Environments and Consumer Safety Branch, Health Canada, Government of Canada, Ottawa, Ontario, Canada K1A 0K9
| | | | | | - Jeffrey Birmingham
- GlaxoSmithKline, David Jack Centre for R&D, Ware, Hertfordshire, SG12 0DP, United Kingdom
| | - Alessandro Brigo
- Roche Pharmaceutical Research & Early Development, Pharmaceutical Sciences, Roche Innovation, Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | | | - Lidia Ceriani
- Humane Society International, 1000 Brussels, Belgium
| | - Ian Crooks
- British American Tobacco (Investments) Ltd, GR&D Centre, Southampton, SO15 8TL, United Kingdom
| | | | - Rosalie Elespuru
- Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, 20993, USA
| | - David M Faulkner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Marie C Fortin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08855, USA
| | - Paul Fowler
- FSTox Consulting (Genetic Toxicology), Northamptonshire, United Kingdom
| | | | | | - Gloria D Jahnke
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| | | | - Naomi L Kruhlak
- Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland, 20993, USA
| | - Elena Lo Piparo
- Chemical Food Safety Group, Nestlé Research, CH-1000 Lausanne 26, Switzerland
| | - Juan Lopez-Belmonte
- Cuts Ice Ltd Chemical Food Safety Group, Nestlé Research, CH-1000 Lausanne 26, Switzerland
| | - Amarjit Luniwal
- North American Science Associates (NAMSA) Inc., Minneapolis, Minnesota, 55426, USA
| | - Alice Luu
- Healthy Environments and Consumer Safety Branch, Health Canada, Government of Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Federica Madia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Serena Manganelli
- Chemical Food Safety Group, Nestlé Research, CH-1000 Lausanne 26, Switzerland
| | | | - Jordi Mestres
- IMIM Institut Hospital Del Mar d'Investigacions Mèdiques and Universitat Pompeu Fabra, Doctor Aiguader 88, Parc de Recerca Biomèdica, 08003 Barcelona, Spain; and Chemotargets SL, Baldiri Reixac 4, Parc Científic de Barcelona, 08028, Barcelona, Spain
| | | | - Louise Neilson
- Broughton Nicotine Services, Oak Tree House, Earby, Lancashire, BB18 6JZ United Kingdom
| | - Arun Pandiri
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| | | | - Cynthia V Rider
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| | - John P Rooney
- Integrated Laboratory Systems, LLC., Morrisville, North Carolina, 27560, USA
| | | | - Karen H Watanabe-Sailor
- School of Mathematical and Natural Sciences, Arizona State University, West Campus, Glendale, Arizona, 85306, USA
| | - Angela T White
- GlaxoSmithKline, David Jack Centre for R&D, Ware, Hertfordshire, SG12 0DP, United Kingdom
| | | | | |
Collapse
|
22
|
Francis F, Wuest F. Advances in [ 18F]Trifluoromethylation Chemistry for PET Imaging. Molecules 2021; 26:molecules26216478. [PMID: 34770885 PMCID: PMC8587676 DOI: 10.3390/molecules26216478] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Positron emission tomography (PET) is a preclinical and clinical imaging technique extensively used to study and visualize biological and physiological processes in vivo. Fluorine-18 (18F) is the most frequently used positron emitter for PET imaging due to its convenient 109.8 min half-life, high yield production on small biomedical cyclotrons, and well-established radiofluorination chemistry. The presence of fluorine atoms in many drugs opens new possibilities for developing radioligands labelled with fluorine-18. The trifluoromethyl group (CF3) represents a versatile structural motif in medicinal and pharmaceutical chemistry to design and synthesize drug molecules with favourable pharmacological properties. This fact also makes CF3 groups an exciting synthesis target from a PET tracer discovery perspective. Early attempts to synthesize [18F]CF3-containing radiotracers were mainly hampered by low radiochemical yields and additional challenges such as low radiochemical purity and molar activity. However, recent innovations in [18F]trifluoromethylation chemistry have significantly expanded the chemical toolbox to synthesize fluorine-18-labelled radiotracers. This review presents the development of significant [18F]trifluoromethylation chemistry strategies to apply [18F]CF3-containing radiotracers in preclinical and clinical PET imaging studies. The continuous growth of PET as a crucial functional imaging technique in biomedical and clinical research and the increasing number of CF3-containing drugs will be the primary drivers for developing novel [18F]trifluoromethylation chemistry strategies in the future.
Collapse
Affiliation(s)
- Felix Francis
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, AB T6G 2N4, Canada;
| | - Frank Wuest
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, AB T6G 2N4, Canada;
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
- Correspondence: ; Tel.: +1-780-391-7666; Fax: +1-780-432-8483
| |
Collapse
|
23
|
Porter JC, Win T, Erlandsson K, Fraioli F, Rashidnasab A, Holman B, Ganeshan B, Screaton NJ, Maher TM, Endozo R, Hoath J, Shortman RI, Emond E, Thielemans K, Hutton BF, Lukey PT, Aigbirhio F, Khan S, Rodriguez-Justo M, Groves AM. Measurement of hypoxia in the lung in IPF: an F-MISO PET CT study. Eur Respir J 2021; 58:13993003.04584-2020. [PMID: 34244317 DOI: 10.1183/13993003.04584-2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/04/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Joanna C Porter
- CITR, UCL and Interstitial Lung Disease Centre, UCLH, London, UK.,Joint First Authors
| | - Thida Win
- Respiratory Medicine, Lister Hospital, Stevenage, UK.,Joint First Authors
| | | | | | | | | | | | | | - Toby M Maher
- Hastings Centre for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA.,Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College, London, UK.,National Institute for Health Research (NIHR) Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, UK
| | | | - John Hoath
- Institute of Nuclear Medicine, UCL/H, London, UK
| | | | - Elise Emond
- Institute of Nuclear Medicine, UCL/H, London, UK
| | | | | | - Pauline T Lukey
- Target to Treatment Consulting Ltd, Stevenage Bioscience Catalyst, Stevenage, UK
| | | | - Saif Khan
- Department of Histopathology, UCLH, London, UK
| | | | | |
Collapse
|
24
|
Kaymak ZA, Karahan N, Erdoğan M, Erdemoğlu E, Zihni İ, Şengül SS. Correlation of 18F-FDG/PET SUV max, SUV mean, MTV, and TLG with HIF-1α in Patients with Colorectal Cancer. Mol Imaging Radionucl Ther 2021; 30:93-100. [PMID: 34082509 PMCID: PMC8185477 DOI: 10.4274/mirt.galenos.2021.04934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Objectives: Post-hypoxia hypoxia-inducible factor (HIF)-1α activation plays a vital role in colorectal cancer (CRC) angiogenesis. Although glucose metabolism is induced in some cancer types via HIF-1α, the prognostic significance of HIF-1α in CRC and its correlation with 18fluorinefluorodeoxyglucose (18F-FDG) uptake in positron emission tomography (PET) remain controversial. This study aims to investigate the association between 18F-FDG/PET parameters and HIF-1α expression in CRC. Methods: Thirty-six histopathologically confirmed patients with CRC who had 18F-FDG/PET scans before surgery were enrolled in the study. The correlations between the maximum standardized uptake value (SUVmax), SUVmean, metabolic tumor volume (MTV), total lesion glycolysis, HIF-1α overexpression, and histopathological features were evaluated. Results: The tumor location, tumor diameter, perineural invasion, lymphovascular invasion, T and N stage were not significantly correlated with HIF-1α overexpression. In contrast, the tumor differentiation was negatively correlated with HIF-1α expression (r=-0.332, p=0.048). None of the 18F-FDG/PET parameters was significantly correlated with HIF-1α overexpression. A significant relationship was found between tumor differentiation, tumor necrosis percentage, and MTV (p=0.030, p=0.020). Conclusion: The expected association between HIF-1α overexpression and 18F-FDG/PET parameters was not found in this study. However, there was a relationship between MTV, tumor differentiation, and tumor necrosis percentage. Hence, further studies are required to predict the pathological and prognostic courses of CRC using a diagnostic 18F-FDG/PET evaluation.
