1
|
Sengar D, Pathan NS, Gajbhiye V. D-bait: A siDNA for regulation of DNA-protein kinases against DNA damage and its implications in cancer. Int J Pharm 2025; 673:125416. [PMID: 40024452 DOI: 10.1016/j.ijpharm.2025.125416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/31/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
siDNA fragments, also called Dbait and Pbait, are small DNA oligonucleotides of 30-32 base pairs that cause impairment in DNA repair pathways. Like siRNA and miRNA molecules, which lead to the degradation of mRNA molecules through the Argonaute and Drosha machinery, respectively, Dbait molecules act as false DNA damage signals and trigger and exhaust the DNA repair machinery. In normal cells with no significant DNA damage, the influence of these molecules is negligible. However, in cancer, when there is heavy DNA damage due to replication and anticancer therapies, the cancer cell is heavily dependent on DNA repair proteins to keep the genome intact and limit breaks. This phenomenon primarily occurs during radiation therapy, as significant DNA damage surpasses several DNA repair mechanisms, causing an accumulation of unrepaired lesions and ultimately leading to cell death. This review explores the therapeutic capacity of siDNA molecules in cancer treatment by stimulating the repair mechanisms in cells that depend on DNA repair pathways. For aggressive malignancies such as glioblastoma, prostate cancer, and colorectal cancer, the use of siDNA as a radiosensitizer, especially when combined with other treatments, increases the vulnerability of tumor cells to radiation-induced DNA damage, hence potentially enhancing therapy results.
Collapse
Affiliation(s)
- Devyani Sengar
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India
| | - Nida Sayed Pathan
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
2
|
Mishra T, Dubey N, Basu S. Small molecules for impairing endoplasmic reticulum in cancer. Org Biomol Chem 2024; 22:8689-8699. [PMID: 39373910 DOI: 10.1039/d4ob01238k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The endoplasmic reticulum plays an important role in maintaining the protein homeostasis of cells as well as regulating Ca2+ storage. An increased load of unfolded proteins in the endoplasmic reticulum due to alterations in the cell's metabolic pathway leads to the activation of the unfolded protein response, also known as ER stress. ER stress plays a major role in maintaining the growth and survival of various cancer cells, but persistent ER stress can also lead to cell death and hence can be a therapeutic pathway in the treatment of cancer. In this review, we focus on different types of small molecules that impair different ER stress sensors, the protein degradation machinery, and chaperone proteins. We also review the metal complexes and other miscellaneous compounds inducing ER stress through multiple mechanisms. Finally, we discuss the challenges in this emerging area of research and the potential direction of research to overcome them towards next-generation ER-targeted cancer therapy.
Collapse
Affiliation(s)
- Tripti Mishra
- Department of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India.
| | - Navneet Dubey
- Department of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India.
| | - Sudipta Basu
- Department of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
3
|
Wen X, Shao Z, Chen X, Liu H, Qiu H, Ding X, Qu D, Wang H, Wang AZ, Zhang L. A multifunctional targeted nano-delivery system with radiosensitization and immune activation in glioblastoma. Radiat Oncol 2024; 19:119. [PMID: 39267113 PMCID: PMC11395210 DOI: 10.1186/s13014-024-02511-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024] Open
Abstract
Glioblastoma (GBM), the most common primary brain malignancy in adults, is notoriously difficult to treat due to several factors: tendency to be radiation resistant, the presence of the blood brain barrier (BBB) which limits drug delivery and immune-privileged status which hampers effective immune responses. Traditionally, high-dose irradiation (8 Gy) is known to effectively enhance anti-tumor immune responses, but its application is limited by the risk of severe brain damage. Currently, conventional dose segmentation (2 Gy) is the standard radiotherapy method, which does not fully exploit the potential of high-dose irradiation for immune activation. The hypothesis of our study posits that instead of directly applying high doses of radiation, which is risky, a strategy could be developed to harness the immune-stimulating benefits of high-dose irradiation indirectly. This involves using nanoparticles to enhance antigen presentation and immune responses in a safer manner. Angiopep-2 (A2) was proved a satisfactory BBB and brain targeting and Dbait is a small molecule that hijack DNA double strand break damage (DSB) repair proteins to make cancer cells more sensitive to radiation. In view of that, the following two nanoparticles were designed to combine immunity of GBM, radiation resistance and BBB innovatively. One is cationic liposome nanoparticle interacting with Dbait (A2-CL/Dbait NPs) for radiosensitization effect; the other is PLGA-PEG-Mal nanoparticle conjugated with OX40 antibody (A2-PLGA-PEG-Mal/anti-OX40 NPs) for tumor-derived protein antigens capture and optimistic immunoregulatory effect of anti-OX40 (which is known to enhance the activation and proliferation T cells). Both types of nanoparticles showed favorable targeting and low toxicity in experimental models. Specifically, the combination of A2-CL/Dbait NPs and A2-PLGA-PEG-Mal/anti-OX40 NPs led to a significant extension in the survival time and a significant tumor shrinkage of mice with GBM. The study demonstrates that combining these innovative nanoparticles with conventional radiotherapy can effectively address key challenges in GBM treatment. It represents a significant step toward more effective and safer therapeutic options for GBM patients.
Collapse
Affiliation(s)
- Xin Wen
- Cancer Institute of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Kunpeng North Road No. 9, Xuzhou, 221000, Jiangsu, China
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhiying Shao
- Cancer Institute of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xueting Chen
- Cancer Institute of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongmei Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong, China
| | - Hui Qiu
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Kunpeng North Road No. 9, Xuzhou, 221000, Jiangsu, China
| | - Xin Ding
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Kunpeng North Road No. 9, Xuzhou, 221000, Jiangsu, China
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Debao Qu
- Cancer Institute of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Kunpeng North Road No. 9, Xuzhou, 221000, Jiangsu, China
| | - Hui Wang
- Cancer Institute of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Andrew Z Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Longzhen Zhang
- Cancer Institute of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Kunpeng North Road No. 9, Xuzhou, 221000, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Jiangsu, China.
| |
Collapse
|
4
|
Sesink A, Becerra M, Ruan JL, Leboucher S, Dubail M, Heinrich S, Jdey W, Petersson K, Fouillade C, Berthault N, Dutreix M, Girard PM. The AsiDNA™ decoy mimicking DSBs protects the normal tissue from radiation toxicity through a DNA-PK/p53/p21-dependent G1/S arrest. NAR Cancer 2024; 6:zcae011. [PMID: 38476631 PMCID: PMC10928987 DOI: 10.1093/narcan/zcae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
AsiDNA™, a cholesterol-coupled oligonucleotide mimicking double-stranded DNA breaks, was developed to sensitize tumour cells to radio- and chemotherapy. This drug acts as a decoy hijacking the DNA damage response. Previous studies have demonstrated that standalone AsiDNA™ administration is well tolerated with no additional adverse effects when combined with chemo- and/or radiotherapy. The lack of normal tissue complication encouraged further examination into the role of AsiDNA™ in normal cells. This research demonstrates the radioprotective properties of AsiDNA™. In vitro, AsiDNA™ induces a DNA-PK/p53/p21-dependent G1/S arrest in normal epithelial cells and fibroblasts that is absent in p53 deficient and proficient tumour cells. This cell cycle arrest improved survival after irradiation only in p53 proficient normal cells. Combined administration of AsiDNA™ with conventional radiotherapy in mouse models of late and early radiation toxicity resulted in decreased onset of lung fibrosis and increased intestinal crypt survival. Similar results were observed following FLASH radiotherapy in standalone or combined with AsiDNA™. Mechanisms comparable to those identified in vitro were detected both in vivo, in the intestine and ex vivo, in precision cut lung slices. Collectively, the results suggest that AsiDNA™ can partially protect healthy tissues from radiation toxicity by triggering a G1/S arrest in normal cells.
Collapse
Affiliation(s)
- Anouk Sesink
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Margaux Becerra
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Jia-Ling Ruan
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, UK
| | - Sophie Leboucher
- Histology platform, Institut Curie, CNRS UMR3348, 91405 Orsay, France
| | - Maxime Dubail
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Sophie Heinrich
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Wael Jdey
- Valerio Therapeutics, 49 Bd du Général Martial Valin, 75015 Paris, France
| | - Kristoffer Petersson
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, UK
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund University, Lund, Sweden
| | - Charles Fouillade
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Nathalie Berthault
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Marie Dutreix
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Pierre-Marie Girard
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| |
Collapse
|
5
|
Haque M, Shakil MS, Mahmud KM. The Promise of Nanoparticles-Based Radiotherapy in Cancer Treatment. Cancers (Basel) 2023; 15:cancers15061892. [PMID: 36980778 PMCID: PMC10047050 DOI: 10.3390/cancers15061892] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Radiation has been utilized for a long time for the treatment of cancer patients. However, radiotherapy (RT) has many constraints, among which non-selectivity is the primary one. The implementation of nanoparticles (NPs) with RT not only localizes radiation in targeted tissue but also provides significant tumoricidal effect(s) compared to radiation alone. NPs can be functionalized with both biomolecules and therapeutic agents, and their combination significantly reduces the side effects of RT. NP-based RT destroys cancer cells through multiple mechanisms, including ROS generation, which in turn damages DNA and other cellular organelles, inhibiting of the DNA double-strand damage-repair system, obstructing of the cell cycle, regulating of the tumor microenvironment, and killing of cancer stem cells. Furthermore, such combined treatments overcome radioresistance and drug resistance to chemotherapy. Additionally, NP-based RT in combined treatments have shown synergistic therapeutic benefit(s) and enhanced the therapeutic window. Furthermore, a combination of phototherapy, i.e., photodynamic therapy and photothermal therapy with NP-based RT, not only reduces phototoxicity but also offers excellent therapeutic benefits. Moreover, using NPs with RT has shown promise in cancer treatment and shown excellent therapeutic outcomes in clinical trials. Therefore, extensive research in this field will pave the way toward improved RT in cancer treatment.
Collapse
Affiliation(s)
- Munima Haque
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka 1212, Bangladesh
| | - Md Salman Shakil
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka 1212, Bangladesh
| | - Kazi Mustafa Mahmud
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| |
Collapse
|
6
|
Kuthala N, Shanmugam M, Yao CL, Chiang CS, Hwang KC. One step synthesis of 10B-enriched 10BPO4 nanoparticles for effective boron neutron capture therapeutic treatment of recurrent head-and-neck tumor. Biomaterials 2022; 290:121861. [DOI: 10.1016/j.biomaterials.2022.121861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/15/2022]
|
7
|
Casas G, Perche F, Midoux P, Pichon C, Malinge JM. DNA minicircles as novel STAT3 decoy oligodeoxynucleotides endowed with anticancer activity in triple-negative breast cancer. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:162-175. [PMID: 35847174 PMCID: PMC9263874 DOI: 10.1016/j.omtn.2022.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
Decoy technology is a versatile and specific DNA oligonucleotide-based targeting strategy of pathogenic transcription factors (TFs). Chemical modifications of linear decoy oligonucleotides have been made to decrease nuclease sensitivity because of the presence of free ends but at the cost of new limitations that affect their use as therapeutic drugs. Although a short DNA minicircle is a phosphodiester nucleic acid without free ends, its potential therapeutic activity as a TF decoy oligonucleotide has not yet been investigated. Here we describe the in vitro and in vivo activity of formulated 95-bp minicircles bearing one or several STAT3 binding sequences in triple-negative breast cancer (TNBC). Minicircles bearing one STAT3 binding site interacted specifically with the active form of STAT3 and inhibited proliferation, induced apoptosis, slowed down cell cycle progression, and decreased STAT3 target gene expression in human and murine TNBC cells. Intratumoral injection of STAT3 minicircles inhibited tumor growth and metastasis in a murine model of TNBC. Increasing the number of STAT3 binding sites resulted in improved anticancer activity, opening the way for a TF multitargeting strategy. Our data provide the first demonstration of minicircles acting as STAT3 decoys and show that they could be an effective therapeutic drug for TNBC treatment.
Collapse
Affiliation(s)
- Geoffrey Casas
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Affiliated with the University of Orléans and INSERM, Rue Charles Sadron, CS-80054, 45071 Orléans Cedex 02, France
| | - Federico Perche
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Affiliated with the University of Orléans and INSERM, Rue Charles Sadron, CS-80054, 45071 Orléans Cedex 02, France
| | - Patrick Midoux
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Affiliated with the University of Orléans and INSERM, Rue Charles Sadron, CS-80054, 45071 Orléans Cedex 02, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Affiliated with the University of Orléans and INSERM, Rue Charles Sadron, CS-80054, 45071 Orléans Cedex 02, France
- Corresponding author Chantal Pichon, Centre de Biophysique Moléculaire, UPR 4301 CNRS, Rue Charles Sadron, CS-80054, 45071 Orléans, Cedex 02, France.
| | - Jean-Marc Malinge
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Affiliated with the University of Orléans and INSERM, Rue Charles Sadron, CS-80054, 45071 Orléans Cedex 02, France
- Corresponding author Jean-Marc Malinge, Centre de Biophysique Moléculaire, UPR 4301 CNRS, Rue Charles Sadron, CS-80054, 45071 Orléans, Cedex 02, France.
| |
Collapse
|
8
|
Zhang S, Jiao X, Heger M, Gao S, He M, Xu N, Zhang J, Zhang M, Yu Y, Ding B, Ding X. A tumor microenvironment-responsive micelle co-delivered radiosensitizer Dbait and doxorubicin for the collaborative chemo-radiotherapy of glioblastoma. Drug Deliv 2022; 29:2658-2670. [PMID: 35975300 PMCID: PMC9387324 DOI: 10.1080/10717544.2022.2108937] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glioblastoma is rather recalcitrant to existing therapies and effective interventions are needed. Here we report a novel microenvironment-responsive micellar system (ch-K5(s-s)R8-An) for the co-delivery of the radiosensitizer Dbait and the chemotherapeutic doxorubicin (DOX) to glioblastoma. Accordingly, the ch-K5(s-s)R8-An/(Dbait-DOX) micelles plus radiotherapy (RT) treatment resulted in a high degree of apoptosis and DNA damage, which significantly reduced cell viability and proliferation capacity of U251 cells to 64.0% and 16.3%, respectively. The angiopep-2-modified micelles exhibited substantial accumulation in brain-localized U251 glioblastoma xenografts in mice compared to angiopep-2-lacking micelles. The ch-K5(s-s)R8-An/(Dbait-DOX) + RT treatment group exhibited the smallest tumor size and most profound tumor tissue injury in orthotopic U251 tumors, leading to an increase in median survival time of U251 tumor-bearing mice from 26 days to 56 days. The ch-K5(s-s)R8-An/(Dbait-DOX) micelles can be targeted to brain-localized U251 tumor xenografts and sensitize the tumor to chemotherapy and radiotherapy, thereby overcoming the inherent therapeutic challenges associated with malignant glioblastoma.
