1
|
Chen AM. HPV-Mediated Radiosensitivity in Oropharyngeal Squamous Cell Carcinoma: Molecular Mechanisms and Cellular Pathways. Curr Oncol Rep 2025; 27:634-641. [PMID: 40214894 DOI: 10.1007/s11912-025-01666-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 05/16/2025]
Abstract
PURPOSE OF REVIEW While the oncogenic potential of HPV has been well-established in other disease sites (e.g. cervix, vulva, anus), it is increasingly evident that a significant proportion of oropharyngeal cancer cases are related to the virus. Although considerable progress has been made in the understanding of this disease with respect to its underlying biology and clinical behavior, numerous questions persist. From a therapeutic standpoint, HPV-positive oropharyngeal cancer has been shown to be more radiosensitive than HPV-negative disease. However, how HPV mediates this radiosensitivity is relatively uncertain. RECENT FINDINGS Given that it has been firmly established that patients with HPV-positive oropharyngeal cancer have a significantly improved prognosis as a result of their exquisite response to radiation and can be treated with less-than-standard doses, logical questions pertain to how HPV confers this benefit to infected patients. Although the exact reason for the improved radiosensitivity of HPV-positive oropharyngeal carcinoma is unclear, multiple theories have been proposed. Indeed, it is likely that no single explanation exists for the increased radiosensitivity, and instead, HPV likely exerts its influence through a cascade of activated pathways at both the cellular level and tumor microenvironment. As will be discussed in this review, the proposed mechanisms for HPV-induced radiation response have generally centered on the disruption of such cellular pathways as DNA repair, cell cycle checkpoints, metabolic-induced stress, immunology, and cancer stem cells. Given that HPV-positive oropharyngeal cancer is increasingly recognized as a public health problem, the search to better understand its unique biological radiosensitivity has important societal and treatment-related implications.
Collapse
Affiliation(s)
- Allen M Chen
- Department of Radiation Oncology, Irvine, Chao Family Comprehensive Cancer Center, University of California, 101 The City Drive, Building 23, Orange, CA, 92868, USA.
| |
Collapse
|
2
|
Wang X, Zou Y, Ding RB, Lyu X, Fu Y, Zhou X, Sun Z, Bao J. SMG-1 serves as a prognostic indicator for the radiotherapy response in head and neck squamous cell carcinoma xenografts and patients. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1891-1894. [PMID: 39506517 PMCID: PMC11693865 DOI: 10.3724/abbs.2024180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/04/2024] [Indexed: 11/08/2024] Open
Affiliation(s)
- Xiaofeng Wang
- Department of Otolaryngology-Head and Neck Surgerythe First Affiliated Hospital of Hainan Medical UniversityHaikou571199China
| | - Yuxia Zou
- Department of Otolaryngology-Head and Neck Surgerythe First Affiliated Hospital of Hainan Medical UniversityHaikou571199China
| | - Ren-Bo Ding
- Key Laboratory of Tropical Biological Resources of Ministry of EducationSchool of Pharmaceutical SciencesHainan UniversityHaikou570228China
| | - Xueying Lyu
- Cancer CentreFaculty of Health SciencesUniversity of MacauMacao999078China
| | - Yuanfeng Fu
- Key Laboratory of Tropical Biological Resources of Ministry of EducationSchool of Pharmaceutical SciencesHainan UniversityHaikou570228China
| | - Xuejun Zhou
- Department of Otolaryngology-Head and Neck Surgerythe First Affiliated Hospital of Hainan Medical UniversityHaikou571199China
| | - Zhihua Sun
- Key Laboratory of Tropical Biological Resources of Ministry of EducationSchool of Pharmaceutical SciencesHainan UniversityHaikou570228China
- College of Animal Science and TechnologyShihezi UniversityShihezi832003China
| | - Jiaolin Bao
- Key Laboratory of Tropical Biological Resources of Ministry of EducationSchool of Pharmaceutical SciencesHainan UniversityHaikou570228China
| |
Collapse
|
3
|
Chen AM. De-escalated radiation for human papillomavirus virus-related oropharyngeal cancer: Who, why, what, where, when, how, how much…and what next? Radiother Oncol 2024; 200:110373. [PMID: 38857702 DOI: 10.1016/j.radonc.2024.110373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