Collapse
Affiliation(s)
- Zümrüt Arda Kaymak
- Süleyman Demirel University Faculty of Medicine, Department of Radiaiton Oncology, Isparta, Turkey
| | - Nermin Karahan
- Süleyman Demirel University Faculty of Medicine, Department of Pathology, Isparta, Turkey
| | - Mehmet Erdoğan
- Süleyman Demirel University Faculty of Medicine, Department of Nuclear Medicine, Isparta, Turkey
| | - Evrim Erdemoğlu
- Süleyman Demirel University Faculty of Medicine, Department of Gynecologic Oncology, Isparta, Turkey
| | - İsmail Zihni
- Süleyman Demirel University Faculty of Medicine, Department of Surgical Oncology, Isparta, Turkey
| | - Sevim Süreyya Şengül
- Süleyman Demirel University Faculty of Medicine, Department of Nuclear Medicine, Isparta, Turkey
| |
Collapse
|
25
|
Sugita S, Yamato M, Hatabu T, Kataoka Y. Involvement of cancer-derived EMT cells in the accumulation of 18F-fluorodeoxyglucose in the hypoxic cancer microenvironment. Sci Rep 2021; 11:9668. [PMID: 33994540 PMCID: PMC8126561 DOI: 10.1038/s41598-021-88414-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
A high rate of glycolysis, one of the most common features of cancer, is used in positron emission tomography (PET) imaging to visualize tumor tissues using 18F-fluorodeoxyglucose (18F-FDG). Heterogeneous intratumoral distribution of 18F-FDG in tissues has been established in some types of cancer, and the maximum standardized uptake value (SUVmax) has been correlated with poor prognosis. However, the phenotype of cells that show high 18F-FDG accumulation in tumors remains unknown. Here, we combined quantitative micro-autoradiography with fluorescence immunohistochemistry to simultaneously visualize 18F-FDG distribution, the expression of multiple proteins, and hypoxic regions in the cancer microenvironment of a human A431 xenograft tumor in C.B-17/Icr-scid/scid mice. We found that the highest 18F-FDG accumulation was in cancer-derived cells undergoing epithelial-mesenchymal transition (EMT) in hypoxic regions, implicating these regions as a major contributor to increased glucose metabolism, as measured by 18F-FDG-PET.
Collapse
Affiliation(s)
- Sachi Sugita
- Laboratory of Animal Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama, Okayama, 700-8530, Japan.,Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Masanori Yamato
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.,Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Toshimitsu Hatabu
- Laboratory of Animal Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama, Okayama, 700-8530, Japan
| | - Yosky Kataoka
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan. .,Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|
26
|
Nehmeh SA, Moussa MB, Lee N, Zanzonico P, Gönen M, Humm JL, Schöder H. Comparison of FDG and FMISO uptakes and distributions in head and neck squamous cell cancer tumors. EJNMMI Res 2021; 11:38. [PMID: 33855685 PMCID: PMC8046891 DOI: 10.1186/s13550-021-00767-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/26/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose Glycolysis is increased by hypoxia, suggesting a possible correlation between the accumulation of 2-[18F]fluoro-2-deoxy-D-glucose (FDG) in malignant tumors and regional hypoxia defined by 1H-1-(3-[18F]fluoro-2-hydroxypropyl)-2-nitroimidazole (FMISO) PET. The aim of this study is to investigate the intra-tumoral spatial distribution and quantitative relationship between FDG and FMISO in a cohort of head and neck squamous cell cancer (HNSCC) patients. Methods Twenty HNSCC patients with 20 primary tumors and 19 metastatic lymph nodes (LNs) underwent FDG and FMISO PET within 1 week. The metabolic target volume (MTV) was defined on the FDG PET images using a region growing algorithm. The hypoxic volume (HV) was defined by the volume of voxels in an FMISO image within the MTV that satisfy a tumor-to-blood ratio (T/B) greater than 1.2. FDG and FMISO lesions were co-registered, and a voxel-by-voxel correlation between the two datasets was performed. FDG and FMISO TVs’ SUVs were also compared as well as the intra-tumoral homogeneity of the two radiotracers. Separate analysis was performed for the primary tumors and LNs. Results Twenty-six percent of the primary tumors and 15% of LNs showed a strong correlation (R > 0.7) between FDG and FMISO intra-tumor distributions when considering the MTV. For the HV, only 19% of primary tumors and 12% of LN were strongly correlated. A weak and moderate correlation existed between the two markers SUVavg, and SUVmax in the case of the primary tumors, respectively. However, this was not the case for the LNs. Good concordances were also observed between the primary tumor’s and LNs HV SUVavgs as well as between the corresponding hypoxic fractions (HF’s). Conclusions A moderate correlation between FDG and hypoxia radiotracer distribution, as measured by FMISO, seems to exist for primary tumors. However, discordant results were found in the case of LNs. Hypoxia appears to be the dominant driver of high FDG uptake in selected tumors only, and therefore FDG PET images cannot be used as a universal surrogate to identify or predict intra-tumor hypoxia.
Collapse
Affiliation(s)
- Sadek A Nehmeh
- Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA. .,Weill Cornell Medical College, New York, NY, 10021, USA.
| | - Mohamed B Moussa
- Chemistry Department, Stony Brook University, Stony Brook, NY, USA
| | - Nancy Lee
- Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Pat Zanzonico
- Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Mithat Gönen
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - John L Humm
- Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Heiko Schöder
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
27
|
D'Alonzo RA, Gill S, Rowshanfarzad P, Keam S, MacKinnon KM, Cook AM, Ebert MA. In vivo noninvasive preclinical tumor hypoxia imaging methods: a review. Int J Radiat Biol 2021; 97:593-631. [PMID: 33703994 DOI: 10.1080/09553002.2021.1900943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/28/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
Tumors exhibit areas of decreased oxygenation due to malformed blood vessels. This low oxygen concentration decreases the effectiveness of radiation therapy, and the resulting poor perfusion can prevent drugs from reaching areas of the tumor. Tumor hypoxia is associated with poorer prognosis and disease progression, and is therefore of interest to preclinical researchers. Although there are multiple different ways to measure tumor hypoxia and related factors, there is no standard for quantifying spatial and temporal tumor hypoxia distributions in preclinical research or in the clinic. This review compares imaging methods utilized for the purpose of assessing spatio-temporal patterns of hypoxia in the preclinical setting. Imaging methods provide varying levels of spatial and temporal resolution regarding different aspects of hypoxia, and with varying advantages and disadvantages. The choice of modality requires consideration of the specific experimental model, the nature of the required characterization and the availability of complementary modalities as well as immunohistochemistry.
Collapse
Affiliation(s)
- Rebecca A D'Alonzo
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Suki Gill
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Synat Keam
- School of Medicine, The University of Western Australia, Crawley, Australia
| | - Kelly M MacKinnon
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Alistair M Cook
- School of Medicine, The University of Western Australia, Crawley, Australia
| | - Martin A Ebert
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
- 5D Clinics, Claremont, Australia
| |
Collapse
|
28
|
Walke GR, Meron S, Shenberger Y, Gevorkyan‐Airapetov L, Ruthstein S. Cellular Uptake of the ATSM-Cu(II) Complex under Hypoxic Conditions. ChemistryOpen 2021; 10:486-492. [PMID: 33908707 PMCID: PMC8080296 DOI: 10.1002/open.202100044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
The Cu(II)-diacetyl-bis (N4-methylthiosemicarbazone) complex (ATSM-Cu(II)) has been suggested as a promising positron emission tomography (PET) agent for hypoxia imaging. Several in-vivo studies have shown its potential to detect hypoxic tumors. However, its uptake mechanism and its specificity to various cancer cell lines have been less studied. Herein, we tested ATSM-Cu(II) toxicity, uptake, and reduction, using four different cell types: (1) mouse breast cancer cells (DA-3), (2) human embryonic kidney cells (HEK-293), (3) breast cancer cells (MCF-7), and (4) cervical cancer cells (Hela) under normoxic and hypoxic conditions. We showed that ATSM-Cu(II) is toxic to breast cancer cells under normoxic and hypoxic conditions; however, it is not toxic to normal HEK-293 non-cancer cells. We showed that the Cu(I) content in breast cancer cell after treatment with ATSM-Cu(II) under hypoxic conditions is higher than in normal cells, despite that the uptake of ATSM-Cu(II) is a bit higher in normal cells than in breast cancer cells. This study suggests that the redox potential of ATSM-Cu(II) is higher in breast cancer cells than in normal cells; thus, its toxicity to cancer cells is increased.