Collapse
Affiliation(s)
- Shuyue Zhang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuxiu Jiao
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China
| | - Shen Gao
- Department of Pharmaceutical Science, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Mei He
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Xu
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jigang Zhang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingjian Zhang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Yu
- Department of Pharmaceutical Science, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Baoyue Ding
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China
| | - Xueying Ding
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Paturel A, Hall J, Chemin I. Poly(ADP-Ribose) Polymerase Inhibition as a Promising Approach for Hepatocellular Carcinoma Therapy. Cancers (Basel) 2022; 14:3806. [PMID: 35954469 PMCID: PMC9367559 DOI: 10.3390/cancers14153806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Primary liver cancer is the sixth most common cancer in men and seventh in women, with hepatocellular carcinoma (HCC) being the most common form (75-85% of primary liver cancer cases) and the most frequent etiology being viral infections (HBV and HCV). In 2020, mortality represented 92% of the incidence-830,180 deaths for 905,677 new cases. Few treatment options exist for advanced or terminal-stage HCC, which will receive systemic therapy or palliative care. Although radiotherapy is used in the treatment of many cancers, it is currently not the treatment of choice for HCC, except in the palliative setting. However, as radiosensitizing drugs, such as inhibitors of DNA repair enzymes, could potentiate the effects of RT in HCC by exploiting the modulation of DNA repair processes found in this tumour type, RT and such drugs could provide a treatment option for HCC. In this review, we provide an overview of PARP1 involvement in DNA damage repair pathway and discuss its potential implication in HCC. In addition, the use of PARP inhibitors and PARP decoys is described for the treatment of HCC and, in particular, in HBV-related HCC.
Collapse
Affiliation(s)
| | | | - Isabelle Chemin
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM, CNRS, Centre Léon Bérard, Centre De Recherche En Cancérologie De Lyon, 69008 Lyon, France
| |
Collapse
|
10
|
Berthault N, Bergam P, Pereira F, Girard PM, Dutreix M. Inhibition of DNA Repair by Inappropriate Activation of ATM, PARP, and DNA-PK with the Drug Agonist AsiDNA. Cells 2022; 11:cells11142149. [PMID: 35883597 PMCID: PMC9320633 DOI: 10.3390/cells11142149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/10/2022] Open
Abstract
AsiDNA is a DNA repair inhibitor mimicking DNA double-strand breaks (DSB) that was designed to disorganize DSB repair pathways to sensitize tumors to DNA damaging therapies such as radiotherapy and chemotherapy. We used the property of AsiDNA of triggering artificial DNA damage signaling to examine the activation of DSB repair pathways and to study the main steps of inhibition of DNA repair foci after irradiation. We show that, upon AsiDNA cellular uptake, cytoplasmic ATM and PARP are rapidly activated (within one hour) even in the absence of irradiation. ATM activation by AsiDNA leads to its transient autophosphorylation and sequestration in the cytoplasm, preventing the formation of ATM nuclear foci on irradiation-induced damage. In contrast, the activation of PARP did not seem to alter its ability to form DNA repair foci, but prevented 53BP1 and XRCC4 recruitment at the damage sites. In the nucleus, AsiDNA is essentially associated with DNA-PK, which triggers its activation leading to phosphorylation of H2AX all over chromatin. This pan-nuclear phosphorylation of H2AX correlates with the massive inhibition, at damage sites induced by irradiation, of the recruitment of repair enzymes involved in DSB repair by homologous recombination and nonhomologous end joining. These results highlight the interest in a new generation of DNA repair inhibitors targeting DNA damage signaling.
Collapse
Affiliation(s)
- Nathalie Berthault
- Institut Curie, PSL Research University, CNRS, INSERM, UMR 3347, 91405 Orsay, France; (N.B.); (F.P.); (P.-M.G.)
- Université Paris-Saclay, CNRS, UMR 3347, 91405 Orsay, France
| | - Ptissam Bergam
- Institut Curie, PSL Research University, CNRS, INSERM, UMS 2016, Multimodal Imaging Centre, 91405 Orsay, France;
- Université Paris-Saclay, CNRS, UMS 2016, 91405 Orsay, France
| | - Floriane Pereira
- Institut Curie, PSL Research University, CNRS, INSERM, UMR 3347, 91405 Orsay, France; (N.B.); (F.P.); (P.-M.G.)
- Université Paris-Saclay, CNRS, UMR 3347, 91405 Orsay, France
| | - Pierre-Marie Girard
- Institut Curie, PSL Research University, CNRS, INSERM, UMR 3347, 91405 Orsay, France; (N.B.); (F.P.); (P.-M.G.)
- Université Paris-Saclay, CNRS, UMR 3347, 91405 Orsay, France
| | - Marie Dutreix
- Institut Curie, PSL Research University, CNRS, INSERM, UMR 3347, 91405 Orsay, France; (N.B.); (F.P.); (P.-M.G.)
- Université Paris-Saclay, CNRS, UMR 3347, 91405 Orsay, France
- Correspondence:
| |
Collapse
|
11
|
Subecz C, Sun JS, Roger L. Effect of DNA repair inhibitor AsiDNA on the incidence of telomere fusion in crisis. Hum Mol Genet 2021; 30:172-181. [PMID: 33480989 PMCID: PMC8091035 DOI: 10.1093/hmg/ddab008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/12/2020] [Accepted: 12/31/2020] [Indexed: 11/28/2022] Open
Abstract
Telomere fusions lead to a state of genomic instability, and are thought to drive clonal evolution and tumorigenesis. Telomere fusions occur via both Classical and Alternative Non-Homologous End Joining repair pathways. AsiDNA is a DNA repair inhibitor that acts by mimicking a DNA double strand break (DSB) and hijacking the recruitment of proteins involved in various DNA repair pathways. In this study, we investigated whether the inhibition of DSB-repair pathways by AsiDNA could prevent telomere fusions during crisis. The present study showed that AsiDNA decreased the frequency of telomere fusions without affecting the rate of telomere erosion. Further, it indicated that AsiDNA does not impact the choice of the repair pathway used for the fusion of short dysfunctional telomeres. AsiDNA is thought to prevent short telomeres from fusing by inhibiting DNA repair. An alternative, non-mutually exclusive possibility is that cells harbouring fusions preferentially die in the presence of AsiDNA, thus resulting in a reduction in fusion frequency. This important work could open the way for investigating the use of AsiDNA in the treatment of tumours that have short dysfunctional telomeres and/or are experiencing genomic instability.
Collapse
Affiliation(s)
- Chloé Subecz
- Structure and Instability of Genomes laboratory, "Muséum National d'Histoire Naturelle" (MNHN), Inserm U1154, CNRS UMR 7196, Paris, France
| | - Jian-Sheng Sun
- Structure and Instability of Genomes laboratory, "Muséum National d'Histoire Naturelle" (MNHN), Inserm U1154, CNRS UMR 7196, Paris, France
| | - Lauréline Roger
- Structure and Instability of Genomes laboratory, "Muséum National d'Histoire Naturelle" (MNHN), Inserm U1154, CNRS UMR 7196, Paris, France
| |
Collapse
|
12
|
Monraz Gomez LC, Kondratova M, Sompairac N, Lonjou C, Ravel JM, Barillot E, Zinovyev A, Kuperstein I. Atlas of Cancer Signaling Network: A Resource of Multi-Scale Biological Maps to Study Disease Mechanisms. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11683-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
13
|
Liu N, Ji J, Qiu H, Shao Z, Wen X, Chen A, Yao S, Zhang X, Yao H, Zhang L. Improving radio-chemotherapy efficacy of prostate cancer by co-deliverying docetaxel and dbait with biodegradable nanoparticles. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:305-314. [PMID: 31858836 DOI: 10.1080/21691401.2019.1703726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Combining DNA damage repair inhibitors and chemotherapeutic agents is an emerging strategy in cancer treatment. In this study, we engineered the polycation nanoparticle (NP), which co-encapsulated DNA damage repair inhibitor Dbait and chemotherapeutic drug Docetaxel (Dtxl), using H1 nanopolymer (folate--polyethylenimine600-cyclodextrin), and the size of H1/Dbait/Dtxl was about 117 nm. We demonstrated that H1/Dbait/Dtxl enhanced the efficiency of radio-chemotherapy in prostate cancer cells by CCK-8 assay and colony-forming assay. Importantly, the improvement of radio-chemotherapy of H1/Dbait/Dtxl in prostate cancer was also validated in vivo, and the NP did not have a high toxicity profile. The results of immunohistochemistry and western blot supported that the improved therapeutic efficacy was through inhibiting DNA damage repair signalling pathway. Our study supports further investigations using NP to co-deliver DNA damage repair inhibitors and chemotherapeutics to improve the therapeutic efficacy of cancer.
Collapse
Affiliation(s)
- Nianli Liu
- Cancer Institute of Xuzhou Medical University, Xuzhou, China
| | - Jiayin Ji
- Department of Internal Medicine, NO.731 Hospital of CASIC, Beijing, China
| | - Hui Qiu
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhiying Shao
- Department of Interventional Ultrasound, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xin Wen
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Aoxing Chen
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Senbang Yao
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xingying Zhang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hong Yao
- Cancer Institute of Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou, China
| | - Longzhen Zhang
- Cancer Institute of Xuzhou Medical University, Xuzhou, China.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou, China
| |
Collapse
|
14
|
Ferreira S, Foray C, Gatto A, Larcher M, Heinrich S, Lupu M, Mispelter J, Boussin FD, Pouponnot C, Dutreix M. AsiDNA Is a Radiosensitizer with no Added Toxicity in Medulloblastoma Pediatric Models. Clin Cancer Res 2020; 26:5735-5746. [PMID: 32900798 DOI: 10.1158/1078-0432.ccr-20-1729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/08/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Medulloblastoma is an important cause of mortality and morbidity in pediatric oncology. Here, we investigated whether the DNA repair inhibitor, AsiDNA, could help address a significant unmet clinical need in medulloblastoma care, by improving radiotherapy efficacy without increasing radiation-associated toxicity. EXPERIMENTAL DESIGN To evaluate the brain permeability of AsiDNA upon systemic delivery, we intraperitoneally injected a fluorescence form of AsiDNA in models harboring brain tumors and in models still in development. Studies evaluated toxicity associated with combination of AsiDNA with radiation in the treatment of young developing animals at subacute levels, related to growth and development, and at chronic levels, related to brain organization and cognitive skills. Efficacy of the combination of AsiDNA with radiation was tested in two different preclinical xenografted models of high-risk medulloblastoma and in a panel of medulloblastoma cell lines from different molecular subgroups and TP53 status. Role of TP53 on the AsiDNA-mediated radiosensitization was analyzed by RNA-sequencing, DNA repair recruitment, and cell death assays. RESULTS Capable of penetrating young brain tissues, AsiDNA showed no added toxicity to radiation. Combination of AsiDNA with radiotherapy improved the survival of animal models more efficiently than increasing radiation doses. Medulloblastoma radiosensitization by AsiDNA was not restricted to a specific molecular group or status of TP53. Molecular mechanisms of AsiDNA, previously observed in adult malignancies, were conserved in pediatric models and resembled dose increase when combined with irradiation. CONCLUSIONS Our results suggest that AsiDNA is an attractive candidate to improve radiotherapy in medulloblastoma, with no indication of additional toxicity in developing brain tissues.
Collapse
Affiliation(s)
- Sofia Ferreira
- Institut Curie, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, Paris, France.,Institut Curie, Université Paris-Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, Paris, France
| | - Chloe Foray
- Institut Curie, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, Paris, France.,Institut Curie, Université Paris-Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, Paris, France
| | - Alberto Gatto
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| | - Magalie Larcher
- Institut Curie, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, Paris, France.,Institut Curie, Université Paris-Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, Paris, France
| | - Sophie Heinrich
- Institut Curie, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, Paris, France.,Institut Curie, Université Paris-Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, Paris, France
| | - Mihaela Lupu
- Institut Curie, Research Center, PSL Research University, CNRS UMR 9187, INSERM U 1196, Orsay, Paris, France.,Institut Curie, Université Paris-Sud, Université Paris-Saclay, CNRS UMR 9187, INSERM U1196, Orsay, Paris, France
| | - Joel Mispelter
- Institut Curie, Research Center, PSL Research University, CNRS UMR 9187, INSERM U 1196, Orsay, Paris, France.,Institut Curie, Université Paris-Sud, Université Paris-Saclay, CNRS UMR 9187, INSERM U1196, Orsay, Paris, France
| | - François D Boussin
- Université de Paris and Université Paris-Saclay, Inserm, LRP/iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265, Fontenay-aux-Roses, France
| | - Célio Pouponnot
- Institut Curie, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, Paris, France.,Institut Curie, Université Paris-Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, Paris, France
| | - Marie Dutreix
- Institut Curie, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, Paris, France. .,Institut Curie, Université Paris-Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, Paris, France
| |
Collapse
|
15
|
A Phase 1 dose-escalation study to evaluate safety, pharmacokinetics and pharmacodynamics of AsiDNA, a first-in-class DNA repair inhibitor, administered intravenously in patients with advanced solid tumours. Br J Cancer 2020; 123:1481-1489. [PMID: 32839491 PMCID: PMC7653034 DOI: 10.1038/s41416-020-01028-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/15/2020] [Accepted: 07/30/2020] [Indexed: 01/02/2023] Open
Abstract
Background AsiDNA, a first-in-class oligonucleotide-mimicking double-stranded DNA breaks, acts as a decoy agonist to DNA damage response in tumour cells. It also activates DNA-dependent protein kinase and poly (adenosine diphosphate [ADP]-ribose) polymerase enzymes that induce phosphorylation of H2AX and protein PARylation. Methods The aim of this Phase 1 study was to determine dose-limiting toxicities (DLTs), maximum tolerated dose (MTD), safety and pharmacokinetics/pharmacodynamics of AsiDNA administered daily for 3 days in the first week then weekly thereafter. Twenty-two patients with advanced solid tumours were enrolled in 5 dose levels: 200, 400, 600, 900, and 1300 mg, using a 3 + 3 design. Results The MTD was not reached. IV AsiDNA was safe. Two DLTs (grade 4 and grade 3 hepatic enzymes increased at 900 and 1300 mg), and two related SAE at 900 mg (grade 3 hypotension and grade 4 hepatic enzymes increased) were reported. AsiDNA PK increased proportionally with dose. A robust activation of DNA-PK by a significant posttreatment increase of γH2AX was evidenced in tumour biopsies. Conclusion The dose of 600 mg was identified as the optimal dose for further clinical development. Clinical trial registration Clinical trial registration (NCT number): NCT03579628.