The emergence of treatment de-escalation as a feasible option for patients with newly diagnosed human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma has generated considerable excitement among both providers and patients alike. Since HPV-positive oropharyngeal carcinoma has been shown to be a unique entity with distinct clinical and molecular characteristics, the rationale for customizing treatment for patients with this disease is compelling. Indeed, evidence has accumulated demonstrating that patients with HPV-positive oropharyngeal cancer have a significantly improved prognosis as a result of their exquisite radiosensitivity compared to their HPV-negative counterparts and thus might possibly be targeted with de-escalated approaches. The fundamental goal of de-escalation is to maintain the high cure and survival rates associated with traditional approaches while reducing the intensity of treatment and thus the incidence of both short- and long-term toxicity. Given the rapidly increasing incidence of this disease, particularly among younger patients who are generally healthy, the focus on quality of life seems germane. Although the exact reason for the improved sensitivity of HPV-positive oropharyngeal carcinoma to treatment is uncertain, prospective studies have now been published demonstrating that de-escalated radiation can successfully maintain the high rates of cure and preserve quality of life for appropriately selected patients with this disease. However, these studies have been fairly heterogeneous in design, and it remains questionable how to apply their findings to real-world practice. The potential of integrating translational approaches into clinical paradigms is also just starting to become recognized. Consequently, multiple uncertainties continue to exist with respect to de-escalation for HPV-positive oropharyngeal cancer, and these questions comprise the crux of this review.
Collapse
Affiliation(s)
- Allen M Chen
- Department of Radiation Oncology, Chao Family Comprehensive Cancer Center, University of California- Irvine, School of Medicine, Irvine, CA 92617, United States.
| |
Collapse
|
4
|
Wang Z, Wang Q, Tao Y, Chen J, Yuan Z, Wang P. Characterization of immune microenvironment in patients with HPV-positive and negative head and neck cancer. Sci Data 2023; 10:694. [PMID: 37828063 PMCID: PMC10570276 DOI: 10.1038/s41597-023-02611-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
Human papillomavirus (HPV) status strongly predicts positive clinical outcomes in patients with head and neck squamous cell cancer (HNSCC); however, the potential reasons have not been fully elucidated. Here, we characterized the immune context in HPV+ and HPV- HNSCC by integrating scRNA-seq and bulk RNA-seq data. In scRNA-seq data, HPV + HNSCC displayed increased B cells, plasma cells, CD4+ effector T cells, and decreased macrophages and mast cells. This finding was validated using bulk-cell data. Plasma cells predicted improved survival, and macrophages were associated with survival disadvantage. 1403 upregulated and 1877 downregulated differential expressed genes (DEGs) were obtained. Gene Ontology and KEGG enrichment analysis showed these DEGs focused on cytokine-related activity. Transcriptional analysis of B and plasma cells revealed associations between B-cell surface marker FCER2 and improved survival. In vitro assays confirmed the ability of FCER2 to suppress cellular proliferation and migration of HPV + tumors. In conclusion, our analysis revealed a heterogeneous tumor immune environment (TME) for HPV+ and HPV- HNSCC. Further, FCER2+ B cells contribute to antitumor immunity.
Collapse
Affiliation(s)
- Zhongqiu Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, West River District, Tianjin, 300060, China
| | - Qingxin Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, West River District, Tianjin, 300060, China
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yuxuan Tao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, West River District, Tianjin, 300060, China
| | - Jingru Chen
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, West River District, Tianjin, 300060, China
| | - Zhiyong Yuan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, West River District, Tianjin, 300060, China
| | - Peiguo Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, West River District, Tianjin, 300060, China.