Collapse
Affiliation(s)
- Gulshan R. Walke
- Department of ChemistryFaculty of Exact Sciences, and theInstitute for Nanotechnology and advanced materials (BINA)Bar-Ilan University5290002Ramat-GanIsrael
| | - Shelly Meron
- Department of ChemistryFaculty of Exact Sciences, and theInstitute for Nanotechnology and advanced materials (BINA)Bar-Ilan University5290002Ramat-GanIsrael
| | - Yulia Shenberger
- Department of ChemistryFaculty of Exact Sciences, and theInstitute for Nanotechnology and advanced materials (BINA)Bar-Ilan University5290002Ramat-GanIsrael
| | - Lada Gevorkyan‐Airapetov
- Department of ChemistryFaculty of Exact Sciences, and theInstitute for Nanotechnology and advanced materials (BINA)Bar-Ilan University5290002Ramat-GanIsrael
| | - Sharon Ruthstein
- Department of ChemistryFaculty of Exact Sciences, and theInstitute for Nanotechnology and advanced materials (BINA)Bar-Ilan University5290002Ramat-GanIsrael
| |
Collapse
|
29
|
Autissier R, Mazuel L, Maubert E, Bonny JM, Auzeloux P, Schmitt S, Traoré A, Peyrode C, Miot-Noirault E, Pagés G. Simultaneous proteoglycans and hypoxia mapping of chondrosarcoma environment by frequency selective CEST MRI. Magn Reson Med 2021; 86:1008-1018. [PMID: 33772858 DOI: 10.1002/mrm.28781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 11/10/2022]
Abstract
PURPOSE To evaluate the relevance of CEST frequency selectivity in simultaneous in vivo imaging of both of chondrosarcoma's phenotypic features, that are, its high proteoglycan concentration and its hypoxic core. METHODS Swarm rat chondrosarcomas were implanted subcutaneously in NMRI nude mice. When tumors were measurable (12-16 days postoperative), mice were submitted to GAG, guanidyl, and APT CEST imaging. Proteoglycans and hypoxia were assessed in parallel by nuclear imaging exploiting 99m Tc-NTP 15-5 and 18 F-FMISO, respectively. Data were completed by ex vivo analysis of proteoglycans (histology and biochemical assay) and hypoxia (immunofluorescence). RESULTS Quantitative analysis of GAG CEST evidenced a significantly higher signal for tumor tissues than for muscles. These results were in agreement with nuclear imaging and ex vivo data. For imaging tumoral pH in vivo, the CEST ratio of APT/guanidyl was studied. This highlighted an important heterogeneity inside the tumor. The hypoxic status was confirmed by 18 F-FMISO PET imaging and ex vivo immunofluorescence. CONCLUSION CEST MRI simultaneously imaged both chondrosarcoma properties during a single experimental run and without the injection of any contrast agent. Both MR and nuclear imaging as well as ex vivo data were in agreement and showed that this chondrosarcoma animal model was rich in proteoglycans. However, even if tumors were lightly hypoxic at the stage studied, acidic areas were highlighted and mapped inside the tumor.
Collapse
Affiliation(s)
- Roxane Autissier
- INRAE, UR QuaPA, Saint-Genès-Champanelle, France.,Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France.,INRAE, ISC AgroResonance, Saint-Genès-Champanelle, France
| | - Leslie Mazuel
- INRAE, UR QuaPA, Saint-Genès-Champanelle, France.,Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France.,INRAE, ISC AgroResonance, Saint-Genès-Champanelle, France
| | - Elise Maubert
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
| | - Jean-Marie Bonny
- INRAE, UR QuaPA, Saint-Genès-Champanelle, France.,INRAE, ISC AgroResonance, Saint-Genès-Champanelle, France
| | - Philippe Auzeloux
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
| | - Sébastien Schmitt
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
| | - Amidou Traoré
- INRAE, UR QuaPA, Saint-Genès-Champanelle, France.,INRAE, ISC AgroResonance, Saint-Genès-Champanelle, France
| | - Caroline Peyrode
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
| | - Elisabeth Miot-Noirault
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
| | - Guilhem Pagés
- INRAE, UR QuaPA, Saint-Genès-Champanelle, France.,INRAE, ISC AgroResonance, Saint-Genès-Champanelle, France
| |
Collapse
|
30
|
Flaus A, Nevesny S, Guy JB, Sotton S, Magné N, Prévot N. Positron emission tomography for radiotherapy planning in head and neck cancer: What impact? Nucl Med Commun 2021; 42:234-243. [PMID: 33252513 DOI: 10.1097/mnm.0000000000001329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PET-computed tomography (CT) plays a growing role to guide target volume delineation for head and neck cancer in radiation oncology. Pretherapeutic [18F]FDG PET-CT adds information to morphological imaging. First, as a whole-body imaging modality, it reveals regional or distant metastases that induce major therapeutic changes in more than 10% of the cases. Moreover, it allows better pathological lymph node selection which improves overall regional control and overall survival. Second, locally, it allows us to define the metabolic tumoral volume, which is a reliable prognostic feature for survival outcome. [18F]FDG PET-CT-based gross tumor volume (GTV) is on average significantly smaller than GTV based on CT. Nevertheless, the overlap is incomplete and more evaluation of composite GTV based on PET and GTV based on CT are needed. However, in clinical practice, the study showed that using GTV PET alone for treatment planning was similar to using GTVCT for local control and dose distribution was better as a dose to organs at risk significantly decreased. In addition to FDG, pretherapeutic PET could give access to different biological tumoral volumes - thanks to different tracers - guiding heterogeneous dose delivery (dose painting concept) to resistant subvolumes. During radiotherapy treatment, follow-up [18F]FDG PET-CT revealed an earlier and more important diminution of GTV than other imaging modality. It may be a valuable support for adaptative radiotherapy as a new treatment plan with a significant impact on dose distribution became possible. Finally, additional studies are required to prospectively validate long-term outcomes and lower toxicity resulting from the use of PET-CT in treatment planning.
Collapse
Affiliation(s)
- Anthime Flaus
- Service de Médecine Nucléaire, Centre Hospitalier Universitaire de Saint-Etienne, St Etienne
| | - Stéphane Nevesny
- Département de Radiothérapie, Institut de Cancérologie de la Loire-Lucien Neuwirth, St Priest en Jarez
| | - Jean-Baptiste Guy
- Département de Radiothérapie, Institut de Cancérologie de la Loire-Lucien Neuwirth, St Priest en Jarez
- UMR CNRS 5822/IN2P3, IPNL, PRISME, Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon-Sud, Université Lyon 1, Oullins Cedex
| | - Sandrine Sotton
- Department of Research and Teaching, Lucien Neuwirth Cancer Institute, Saint-Priest-en-Jarez, University Departement of Research and Teaching
| | - Nicolas Magné
- Département de Radiothérapie, Institut de Cancérologie de la Loire-Lucien Neuwirth, St Priest en Jarez
- UMR CNRS 5822/IN2P3, IPNL, PRISME, Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon-Sud, Université Lyon 1, Oullins Cedex
| | - Nathalie Prévot
- Service de Médecine Nucléaire, Centre Hospitalier Universitaire de Saint-Etienne, St Etienne
- INSERM U 1059 Sainbiose, Université Jean Monnet, Saint-Etienne, France
| |
Collapse
|
31
|
Tian Y, Jiang WL, Wang WX, Mao GJ, Li Y, Li CY. NAD(P)H-triggered probe for dual-modal imaging during energy metabolism and novel strategy of enhanced photothermal therapy in tumor. Biomaterials 2021; 271:120736. [PMID: 33662745 DOI: 10.1016/j.biomaterials.2021.120736] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/24/2022]
Abstract
The reduced coenzymes (NADH and NADPH) are an important product in energy metabolism and closely related to the occurrence and development of cancer. So it is necessary to use a powerful detection tool to visualize NAD(P)H in energy metabolism of tumor cells and find a new strategy to improve cancer treatment based on NAD(P)H. Herein, a novel multifunctional probe (Cy-N) is synthesized with good near-infrared fluorescence (NIRF) response to NAD(P)H and the photoacoustic (PA) and photothermal properties are successfully activated by NAD(P)H. The probe is successfully applied in visualizing NAD(P)H in energy metabolism of tumor cells and imaging NAD(P)H in bacteria. Moreover, the probe can be used to image NAD(P)H in energy metabolism of tumor-bearing mice by dual-modal imaging (NIRF and PA). More importantly, in terms of the role of NAD(P)H in energy metabolism, the photothermal therapy (PTT) is activated by NAD(P)H and a novel strategy of enhanced PTT is proposed by injecting glucose. As far as we know, this is the first probe to detect NAD(P)H in energy metabolism through dual-modal imaging, and also the first probe to activate PTT based on NAD(P)H, which will provide important information of the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Yang Tian
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Wen-Li Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Wen-Xin Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, PR China
| | - Yongfei Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China; College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, PR China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China.