Collapse
|
16
|
Girard P, Berthault N, Kozlac M, Ferreira S, Jdey W, Bhaskara S, Alekseev S, Thomas F, Dutreix M. Evolution of tumor cells during AsiDNA treatment results in energy exhaustion, decrease in responsiveness to signal, and higher sensitivity to the drug. Evol Appl 2020; 13:1673-1680. [PMID: 32821277 PMCID: PMC7428804 DOI: 10.1111/eva.12949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/28/2020] [Accepted: 02/19/2020] [Indexed: 01/08/2023] Open
Abstract
It is increasingly suggested that ecological and evolutionary sciences could inspire novel therapies against cancer but medical evidence of this remains scarce at the moment. The Achilles heel of conventional and targeted anticancer treatments is intrinsic or acquired resistance following Darwinian selection; that is, treatment toxicity places the surviving cells under intense evolutionary selective pressure to develop resistance. Here, we review a set of data that demonstrate that Darwinian principles derived from the "smoke detector" principle can instead drive the evolution of malignant cells toward a different trajectory. Specifically, long-term exposure of cancer cells to a strong alarm signal, generated by the DNA repair inhibitor AsiDNA, induces a stable new state characterized by a down-regulation of the targeted pathways and does not generate resistant clones. This property is due to the original mechanism of action of AsiDNA, which acts by overactivating a "false" signaling of DNA damage through DNA-PK and PARP enzymes, and is not observed with classical DNA repair inhibitors such as the PARP inhibitors. Long-term treatment with AsiDNA induces a new "alarm down" state in the tumor cells with decrease in NAD level and reactiveness to it. These results suggest that agonist drugs such as AsiDNA could promote a state-dependent tumor cell evolution by lowering their ability to respond to high "danger" signal. This analysis provides a compelling argument that evolutionary ecology could help drug design development in overcoming fundamental limitation of novel therapies against cancer due to the modification of the targeted tumor cell population during treatment.
Collapse
Affiliation(s)
- Pierre‐Marie Girard
- Institut CurieCNRSINSERMUMR 3347PSL Research UniversityOrsayFrance
- CNRSINSERMUMR 3347Université Paris‐SudUniversité Paris‐SaclayFOrsayFrance
| | - Nathalie Berthault
- Institut CurieCNRSINSERMUMR 3347PSL Research UniversityOrsayFrance
- CNRSINSERMUMR 3347Université Paris‐SudUniversité Paris‐SaclayFOrsayFrance
| | - Maria Kozlac
- Institut CurieCNRSINSERMUMR 3347PSL Research UniversityOrsayFrance
- CNRSINSERMUMR 3347Université Paris‐SudUniversité Paris‐SaclayFOrsayFrance
| | - Sofia Ferreira
- Institut CurieCNRSINSERMUMR 3347PSL Research UniversityOrsayFrance
- CNRSINSERMUMR 3347Université Paris‐SudUniversité Paris‐SaclayFOrsayFrance
| | - Wael Jdey
- Institut CurieCNRSINSERMUMR 3347PSL Research UniversityOrsayFrance
- CNRSINSERMUMR 3347Université Paris‐SudUniversité Paris‐SaclayFOrsayFrance
- OnxeoParisFrance
| | - Srividya Bhaskara
- Huntsman Cancer InstituteUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Sergey Alekseev
- Institut CurieCNRSINSERMUMR 3347PSL Research UniversityOrsayFrance
- CNRSINSERMUMR 3347Université Paris‐SudUniversité Paris‐SaclayFOrsayFrance
| | - Frederic Thomas
- CREEC/MIVEGECUMR IRD 224‐CNRS 5290Université de MontpellierMontpellierFrance
| | - Marie Dutreix
- Institut CurieCNRSINSERMUMR 3347PSL Research UniversityOrsayFrance
- CNRSINSERMUMR 3347Université Paris‐SudUniversité Paris‐SaclayFOrsayFrance
| |
Collapse
|
17
|
Grasso D, Medeiros HCD, Zampieri LX, Bol V, Danhier P, van Gisbergen MW, Bouzin C, Brusa D, Grégoire V, Smeets H, Stassen APM, Dubois LJ, Lambin P, Dutreix M, Sonveaux P. Fitter Mitochondria Are Associated With Radioresistance in Human Head and Neck SQD9 Cancer Cells. Front Pharmacol 2020; 11:263. [PMID: 32231567 PMCID: PMC7082361 DOI: 10.3389/fphar.2020.00263] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
The clinical management of head and neck squamous cell carcinoma (HNSCC) commonly involves chemoradiotherapy, but recurrences often occur that are associated with radioresistance. Using human SQD9 laryngeal squamous cell carcinoma cancer cells as a model, we aimed to identify metabolic changes associated with acquired radioresistance. In a top-down approach, matched radiosensitive and radioresistant SQD9 cells were generated and metabolically compared, focusing on glycolysis, oxidative phosphorylation (OXPHOS) and ROS production. The cell cycle, clonogenicity, tumor growth in mice and DNA damage-repair were assessed. Mitochondrial DNA (mtDNA) was sequenced. In a bottom-up approach, matched glycolytic and oxidative SQD9 cells were generated using FACS-sorting, and tested for their radiosensitivity/radioresistance. We found that acquired radioresistance is associated with a shift from a glycolytic to a more oxidative metabolism in SQD9 cells. The opposite was also true, as the most oxidative fraction isolated from SQD9 wild-type cells was also more radioresistant than the most glycolytic fraction. However, neither reduced hexokinase expression nor OXPHOS were directly responsible for the radioresistant phenotype. Radiosensitive and radioresistant cells had similar proliferation rates and were equally efficient for ATP production. They were equally sensitive to redox stress and had similar DNA damage repair, but radioresistant cells had an increased number of mitochondria and a higher mtDNA content. Thus, an oxidative switch is associated with but is not responsible for acquired radioresistance in human SQD9 cells. In radioresistant cells, more abundant and fitter mitochondria could help to preserve mitochondrial functions upon irradiation.
Collapse
Affiliation(s)
- Debora Grasso
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Hyllana C D Medeiros
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium.,Federal University of ABC - Universidade Federal do ABC (UFABC), São Paulo, Brazil
| | - Luca X Zampieri
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vanesa Bol
- Pole of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium
| | - Pierre Danhier
- Nuclear and Electron Spin Technologies (NEST) Platform, Louvain Drug Research Institute (LDRI), UCLouvain, Brussels, Belgium
| | - Marike W van Gisbergen
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Caroline Bouzin
- IREC Imaging Platform (2IP), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium
| | - Davide Brusa
- IREC Flow Cytometry and Cell Sorting Platform, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium
| | - Vincent Grégoire
- Pole of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium.,Centre Léon Bérard, Lyon, France
| | - Hubert Smeets
- Department of Genetics and Cell Biology - GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Alphons P M Stassen
- Department of Genetics and Cell Biology - GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Marie Dutreix
- Institut Curie, PSL Research University, CNRS UMR 3347, INSERM U1021, Paris-Sud University, Orsay, France
| | - Pierre Sonveaux
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
18
|
Herath NI, Berthault N, Thierry S, Jdey W, Lienafa MC, Bono F, Noguiez-Hellin P, Sun JS, Dutreix M. Preclinical Studies Comparing Efficacy and Toxicity of DNA Repair Inhibitors, Olaparib, and AsiDNA, in the Treatment of Carboplatin-Resistant Tumors. Front Oncol 2019; 9:1097. [PMID: 31781480 PMCID: PMC6861330 DOI: 10.3389/fonc.2019.01097] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/07/2019] [Indexed: 01/12/2023] Open
Abstract
Purpose: Carboplatin is used to treat many cancers, but occurrence of drug resistance and its high toxicity remain a clinical hurdle limiting its efficacy. We compared the efficacy and toxicity of DNA repair inhibitors olaparib or AsiDNA administered alone or in combination with carboplatin. Olaparib acts by inhibiting PARP-dependent repair pathways whereas AsiDNA inhibits double-strand break repair by preventing recruitment of enzymes involved in homologous recombination and non-homologous end joining. Experimental Design: Mice with MDA-MB-231 tumors were treated with carboplatin or/and olaparib or AsiDNA for three treatment cycles. Survival and tumor growth were monitored. Toxicities of treatments were assayed in C57BL/6 immunocompetent mice. Circulating blood hematocrits, bone marrow cells, and organs were analyzed 10 and 21 days after end of treatment using flow cytometry and microscopy analysis. Resistance occurrence was monitored after cycles of treatments with combination of AsiDNA and carboplatin in independent BC227 cell cultures. Results: Olaparib or AsiDNA monotherapies decreased tumor growth and increased mean survival of grafted animals. The combination with carboplatin further increased survival. Carboplatin toxicity resulted in a decrease of most blood cells, platelets, thymus, and spleen lymphocytes. Olaparib or AsiDNA monotherapies had no toxicity, and their combination with carboplatin did not increase toxicity in the bone marrow or thrombocytopenia. All animals receiving carboplatin combined with olaparib developed high liver toxicity with acute hepatitis at 21 days. In vitro, carboplatin resistance occurs after three cycles of treatment in all six tested cultures, whereas only one became resistant (1/5) after five cycles when carboplatin was associated to low doses of AsiDNA. All selected carboplatin-resistant clones retain sensitivity to AsiDNA. Conclusion: DNA repair inhibitor treatments are efficient in the platinum resistant model, MDA-MB-231. The combination with carboplatin improves survival. The association of carboplatin with olaparib is associated with high liver toxicity, which is not observed with AsiDNA. AsiDNA could delay resistance to carboplatin without increasing its toxicity.
Collapse
Affiliation(s)
- Nirmitha I Herath
- Institut Curie, PSL Research University, CNRS, INSERM, UMR 3347, Orsay, France.,Université Paris-Sud, Université Paris-Saclay, CNRS, INSERM, UMR 3347, Orsay, France.,DNA Therapeutics, Evry, France.,Onxeo, Paris, France
| | - Nathalie Berthault
- Institut Curie, PSL Research University, CNRS, INSERM, UMR 3347, Orsay, France.,Université Paris-Sud, Université Paris-Saclay, CNRS, INSERM, UMR 3347, Orsay, France
| | - Sylvain Thierry
- Institut Curie, PSL Research University, CNRS, INSERM, UMR 3347, Orsay, France.,Université Paris-Sud, Université Paris-Saclay, CNRS, INSERM, UMR 3347, Orsay, France
| | - Wael Jdey
- Institut Curie, PSL Research University, CNRS, INSERM, UMR 3347, Orsay, France.,Université Paris-Sud, Université Paris-Saclay, CNRS, INSERM, UMR 3347, Orsay, France.,DNA Therapeutics, Evry, France.,Onxeo, Paris, France
| | | | | | | | | | - Marie Dutreix
- Institut Curie, PSL Research University, CNRS, INSERM, UMR 3347, Orsay, France.,Université Paris-Sud, Université Paris-Saclay, CNRS, INSERM, UMR 3347, Orsay, France
| |
Collapse
|
19
|
Ferreira S, Dutreix M. DNA repair inhibitors to enhance radiotherapy: Progresses and limitations. Cancer Radiother 2019; 23:883-890. [PMID: 31615730 DOI: 10.1016/j.canrad.2019.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 02/08/2023]
Abstract
Radiotherapy is one of the most common form of treatment in oncology care. Indeed, radiotherapy proved to be very effective in treating a wide range of malignancies. Nevertheless, certain tumours are intrinsically radioresistant or may evolve to become radioresistant. Resistance to radiotherapy is often associated with dysregulated DNA damage response and repair. Recently, a number of strategies have been developed to improve radiotherapy efficacy by targeting the DNA damage response and repair pathways. Ongoing clinical trials showed the potential of some of these approaches in enhancing radiotherapy, but also highlighted the possible limitations. Here, we will describe (i) the main mechanisms involved in double-strand break repair; (ii) available strategies that target these DNA repair processes to improve radiotherapy and (iii) the clinical outcomes and challenges that have emerged so far.
Collapse
Affiliation(s)
- S Ferreira
- Centre universitaire, institut Curie, UMR « Etic », bâtiment 110, 91405 Orsay cedex, France; Université PSL, 91405 Orsay, France; CNRS, UMR 3347, 91405 Orsay, France; Inserm, UMR 3347, 91405 Orsay, France; Université Paris-Sud université Paris-Saclay, 91405 Orsay, France
| | - M Dutreix
- Centre universitaire, institut Curie, UMR « Etic », bâtiment 110, 91405 Orsay cedex, France; Université PSL, 91405 Orsay, France; CNRS, UMR 3347, 91405 Orsay, France; Inserm, UMR 3347, 91405 Orsay, France; Université Paris-Sud université Paris-Saclay, 91405 Orsay, France.
| |
Collapse
|
20
|
Biau J, Chautard E, Verrelle P, Dutreix M. Altering DNA Repair to Improve Radiation Therapy: Specific and Multiple Pathway Targeting. Front Oncol 2019; 9:1009. [PMID: 31649878 PMCID: PMC6795692 DOI: 10.3389/fonc.2019.01009] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/19/2019] [Indexed: 12/16/2022] Open
Abstract
Radiation therapy (RT) is widely used in cancer care strategies. Its effectiveness relies mainly on its ability to cause lethal damage to the DNA of cancer cells. However, some cancers have shown to be particularly radioresistant partly because of efficient and redundant DNA repair capacities. Therefore, RT efficacy might be enhanced by using drugs that can disrupt cancer cells' DNA repair machinery. Here we review the recent advances in the development of novel inhibitors of DNA repair pathways in combination with RT. A large number of these compounds are the subject of preclinical/clinical studies and target key enzymes involved in one or more DNA repair pathways. A totally different strategy consists of mimicking DNA double-strand breaks via small interfering DNA (siDNA) to bait the whole DNA repair machinery, leading to its global inhibition.
Collapse
Affiliation(s)
- Julian Biau
- Institut Curie, PSL Research University, Centre de Recherche, Paris, France.,UMR3347, CNRS, Orsay, France.,U1021, INSERM, Orsay, France.,Université Paris Sud, Orsay, France.,Université Clermont Auvergne, INSERM, U1240 IMoST, Clermont Ferrand, France.,Radiotherapy Department, Université Clermont Auvergne, Centre Jean Perrin, Clermont-Ferrand, France
| | - Emmanuel Chautard
- Université Clermont Auvergne, INSERM, U1240 IMoST, Clermont Ferrand, France.,Pathology Department, Université Clermont Auvergne, Centre Jean Perrin, Clermont-Ferrand, France
| | - Pierre Verrelle
- Institut Curie, PSL Research University, Centre de Recherche, Paris, France.,Radiotherapy Department, Université Clermont Auvergne, Centre Jean Perrin, Clermont-Ferrand, France.,U1196, INSERM, UMR9187, CNRS, Orsay, France.,Radiotherapy Department, Institut Curie Hospital, Paris, France
| | - Marie Dutreix
- Institut Curie, PSL Research University, Centre de Recherche, Paris, France.,UMR3347, CNRS, Orsay, France.,U1021, INSERM, Orsay, France.,Université Paris Sud, Orsay, France
| |
Collapse
|
21
|
Zhuang H, Shi S, Guo Y, Wang Z. Increase of secondary mutations may be a drug-resistance mechanism for lung adenocarcinoma after radiation therapy combined with tyrosine kinase inhibitor. J Cancer 2019; 10:5371-5376. [PMID: 31632481 PMCID: PMC6775686 DOI: 10.7150/jca.35247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/13/2019] [Indexed: 11/05/2022] Open
Abstract
Objective: To investigate changes in the secondary mutations of tumor in a drug-resistance mechanism for lung adenocarcinoma after radiation therapy combined with tyrosine kinase inhibitor (TKI). Methods: Lung adenocarcinoma cell line PC9 in vitro and xenograft model in nude mice were used to observe tumor inhibitory effects and drug-resistance under the effect of radiation therapy combined with erlotinib through apoptosis detection through in vitro survival curve and in vivo growth curve; changes in gene mutations before and after drug-resistance in nude mice xenografts were observed by the next generation sequencing, and the relationship between cancer drug-resistance and radiation therapy combined with TKI was observed. Results: Radiation therapy combined with erlotinib had a more reliable radio-sensitizing effect in vitro and in vivo, however, there were several drug-resistant tumor cells. Meanwhile, radiation therapy combined with erlotinib could significantly increase the number of mutations in tumor genes. The whole genome sequencing showed that the secondary mutation in the combined treatment group significantly increased in comparison with those of the single treatment group and the blank control group. Conclusion: The increase of secondary mutations may be an important drug-resistance mechanism for lung adenocarcinoma after radiation therapy combined with TKI, which provided further space exploration under the combined action of radiation and TKI.