| |
Collapse
|
5
|
Chen AM. De-escalated radiation for human papillomavirus virus-related oropharyngeal cancer: evolving paradigms and future strategies. Front Oncol 2023; 13:1175578. [PMID: 37576899 PMCID: PMC10413127 DOI: 10.3389/fonc.2023.1175578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/25/2023] [Indexed: 08/15/2023] Open
Abstract
The incidence of human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma has increased dramatically in recent years reaching epidemic-like proportions. Data has emerged not only showing that these cancers are a unique entity with distinct molecular characteristics but that they also have a significantly improved prognosis as a result of their exquisite radiosensitivity compared to their HPV-negative counterparts. This, it has been increasingly suggested that these tumors can be targeted with de-escalated approaches using reduced doses of radiation. The overriding goal of de-escalation is to maintain the high cure and survival rates associated with traditional approaches while reducing the incidence of both short- and long-term toxicity. Although the exact reason for the improved radiosensitivity of HPV-positive oropharyngeal carcinoma is unclear, prospective studies have now been published demonstrating that de-escalated radiation can successfully maintain the high rates of cure and preserve quality of life for appropriately selected patients with this disease. However, these studies have been complicated by such factors as the relatively limited sample sizes, as well as the variability in treatment, inclusion criteria, and follow-up. As the data continues to mature on de-escalation, it is unquestionable that treatment paradigms for this disease will evolve. The ongoing quest to define a standard regimen comprises the subject of this review.
Collapse
Affiliation(s)
- Allen M. Chen
- Department of Radiation Oncology, Chao Family Comprehensive Cancer Center, School of Medicine, University of California- Irvine, Irvine, CA, United States
| |
Collapse
|
6
|
Hojjatipour T, Sohani M, Maali A, Rostami S, Azad M. Aberrant DNA Methylation Status and mRNA Expression Level of SMG1 Gene in Chronic Myeloid Leukemia: A Case-Control Study. CELL JOURNAL 2022; 24. [PMID: 36527348 PMCID: PMC9790066 DOI: 10.22074/cellj.2022.8526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
UNLABELLED OObjective: Chronic myeloid leukemia (CML) is a myeloproliferative malignancy with different stages. Aberrant epigenetic modifications, such as DNA methylation, have been introduced as a signature for diverse cancers which also plays a crucial role in CML pathogenesis and development. Suppressor with morphogenetic effect on genitalia (SMG1) gene recently has been brought to the spotlight as a potent tumor suppressor gene that can be suppressed by tumors for further progress. The present study aims to investigate SMG1 status in CML patients. MATERIALS AND METHODS In this case-control study, peripheral blood from 30 patients with different phases of CML [new case (N)=10, complete molecular remission (CMR)=10, blastic phase (BP)=10] and 10 healthy subjects were collected. Methylation status and expression level of SMG1 gene promoter was assessed by methylation-specific polymerase chain reaction (MSP) and quantitative reverse-transcription PCR, respectively. RESULTS MSP results of SMG1 gene promotor in the new case group were methylated (60% methylated, 30% hemimethylated and 10% unmethylated). All CMR and control group patients were unmethylated in the SMG1 gene promoter. In the BP group, methylated SMG1 promoter was seen (50% of patients had a methylated status and 50% had hemimethylated status). In comparison with the healthy subjects, expression level of SMG1 in the new case group was decreased (P<0.01); in the CMR group and BP-CML groups, it was increased (P<0.05). No significant correlation between patients' hematological features and SMG1 methylation was seen. CONCLUSION Our results demonstrated that aberrant methylation of SMG1 occurred in CML patients and it had a significant association with SMG1 expression. SMG1 gene promoter showed diverse methylated status and subsequent expression levels in different phases of CML. These findings suggested possible participation of SMG1 suppression in the CML pathogenesis.