| |
Collapse
|
32
|
Imaging Hypoxia. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00074-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
33
|
Scarpelli ML, Healey DR, Fuentes A, Kodibagkar VD, Quarles CC. Correlation of Tumor Hypoxia Metrics Derived from 18F-Fluoromisonidazole Positron Emission Tomography and Pimonidazole Fluorescence Images of Optically Cleared Brain Tissue. Tomography 2020; 6:379-388. [PMID: 33364428 PMCID: PMC7744194 DOI: 10.18383/j.tom.2020.00046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
18F-fluoromisonidazole (FMISO) positron emission tomography (PET) is a widely used noninvasive imaging modality for assessing hypoxia. We describe the first spatial comparison of FMISO PET with an ex vivo reference standard for hypoxia across whole tumor volumes. Eighteen rats were orthotopically implanted with C6 or 9L brain tumors and made to undergo FMISO PET scanning. Whole brains were excised, sliced into 1-mm-thick sections, optically cleared, and fluorescently imaged for pimonidazole using an in vivo imaging system. FMISO maximum tumor uptake, maximum tumor-to-cerebellar uptake (TCmax), and hypoxic fraction (extracted 110 minutes after FMISO injection) were correlated with analogous metrics derived from pimonidazole fluorescence images. FMISO SUVmax was not significantly different between C6 and 9L brain tumors (P = .70), whereas FMISO TCmax and hypoxic fraction were significantly greater for C6 tumors (P < .01). FMISO TCmax was significantly correlated with the maximum tumor pimonidazole intensity (ρ = 0.76, P < .01), whereas FMISO SUVmax was not. FMISO tumor hypoxic fraction was significantly correlated with the pimonidazole-derived hypoxic fraction (ρ = 0.78, P < .01). Given that FMISO TCmax and tumor hypoxic fraction had strong correlations with the pimonidazole reference standard, these metrics may offer more reliable measures of tumor hypoxia than conventional PET uptake metrics (SUVmax). The voxel-wise correlation between FMISO uptake and pimonidazole intensity for a given tumor was strongly dependent on the tumor's TCmax (ρ = 0.81, P < .01) and hypoxic fraction (ρ = 0.85, P < .01), indicating PET measurements within individual voxels showed greater correlation with pimonidazole reference standard in tumors with greater hypoxia.
Collapse
Affiliation(s)
- Matthew L. Scarpelli
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ; and
| | - Debbie R. Healey
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ; and
| | - Alberto Fuentes
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ; and
| | - Vikram D. Kodibagkar
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ; and
| | - C. Chad Quarles
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ; and
| |
Collapse
|
34
|
Wang G, Rahmim A, Gunn RN. PET Parametric Imaging: Past, Present, and Future. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020; 4:663-675. [PMID: 33763624 PMCID: PMC7983029 DOI: 10.1109/trpms.2020.3025086] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Positron emission tomography (PET) is actively used in a diverse range of applications in oncology, cardiology, and neurology. The use of PET in the clinical setting focuses on static (single time frame) imaging at a specific time-point post radiotracer injection and is typically considered as semi-quantitative; e.g. standardized uptake value (SUV) measures. In contrast, dynamic PET imaging requires increased acquisition times but has the advantage that it measures the full spatiotemporal distribution of a radiotracer and, in combination with tracer kinetic modeling, enables the generation of multiparametric images that more directly quantify underlying biological parameters of interest, such as blood flow, glucose metabolism, and receptor binding. Parametric images have the potential for improved detection and for more accurate and earlier therapeutic response assessment. Parametric imaging with dynamic PET has witnessed extensive research in the past four decades. In this paper, we provide an overview of past and present activities and discuss emerging opportunities in the field of parametric imaging for the future.
Collapse
Affiliation(s)
- Guobao Wang
- Department of Radiology, University of California Davis Health, Sacramento, CA 95817, USA
| | - Arman Rahmim
- University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
35
|
Aslan TN, Aşık E, Güray NT, Volkan M. The potential application of gold-apoferritin nanocages conjugated with 2-amino-2-deoxy-glucose for imaging of breast cancer cells. J Biol Inorg Chem 2020; 25:1139-1152. [PMID: 33128617 DOI: 10.1007/s00775-020-01830-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/19/2020] [Indexed: 11/25/2022]
Abstract
Development of biocompatible and multifunctional nanoprobes for tumor targeting, imaging, and therapy still remains a great challenge. Herein, gold nanoparticles (AuNPs) were synthesized in the cavity of horse spleen apoferritin protein (HoSAF) and protein surface was labeled with 2-amino-2-deoxy-glucose (2DG) as a cell surface glucose transport protein specific targeting probe to study the feasibility of its usage as a computer tomography (CT) contrast agent with tumor targeting capability through in vitro experiments. 2DG conjugated and gold-loaded apoferritin (Au-HoSAF-2DG) nanoparticles (NPs) showed selective targeting for human breast adenocarcinoma (MCF-7) cells when compared to normal breast (MCF-10A) cells. This AuNP-based imaging agent was found to be non-cytotoxic in a given concentration range with an apoptotic effect upon longer exposure times towards MCF-7 cells, while MCF-10A cells were affected less. This selective cell death would also be useful for further cancer treatments with the ability of X-ray attenuation in in vitro X-ray and computed tomography (CT) imaging.
Collapse
Affiliation(s)
- Tuğba Nur Aslan
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Konya, 42090, Turkey
| | - Elif Aşık
- Department of Biotechnology, Middle East Technical University, Ankara, 06800, Turkey
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - N Tülin Güray
- Department of Biotechnology, Middle East Technical University, Ankara, 06800, Turkey
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - Mürvet Volkan
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey.
- Department of Micro and Nanotechnology, Middle East Technical University, Ankara, 06800, Turkey.
| |
Collapse
|
36
|
Han Q, Han F, Fan Y, Lian B, Xiao J, Sun W, Han D, Kou H, Li C, Wu B. Notch3 is involved in the proliferation of renal cancer cells via regulation of cell cycle progression and HIF-2α. Oncol Lett 2020; 20:379. [PMID: 33154777 DOI: 10.3892/ol.2020.12242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
Renal cell carcinoma (RCC) is one of the most common malignant tumors of the urinary system. Although deregulation of the Notch signaling pathway is common in RCC and is involved in the tumorigenic process, the exact role of Notch3 and its underlying molecular mechanism in RCC, particularly in hypoxia, remain unknown. In the present study, RO4929097, a Notch3 inhibitor, was used to alter NICD3 expression. A Cell Counting Kit-8 assay, EdU incorporation assay, colony formation assay, flow cytometry and western blot analysis were used to investigate the effects of altered NICD3 expression on cell proliferation, cell cycle progression and HIF-2α protein expression. The results of western blot analysis showed that RO4929097 dose-dependently decreased the expression of Notch3 intracellular domain (NICD3) in 786-O and ACHN cells, which originate from clear cell RCC (ccRCC). The results of the Cell Counting Kit-8, EdU incorporation and colony formation assays demonstrated that downregulation of NICD3 significantly suppressed cell proliferation in both normoxia and hypoxia. In addition, flow cytometry and western blot analysis demonstrated that hypoxia (2% O2) promoted cell cycle progression in ccRCC cells with the increased expression of G1-S transition-associated proteins, namely cyclin-dependent kinase (CDK)4 and cyclin D1, while downregulation of NICD3 exerted negative effects on cell cycle progression, and the expression levels of CDK4 and cyclin D1. Furthermore, western blot analysis revealed that 2% O2-induced upregulated hypoxia-inducible factor-2α (HIF-2α) expression decreased following downregulation of NICD3 in 786-O and ACHN cells. Following transfection of the vector containing the NICD3 coding sequence, HIF-2α, CDK4, cyclin D1 and proliferating cell nuclear antigen expression, that were inhibited by RO4929097 in hypoxia, were rescued. Collectively, the results of the present study suggest that Notch3 is closely associated with the cell proliferation of ccRCC cells by regulating the cell cycle and HIF-2α.