Collapse
Affiliation(s)
- Hongqing Zhuang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Siyu Shi
- Stanford University School of Medicine, Stanford, CA94305, US
| | - Yihang Guo
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, P.R. China
| | - Zhongqiu Wang
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, P.R. China
| |
Collapse
|
22
|
Jdey W, Kozlak M, Alekseev S, Thierry S, Lascaux P, Girard PM, Bono F, Dutreix M. AsiDNA Treatment Induces Cumulative Antitumor Efficacy with a Low Probability of Acquired Resistance. Neoplasia 2019; 21:863-871. [PMID: 31362243 PMCID: PMC6675950 DOI: 10.1016/j.neo.2019.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 11/01/2022] Open
Abstract
The Achilles heel of anticancer treatments is intrinsic or acquired resistance. Among many targeted therapies, the DNA repair inhibitors show limited efficacy due to rapid emergence of resistance. We examined evolution of cancer cells and tumors treated with AsiDNA, a new DNA repair inhibitor targeting all DNA break repair pathways. Effects of AsiDNA or Olaparib were analyzed in various cell lines. Frequency of AsiDNA- and olaparib-resistant clones was measured after 2 weeks of continuous treatment in KBM7 haploid cells. Cell survivals were also measured after one to six cycles of 1-week treatment and 1-week recovery in MDA-MB-231 and NCI-H446. Transcriptomes of cell populations recovering from cyclic treatments or mock treatment were compared. MDA-MB-231 xenografted models were treated with three cycles of AsiDNA to monitor the effects of treatment on tumor growth and transcriptional modifications. No resistant clones were selected after AsiDNA treatment (frequency < 3x10-8) in treatment conditions that generate resistance to olaparib at a frequency of 7.2x10-7 resistant clones per treated cell. Cyclic treatments promote cumulative sensitivity characterized by a higher mortality of cells having undergone previous treatment cycles. This sensitization was stable, and transcriptome analysis revealed a major gene downregulation with a specific overrepresentation of genes coding for targets of DNA-PK. Such changes were also detected in tumor models which showed impaired growth after cycles of AsiDNA treatment.
Collapse
Affiliation(s)
- Wael Jdey
- Institut Curie, PSL Research University, CNRS, INSERM, UMR 3347, F-91405, Orsay, France; Université Paris-Sud, Université Paris-Saclay, CNRS, INSERM, UMR 3347, F-91405 Orsay, France; Onxeo, F-75015, Paris, France
| | - Maria Kozlak
- Institut Curie, PSL Research University, CNRS, INSERM, UMR 3347, F-91405, Orsay, France; Université Paris-Sud, Université Paris-Saclay, CNRS, INSERM, UMR 3347, F-91405 Orsay, France
| | - Sergey Alekseev
- Institut Curie, PSL Research University, CNRS, INSERM, UMR 3347, F-91405, Orsay, France; Université Paris-Sud, Université Paris-Saclay, CNRS, INSERM, UMR 3347, F-91405 Orsay, France
| | - Sylvain Thierry
- Institut Curie, PSL Research University, CNRS, INSERM, UMR 3347, F-91405, Orsay, France; Université Paris-Sud, Université Paris-Saclay, CNRS, INSERM, UMR 3347, F-91405 Orsay, France
| | | | - Pierre-Marie Girard
- Institut Curie, PSL Research University, CNRS, INSERM, UMR 3347, F-91405, Orsay, France; Université Paris-Sud, Université Paris-Saclay, CNRS, INSERM, UMR 3347, F-91405 Orsay, France
| | | | - Marie Dutreix
- Institut Curie, PSL Research University, CNRS, INSERM, UMR 3347, F-91405, Orsay, France; Université Paris-Sud, Université Paris-Saclay, CNRS, INSERM, UMR 3347, F-91405 Orsay, France.
| |
Collapse
|
23
|
Biau J, Chautard E, Berthault N, de Koning L, Court F, Pereira B, Verrelle P, Dutreix M. Combining the DNA Repair Inhibitor Dbait With Radiotherapy for the Treatment of High Grade Glioma: Efficacy and Protein Biomarkers of Resistance in Preclinical Models. Front Oncol 2019; 9:549. [PMID: 31275862 PMCID: PMC6593092 DOI: 10.3389/fonc.2019.00549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/05/2019] [Indexed: 12/23/2022] Open
Abstract
High grade glioma relapses occur often within the irradiated volume mostly due to a high resistance to radiation therapy (RT). Dbait (which stands for DNA strand break bait) molecules mimic DSBs and trap DNA repair proteins, thereby inhibiting repair of DNA damage induced by RT. Here we evaluate the potential of Dbait to sensitize high grade glioma to RT. First, we demonstrated the radiosensitizer properties of Dbait in 6/9 tested cell lines. Then, we performed animal studies using six cell derived xenograft and five patient derived xenograft models, to show the clinical potential and applicability of combined Dbait+RT treatment for human high grade glioma. Using a RPPA approach, we showed that Phospho-H2AX/H2AX and Phospho-NBS1/NBS1 were predictive of Dbait efficacy in xenograft models. Our results provide the preclinical proof of concept that combining RT with Dbait inhibition of DNA repair could be of benefit to patients with high grade glioma.
Collapse
Affiliation(s)
- Julian Biau
- Centre de Recherche, Institut Curie, PSL Research University, Paris, France.,UMR3347, CNRS, Orsay, France.,U1021, INSERM, Orsay, France.,Research Department, Université Paris Sud, Orsay, France.,INSERM, U1240 IMoST, Université Clermont Auvergne, Clermont Ferrand, France.,Radiotherapy Department, Centre Jean Perrin, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Emmanuel Chautard
- INSERM, U1240 IMoST, Université Clermont Auvergne, Clermont Ferrand, France.,Pathology Department, Centre Jean Perrin, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Nathalie Berthault
- Centre de Recherche, Institut Curie, PSL Research University, Paris, France.,UMR3347, CNRS, Orsay, France.,U1021, INSERM, Orsay, France.,Research Department, Université Paris Sud, Orsay, France
| | - Leanne de Koning
- Laboratory of Proteomic Mass Spectrometry, Centre de Recherche, Institut Curie, Paris, France.,Department of Translational Research, Institut Curie, PSL Research University, Paris, France
| | - Frank Court
- GReD Laboratory, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Department, DRCI, Clermont-Ferrand Hospital, Clermont-Ferrand, France
| | - Pierre Verrelle
- Centre de Recherche, Institut Curie, PSL Research University, Paris, France.,Radiotherapy Department, Centre Jean Perrin, Université Clermont Auvergne, Clermont-Ferrand, France.,U1196, INSERM, UMR9187, CNRS, Orsay, France.,Radiotherapy Department, Institut Curie Hospital, Paris, France
| | - Marie Dutreix
- Centre de Recherche, Institut Curie, PSL Research University, Paris, France.,UMR3347, CNRS, Orsay, France.,U1021, INSERM, Orsay, France.,Research Department, Université Paris Sud, Orsay, France
| |
Collapse
|
24
|
Dolgova EV, Evdokimov AN, Proskurina AS, Efremov YR, Bayborodin SI, Potter EA, Popov AA, Petruseva IO, Lavrik OI, Bogachev SS. Double-Stranded DNA Fragments Bearing Unrepairable Lesions and Their Internalization into Mouse Krebs-2 Carcinoma Cells. Nucleic Acid Ther 2019; 29:278-290. [PMID: 31194620 DOI: 10.1089/nat.2019.0786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Murine Krebs-2 tumor-initiating stem cells are known to natively internalize extracellular double-stranded DNA fragments. Being internalized, these fragments interfere in the repair of chemically induced interstrand cross-links. In the current investigation, 756 bp polymerase chain reaction (PCR) product containing bulky photoreactive dC adduct was used as extracellular DNA. This adduct was shown to inhibit the cellular system of nucleotide excision repair while being resistant to excision by this DNA repair system. The basic parameters for this DNA probe internalization by the murine Krebs-2 tumor cells were characterized. Being incubated under regular conditions (60 min, 24°C, 500 μL of the incubation medium, in the dark), 0.35% ± 0.18% of the Krebs-2 ascites cells were shown to natively internalize modified DNA. The saturating amount of the modified DNA was detected to be 0.37 μg per 106 cells. For the similar unmodified DNA fragments, this ratio is 0.73 μg per 106 cells. Krebs-2 tumor cells were shown to be saturated internalizing either (190 ± 40) × 103 molecules of modified DNA or (1,000 ± 100) × 103 molecules of native DNA. On internalization, the fragments of DNA undergo partial and nonuniform hydrolysis of 3' ends followed by circularization. The degree of hydrolysis, assessed by sequencing of several clones with the insertion of specific PCR product, was 30-60 nucleotides.
Collapse
Affiliation(s)
- Evgeniya V Dolgova
- Laboratory of Induced Cell Processes, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexey N Evdokimov
- Laboratory of Bioorganic Chemistry of Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Anastasia S Proskurina
- Laboratory of Induced Cell Processes, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Yaroslav R Efremov
- Laboratory of Induced Cell Processes, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Natural Sciences Department, Novosibirsk State University, Novosibirsk, Russia
| | - Sergey I Bayborodin
- Laboratory of Induced Cell Processes, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina A Potter
- Laboratory of Induced Cell Processes, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexey A Popov
- Laboratory of Bioorganic Chemistry of Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Irina O Petruseva
- Laboratory of Bioorganic Chemistry of Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Olga I Lavrik
- Laboratory of Bioorganic Chemistry of Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Natural Sciences Department, Novosibirsk State University, Novosibirsk, Russia.,Department of Physical Chemistry and Biotechnology, Altai State University, Barnaul, Russia
| | - Sergey S Bogachev
- Laboratory of Induced Cell Processes, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
25
|
Jiao X, Yu Y, Meng J, He M, Zhang CJ, Geng W, Ding B, Wang Z, Ding X. Dual-targeting and microenvironment-responsive micelles as a gene delivery system to improve the sensitivity of glioma to radiotherapy. Acta Pharm Sin B 2019; 9:381-396. [PMID: 30972284 PMCID: PMC6437633 DOI: 10.1016/j.apsb.2018.12.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/12/2018] [Accepted: 11/20/2018] [Indexed: 12/18/2022] Open
Abstract
Dbait is a small double-stranded DNA molecule that has been utilized as a radiosensitizer to enhance the sensitivity of glioma to radiotherapy (RT). However, there is no effective drug delivery system to effectively overcome the blood-brain barrier (BBB). The aim of this study was to develop a gene delivery system by using the BBB and glioma dual-targeting and microenvironment-responsive micelles (ch-Kn(s-s)R8-An) to deliver Dbait into glioma for RT. Angiopep-2 can target the low-density lipoprotein receptor-related protein-1 (LRP1) that is overexpressed on brain capillary endothelial cells (BCECs) and glioma cells. In particular, due to upregulated matrix metalloproteinase 2 (MMP-2) in the tumor microenvironment, we utilized MMP-2-responsive peptides as the enzymatically degradable linkers to conjugate angiopep-2. The results showed that ch-Kn(s-s)R8-An micelles maintained a reasonable size (80-160 nm) with a moderate distribution and a decreased mean diameter from the cross-linking as well as exhibited low critical micelle concentration (CMC) with positive surface charge, ranging from 15 to 40 mV. The ch-K5(s-s)R8-An/pEGFP showed high gene transfection efficiency in vitro, improved uptake in glioma cells and good biocompatibility in vitro and in vivo. In addition, the combination of ch-K5(s-s)R8-An/Dbait with RT significantly inhibited the growth of U251 cells in vitro. Thus, ch-K5(s-s)R8-An/Dbait may prove to be a promising gene delivery system to target glioma and enhance the efficacy of RT on U251 cells.