Collapse
Affiliation(s)
- Tahereh Hojjatipour
- Department of Hematology and Blood Transfusion, Students Research Center, School of Allied Medicine, Tehran University of Medical
Sciences, Tehran, Iran
| | - Mahsa Sohani
- Department of Hematology and Blood Transfusion, Students Research Center, School of Allied Medicine, Tehran University of Medical
Sciences, Tehran, Iran
| | - Amirhosein Maali
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Department of Medical Biotechnology, School of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Shahrbano Rostami
- Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran,P.O.Box: 3419915315Hematologic Malignancies Research CenterTehran University of Medical SciencesTehranIranP.O.Box: 1416634793Department of Medical Laboratory SciencesSchool of ParamedicineQazvin University of Medical SciencesQazvinIran
Emails:,
| | - Mehdi Azad
- Department of Medical Laboratory Sciences, School of Paramedicine, Qazvin University of Medical Sciences, Qazvin, Iran,P.O.Box: 3419915315Hematologic Malignancies Research CenterTehran University of Medical SciencesTehranIranP.O.Box: 1416634793Department of Medical Laboratory SciencesSchool of ParamedicineQazvin University of Medical SciencesQazvinIran
Emails:,
| |
Collapse
|
7
|
Meraviglia-Crivelli D, Villanueva H, Zheleva A, Villalba-Esparza M, Moreno B, Menon AP, Calvo A, Cebollero J, Barainka M, de los Mozos IR, Huesa-Berral C, Pastor F. IL-6/STAT3 signaling in tumor cells restricts the expression of frameshift-derived neoantigens by SMG1 induction. Mol Cancer 2022; 21:211. [PMID: 36443756 PMCID: PMC9703761 DOI: 10.1186/s12943-022-01679-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The quality and quantity of tumor neoantigens derived from tumor mutations determines the fate of the immune response in cancer. Frameshift mutations elicit better tumor neoantigens, especially when they are not targeted by nonsense-mediated mRNA decay (NMD). For tumor progression, malignant cells need to counteract the immune response including the silencing of immunodominant neoantigens (antigen immunoediting) and promoting an immunosuppressive tumor microenvironment. Although NMD inhibition has been reported to induce tumor immunity and increase the expression of cryptic neoantigens, the possibility that NMD activity could be modulated by immune forces operating in the tumor microenvironment as a new immunoediting mechanism has not been addressed. METHODS We study the effect of SMG1 expression (main kinase that initiates NMD) in the survival and the nature of the tumor immune infiltration using TCGA RNAseq and scRNAseq datasets of breast, lung and pancreatic cancer. Different murine tumor models were used to corroborate the antitumor immune dependencies of NMD. We evaluate whether changes of SMG1 expression in malignant cells impact the immune response elicited by cancer immunotherapy. To determine how NMD fluctuates in malignant cells we generated a luciferase reporter system to track NMD activity in vivo under different immune conditions. Cytokine screening, in silico studies and functional assays were conducted to determine the regulation of SMG1 via IL-6/STAT3 signaling. RESULTS IL-6/STAT3 signaling induces SMG1, which limits the expression of potent frameshift neoantigens that are under NMD control compromising the outcome of the immune response. CONCLUSION We revealed a new neoantigen immunoediting mechanism regulated by immune forces (IL-6/STAT3 signaling) responsible for silencing otherwise potent frameshift mutation-derived neoantigens.
Collapse
Affiliation(s)
- Daniel Meraviglia-Crivelli
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.508840.10000 0004 7662 6114Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Helena Villanueva
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.508840.10000 0004 7662 6114Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Angelina Zheleva
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.508840.10000 0004 7662 6114Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - María Villalba-Esparza
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.508840.10000 0004 7662 6114Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain ,grid.47100.320000000419368710Department of Pathology, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Beatriz Moreno
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
| | - Ashwathi Puravankara Menon
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.508840.10000 0004 7662 6114Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Alfonso Calvo
- grid.5924.a0000000419370271IDISNA, CIBERONC, Program in Solid Tumors (CIMA), Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Avenida Pío XII, 55, 31008 Pamplona, Spain
| | - Javier Cebollero
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.508840.10000 0004 7662 6114Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Martin Barainka
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.508840.10000 0004 7662 6114Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Igor Ruiz de los Mozos
- grid.5924.a0000000419370271Gene Therapy Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.424222.00000 0001 2242 5374Department of Personalized Medicine, NASERTIC, Government of Navarra, 31008 Pamplona, Spain
| | - Carlos Huesa-Berral
- grid.5924.a0000000419370271Department of Physics and Applied Mathematics, School of Science, University of Navarra, E-31008 Pamplona, Navarra Spain
| | - Fernando Pastor
- grid.5924.a0000000419370271Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain ,grid.508840.10000 0004 7662 6114Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain ,grid.5924.a0000000419370271Department of Molecular Therapies, CIMA (Center for Applied Medical Research) University of Navarre, Av. de Pío XII, 55, 31008 Pamplona, Spain
| |
Collapse
|
8
|