Collapse
Affiliation(s)
- Qipeng Han
- Department of Urinary Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China.,Department of Urinary Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning 110001, P.R. China
| | - Fangzhu Han
- Center of Science Experiments, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yisheng Fan
- Department of Urinary Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning 110001, P.R. China
| | - Bowen Lian
- Center of Science Experiments, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Jinyang Xiao
- Center of Science Experiments, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Wei Sun
- Department of Urinary Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning 110001, P.R. China
| | - Dongbing Han
- Department of Urinary Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning 110001, P.R. China
| | - Hongbo Kou
- Department of Urinary Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning 110001, P.R. China
| | - Chunyan Li
- Center of Science Experiments, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Bin Wu
- Department of Urinary Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
37
|
Abstract
The major applications for molecular imaging with PET in clinical practice concern cancer imaging. Undoubtedly, 18F-FDG represents the backbone of nuclear oncology as it remains so far the most widely employed positron emitter compound. The acquired knowledge on cancer features, however, allowed the recognition in the last decades of multiple metabolic or pathogenic pathways within the cancer cells, which stimulated the development of novel radiopharmaceuticals. An endless list of PET tracers, substantially covering all hallmarks of cancer, has entered clinical routine or is being investigated in diagnostic trials. Some of them guard significant clinical applications, whereas others mostly bear a huge potential. This chapter summarizes a selected list of non-FDG PET tracers, described based on their introduction into and impact on clinical practice.
Collapse
|
38
|
Jarrett AM, Bloom MJ, Godfrey W, Syed AK, Ekrut DA, Ehrlich LI, Yankeelov TE, Sorace AG. Mathematical modelling of trastuzumab-induced immune response in an in vivo murine model of HER2+ breast cancer. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2020; 36:381-410. [PMID: 30239754 DOI: 10.1093/imammb/dqy014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 06/14/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023]
Abstract
The goal of this study is to develop an integrated, mathematical-experimental approach for understanding the interactions between the immune system and the effects of trastuzumab on breast cancer that overexpresses the human epidermal growth factor receptor 2 (HER2+). A system of coupled, ordinary differential equations was constructed to describe the temporal changes in tumour growth, along with intratumoural changes in the immune response, vascularity, necrosis and hypoxia. The mathematical model is calibrated with serially acquired experimental data of tumour volume, vascularity, necrosis and hypoxia obtained from either imaging or histology from a murine model of HER2+ breast cancer. Sensitivity analysis shows that model components are sensitive for 12 of 13 parameters, but accounting for uncertainty in the parameter values, model simulations still agree with the experimental data. Given theinitial conditions, the mathematical model predicts an increase in the immune infiltrates over time in the treated animals. Immunofluorescent staining results are presented that validate this prediction by showing an increased co-staining of CD11c and F4/80 (proteins expressed by dendritic cells and/or macrophages) in the total tissue for the treated tumours compared to the controls ($p < 0.03$). We posit that the proposed mathematical-experimental approach can be used to elucidate driving interactions between the trastuzumab-induced responses in the tumour and the immune system that drive the stabilization of vasculature while simultaneously decreasing tumour growth-conclusions revealed by the mathematical model that were not deducible from the experimental data alone.
Collapse
Affiliation(s)
- Angela M Jarrett
- Institute for Computational Engineering and Sciences, University of Texas, Austin, TX, USA.,Livestrong Cancer Institutes, University of Texas, Austin, TX, USA
| | - Meghan J Bloom
- Department of Biomedical Engineering, University of Texas, Austin, TX, USA
| | - Wesley Godfrey
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Anum K Syed
- Department of Biomedical Engineering, University of Texas, Austin, TX, USA
| | - David A Ekrut
- Institute for Computational Engineering and Sciences, University of Texas, Austin, TX, USA
| | - Lauren I Ehrlich
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA.,Institute for Cellular and Molecular Biology, University of Texas, Austin, TX, USA.,Livestrong Cancer Institutes, University of Texas, Austin, TX, USA
| | - Thomas E Yankeelov
- Institute for Computational Engineering and Sciences, University of Texas, Austin, TX, USA.,Department of Biomedical Engineering, University of Texas, Austin, TX, USA.,Department of Diagnostic Medicine, University of Texas, Austin, TX, USA.,Livestrong Cancer Institutes, University of Texas, Austin, TX, USA
| | - Anna G Sorace
- Department of Biomedical Engineering, University of Texas, Austin, TX, USA.,Department of Diagnostic Medicine, University of Texas, Austin, TX, USA.,Department of Oncology, University of Texas, Austin, TX, USA.,Livestrong Cancer Institutes, University of Texas, Austin, TX, USA
| |
Collapse
|
39
|
Gao P, Shen S, Li X, Liu D, Meng Y, Liu Y, Zhu Y, Zhang J, Luo P, Gu L. Dihydroartemisinin Inhibits the Proliferation of Leukemia Cells K562 by Suppressing PKM2 and GLUT1 Mediated Aerobic Glycolysis. Drug Des Devel Ther 2020; 14:2091-2100. [PMID: 32546972 PMCID: PMC7261662 DOI: 10.2147/dddt.s248872] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Leukemia threatens so many lives around the world. Dihydroartemisinin (DHA), as a typical derivative of artemisinin (ART), can efficiently inhibit leukemia, but the controversial mechanisms are still controversial. Many reports showed that tumor cells acquire energy through the glycolysis pathway, pyruvate kinase M2 (PKM2) plays a crucial role in regulating glycolysis. However, it is unclear whether PKM2 or other key molecules are involved in DHA induced cytotoxicity in leukemia cells. Thus, this paper systematically investigated the anticancer effect and mechanism of DHA on human chronic myeloid leukemia K562 cells. METHODS In vitro, cytotoxicity was detected with CCK-8. Glucose uptake, lactate production and pyruvate kinase activity were investigated to evaluate the effect of DHA on K562 cells. To elucidate the cellular metabolism alterations induced by DHA, the extracellular acidification rate was assessed using Seahorse XF96 extracellular flux analyzer. Immunofluorescence, real-time PCR, and Western blotting were used to investigate the molecular mechanism. RESULTS We found that DHA prevented cell proliferation in K562 cells through inhibiting aerobic glycolysis. Lactate product and glucose uptake were inhibited after DHA treatment. Results showed that DHA modulates glucose uptake through downregulating glucose transporter 1 (GLUT1) in both gene and protein levels. The cytotoxicity of DHA on K562 cells was significantly reversed by PKM2 agonist DASA-58. Pyruvate kinase activity was significantly reduced after DHA treatment, decreased expression of PKM2 was confirmed in situ. CONCLUSION The present study implicated that DHA inhibits leukemia cell proliferation by regulating glycolysis and metabolism, which mediated by downregulating PKM2 and GLUT1 expression. Our finding might enrich the artemisinins' antitumor mechanisms.