Collapse
Key Words
- ATCC, American Type Culture Collection
- Arg, arginine
- BBB, blood–brain barrier
- BBTB, blood—brain tumor barriers
- CMC, critical micelle concentration
- Cell-penetrating peptides
- DTSSP, 3,3′-dithiobis(sulfosuccinimidylpropionate)
- DTT, dithiothreitol
- FBS, fetal bovine serum
- GBM, glioblastoma multiforme
- GSH, glutathione
- Gene delivery
- Glioma-targeting
- KnR8, cholesterol-polylysine-polyarginine peptide, n = 3, 5, 7
- Lys, lysine
- MMP-2, matrix metalloproteinase 2
- MWCO, molecular weight cutoff
- Microenvironment-responsive micelles
- PDI, polydispersity index
- PE, plating efficiency
- PEI, polyethylenimine
- RT, radiotherapy
- Radiosensitizer
- ch-Kn(s-s)R8-An, the disulfide cross-linked cholesterol-polylysine-polyarginine peptide core-shell polymer micelles modified with angiopep-2, n = 3, 5, 7
- ch-KnR8-An, the non-cross-linked cholesterol-polylysine-polyarginine peptide core-shell polymer micelles modified with angiopep-2, n = 3, 5, 7
- pDNA, plasmid DNA
Collapse
Affiliation(s)
- Xiuxiu Jiao
- Department of Pharmaceutics, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200080, China
| | - Yuan Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, Second Military Medical University, Shanghai 200082, China
| | - Jianxia Meng
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai 200082, China
| | - Mei He
- Department of Pharmaceutics, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200080, China
| | - Charles Jian Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91768, USA
| | - Wenqian Geng
- Department of Pharmaceutics, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200080, China
| | - Baoyue Ding
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314000, China
| | - Zhuo Wang
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai 200082, China
| | - Xueying Ding
- Department of Pharmaceutics, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200080, China
| |
Collapse
|
26
|
Monraz Gomez LC, Kondratova M, Ravel JM, Barillot E, Zinovyev A, Kuperstein I. Application of Atlas of Cancer Signalling Network in preclinical studies. Brief Bioinform 2018; 20:701-716. [DOI: 10.1093/bib/bby031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/28/2018] [Indexed: 12/27/2022] Open
Affiliation(s)
- L Cristobal Monraz Gomez
- Institut Curie, PSL Research University, F-75005 Paris, France, INSERM, U900, F-75005 Paris, France and MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| | - Maria Kondratova
- Institut Curie, PSL Research University, F-75005 Paris, France, INSERM, U900, F-75005 Paris, France and MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| | - Jean-Marie Ravel
- Genetic Laboratory, Nancy's Regional University Hospital, Vandœuvre-lès-Nancy and INSERM UMR 954, Lorraine University, Vandœuvre-lès-Nancy
| | - Emmanuel Barillot
- Institut Curie, PSL Research University, F-75005 Paris, France, INSERM, U900, F-75005 Paris, France and MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| | - Andrei Zinovyev
- Institut Curie, PSL Research University, F-75005 Paris, France, INSERM, U900, F-75005 Paris, France and MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| | - Inna Kuperstein
- Institut Curie, PSL Research University, F-75005 Paris, France, INSERM, U900, F-75005 Paris, France and MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| |
Collapse
|
27
|
Zhuang H, Bai J, Chang JY, Yuan Z, Wang P. MTOR inhibition reversed drug resistance after combination radiation with erlotinib in lung adenocarcinoma. Oncotarget 2018; 7:84688-84694. [PMID: 27713162 PMCID: PMC5356691 DOI: 10.18632/oncotarget.12423] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/20/2016] [Indexed: 12/11/2022] Open
Abstract
Objective To investigate the effects of mTOR inhibition on drug resistance in lung adenocarcinoma after combined radiation and erlotinib therapy. Results Combined radiation and erlotinib therapy produced clear radiosensitization effects both in vitro and in vivo; however, tumor cells remained drug resistant. Additionally, combined radiation and erlotinib therapy significantly increased p-AKT and p-P70 levels. After mTOR inhibition, the number of surviving cells significantly decreased compared with that before inhibition, and the in vivo growth curve was significantly reduced. Methods The effects of combined radiation and erlotinib therapy on tumor inhibition and drug resistance were evaluated by in vitro survival curves in PC9 lung adenocarcinoma cell line and in vivo growth curves in nude mouse xenograft tumor model respectively. The association between tumor drug resistance and the phosphatidylinositol 3-kinase/protein kinase B/mechanistic target of rapamycin (PI3K-AKT-mTOR) pathway was measured by western blot, assessing the changes in protein kinase B (AKT), phosphor-AKT (p-AKT), P70, and p-P70 protein levels. MTOR was inhibited using everolimus, and changes in AKT, p-AKT, P70, and p-P70 levels were observed. Furthermore, changes in in vitro survival curves, and in vivo growth curves before and after mTOR inhibition were evaluated to confirm its effects on drug resistance in lung adenocarcinoma after combined radiation and TKI therapy. Conclusion mTOR was associated with drug resistance in lung adenocarcinoma after radiation combined with TKI, and MTOR inhibition reversed drug resistance in lung adenocarcinoma after combined radiation and TKI therapy.
Collapse
Affiliation(s)
- Hongqing Zhuang
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, and Tianjin Lung Cancer Center, Tianjin, China
| | - Jing Bai
- Department of Radiotherapy, Baotou Cancer Hospital, Neimenggu, China
| | - Joe Y Chang
- Department of Radiation Oncology, Division of Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhiyong Yuan
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, and Tianjin Lung Cancer Center, Tianjin, China
| | - Ping Wang
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, and Tianjin Lung Cancer Center, Tianjin, China
| |
Collapse
|
28
|
Falsini S, Di Cola E, In M, Giordani M, Borocci S, Ristori S. Complexation of short ds RNA/DNA oligonucleotides with Gemini micelles: a time resolved SAXS and computational study. Phys Chem Chem Phys 2018; 19:3046-3055. [PMID: 28079203 DOI: 10.1039/c6cp06475b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gene therapy is based on nucleic acid delivery to pathogenic cells in order to modulate their gene expression. The most used non viral vectors are lipid-based nanoaggregates, which are safer than viral carriers and have been shown to assemble easily with both DNA and RNA. However, the transfection efficiency of non viral carriers still needs to be improved before intensive practise in clinical trials can be implemented. For this purpose, the in depth characterization of the complexes formed by nucleic acids and their transporters is of great relevance. In particular, information on the structure and assembly mechanism can be useful to improve our general knowledge of these artificial transfection agents. In this paper, the complexation mechanism of short interfering RNA and DNA molecules (siRNA and siDNA, respectively) with cationic micelles is investigated by combining small angle X-ray scattering experiments and molecular dynamics simulations. Micelles were obtained by Gemini surfactants with different spacer lengths (12-3-12, 12-6-12). The siRNA and siDNA used were double strand molecules characterized by the same length and homologous sequence, in order to perform a close comparison. We showed that complexes appear in solution immediately after mixing and, therefore, the investigation of complex formation requires fast experimental techniques, such as time resolved synchrotron SAXS (Tr-SAXS). The obtained systems had internal arrangement constituted by layers of squeezed micelles alternating the nucleic acids. Both SAXS and MD analyses allowed us to evaluate the mean size of complexes in the range of a few nanometers, with looser and less ordered stacking for the DNA containing aggregates.
Collapse
Affiliation(s)
- Sara Falsini
- Department of Chemistry "Ugo Shiff" & CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Emanuela Di Cola
- European Synchrotron Radiation Facility (ESRF), 71 Avenue des martyrs 38000, Grenoble, France
| | - Martin In
- Laboratoire Charles Coloumb, UMR, 5221 CNRS-UM, Place Eugène Bataillon, F-34095 Montpellier Cedex 05, France
| | - Maria Giordani
- CNR-Istituto di Metodologie Chimiche, Area della Ricerca di Roma 1, Via Salaria km 29300, 00015 Monterotondo RM, Italy
| | - Stefano Borocci
- CNR-Istituto di Metodologie Chimiche, Area della Ricerca di Roma 1, Via Salaria km 29300, 00015 Monterotondo RM, Italy and Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università degli Studi della Tuscia, Largo dell'Università, snc 01100, Viterbo, Italy
| | - Sandra Ristori
- Dipartimento di Scienze della Terra, Università di Firenze, Via La Pira 4, 50121, Firenze, Italy
| |
Collapse
|
29
|
Alongi F, Di Muzio N. Radiobiology and Molecular Oncology: How are they Changing Radiotherapy in Clinical Practice? TUMORI JOURNAL 2018; 96:175-7. [DOI: 10.1177/030089161009600131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Filippo Alongi
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Italy
- Radiotherapy, Scientific institute San Raffaele, Milan, Italy
- Intraoperative Radiotherapy, Breast Unit, San Raffaele-G. Giglio Foundation, Cefalù, Italy
| | - Nadia Di Muzio
- Radiotherapy, Scientific institute San Raffaele, Milan, Italy
| |
Collapse
|
30
|
H1/pHGFK1 nanoparticles exert anti-tumoural and radiosensitising effects by inhibition of MET in glioblastoma. Br J Cancer 2018; 118:522-533. [PMID: 29348487 PMCID: PMC5830599 DOI: 10.1038/bjc.2017.461] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 12/20/2022] Open
Abstract
Background: The therapeutic resistance to ionising radiation (IR) and anti-angiogenesis mainly impair the prognosis of patients with glioblastoma. The primary and secondary MET aberrant activation is one crucial factor for these resistances. The kringle 1 domain of hepatocyte growth factor (HGFK1), an angiogenic inhibitor, contains a high-affinity binding domain of MET; however, its effects on glioblastoma remain elusive. Methods: We formed the nanoparticles consisting of a folate receptor-targeted nanoparticle-mediated HGFK1 gene (H1/pHGFK1) and studied its anti-tumoural and radiosensitive activities in both subcutaneous and orthotopic human glioma cell-xenografted mouse models. We then elucidated its molecular mechanisms in human glioblastoma cell lines in vitro. Results: We demonstrated for the first time that peritumoural injection of H1/pHGFK1 nanoparticles significantly inhibited tumour growth and prolonged survival in tumour-bearing mice, as well as enhanced the anti-tumoural efficacies of IR in vivo by reducing Ki-67 expression, enhancing TUNEL staining-indicated apoptotic indexes, reducing microvascular intensity and reversing IR-induced MET overexpression in tumour tissues. Furthermore, we showed that HGFK1 suppressed the proliferation and induced cell apoptosis and enhanced sensitivity to IR in glioblastoma cell lines, mainly by suppressing the activities of MET receptor, down-regulating ATM-Chk2 axis but up-regulating Chk1. Conclusions: H1/pHGFK1 exerts anti-tumoural and radiosensitive activities mainly through the inhibition and reversal of IR-induced MET and ATM–Chk2 axis activities in glioblastoma. H1/pHGFK1 nanoparticles are a potential radiosensitiser and angiogenic inhibitor for glioblastoma treatment.
Collapse
|
31
|
Viallard C, Chezal JM, Mishellany F, Ranchon-Cole I, Pereira B, Herbette A, Besse S, Boudhraa Z, Jacquemot N, Cayre A, Miot-Noirault E, Sun JS, Dutreix M, Degoul F. Targeting DNA repair by coDbait enhances melanoma targeted radionuclide therapy. Oncotarget 2017; 7:12927-36. [PMID: 26887045 PMCID: PMC4914332 DOI: 10.18632/oncotarget.7340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/24/2016] [Indexed: 01/15/2023] Open
Abstract
Radiolabelled melanin ligands offer an interesting strategy for the treatment of disseminated pigmented melanoma. One of these molecules, ICF01012 labelled with iodine 131, induced a significant slowing of melanoma growth. Here, we have explored the combination of [131I]ICF01012 with coDbait, a DNA repair inhibitor, to overcome melanoma radioresistance and increase targeted radionuclide therapy (TRT) efficacy. In human SK-Mel 3 melanoma xenograft, the addition of coDbait had a synergistic effect on tumor growth and median survival. The anti-tumor effect was additive in murine syngeneic B16Bl6 model whereas coDbait combination with [131I]ICF01012 did not increase TRT side effects in secondary pigmented tissues (e.g. hair follicles, eyes). Our results confirm that DNA lesions induced by TRT were not enhanced with coDbait association but, the presence of micronuclei and cell cycle blockade in tumor shows that coDbait acts by interrupting or delaying DNA repair. In this study, we demonstrate for the first time, the usefulness of DNA repair traps in the context of targeted radionuclide therapy.
Collapse
Affiliation(s)
- Claire Viallard
- Clermont Université, Université d'Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France.,Inserm, U 990, F-63000 Clermont-Ferrand, France
| | - Jean-Michel Chezal
- Clermont Université, Université d'Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France.,Inserm, U 990, F-63000 Clermont-Ferrand, France
| | - Florence Mishellany
- Anatomopathology Department, Centre Jean Perrin, Comprehensive Cancer Center, 63011 Clermont-Ferrand, France
| | - Isabelle Ranchon-Cole
- Clermont Université, Université d'Auvergne, UFR Pharmacie Laboratoire de Biophysique Neurosensorielle, Inserm U 1107, F-63001 Clermont-Ferrand, France
| | | | - Aurélie Herbette
- CNRS-UMR3347, INSERMU1021, Institut Curie, Université Paris Sud, Bat 110, Centre Universitaire 91405 Orsay, Cedex, France
| | - Sophie Besse
- Clermont Université, Université d'Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France.,Inserm, U 990, F-63000 Clermont-Ferrand, France
| | - Zied Boudhraa
- Clermont Université, Université d'Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France.,Inserm, U 990, F-63000 Clermont-Ferrand, France
| | - Nathalie Jacquemot
- Clermont Université, Université d'Auvergne, UFR Pharmacie Laboratoire de Biophysique Neurosensorielle, Inserm U 1107, F-63001 Clermont-Ferrand, France
| | - Anne Cayre
- Anatomopathology Department, Centre Jean Perrin, Comprehensive Cancer Center, 63011 Clermont-Ferrand, France
| | - Elisabeth Miot-Noirault
- Clermont Université, Université d'Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France.,Inserm, U 990, F-63000 Clermont-Ferrand, France
| | | | - Marie Dutreix
- CNRS-UMR3347, INSERMU1021, Institut Curie, Université Paris Sud, Bat 110, Centre Universitaire 91405 Orsay, Cedex, France
| | - Françoise Degoul
- Clermont Université, Université d'Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France.,Inserm, U 990, F-63000 Clermont-Ferrand, France
| |
Collapse
|
32
|
Thierry S, Jdey W, Alculumbre S, Soumelis V, Noguiez-Hellin P, Dutreix M. The DNA Repair Inhibitor Dbait Is Specific for Malignant Hematologic Cells in Blood. Mol Cancer Ther 2017; 16:2817-2827. [PMID: 28947503 DOI: 10.1158/1535-7163.mct-17-0405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/26/2017] [Accepted: 09/13/2017] [Indexed: 11/16/2022]
Abstract
Hematologic malignancies are rare cancers that develop refractory disease upon patient relapse, resulting in decreased life expectancy and quality of life. DNA repair inhibitors are a promising strategy to treat cancer but are limited by their hematologic toxicity in combination with conventional chemotherapies. Dbait are large molecules targeting the signaling of DNA damage and inhibiting all the double-strand DNA break pathways. Dbait have been shown to sensitize resistant solid tumors to radiotherapy and platinum salts. Here, we analyze the efficacy and lack of toxicity of AsiDNA, a cholesterol form of Dbait, in hematologic malignancies. We show that AsiDNA enters cells via LDL receptors and activates its molecular target, the DNA dependent protein kinase (DNA-PKcs) in 10 lymphoma and leukemia cell lines (Jurkat-E6.1, MT-4, MOLT-4, 174xCEM.T2, Sup-T1, HuT-78, Raji, IM-9, THP-1, and U-937) and in normal primary human PBMCs, resting or activated T cells, and CD34+ progenitors. The treatment with AsiDNA induced necrotic and mitotic cell death in most cancer cell lines and had no effect on blood or bone marrow cells, including immune activation, proliferation, or differentiation. Sensitivity to AsiDNA was independent of p53 status. Survival to combined treatment with conventional therapies (etoposide, cyclophosphamides, vincristine, or radiotherapy) was analyzed by isobolograms and combination index. AsiDNA synergized with all treatments, except vincristine, without increasing their toxicity to normal blood cells. AsiDNA is a novel, potent, and wide-range drug with the potential to specifically increase DNA-damaging treatment toxicity in tumor without adding toxicity in normal hematologic cells or inducing immune dysregulation. Mol Cancer Ther; 16(12); 2817-27. ©2017 AACR.