Zhou C, Fabbrizi MR, Hughes JR, Grundy GJ, Parsons JL. Effectiveness of PARP inhibition in enhancing the radiosensitivity of 3D spheroids of head and neck squamous cell carcinoma. Front Oncol 2022; 12:940377. [PMID: 36052247 PMCID: PMC9424551 DOI: 10.3389/fonc.2022.940377] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
A critical risk factor for head and neck squamous cell carcinoma (HNSCC), particularly of the oropharynx, and the response to radiotherapy is human papillomavirus (HPV) type-16/18 infection. Specifically, HPV-positive HNSCC display increased radiosensitivity and improved outcomes, which has been linked with defective signalling and repair of DNA double-strand breaks (DSBs). This differential response to radiotherapy has been recapitulated in vitro using cell lines, although studies utilising appropriate 3D models that are more reflective of the original tumour are scarce. Furthermore, strategies to enhance the sensitivity of relatively radioresistant HPV-negative HNSCC to radiotherapy are still required. We have analysed the comparative response of in vitro 3D spheroid models of oropharyngeal squamous cell carcinoma to x-ray (photon) irradiation and provide further evidence that HPV-positive cells, in this case now grown as spheroids, show greater inherent radiosensitivity compared to HPV-negative spheroids due to defective DSB repair. We subsequently analysed these and an expanded number of spheroid models, with a particular focus on relatively radioresistant HPV-negative HNSCC, for impact of poly(ADP-ribose) polymerase (PARP) inhibitors (olaparib and talazoparib) in significantly inhibiting spheroid growth in response to photons but also proton beam therapy. We demonstrate that in general, PARP inhibition can further radiosensitise particularly HPV-negative HNSCC spheroids to photons and protons leading to significant growth suppression. The degree of enhanced radiosensitivity was observed to be dependent on the model and on the tumour site (oropharynx, larynx, salivary gland, or hypopharynx) from which the cells were derived. We also provide evidence suggesting that PARP inhibitor effectiveness relates to homologous recombination repair proficiency. Interestingly though, we observed significantly enhanced effectiveness of talazoparib versus olaparib specifically in response to proton irradiation. Nevertheless, our data generally support that PARP inhibition in combination with radiotherapy (photons and protons) should be considered further as an effective treatment for HNSCC, particularly for relatively radioresistant HPV-negative tumours.
Collapse
Affiliation(s)
- Chumin Zhou
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Maria Rita Fabbrizi
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Jonathan R. Hughes
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Gabrielle J. Grundy
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Jason L. Parsons
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
- Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, United Kingdom
- *Correspondence: Jason L. Parsons,
| |
Collapse
|
9
|
A Novel Role of SMG1 in Cholesterol Homeostasis That Depends Partially on p53 Alternative Splicing. Cancers (Basel) 2022; 14:cancers14133255. [PMID: 35805027 PMCID: PMC9265556 DOI: 10.3390/cancers14133255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary p53 isoforms have been reported in various tumor types. Both p53β and p53γ were recently reported to retain functionalities of full-length p53α. A role for p53 and p53 loss in cholesterol metabolism has also emerged. We show that SMG1, a phosphatidylinositol 3-kinase-related kinase, when inhibited in p53 wild-type MCF7 and HepG2 cells, significantly alters the expression of cholesterol pathway genes, with a net increase in intracellular cholesterol and an increased sensitivity to Fatostatin in MCF7. We confirm a prior report that SMG1 inhibition in MCF7 cells promotes expression of p53β and show the first evidence for increases in p53γ. Further, induced p53β expression, confirmed with antibody, explained the loss of SMG1 upregulation of the ABCA1 cholesterol exporter where p53γ had no effect on ABCA1. Additionally, upregulation of ABCA1 upon SMG1 knockdown was independent of upregulation of nonsense-mediated decay target RASSF1C, previously suggested to regulate ABCA1 via a “RASSF1C-miR33a-ABCA1” axis. Abstract SMG1, a phosphatidylinositol 3-kinase-related kinase (PIKK), essential in nonsense-mediated RNA decay (NMD), also regulates p53, including the alternative splicing of p53 isoforms reported to retain p53 functions. We confirm that SMG1 inhibition in MCF7 tumor cells induces p53β and show p53γ increase. Inhibiting SMG1, but not UPF1 (a core factor in NMD), upregulated several cholesterol pathway genes. SMG1 knockdown significantly increased ABCA1, a cholesterol efflux pump shown to be positively regulated by full-length p53 (p53α). An investigation of RASSF1C, an NMD target, increased following SMG1 inhibition and reported to inhibit miR-33a-5p, a canonical ABCA1-inhibiting miRNA, did not explain the ABCA1 results. ABCA1 upregulation following SMG1 knockdown was inhibited by p53β siRNA with greatest inhibition when p53α and p53β were jointly suppressed, while p53γ siRNA had no effect. In contrast, increased expression of MVD, a cholesterol synthesis gene upregulated in p53 deficient backgrounds, was sensitive to combined targeting of p53α and p53γ. Phenotypically, we observed increased intracellular cholesterol and enhanced sensitivity of MCF7 to growth inhibitory effects of cholesterol-lowering Fatostatin following SMG1 inhibition. Our results suggest deregulation of cholesterol pathway genes following SMG1 knockdown may involve alternative p53 programming, possibly resulting from differential effects of p53 isoforms on cholesterol gene expression.