Collapse
Affiliation(s)
- Peng Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Shuo Shen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Xiaodong Li
- Institute of Chinese Materia Medica, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou730050, People’s Republic of China
| | - Dandan Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Yuqing Meng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Yanqing Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Yongping Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Junzhe Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Piao Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| | - Liwei Gu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing100700, People’s Republic of China
| |
Collapse
|
40
|
Stadlbauer A, Zimmermann M, Bennani-Baiti B, Helbich TH, Baltzer P, Clauser P, Kapetas P, Bago-Horvath Z, Pinker K. Development of a Non-invasive Assessment of Hypoxia and Neovascularization with Magnetic Resonance Imaging in Benign and Malignant Breast Tumors: Initial Results. Mol Imaging Biol 2020; 21:758-770. [PMID: 30478507 DOI: 10.1007/s11307-018-1298-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE To develop a novel magnetic resonance imaging (MRI) approach for the noninvasive assessment of hypoxia and neovascularization in breast tumors. PROCEDURES In this IRB-approved prospective study, 20 patients with suspicious breast lesions (BI-RADS 4/5) underwent multiparametric breast MRI including quantitative BOLD (qBOLD) and vascular architecture mapping (VAM). Custom-made in-house MatLab software was used for qBOLD and VAM data postprocessing and calculation of quantitative MRI biomarker maps of oxygen extraction fraction (OEF), metabolic rate of oxygen (MRO2), and mitochondrial oxygen tension (mitoPO2) to measure tissue hypoxia and neovascularization including vascular architecture including microvessel radius (VSI), density (MVD), and type (MTI). Histopathology was used as standard of reference. Appropriate statistics were performed to assess and compare correlations between MRI biomarkers for hypoxia and neovascularization. RESULTS qBOLD and VAM data with good quality were obtained from all patients with 13 invasive ductal carcinoma (IDC) and 7 benign breast tumors with a lesion diameter of at least 10 mm in all spatial directions. MRI biomarker maps of oxygen metabolism and neovascularization demonstrated intratumoral spatial heterogeneity with a broad range of biomarker values. Bulk tumor neovasculature consisted of draining venous microvasculature with slow flowing blood. High OEF and low mitoPO2 were associated with low MVD and vice versa. The heterogeneous pattern of MRO2 values showed spatial congruence with VSI. IDCs showed significantly higher MRO2 (P = 0.007), lower mitoPO2 (P = 0.021), higher MVD (P = 0.005), and lower (i.e., more pathologic) MTI (P = 0.001) compared with benign breast tumors. These results indicate that IDCs consume more oxygen and are more hypoxic and neovascularized than benign tumors. CONCLUSIONS We developed a novel MRI approach for the noninvasive assessment of hypoxia and neovascularization in benign and malignant breast tumors that can be easily integrated in a diagnostic MRI protocol and provides insight into intratumoral heterogeneity.
Collapse
Affiliation(s)
- Andreas Stadlbauer
- Institute of Medical Radiology, University Clinic of St. Pölten, Propst-Führer-Straße 4, St. Pölten, 3100, Austria.,Department of Neurosurgery, University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen, 91054, Germany
| | - Max Zimmermann
- Department of Neurosurgery, University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen, 91054, Germany
| | - Barbara Bennani-Baiti
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Thomas H Helbich
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Pascal Baltzer
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Paola Clauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Panagiotis Kapetas
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Zsuzsanna Bago-Horvath
- Department of Pathology, Medical University of Vienna, Weahringer Guertel 18-20, Vienna, 1090, Austria
| | - Katja Pinker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria. .,Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, New York, NY, 10065, USA.
| |
Collapse
|
41
|
Fakhri S, Moradi SZ, Farzaei MH, Bishayee A. Modulation of dysregulated cancer metabolism by plant secondary metabolites: A mechanistic review. Semin Cancer Biol 2020; 80:276-305. [PMID: 32081639 DOI: 10.1016/j.semcancer.2020.02.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
Several signaling pathways and basic metabolites are responsible for the control of metabolism in both normal and cancer cells. As emerging hallmarks of cancer metabolism, the abnormal activities of these pathways are of the most noticeable events in cancer. This altered metabolism expedites the survival and proliferation of cancer cells, which have attracted a substantial amount of interest in cancer metabolism. Nowadays, targeting metabolism and cross-linked signaling pathways in cancer has been a hot topic to investigate novel drugs against cancer. Despite the efficiency of conventional drugs in cancer therapy, their associated toxicity, resistance, and high-cost cause limitations in their application. Besides, considering the numerous signaling pathways cross-linked with cancer metabolism, discovery, and development of multi-targeted and safe natural compounds has been a high priority. Natural secondary metabolites have exhibited promising anticancer effects by targeting dysregulated signaling pathways linked to cancer metabolism. The present review reveals the metabolism and cross-linked dysregulated signaling pathways in cancer. The promising therapeutic targets in cancer, as well as the critical role of natural secondary metabolites for significant anticancer enhancements, have also been highlighted to find novel/potential therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
42
|
Spatial and quantitative mapping of glycolysis and hypoxia in glioblastoma as a predictor of radiotherapy response and sites of relapse. Eur J Nucl Med Mol Imaging 2020; 47:1476-1485. [PMID: 32025750 DOI: 10.1007/s00259-020-04706-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/21/2020] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Tumor hypoxia is a centerpiece of disease progression mechanisms such as neoangiogenesis or aggressive hypoxia-resistant malignant cells selection that impacts on radiotherapy strategies. Early identification of regions at risk for recurrence and prognostic-based classification of patients is a necessity to devise tailored therapeutic strategies. We developed an image-based algorithm to spatially map areas of aerobic and anaerobic glycolysis (Glyoxia). METHODS 18F-FDG and 18F-FMISO PET studies were used in the algorithm to produce DICOM-co-registered representations and maximum intensity projections combined with quantitative analysis of hypoxic volume (HV), hypoxic glycolytic volume (HGV), and anaerobic glycolytic volume (AGV) with CT/MRI co-registration. This was applied to a prospective clinical trial of 10 glioblastoma patients with post-operative, pre-radiotherapy, and early post-radiotherapy 18F-FDG and 18F-FMISO PET and MRI studies. RESULTS In the 10 glioblastoma patients (5M:5F; age range 51-69 years), 14/18 18F-FMISO PET studies showed detectable hypoxia. Seven patients survived to complete post-radiotherapy studies. The patient with the longest overall survival showed non-detectable hypoxia in both pre-radiotherapy and post-radiotherapy 18F-FMISO PET. The three patients with increased HV, HGV, and AGV volumes after radiotherapy showed 2.8 months mean progression-free interval vs. 5.9 months for the other 4 patients. These parameters correlated at that time point with progression-free interval. Parameters combining hypoxia and glycolytic information (i.e., HGV and AGV) showed more prominent variation than hypoxia-based information alone (HV). Glyoxia-generated images were consistent with disease relapse topology; in particular, one patient had distant relapse anticipated by HV, HGV, and AGV maps. CONCLUSION Spatial mapping of aerobic and anaerobic glycolysis allows unique information on tumor metabolism and hypoxia to be evaluated with PET, providing a greater understanding of tumor biology and potential response to therapy.
Collapse
|
43
|
Young AIMN Working Group, Quartuccio N, Laudicella R, Mapelli P, Guglielmo P, Pizzuto DA, Boero M, Arnone G, Picchio M. Hypoxia PET imaging beyond 18F-FMISO in patients with high-grade glioma: 18F-FAZA and other hypoxia radiotracers. Clin Transl Imaging 2020; 8:11-20. [DOI: 10.1007/s40336-020-00358-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/18/2020] [Indexed: 02/07/2023]
|
44
|
Madan E, Parker TM, Pelham CJ, Palma AM, Peixoto ML, Nagane M, Chandaria A, Tomás AR, Canas-Marques R, Henriques V, Galzerano A, Cabral-Teixeira J, Selvendiran K, Kuppusamy P, Carvalho C, Beltran A, Moreno E, Pati UK, Gogna R. HIF-transcribed p53 chaperones HIF-1α. Nucleic Acids Res 2019; 47:10212-10234. [PMID: 31538203 PMCID: PMC6821315 DOI: 10.1093/nar/gkz766] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/14/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic hypoxia is associated with a variety of physiological conditions such as rheumatoid arthritis, ischemia/reperfusion injury, stroke, diabetic vasculopathy, epilepsy and cancer. At the molecular level, hypoxia manifests its effects via activation of HIF-dependent transcription. On the other hand, an important transcription factor p53, which controls a myriad of biological functions, is rendered transcriptionally inactive under hypoxic conditions. p53 and HIF-1α are known to share a mysterious relationship and play an ambiguous role in the regulation of hypoxia-induced cellular changes. Here we demonstrate a novel pathway where HIF-1α transcriptionally upregulates both WT and MT p53 by binding to five response elements in p53 promoter. In hypoxic cells, this HIF-1α-induced p53 is transcriptionally inefficient but is abundantly available for protein-protein interactions. Further, both WT and MT p53 proteins bind and chaperone HIF-1α to stabilize its binding at its downstream DNA response elements. This p53-induced chaperoning of HIF-1α increases synthesis of HIF-regulated genes and thus the efficiency of hypoxia-induced molecular changes. This basic biology finding has important implications not only in the design of anti-cancer strategies but also for other physiological conditions where hypoxia results in disease manifestation.