Collapse
Affiliation(s)
- Sylvain Thierry
- Institut Curie, PSL Research University, CNRS UMR 3347, INSERM U1021, Paris-Sud University, Orsay, France
| | - Wael Jdey
- Institut Curie, PSL Research University, CNRS UMR 3347, INSERM U1021, Paris-Sud University, Orsay, France.,DNA-Therapeutics, Onxeo, Paris, France
| | | | - Vassili Soumelis
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Patricia Noguiez-Hellin
- Institut Curie, PSL Research University, CNRS UMR 3347, INSERM U1021, Paris-Sud University, Orsay, France
| | - Marie Dutreix
- Institut Curie, PSL Research University, CNRS UMR 3347, INSERM U1021, Paris-Sud University, Orsay, France.
| |
Collapse
|
33
|
Jdey W, Thierry S, Popova T, Stern MH, Dutreix M. Micronuclei Frequency in Tumors Is a Predictive Biomarker for Genetic Instability and Sensitivity to the DNA Repair Inhibitor AsiDNA. Cancer Res 2017; 77:4207-4216. [PMID: 28588010 DOI: 10.1158/0008-5472.can-16-2693] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/08/2017] [Accepted: 05/24/2017] [Indexed: 11/16/2022]
Abstract
Therapeutic strategies targeting DNA repair pathway defects have been widely explored, but often only benefit small numbers of patients. Here we characterized potential predictive biomarkers for treatment with AsiDNA, a novel first-in-class DNA repair inhibitor. We evaluated genetic instability and DNA repair defects by direct and indirect assays in 12 breast cancer cell lines to estimate the spontaneous occurrence of single-strand and double-strand breaks (DSB). For each cell line, we monitored constitutive PARP activation, spontaneous DNA damage by alkaline comet assay, basal micronuclei levels, the number of large-scale chromosomal rearrangements (LST), and the status of several DNA repair pathways by transcriptome and genome analysis. Sensitivity to AsiDNA was associated with a high spontaneous frequency of cells with micronuclei and LST and specific alterations in DNA repair pathways that essentially monitor DSB repair defects. A high basal level of micronuclei as a predictive biomarker for AsiDNA treatment was validated in 43 tumor cell lines from various tissues and 15 models of cell- and patient-derived xenografts. Micronuclei quantification was also possible in patient biopsies. Overall, this study identified genetic instability as a predictive biomarker for sensitivity to AsiDNA treatment. That micronuclei frequency can be measured in biopsies and does not reveal the same genetic instability as conventional genome assays opens new perspectives for refining the classification of tumors with genetic instability. Cancer Res; 77(16); 4207-16. ©2017 AACR.
Collapse
Affiliation(s)
- Wael Jdey
- Institut Curie, CNRS, INSERM, Orsay, France.,Université Paris Sud, Université Paris-Saclay, Orsay, France.,DNA Therapeutics/Onxeo, Paris, France
| | - Sylvain Thierry
- Institut Curie, CNRS, INSERM, Orsay, France.,Université Paris Sud, Université Paris-Saclay, Orsay, France
| | - Tatiana Popova
- Institut Curie, PSL Research University, INSERM, Paris, France
| | | | - Marie Dutreix
- Institut Curie, CNRS, INSERM, Orsay, France. .,Université Paris Sud, Université Paris-Saclay, Orsay, France
| |
Collapse
|
34
|
Liu H, Cai Y, Zhang Y, Xie Y, Qiu H, Hua L, Liu X, Li Y, Lu J, Zhang L, Yu R. Development of a Hypoxic Radiosensitizer-Prodrug Liposome Delivery DNA Repair Inhibitor Dbait Combination with Radiotherapy for Glioma Therapy. Adv Healthc Mater 2017; 6. [PMID: 28371526 DOI: 10.1002/adhm.201601377] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/19/2017] [Indexed: 12/21/2022]
Abstract
Gliomas are highly radioresistant tumors, mainly due to hypoxia in the core region of the gliomas and efficient DNA double-strand break repair. However, the design of a radiosensitizer incorporating the two above mechanisms is difficult and has rarely been reported. Thus, this study develops a hypoxic radiosensitizer-prodrug liposome (MLP) to deliver the DNA repair inhibitor Dbait (MLP/Dbait) to achieve the simultaneous entry of radiosensitizers with two different mechanisms into the glioma. MLP/Dbait effectively sensitizes glioma cells to X-ray radiotherapy (RT). Histological and microscopic examinations of dissected brain tissue confirm that MLP effectively delivers Dbait into the glioma. Furthermore, the combination of MLP/Dbait with RT significantly inhibits growth of the glioma, as assessed by in vivo bioluminescence imaging. These findings suggest that MLP is a promising candidate as a Dbait delivery system to enhance the effect of RT on glioma, owing to the synergistic effects of the two different radiosensitizers.
Collapse
Affiliation(s)
- Hongmei Liu
- Brain HospitalAffiliated Hospital of Xuzhou Medical University Xuzhou 221000 China
- Institute of Nervous System DiseasesXuzhou Medical University Xuzhou Jiangsu 221002 P. R. China
| | - Yifan Cai
- Brain HospitalAffiliated Hospital of Xuzhou Medical University Xuzhou 221000 China
- Institute of Nervous System DiseasesXuzhou Medical University Xuzhou Jiangsu 221002 P. R. China
| | - Yafei Zhang
- Brain HospitalAffiliated Hospital of Xuzhou Medical University Xuzhou 221000 China
- Institute of Nervous System DiseasesXuzhou Medical University Xuzhou Jiangsu 221002 P. R. China
| | - Yandong Xie
- Brain HospitalAffiliated Hospital of Xuzhou Medical University Xuzhou 221000 China
- Institute of Nervous System DiseasesXuzhou Medical University Xuzhou Jiangsu 221002 P. R. China
| | - Hui Qiu
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical University Xuzhou 221000 China
- Cancer Institute of Xuzhou Medical University Xuzhou 221002 P. R. China
| | - Lei Hua
- Brain HospitalAffiliated Hospital of Xuzhou Medical University Xuzhou 221000 China
- Institute of Nervous System DiseasesXuzhou Medical University Xuzhou Jiangsu 221002 P. R. China
| | - Xuejiao Liu
- Brain HospitalAffiliated Hospital of Xuzhou Medical University Xuzhou 221000 China
- Institute of Nervous System DiseasesXuzhou Medical University Xuzhou Jiangsu 221002 P. R. China
| | - Yuling Li
- School of Chemistry and Chemical EngineeringJiangsu Normal University Xuzhou 221116 P. R. China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal University Xuzhou 221116 Jiangsu Province P. R. China
| | - Longzhen Zhang
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical University Xuzhou 221000 China
- Cancer Institute of Xuzhou Medical University Xuzhou 221002 P. R. China
| | - Rutong Yu
- Brain HospitalAffiliated Hospital of Xuzhou Medical University Xuzhou 221000 China
- Institute of Nervous System DiseasesXuzhou Medical University Xuzhou Jiangsu 221002 P. R. China
| |
Collapse
|
35
|
Potentiation of doxorubicin efficacy in hepatocellular carcinoma by the DNA repair inhibitor DT01 in preclinical models. Eur Radiol 2017; 27:4435-4444. [DOI: 10.1007/s00330-017-4792-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/11/2017] [Accepted: 03/06/2017] [Indexed: 12/15/2022]
|
36
|
Jdey W, Thierry S, Russo C, Devun F, Al Abo M, Noguiez-Hellin P, Sun JS, Barillot E, Zinovyev A, Kuperstein I, Pommier Y, Dutreix M. Drug-Driven Synthetic Lethality: Bypassing Tumor Cell Genetics with a Combination of AsiDNA and PARP Inhibitors. Clin Cancer Res 2016; 23:1001-1011. [PMID: 27559053 DOI: 10.1158/1078-0432.ccr-16-1193] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/09/2016] [Accepted: 08/10/2016] [Indexed: 11/16/2022]
Abstract
Purpose: Cancer treatments using tumor defects in DNA repair pathways have shown promising results but are restricted to small subpopulations of patients. The most advanced drugs in this field are PARP inhibitors (PARPi), which trigger synthetic lethality in tumors with homologous recombination (HR) deficiency. Using AsiDNA, an inhibitor of HR and nonhomologous end joining, together with PARPi should allow bypassing the genetic restriction for PARPi efficacy.Experimental Design: We characterized the DNA repair inhibition activity of PARPi (olaparib) and AsiDNA by monitoring repair foci formation and DNA damage. We analyzed the cell survival to standalone and combined treatments of 21 tumor cells and three nontumor cells. In 12 breast cancer (BC) cell lines, correlation with sensitivity to each drug and transcriptome were statistically analyzed to identify resistance pathways.Results: Molecular analyses demonstrate that olaparib and AsiDNA respectively prevent recruitment of XRCC1 and RAD51/53BP1 repair enzymes to damage sites. Combination of both drugs increases the accumulation of unrepaired damage resulting in an increase of cell death in all tumor cells. In contrast, nontumor cells do not show an increase of DNA damage nor lethality. Analysis of multilevel omics data from BC cells highlighted different DNA repair and cell-cycle molecular profiles associated with resistance to AsiDNA or olaparib, rationalizing combined treatment. Treatment synergy was also confirmed with six other PARPi in development.Conclusions: Our results highlight the therapeutic interest of combining AsiDNA and PARPi to recapitulate synthetic lethality in all tumors independently of their HR status. Clin Cancer Res; 23(4); 1001-11. ©2016 AACR.
Collapse
Affiliation(s)
- Wael Jdey
- Institut Curie, PSL Research University, CNRS, INSERM, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS, INSERM, Orsay, France.,DNA Therapeutics, Genopole, Evry, France
| | - Sylvain Thierry
- Institut Curie, PSL Research University, CNRS, INSERM, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS, INSERM, Orsay, France
| | | | | | - Muthana Al Abo
- National Institute of Health, National Cancer Institute, Bethesda, Maryland
| | | | | | | | - Andrei Zinovyev
- Institut Curie, PSL Research University, INSERM, Paris, France
| | - Inna Kuperstein
- Institut Curie, PSL Research University, INSERM, Paris, France
| | - Yves Pommier
- National Institute of Health, National Cancer Institute, Bethesda, Maryland
| | - Marie Dutreix
- Institut Curie, PSL Research University, CNRS, INSERM, Orsay, France. .,Université Paris Sud, Université Paris-Saclay, CNRS, INSERM, Orsay, France
| |
Collapse
|
37
|
Yao H, Qiu H, Shao Z, Wang G, Wang J, Yao Y, Xin Y, Zhou M, Wang AZ, Zhang L. Nanoparticle formulation of small DNA molecules, Dbait, improves the sensitivity of hormone-independent prostate cancer to radiotherapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2261-2271. [PMID: 27389144 DOI: 10.1016/j.nano.2016.06.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 06/07/2016] [Accepted: 06/19/2016] [Indexed: 12/30/2022]
Abstract
Intensification of radiotherapy has been shown to improve prostate cancer (PCa) outcomes. We hypothesized that we could further improve radiotherapy efficacy through the use DNA repair inhibitors. In this study, we evaluated the use of a new class of DNA damage repair inhibitor, nanoparticle (NP) Dbait, in radiosensitization of PCa. NP Dbait was formulated using H1 nanopolymer (folate-polyethylenimine600-cyclodextrin). We demonstrated that NP Dbait was a potent radiosensitizer in vitro by colony forming assay using PCa cell lines. The result was validated in vivo using mouse xenograft models of PCa and we showed that NP Dbait significantly suppressed tumor growth and prolonged survival. Western blot, immunofluorescence and immunohistochemistry showed that NP Dbait inhibited DNA damage repair signaling pathways by mimicking DNA double-strand breaks. Our study supports further investigations of NP Dbait in improving the therapeutic efficacy of cancer radiotherapy.
Collapse
Affiliation(s)
- Hong Yao
- Cancer Institute of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Hui Qiu
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Zhiying Shao
- Cancer Institute of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Gang Wang
- Cancer Institute of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Jianshe Wang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Yuanhu Yao
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Yong Xin
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Min Zhou
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Andrew Z Wang
- Cancer Institute of Xuzhou Medical College, Xuzhou, Jiangsu, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Laboratory of Nano- and Translational Medicine, Department of Radiation Oncology, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Longzhen Zhang
- Cancer Institute of Xuzhou Medical College, Xuzhou, Jiangsu, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China.
| |
Collapse
|
38
|
Le Tourneau C, Dreno B, Kirova Y, Grob JJ, Jouary T, Dutriaux C, Thomas L, Lebbé C, Mortier L, Saiag P, Avril MF, Maubec E, Joly P, Bey P, Cosset JM, Sun JS, Asselain B, Devun F, Marty ME, Dutreix M. First-in-human phase I study of the DNA-repair inhibitor DT01 in combination with radiotherapy in patients with skin metastases from melanoma. Br J Cancer 2016; 114:1199-205. [PMID: 27140316 PMCID: PMC4891504 DOI: 10.1038/bjc.2016.120] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/11/2016] [Accepted: 04/08/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND DT01 is a DNA-repair inhibitor preventing recruitment of DNA-repair enzymes at damage sites. Safety, pharmacokinetics and preliminary efficacy through intratumoural and peritumoural injections of DT01 were evaluated in combination with radiotherapy in a first-in-human phase I trial in patients with unresectable skin metastases from melanoma. METHODS Twenty-three patients were included and received radiotherapy (30 Gy in 10 sessions) on all selected tumour lesions, comprising of two lesions injected with DT01 three times a week during the 2 weeks of radiotherapy. DT01 dose levels of 16, 32, 48, 64 and 96 mg were used, in a 3+3 dose escalation design, with an expansion cohort at 96 mg. RESULTS The median follow-up was 180 days. All patients were evaluable for safety and pharmacokinetics. No dose-limiting toxicity was observed and the maximum-tolerated dose was not reached. Most frequent adverse events were reversible grades 1 and 2 injection site reactions. Pharmacokinetic analyses demonstrated a systemic passage of DT01. Twenty-one patients were evaluable for efficacy on 76 lesions. Objective response was observed in 45 lesions (59%), including 23 complete responses (30%). CONCLUSIONS Intratumoural and peritumoural DT01 in combination with radiotherapy is safe and pharmacokinetic analyses suggest a systemic passage of DT01.
Collapse
Affiliation(s)
- C Le Tourneau
- Department of Medical Oncology, Institut Curie, Paris & Saint-Cloud 75005, France.,EA7285, Versailles-Saint-Quentin-en-Yvelines University, Versailles 78000, France
| | - B Dreno
- CHU de Nantes-Hôtel Dieu, Nantes 44093, France
| | - Y Kirova
- Radiotherapy Department, Institut Curie, Paris 75005, France
| | - J J Grob
- La Timone Hospital-APHM, Aix-Marseille University, Marseille 13385, France
| | - T Jouary
- Dermatology department, Saint-André Hospital, CHU de Bordeaux, Bordeaux 33000, France
| | - C Dutriaux
- Dermatology department, Saint-André Hospital, CHU de Bordeaux, Bordeaux 33000, France
| | - L Thomas
- Lyon Sud Hospital Center, Lyon 1 University, Pierre Benite 69495, France
| | - C Lebbé
- Saint-Louis Hospital, APHP, Paris 75010, France
| | - L Mortier
- Dermatology department, CHRU of Lille, Lille 59037, France
| | - P Saiag
- Ambroise Paré Hospital, Boulogne Billancourt 92104, France
| | - M F Avril
- Cochin hospital, APHP, Paris 75014, France
| | - E Maubec
- Bichat Hospital, Paris 75877, France
| | - P Joly
- CHU Rouen, Charles-Nicolle, Rouen 76000, France
| | - P Bey
- Institut Curie, Paris 75005, France
| | - J M Cosset
- Radiotherapy Department, Institut Curie, Paris 75005, France
| | - J S Sun
- DNA Therapeutics, Evry 91058, France
| | - B Asselain
- Department of Biostatistics, Institut Curie, Paris 75005, France
| | - F Devun
- DNA Therapeutics, Evry 91058, France.,Institut Curie, Orsay 91405, France
| | - M E Marty
- Saint-Louis Hospital, APHP, Paris 75010, France
| | - M Dutreix
- Institut Curie, Orsay 91405, France.,CNRS-UMR3347, INSERM-U1021, Paris-Sud University, Orsay 91405, France
| |
Collapse
|
39
|
Gruosso T, Mieulet V, Cardon M, Bourachot B, Kieffer Y, Devun F, Dubois T, Dutreix M, Vincent-Salomon A, Miller KM, Mechta-Grigoriou F. Chronic oxidative stress promotes H2AX protein degradation and enhances chemosensitivity in breast cancer patients. EMBO Mol Med 2016; 8:527-49. [PMID: 27006338 PMCID: PMC5123617 DOI: 10.15252/emmm.201505891] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Anti‐cancer drugs often increase reactive oxygen species (ROS) and cause DNA damage. Here, we highlight a new cross talk between chronic oxidative stress and the histone variant H2AX, a key player in DNA repair. We observe that persistent accumulation of ROS, due to a deficient JunD‐/Nrf2‐antioxidant response, reduces H2AX protein levels. This effect is mediated by an enhanced interaction of H2AX with the E3 ubiquitin ligase RNF168, which is associated with H2AX poly‐ubiquitination and promotes its degradation by the proteasome. ROS‐mediated H2AX decrease plays a crucial role in chemosensitivity. Indeed, cycles of chemotherapy that sustainably increase ROS reduce H2AX protein levels in Triple‐Negative breast cancer (TNBC) patients. H2AX decrease by such treatment is associated with an impaired NRF2‐antioxidant response and is indicative of the therapeutic efficiency and survival of TNBC patients. Thus, our data describe a novel ROS‐mediated regulation of H2AX turnover, which provides new insights into genetic instability and treatment efficacy in TNBC patients.
Collapse
Affiliation(s)
- Tina Gruosso
- Stress and Cancer Laboratory, Equipe Labelisée LNCC, Institut Curie, Paris Cedex 05, France Inserm, U830, Paris, France
| | - Virginie Mieulet
- Stress and Cancer Laboratory, Equipe Labelisée LNCC, Institut Curie, Paris Cedex 05, France Inserm, U830, Paris, France
| | - Melissa Cardon
- Stress and Cancer Laboratory, Equipe Labelisée LNCC, Institut Curie, Paris Cedex 05, France Inserm, U830, Paris, France
| | - Brigitte Bourachot
- Stress and Cancer Laboratory, Equipe Labelisée LNCC, Institut Curie, Paris Cedex 05, France Inserm, U830, Paris, France
| | - Yann Kieffer
- Stress and Cancer Laboratory, Equipe Labelisée LNCC, Institut Curie, Paris Cedex 05, France Inserm, U830, Paris, France
| | - Flavien Devun
- Institut Curie, CNRS UMR3347, INSERM U1021, University Paris-Sud 11, Orsay, France
| | - Thierry Dubois
- Department of Translational Research, Institut Curie, Paris Cedex 05, France
| | - Marie Dutreix
- Institut Curie, CNRS UMR3347, INSERM U1021, University Paris-Sud 11, Orsay, France
| | | | - Kyle Malcolm Miller
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Fatima Mechta-Grigoriou
- Stress and Cancer Laboratory, Equipe Labelisée LNCC, Institut Curie, Paris Cedex 05, France Inserm, U830, Paris, France
| |
Collapse
|
40
|
Kotula E, Berthault N, Agrario C, Lienafa MC, Simon A, Dingli F, Loew D, Sibut V, Saule S, Dutreix M. DNA-PKcs plays role in cancer metastasis through regulation of secreted proteins involved in migration and invasion. Cell Cycle 2016; 14:1961-72. [PMID: 26017556 DOI: 10.1080/15384101.2015.1026522] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) plays a major role in DNA damage signaling and repair and is also frequently overexpressed in tumor metastasis. We used isogenic cell lines expressing different levels of DNA-PKcs to investigate the role of DNA-PKcs in metastatic development. We found that DNA-PKcs participates in melanoma primary tumor and metastasis development by stimulating angiogenesis, migration and invasion. Comparison of conditioned medium content from DNA-PKcs-proficient and deficient cells reveals that DNA-PKcs controls secretion of at least 103 proteins (including 44 metastasis-associated with FBLN1, SERPINA3, MMP-8, HSPG2 and the inhibitors of matrix metalloproteinases, such as α-2M and TIMP-2). High throughput analysis of secretomes, proteomes and transcriptomes, indicate that DNA-PKcs regulates the secretion of 85 proteins without affecting their gene expression. Our data demonstrate that DNA-PKcs has a pro-metastatic activity via the modification of the tumor microenvironment. This study shows for the first time a direct link between DNA damage repair and cancer metastasis and highlights the importance of DNA-PKcs as a potential target for anti-metastatic treatment.
Collapse
Key Words
- CM, conditioned media
- DNA damage
- DNA-PK
- DNA-PK, DNA-dependent protein kinase
- DNA-PKcs, DNA-PK catalytic subunit
- DSB, double-strand break
- ECM, extracellular matrix
- MMP inhibition
- MMP, matrix metalloproteinase
- MS, mass spectrometry
- NHEJ, non-homologous end joining
- SILAC, stable isotope labeling by amino acids in cell culture
- TIMP, tissue inhibitor of metalloproteinase.
- metastasis
- secretion
- α-2M, α-2-macroglobulin
Collapse
Affiliation(s)
- Ewa Kotula
- a Centre National de Recherche Scientifique (CNRS) UMR3347; Institut National de la Santé et de Recherche Médicale (INSERM) U1021; Institut Curie ; Orsay , France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Induction and inhibition of the pan-nuclear gamma-H2AX response in resting human peripheral blood lymphocytes after X-ray irradiation. Cell Death Discov 2016; 2:16011. [PMID: 27551505 PMCID: PMC4979483 DOI: 10.1038/cddiscovery.2016.11] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/17/2016] [Indexed: 01/08/2023] Open
Abstract
Human peripheral blood lymphocytes (HPBLs) are one of the most sensitive cells to ionizing radiation (IR) in the human body, and IR-induced DNA damage and functional impairment of HPBLs are the adverse consequences of IR accidents and major side effects of radiotherapy. Phosphorylated H2AX (γH2AX) is a sensitive marker for DNA double-strand breaks, but the role and regulation of the pan-nuclear γH2AX response in HPBLs after IR remain unclear. We herein demonstrated that the pan-nuclear γH2AX signals were increased in a time- and dose-dependent manner, colocalized with >94% of TUNEL apoptotic staining, and displayed a typical apoptotic pattern in resting HPBLs after low LET X-ray IR. In addition, the X-irradiation-induced pan-nuclear p-ATM and p-DNA-PKcs responses also occurred in resting HPBLs, and were colocalized with 92–95% of TUNEL staining and 97–98% of the pan-nuclear γH2AX signals, respectively, with a maximum at 6 h post irradiation, but disappeared at 24 h post irradiation. Moreover, ATM/DNA-PKcs inhibitor KU55933, p53 inhibitor PFT-μ and pan-caspase inhibitor ZVAD-fmk significantly decreased X-irradiation-induced pan-nuclear γH2AX signals and TUNEL staining, protected HPBLs from apoptosis, but decreased the proliferative response to mitogen in X-irradiated HPBLs. Notably, whereas both KU55933 and PFT-μ increased the IR-induced chromosome breaks and mis-repair events through inhibiting the formation of p-ATM, p-DNA-PKcs and γH2AX foci in X-irradiated HPBLs, the ZVAD-fmk did not increase the IR-induced chromosomal instability. Taken together, our data indicate that pan-nuclear γH2AX response represents an apoptotic signal that is triggered by the transient pan-nuclear ATM and DNA-PKcs activation, and mediated by p53 and pan-caspases in X-irradiated HPBLs, and that caspase inhibitors are better than ATM/DNA-PKcs inhibitors and p53 inhibitors to block pan-nuclear γH2AX response/apoptosis and protect HPBLs from IR.
Collapse
|
42
|
Biau J, Devun F, Verrelle P, Dutreix M. [Dbait: An innovative concept to inhibit DNA repair and treat cancer]. Bull Cancer 2016; 103:227-35. [PMID: 26917468 DOI: 10.1016/j.bulcan.2016.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 12/22/2022]
Abstract
The ability of cancer cells to recognize damage and initiate DNA repair is an important mechanism for therapeutic resistance. The use of inhibitors of DNA damage repair or signaling pathways appears to provide a unique opportunity for targeting genetic differences between tumor and normal cells. In this review, we firstly describe the main DNA lesions induced by the different treatments and the pathways involved in their repair. Then we review the mechanism of action and applications of an innovative DNA repair inhibitor: Dbait (and its clinical form DT01). Dbait/DT01 consists of 32 bp deoxyribonucleotides forming an intramolecular DNA double helix that mimics DNA lesions. They act as a bait for DNA damage signaling enzymes, the polyadenyl-ribose polymerase (PARP), and the DNA-dependent kinase (DNA-PK), inducing a "false" DNA damage signal and ultimately inhibiting recruitment at the damage site of many proteins involved in double-strand break and single-strand break repair pathways. Preclinical studies have demonstrated the capacity of Dbait/DT01 to improve the efficiency of (i) chemotherapy in colorectal cancer or hepatocellular carcinoma models, (ii) radiofrequency ablative in colorectal cancer liver metastases models, and (iii) radiotherapy in xenografted mice with head & neck squamous cell carcinoma, glioblastoma and melanoma. Following this good preclinical results, we performed a first-in-human phase 1-2a study evaluating the safety and efficacy of the combination of DT01 with radiotherapy for the treatment of skin metastases of melanoma. Twenty-three patients were included. No dose-limiting toxicity was observed. An objective response was observed in 59% lesions, including 30% complete responses. This first promising clinical efficacy provides future potential interesting clinical development of Dbait/DT01 with various anticancer treatments.
Collapse
Affiliation(s)
- Julian Biau
- Centre de recherche, institut Curie, 91400 Orsay, France; Centre national de la recherche scientifique, UMR3347, Orsay, France; Institut national de la santé et de la recherche médicale, U1021, Orsay, France; Université Paris Sud, Orsay, France; Clermont université, université d'Auvergne, EA7283 CREaT, 63011 Clermont-Ferrand, France; Centre Jean-Perrin, département de radiothérapie, 58, rue Montalembert, 63011 Clermont-Ferrand, France.
| | - Flavien Devun
- Centre de recherche, institut Curie, 91400 Orsay, France; DNA Therapeutics, 91000 Evry, France
| | - Pierre Verrelle
- Centre de recherche, institut Curie, 91400 Orsay, France; Clermont université, université d'Auvergne, EA7283 CREaT, 63011 Clermont-Ferrand, France; Centre Jean-Perrin, département de radiothérapie, 58, rue Montalembert, 63011 Clermont-Ferrand, France
| | - Marie Dutreix
- Centre de recherche, institut Curie, 91400 Orsay, France; Centre national de la recherche scientifique, UMR3347, Orsay, France; Institut national de la santé et de la recherche médicale, U1021, Orsay, France; Université Paris Sud, Orsay, France
| |
Collapse
|
43
|
Falsini S, Ristori S. Lipoplexes from Non-viral Cationic Vectors: DOTAP-DOPE Liposomes and Gemini Micelles. Methods Mol Biol 2016; 1445:33-43. [PMID: 27436311 DOI: 10.1007/978-1-4939-3718-9_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This chapter describes the topic of gene therapy based on colloidal drug delivery, as an alternative to the use of viral carriers. Non-viral vectors are promising transfection agents and do not suffer from limitations related to toxicity and immunogenic effects. In particular, lipid-based aggregates are generally considered biocompatible and versatile nanocarriers whose composition can be designed to include a cationic molecule which ensures strong interaction with nucleic acid. Herein the main issues related to complex formation and in vitro administration are illustrated with key examples, such as liposome-DNA plasmid (pDNA) association and micelles-siRNA complexes.
Collapse
Affiliation(s)
- Sara Falsini
- Department of Chemistry "Ugo Shiff" & CSGI, University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Sandra Ristori
- Dipartimento di Scienze della Terra, Università di Firenze, Via La Pira 4, 50121, Florence, Italy
| |
Collapse
|
44
|
Herath NI, Devun F, Lienafa MC, Herbette A, Denys A, Sun JS, Dutreix M. The DNA Repair Inhibitor DT01 as a Novel Therapeutic Strategy for Chemosensitization of Colorectal Liver Metastasis. Mol Cancer Ther 2015; 15:15-22. [DOI: 10.1158/1535-7163.mct-15-0408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/14/2015] [Indexed: 11/16/2022]
|
45
|
Han FF, Li L, Shang BY, Shao RG, Zhen YS. Hsp90 inhibitor geldanamycin enhances the antitumor efficacy of enediyne lidamycin in association with reduced DNA damage repair. Asian Pac J Cancer Prev 2015; 15:7043-8. [PMID: 25227788 DOI: 10.7314/apjcp.2014.15.17.7043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Inhibition of heat shock protein 90 (Hsp90) leads to inappropriate processing of proteins involved in DNA damage repair pathways after DNA damage and may enhance tumor cell radio- and chemo-therapy sensitivity. To investigate the potentiation of antitumor efficacy of lidamycin (LDM), an enediyne agent by the Hsp90 inhibitor geldanamycin (GDM), and possible mechanisms, we have determined effects on ovarian cancer SKOV- 3, hepatoma Bel-7402 and HepG2 cells by MTT assay, apoptosis assay, and cell cycle analysis. DNA damage was investigated with H2AX C-terminal phosphorylation (γH2AX) assays. We found that GDM synergistically sensitized SKOV-3 and Bel-7402 cells to the enediyne LDM, and this was accompanied by increased apoptosis. GDM pretreatment resulted in a greater LDM-induced DNA damage and reduced DNA repair as compared with LDM alone. However, in HepG2 cells GDM did not show significant sensitizing effects both in MTT assay and in DNA damage repair. Abrogation of LDM-induced G2/M arrest by GDM was found in SKOV-3 but not in HepG2 cells. Furthermore, the expression of ATM, related to DNA damage repair responses, was also decreased by GDM in SKOV-3 and Bel-7402 cells but not in HepG2 cells. These results demonstrate that Hsp90 inhibitors may potentiate the antitumor efficacy of LDM, possibly by reducing the repair of LDM-induced DNA damage.