Collapse
Affiliation(s)
- Esha Madan
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Taylor M Parker
- Department of Surgery, Simon Cancer Research Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Christopher J Pelham
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, MO 63110, USA
| | - Antonio M Palma
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Maria L Peixoto
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Masaki Nagane
- Department of Biochemistry, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Aliya Chandaria
- Biosciences unit, College of Life and Environmental Sciences, University of Exeter, Stocker Road Exeter EX4 4QD, UK
| | - Ana R Tomás
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | | | | | | | | | - Karuppaiyah Selvendiran
- Division of Gynecologic Oncology, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Periannan Kuppusamy
- Department of Radiology and Medicine, 601 Rubin Building, Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Carlos Carvalho
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Antonio Beltran
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Eduardo Moreno
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Uttam K Pati
- Transcription and Human Biology Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajan Gogna
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| |
Collapse
|
45
|
Kalaiarasi C, George C, Gonnade RG, Hathwar VR, Poomani K. Experimental and theoretical charge density, intermolecular interactions and electrostatic properties of metronidazole. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2019; 75:942-953. [PMID: 32830674 DOI: 10.1107/s2052520619011272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 08/13/2019] [Indexed: 06/11/2023]
Abstract
Metronidazole is a radiosensitizer; it crystallizes in the monoclinic system with space group P21/c. The crystal structure of metronidazole has been determined from high-resolution X-ray diffraction measurements at 90 K with a resolution of (sin θ/λ)max = 1.12 Å-1. To understand the charge-density distribution and the electrostatic properties of metronidazole, a multipole model refinement was carried out using the Hansen-Coppens multipole formalism. The topological analysis of the electron density of metronidazole was performed using Bader's quantum theory of atoms in molecules to determine the electron density and the Laplacian of the electron density at the bond critical point of the molecule. The experimental results have been compared with the corresponding periodic theoretical calculation performed at the B3LYP/6-31G** level using CRYSTAL09. The topological analysis reveals that the N-O and C-NO2 exhibit less electron density as well as negative Laplacian of electron density. The molecular packing of crystal is stabilized by weak and strong inter- and intramolecular hydrogen bonding and H...H interactions. The topological analysis of O-H...N, C-H...O and H...H intra- and intermolecular interactions was also carried out. The electrostatic potential of metronidazole, calculated from the experiment, predicts the possible electrophilic and nucleophilic sites of the molecule; notably, the hydroxyl and the nitro groups exhibit large electronegative regions. The results have been compared with the corresponding theoretical results.
Collapse
Affiliation(s)
- Chinnasamy Kalaiarasi
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, 636 011, India
| | - Christy George
- Centre for Materials Characterization, National Chemical Laboratory, Pune, 411 008, India
| | - Rajesh G Gonnade
- Centre for Materials Characterization, National Chemical Laboratory, Pune, 411 008, India
| | | | - Kumaradhas Poomani
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, 636 011, India
| |
Collapse
|
46
|
Textural features of hypoxia PET predict survival in head and neck cancer during chemoradiotherapy. Eur J Nucl Med Mol Imaging 2019; 47:1056-1064. [PMID: 31773233 DOI: 10.1007/s00259-019-04609-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/07/2019] [Indexed: 01/24/2023]
Abstract
PURPOSE The aim of this study was to investigate whether textural features of tumour hypoxia, assessed with serial [18F]fluoromisonidazole (FMISO)-PET, were able to predict clinical outcome in patients with head and neck squamous cell carcinoma (HNSCC, T1-4, N+, M0) during chemoradiotherapy (CRT). METHODS In a preliminary evaluation of a prospective trial, tumour hypoxia was evaluated in 29 patients via serial FMISO-PET before and during CRT. All patients received an initial [18F]fluorodeoxyglucose (FDG)-PET before CRT, and tumour regions were defined on this FDG-PET. The first-order metrics tumour-to-background ratio (TBRmean, TBRmax, TBRpeak), coefficient of variation, total lesion uptake and integral non-uniformity were calculated for all scans. Further, 3 second-order (textural) features from two grey-level matrices were calculated, as well as differential non-uniformity (udiff). Prognostic value was examined by median split for group separation (GS) in Kaplan-Meier estimates and correlated with overall survival (OS), quantified via log-rank tests (p ≤ 0.05) and group-relative hazard ratios (HR). RESULTS Within a median follow-up of 29.6 months (95% CI: 16.8-48.0 months), no first-order metrics predicted OS with a significant GS (all p > 0.05) on any FMISO-PET scan. Only udiff before and in week 2 during CRT (p = 0.03, HR = 10.8 and p = 0.05, HR = 5.2) and non-uniformity from grey-level run length matrix in week 2 separated prognostic groups (p = 0.05, HR = 5.3); lower values were correlated with better OS. Further, the decrease in udiff from before CRT to week 2 was correlated with better OS (p = 0.04, HR = 9.4). FDG-PET before CRT did not predict outcome in any measure. CONCLUSIONS Textural features on FMISO-PET scans before CRT, in week 2 and, to a limited degree, the change of features during CRT, were able to identify head and neck squamous cell carcinoma patients with better OS, suggesting that a higher homogeneity of the degree of hypoxia in tumours could correlate with a better outcome after CRT.
Collapse
|
47
|
Shimizu Y, Kudo K, Kameda H, Harada T, Fujima N, Toyonaga T, Tha KK, Shirato H. Prediction of Hypoxia in Brain Tumors Using a Multivariate Model Built from MR Imaging and 18F-Fluorodeoxyglucose Accumulation Data. Magn Reson Med Sci 2019; 19:227-234. [PMID: 31611541 PMCID: PMC7553805 DOI: 10.2463/mrms.mp.2019-0049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Purpose: The aim of this study was to generate a multivariate model using various MRI markers of blood flow and vascular permeability and accumulation of 18F-fluorodeoxyglucose (FDG) to predict the extent of hypoxia in an 18F-fluoromisonidazole (FMISO)-positive region. Methods: Fifteen patients aged 27–74 years with brain tumors (glioma, n = 13; lymphoma, n = 1; germinoma, n = 1) were included. MRI scans were performed using a 3T scanner, and dynamic contrast-enhanced (DCE) perfusion and arterial spin labeling images were obtained. Ktrans and Vp maps were generated using the DCE images. FDG and FMISO positron emission tomography scans were also obtained. A model for predicting FMISO positivity was generated on a voxel-by-voxel basis by a multivariate logistic regression model using all the MRI parameters with and without FDG. Receiver-operating characteristic curve analysis was used to detect FMISO positivity with multivariate and univariate analysis of each parameter. Cross-validation was performed using the leave-one-out method. Results: The area under the curve (AUC) was highest for the multivariate prediction model with FDG (0.892) followed by the multivariate model without FDG and univariate analysis with FDG and Ktrans (0.844 for all). In cross-validation, the multivariate model with FDG had the highest AUC (0.857 ± 0.08) followed by the multivariate model without FDG (0.834 ± 0.119). Conclusion: A multivariate prediction model created using blood flow, vascular permeability, and glycometabolism parameters can predict the extent of hypoxia in FMISO-positive areas in patients with brain tumors.