Collapse
Affiliation(s)
- Fei-Fei Han
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China E-mail :
| | | | | | | | | |
Collapse
|
46
|
Zhuang HQ, Zhuang H, Bo Q, Guo Y, Wang J, Zhao LJ, Yuan ZY, Wang P. Experimental study on the regulation of erlotinib-induced radiosensitization with an anti-c-MET monoclonal antibody. Cancer Cell Int 2014; 14:109. [PMID: 25505849 PMCID: PMC4263203 DOI: 10.1186/s12935-014-0109-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/20/2014] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Erlotinib is a novel therapeutic agent for cancer treatment. This study was performed to investigate the role of c-MET-PI3K-AKT pathway in the regulation of erlotinib-induced radiosensitization. METHODS A973 lung adenocarcinoma cells treated with 6 Gy of radiation were incubated in the presence of erlotinib. The apoptotic rate after 24 hours, the colony-formating rate after 14 days, and changes in the c-MET expression levels after 14 days of irradiation were examined. Surviving fractions in different treatment groups (blank control, radiation alone, erlotinib alone, anti-c-MET monoclonal antibody alone, combined erlotinib and radiation, and combined erlotinib and radiation with anti-c-MET monoclonal antibody groups) were determined, the survival curves were plotted, and the sensitizer enhancement ratio was calculated using colony formation assays. Expressions of c-MET, p-c-MET, PI3K, AKT, and p-AKT in cells in different treatment groups were examined by Western blot analysis. RESULTS The apoptotic rate in the combined erlotinib and radiation group was higher than those in single treatment groups; however, the colony-forming rate remained approximately 2.04 ± 1.02%. The expression of c-MET in colony-forming cells in the combined group significantly increased, and the blockade of c-MET activity significantly enhanced the radiosensitizing effect of erlotinib. The expression of c-Met, p-c-MET, PI3K, AKT, and p-AKT among colony-forming cells significantly decreased upon the inhibition of c-MET. CONCLUSIONS Upregulated activity of the c-MET-PI3K-AKT pathway was found to be important for cell survival under combined the treatment with erlotinib and radiation. The blockade of the c-MET-PI3K-AKT signaling pathway enhanced the radiosensitizing effect of erlotinib.
Collapse
Affiliation(s)
- Hong-Qing Zhuang
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin Lung Cancer Center, Tianjin, China
| | - Hongxia Zhuang
- Department of Hematology, Weifang People's Hospital, Weifang, Shandong province China
| | - Qifu Bo
- Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong province China
| | - Yihang Guo
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin Lung Cancer Center, Tianjin, China
| | - Jun Wang
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin Lung Cancer Center, Tianjin, China
| | - Lu-Jun Zhao
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin Lung Cancer Center, Tianjin, China
| | - Zhi-Yong Yuan
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin Lung Cancer Center, Tianjin, China
| | - Ping Wang
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin Lung Cancer Center, Tianjin, China
| |
Collapse
|
47
|
Biau J, Devun F, Jdey W, Kotula E, Quanz M, Chautard E, Sayarath M, Sun JS, Verrelle P, Dutreix M. A preclinical study combining the DNA repair inhibitor Dbait with radiotherapy for the treatment of melanoma. Neoplasia 2014; 16:835-44. [PMID: 25379020 PMCID: PMC4212251 DOI: 10.1016/j.neo.2014.08.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 08/14/2014] [Accepted: 08/15/2014] [Indexed: 01/05/2023] Open
Abstract
Melanomas are highly radioresistant tumors, mainly due to efficient DNA double-strand break (DSB) repair. Dbait (which stands for DNA strand break bait) molecules mimic DSBs and trap DNA repair proteins, thereby inhibiting repair of DNA damage induced by radiation therapy (RT). First, the cytotoxic efficacy of Dbait in combination with RT was evaluated in vitro in SK28 and 501mel human melanoma cell lines. Though the extent of RT-induced damage was not increased by Dbait, it persisted for longer revealing a repair defect. Dbait enhanced RT efficacy independently of RT doses. We further assayed the capacity of DT01 (clinical form of Dbait) to enhance efficacy of “palliative” RT (10 × 3 Gy) or “radical” RT (20 × 3 Gy), in an SK28 xenografted model. Inhibition of repair of RT-induced DSB by DT01 was revealed by the significant increase of micronuclei in tumors treated with combined treatment. Mice treated with DT01 and RT combination had significantly better tumor growth control and longer survival compared to RT alone with the “palliative” protocol [tumor growth delay (TGD) by 5.7-fold; median survival: 119 vs 67 days] or the “radical” protocol (TGD by 3.2-fold; median survival: 221 vs 109 days). Only animals that received the combined treatment showed complete responses. No additional toxicity was observed in any DT01-treated groups. This preclinical study provides encouraging results for a combination of a new DNA repair inhibitor, DT01, with RT, in the absence of toxicity. A first-in-human phase I study is currently under way in the palliative management of melanoma in-transit metastases (DRIIM trial).
Collapse
Affiliation(s)
- Julian Biau
- Institut Curie, Centre de Recherche, Orsay, France ; UMR3347, Centre National de la Recherche Scientifique, Orsay, France ; U1021, Institut National de la Santé et de la Recherche Médicale, Orsay, France ; Université Paris Sud, Orsay, France ; Clermont Université, Université d'Auvergne, EA7283 CREaT, Clermont-Ferrand, France ; Radiotherapy Department, Centre Jean Perrin, Clermont-Ferrand, France
| | - Flavien Devun
- Institut Curie, Centre de Recherche, Orsay, France ; DNA Therapeutics, Evry, France
| | - Wael Jdey
- Institut Curie, Centre de Recherche, Orsay, France ; UMR3347, Centre National de la Recherche Scientifique, Orsay, France ; U1021, Institut National de la Santé et de la Recherche Médicale, Orsay, France ; Université Paris Sud, Orsay, France ; DNA Therapeutics, Evry, France
| | - Ewa Kotula
- Institut Curie, Centre de Recherche, Orsay, France ; UMR3347, Centre National de la Recherche Scientifique, Orsay, France ; U1021, Institut National de la Santé et de la Recherche Médicale, Orsay, France ; Université Paris Sud, Orsay, France ; DNA Therapeutics, Evry, France
| | - Maria Quanz
- Institut Curie, Centre de Recherche, Orsay, France ; DNA Therapeutics, Evry, France
| | - Emmanuel Chautard
- Clermont Université, Université d'Auvergne, EA7283 CREaT, Clermont-Ferrand, France ; Radiotherapy Department, Centre Jean Perrin, Clermont-Ferrand, France
| | | | | | - Pierre Verrelle
- Clermont Université, Université d'Auvergne, EA7283 CREaT, Clermont-Ferrand, France ; Radiotherapy Department, Centre Jean Perrin, Clermont-Ferrand, France
| | - Marie Dutreix
- Institut Curie, Centre de Recherche, Orsay, France ; UMR3347, Centre National de la Recherche Scientifique, Orsay, France ; U1021, Institut National de la Santé et de la Recherche Médicale, Orsay, France ; Université Paris Sud, Orsay, France
| |
Collapse
|
48
|
Abstract
Abnormal cytoplasmic accumulation of Fused in Sarcoma (FUS) in neurons defines subtypes of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). FUS is a member of the FET protein family that includes Ewing's sarcoma (EWS) and TATA-binding protein-associated factor 2N (TAF15). FET proteins are predominantly localized to the nucleus, where they bind RNA and DNA to modulate transcription, mRNA splicing, and DNA repair. In ALS cases with FUS inclusions (ALS-FUS), mutations in the FUS gene cause disease, whereas FTLD cases with FUS inclusions (FTLD-FUS) do not harbor FUS mutations. Notably, in FTLD-FUS, all FET proteins accumulate with their nuclear import receptor Transportin 1 (TRN1), in contrast ALS-FUS inclusions are exclusively positive for FUS. In the present study, we show that induction of DNA damage replicates several pathologic hallmarks of FTLD-FUS in immortalized human cells and primary human neurons and astrocytes. Treatment with the antibiotic calicheamicin γ1, which causes DNA double-strand breaks, leads to the cytoplasmic accumulation of FUS, TAF15, EWS, and TRN1. Moreover, cytoplasmic translocation of FUS is mediated by phosphorylation of its N terminus by the DNA-dependent protein kinase. Finally, we observed elevated levels of phospho-H2AX in FTLD-FUS brains, indicating that DNA damage occurs in patients. Together, our data reveal a novel regulatory mechanism for FUS localization in cells and suggest that DNA damage may contribute to the accumulation of FET proteins observed in human FTLD-FUS cases, but not in ALS-FUS.
Collapse
|
49
|
Devun F, Biau J, Huerre M, Croset A, Sun JS, Denys A, Dutreix M. Colorectal cancer metastasis: the DNA repair inhibitor Dbait increases sensitivity to hyperthermia and improves efficacy of radiofrequency ablation. Radiology 2013; 270:736-46. [PMID: 24475822 DOI: 10.1148/radiol.13130805] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE To assess the usefulness of combining hyperthermia with a DNA repair inhibitor (double-strand break bait [Dbait]) and its potential application to radiofrequency ablation (RFA) in a preclinical model of human colorectal cancer. MATERIALS AND METHODS The local ethics committee of animal experimentation approved all investigations. First, the relevance was assessed by studying the survival of four human colorectal adenocarcinoma cell cultures after 1 hour of hyperthermia at 41°C or 43°C with or without Dbait. Human colon adenocarcinoma cells (HT-29) were grafted subcutaneously into nude mice (n = 111). When tumors reached approximately 500 mm(3), mice were treated with Dbait alone (n = 20), sublethal RFA (n = 21), three different Dbait schemes and sublethal RFA (n = 52), or a sham treatment (n = 18). RFA was performed to ablate the tumor center alone. To elucidate antitumor mechanisms, 39 mice were sacrificed for blinded pathologic analysis, including assessment of DNA damage, cell proliferation, and tumor necrosis. Others were monitored for tumor growth and survival. Analyses of variance and log-rank tests were used to evaluate differences. RESULTS When associated with mild hyperthermia, Dbait induced cytotoxicity in all tested colon cancer cell lines. Sublethal RFA or Dbait treatment alone moderately improved survival (median, 40 days vs 28 days for control; P = .0005) but combination treatment significantly improved survival (median, 84 days vs 40 days for RFA alone, P = .0004), with approximately half of the animals showing complete tumor responses. Pathologic studies showed that the Dbait and RFA combination strongly enhances DNA damage and coagulation areas in tumors. CONCLUSION Combining Dbait with RFA sensitizes the tumor periphery to mild hyperthermia and increases RFA antitumor efficacy.
Collapse
Affiliation(s)
- Flavien Devun
- From the Department of Research, Institut Curie, Bat 11215 Georges Clémenceau, Orsay 91405, France (F.D., M.H., A.C., M.D.); CNRS, Unit UMR3347, Orsay, France (M.D.); INSERM, Unit U1021, Orsay, France (M.D.); DNA Therapeutics, Evry, France (F.D., A.C., J.S.S.); Department of Radiotherapy, Centre Jean Perrin, Clermont-Ferrand, France (J.B.); Department of Pathology, Institut Pasteur, Paris, France (M.H.); Muséum National d'Histoire Naturelle USM503, Paris, France (J.S.S.); Université Paris-Sud, Paris, France (M.D.); and Department of Radiology and Interventional Radiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (A.D.)
| | | | | | | | | | | | | |
Collapse
|
50
|
Kotula E, Faigle W, Berthault N, Dingli F, Loew D, Sun JS, Dutreix M, Quanz M. DNA-PK target identification reveals novel links between DNA repair signaling and cytoskeletal regulation. PLoS One 2013; 8:e80313. [PMID: 24282534 PMCID: PMC3840018 DOI: 10.1371/journal.pone.0080313] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/01/2013] [Indexed: 11/19/2022] Open
Abstract
The DNA-dependent protein kinase (DNA-PK) may function as a key signaling kinase in various cellular pathways other than DNA repair. Using a two-dimensional gel electrophoresis approach and stable DNA double-strand break-mimicking molecules (Dbait32Hc) to activate DNA-PK in the nucleus and cytoplasm, we identified 26 proteins that were highly phosphorylated following DNA-PK activation. Most of these proteins are involved in protein stability and degradation, cell signaling and the cytoskeleton. We investigated the relationship between DNA-PK and the cytoskeleton and found that the intermediate filament (IF) vimentin was a target of DNA-PK in vitro and in cells. Vimentin was phosphorylated at Ser459, by DNA-PK, in cells transfected with Dbait32Hc. We produced specific antibodies and showed that Ser459-P-vimentin was mostly located at cell protrusions. In migratory cells, the vimentin phosphorylation induced by Dbait32Hc was associated with a lower cellular adhesion and migration capacity. Thus, this approach led to the identification of downstream cytoplasmic targets of DNA-PK and revealed a connection between DNA damage signaling and the cytoskeleton.
Collapse
Affiliation(s)
- Ewa Kotula
- Institut Curie, Centre National de Recherche Scientifique (CNRS) UMR3347, Institut National de la Santé et de Recherche Médicale (INSERM) U1021, Université Paris-Sud 11, Centre Universitaire, Orsay, France
- DNA Therapeutics, Evry, France
| | - Wolfgang Faigle
- Institut Curie, Centre de Recherche, Laboratory of Proteomic Mass Spectrometry, Paris, France
- University Hospital Zürich, Department of Clinical Neuroimmunology and MS Research, Paris, France
| | - Nathalie Berthault
- Institut Curie, Centre National de Recherche Scientifique (CNRS) UMR3347, Institut National de la Santé et de Recherche Médicale (INSERM) U1021, Université Paris-Sud 11, Centre Universitaire, Orsay, France
| | - Florent Dingli
- Institut Curie, Centre de Recherche, Laboratory of Proteomic Mass Spectrometry, Paris, France
| | - Damarys Loew
- Institut Curie, Centre de Recherche, Laboratory of Proteomic Mass Spectrometry, Paris, France
| | - Jian-Sheng Sun
- DNA Therapeutics, Evry, France
- Muséum National d’Histoire Naturelle, USM503, Paris, France
| | - Marie Dutreix
- Institut Curie, Centre National de Recherche Scientifique (CNRS) UMR3347, Institut National de la Santé et de Recherche Médicale (INSERM) U1021, Université Paris-Sud 11, Centre Universitaire, Orsay, France
- * E-mail:
| | - Maria Quanz
- Institut Curie, Centre National de Recherche Scientifique (CNRS) UMR3347, Institut National de la Santé et de Recherche Médicale (INSERM) U1021, Université Paris-Sud 11, Centre Universitaire, Orsay, France
- DNA Therapeutics, Evry, France
| |
Collapse
|