Collapse
Affiliation(s)
- Yukie Shimizu
- Department of Radiation Medicine, Hokkaido University Graduate School of Medicine
| | - Kohsuke Kudo
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital.,Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University
| | - Hiroyuki Kameda
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
| | - Taisuke Harada
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
| | - Takuya Toyonaga
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine
| | - Khin Khin Tha
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital.,Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University
| | - Hiroki Shirato
- Department of Radiation Medicine, Hokkaido University Graduate School of Medicine.,Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University
| |
Collapse
|
48
|
Gupta T, Chatterjee A, Rangarajan V, Purandare N, Arya S, Murthy V, Budrukkar A, Ghosh-Laskar S, Agarwal JP. Evaluation of quantitative imaging parameters in head and neck squamous cell carcinoma. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2019; 66:162-170. [PMID: 31496204 DOI: 10.23736/s1824-4785.19.03179-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Functional imaging such as 18F-fluoro-deoxy-glucose positron emission tomography/computed tomography (FDG-PET/CT), 18F-fluoro-misonidazole (F-MISO)-PET/CT, and diffusion-weighted magnetic resonance imaging (DW-MRI) can assess complex biological phenomena in tumors reflecting underlying disease biology. The aim of this prospective observational study was to correlate quantitative imaging parameters derived from pre-treatment biological imaging such as FDG-PET/CT, F-MISO-PET/CT, and DW-MRI with each other andì with clinical outcomes in patients with head and neck squamous cell carcinoma (HNSCC) treated with definitive radio(chemo)therapy. METHODS Twenty patients with pharyngo-laryngeal cancers underwent pre-treatment biological imaging. Gross tumor volume (GTV) was delineated on axial planning CT (GTVCT). Quantitative FDG-PET/CT parameters included maximum, mean, minimum standardized uptake values (SUVmax-FDG, SUVmean-FDG, SUVmin-FDG); metabolic tumor volume (MTV); and total lesion glycolysis (TLG). F-MISO-PET/CT parameters included hypoxic tumor volume (HTV); maximum, mean, minimum SUV; and fractional hypoxic volume (FHV). Mean apparent diffusion coefficient (ADCmean) was derived from DW-MRI. RESULTS There was moderately strong positive correlation (r=0.616, p=0.005) between GTVCT and MTV. HTV derived from F-MISO-PET/CT at 3-hours (HTV3hrs-F-MISO) showed strong positive correlation with GTVCT (r=0.753, p<0.0001) and MTV (r=0.796, p<0.0001) respectively. ADCmean showed strong positive correlations with SUVmean-5hrs-F-MISO (r=0.713, p=0.021) and SUVmin-5hrs-FMISO (r=0.731, p=0.016) respectively. A moderate negative correlation (r=-0.500, p=0.049) was observed between ADCmean and MTV. At a median follow up of 44 months, the 5-year Kaplan-Meier estimates of loco-regional control, disease-free survival, and overall survival were 53%, 43%, and 40% respectively. Larger volume of primary tumor (GTVCT>22cc and MTV>7.9cc) and increasing hypoxia (HTV3hr-F-MSO>4.9cc) were associated with worse outcomes. CONCLUSIONS Functional imaging represents an attractive and non-invasive modality to assess complex biological phenomena in solid tumors. Larger tumor volume and increasing hypoxia emerged as putative prognostic imaging biomarkers in HNSCC.
Collapse
Affiliation(s)
- Tejpal Gupta
- Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC), Tata Memorial Hospital (TMH), Tata Memorial Centre, Mumbai, India -
| | - Abhishek Chatterjee
- Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC), Tata Memorial Hospital (TMH), Tata Memorial Centre, Mumbai, India
| | - Venkatesh Rangarajan
- Nuclear Medicine & Molecular Imaging, Advanced Centre for Treatment Research & Education in Cancer (ACTREC), Tata Memorial Hospital (TMH), Tata Memorial Centre, Mumbai, India
| | - Nilendu Purandare
- Nuclear Medicine & Molecular Imaging, Advanced Centre for Treatment Research & Education in Cancer (ACTREC), Tata Memorial Hospital (TMH), Tata Memorial Centre, Mumbai, India
| | - Supreeta Arya
- Radiodiagnosis, Advanced Centre for Treatment Research & Education in Cancer (ACTREC), Tata Memorial Hospital (TMH), Tata Memorial Centre, Mumbai, India
| | - Vedang Murthy
- Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC), Tata Memorial Hospital (TMH), Tata Memorial Centre, Mumbai, India
| | - Ashwini Budrukkar
- Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC), Tata Memorial Hospital (TMH), Tata Memorial Centre, Mumbai, India
| | - Sarbani Ghosh-Laskar
- Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC), Tata Memorial Hospital (TMH), Tata Memorial Centre, Mumbai, India
| | - Jai Prakash Agarwal
- Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC), Tata Memorial Hospital (TMH), Tata Memorial Centre, Mumbai, India
| |
Collapse
|
49
|
Peppicelli S, Ruzzolini J, Andreucci E, Bianchini F, Kontos F, Yamada T, Ferrone S, Calorini L. Potential Role of HLA Class I Antigens in the Glycolytic Metabolism and Motility of Melanoma Cells. Cancers (Basel) 2019; 11:cancers11091249. [PMID: 31454998 PMCID: PMC6770395 DOI: 10.3390/cancers11091249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/31/2019] [Accepted: 08/12/2019] [Indexed: 01/04/2023] Open
Abstract
Besides playing a crucial role in immune surveillance, human leukocyte antigens (HLA) possess numerous non-immune functions involved in cell communication. In the present study, screening of a panel of HLA class I- and HLA class II-specific monoclonal antibodies (mAbs) for their effects on the metabolism of human melanoma cells showed for the first time that the HLA-B,C-specific mAb B1.23.2 reduced the expression level of key glycolytic enzymes, but did not affect that of mitochondrial respiration effectors. As a result, the metabolism of melanoma cells shifted from a Warburg metabolism to a more oxidative phosphorylation. In addition, the HLA-B,C-specific mAb B1.23.2 downregulated the expression of glutamine transporter and glutaminase enzyme participating in the reduction of tricarboxylic acid cycle. The HLA-B,C-specific mAb B1.23.2-mediated reduction in energy production was associated with a reduction of melanoma cell motility. On the whole, the described results suggest that HLA class I antigens, and in particular the gene products of HLA-B and C loci play a role in the motility of melanoma cells by regulating their metabolism.
Collapse
Affiliation(s)
- Silvia Peppicelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, Viale G.B. Morgagni, 50-50134, Florence, Italy.
| | - Jessica Ruzzolini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, Viale G.B. Morgagni, 50-50134, Florence, Italy
| | - Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, Viale G.B. Morgagni, 50-50134, Florence, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, Viale G.B. Morgagni, 50-50134, Florence, Italy
| | - Filippos Kontos
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Teppei Yamada
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, Viale G.B. Morgagni, 50-50134, Florence, Italy.
- Istituto Toscano Tumori and Center of Excellence for Research, Transfer and High Education DenoTHE University of Florence, Piazza di San Marco, 4, 50121 Florence, Italy.
| |
Collapse
|
50
|
Wang G, Xiao L, Wang F, Yang J, Yang L, Zhao Y, Jin W. Hypoxia inducible factor-1α/B-cell lymphoma 2 signaling impacts radiosensitivity of H1299 non-small cell lung cancer cells in a normoxic environment. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2019; 58:439-448. [PMID: 31203382 DOI: 10.1007/s00411-019-00802-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Hypoxia inducible factor-1α (HIF-1α) is a critical transcriptional factor for the response of cells to hypoxic microenvironment and its expression induces resistance of hypoxic non-small-cell lung cancer (NSCLC) cells to radiotherapy. This study investigated how the activation of HIF-1α/B-cell lymphoma 2 (BCL-2) signaling under normoxic conditions impacted radiosensitivity of NSCLC cells. The recombinant pcDNA3.0-EGFP plasmids with wild-type or mutant HIF-1α complementary DNA (cDNA) were transfected into H1299 cells, an NSCLC cell line, establishing two H1299 sublines with high expression of HIF-1α. Compared with the levels of HIF-1α and BCL-2 proteins in non-transfected cells, increased levels of both proteins were found in transfected cells. Moreover, the expression of HIF-1α in non-transfected cells induced by chloride cobalt (CoCl2), a commonly used mimetic hypoxia reagent, was concomitant with the enhancement of BCL-2 expression. Conversely, reduction of HIF-1α expression by an inhibitor decreased the levels of BCL-2 proteins. The results revealed that the stabilization and expression of HIF-1α promoted the accumulation of BCL-2 proteins in H1299 cells. Subsequent experiments showed that intracellular HIF-1α/BCL-2 signaling was triggered in a normoxic environment after H1299 cells were exposed to irradiation, causing an elevated radioresistance. In contrast, blockage of HIF-1α/BCL-2 signaling leads to an elevated radiosensitivity. Proliferation of cells assay showed that, under normoxic conditions, population doubling times (PDTs) of irradiated cells were prolonged by suppression of HIF-1α/BCL-2 signaling. It is, therefore, indicated that HIF-1α/BCL-2 signaling activated by ionizing radiation reduces the radiosensitivity of H1299 cells independent of the hypoxic environment.
Collapse
Affiliation(s)
- Gang Wang
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Liang Xiao
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
- Department of Radiation Oncology, First Affiliated Hospital, Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China
| | - Fen Wang
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Jing Yang
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital, 107 Huanhu East Road, Hefei, 230031, Anhui, People's Republic of China
| | - Li Yang
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Ye Zhao
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China.
| | - Wensen Jin
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China.
| |
Collapse
|