Collapse
|
10
|
Köcher S, Zech HB, Krug L, Gatzemeier F, Christiansen S, Meyer F, Rietow R, Struve N, Mansour WY, Kriegs M, Petersen C, Betz C, Rothkamm K, Rieckmann T. A Lack of Effectiveness in the ATM-Orchestrated DNA Damage Response Contributes to the DNA Repair Defect of HPV-Positive Head and Neck Cancer Cells. Front Oncol 2022; 12:765968. [PMID: 35719921 PMCID: PMC9204973 DOI: 10.3389/fonc.2022.765968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with human papillomavirus-positive squamous cell carcinoma of the head and neck (HPV+ HNSCC) have a favorable prognosis compared to those with HPV-negative (HPV−) ones. We have shown previously that HPV+ HNSCC cell lines are characterized by enhanced radiation sensitivity and impaired DNA double-strand break (DSB) repair. Since then, various publications have suggested a defect in homologous recombination (HR) and dysregulated expression of DSB repair proteins as underlying mechanisms, but conclusions were often based on very few cell lines. When comparing the expression levels of suggested proteins and other key repair factors in 6 HPV+ vs. 5 HPV− HNSCC strains, we could not confirm most of the published differences. Furthermore, HPV+ HNSCC strains did not demonstrate enhanced sensitivity towards PARP inhibition, questioning a general HR defect. Interestingly, our expression screen revealed minimal levels of the central DNA damage response kinase ATM in the two most radiosensitive HPV+ strains. We therefore tested whether insufficient ATM activity may contribute to the enhanced cellular radiosensitivity. Irrespective of their ATM expression level, radiosensitive HPV+ HNSCC cells displayed DSB repair kinetics similar to ATM-deficient cells. Upon ATM inhibition, HPV+ cell lines showed only a marginal increase in residual radiation-induced γH2AX foci and induction of G2 cell cycle arrest as compared to HPV− ones. In line with these observations, ATM inhibition sensitized HPV+ HNSCC strains less towards radiation than HPV− strains, resulting in similar levels of sensitivity. Unexpectedly, assessment of the phosphorylation kinetics of the ATM targets KAP-1 and Chk2 as well as ATM autophosphorylation after radiation did not indicate directly compromised ATM activity in HPV-positive cells. Furthermore, ATM inhibition delayed radiation induced DNA end resection in both HPV+ and HPV− cells to a similar extent, further suggesting comparable functionality. In conclusion, DNA repair kinetics and a reduced effectiveness of ATM inhibition clearly point to an impaired ATM-orchestrated DNA damage response in HPV+ HNSCC cells, but since ATM itself is apparently functional, the molecular mechanisms need to be further explored.
Collapse
Affiliation(s)
- Sabrina Köcher
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henrike Barbara Zech
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred-Scheel Cancer Career Center HaTriCS, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonie Krug
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fruzsina Gatzemeier
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabrina Christiansen
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix Meyer
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ruth Rietow
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Department, Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nina Struve
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred-Scheel Cancer Career Center HaTriCS, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wael Yassin Mansour
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred-Scheel Cancer Career Center HaTriCS, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Kriegs
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cordula Petersen
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Betz
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Rieckmann
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- *Correspondence: Thorsten Rieckmann,
| |
Collapse
|
11
|
Karami N, Ahmadi MH, Mohammadi S, Maali A, Alizadeh A, Pishkhan Dibazar S, Azad M. Methylation and Expression Status of The CpG-Island of SMG1 Promoter in Acute Myeloid Leukemia: A Follow-Up Study in Patients. CELL JOURNAL 2022; 24:163-169. [PMID: 35674018 PMCID: PMC9124448 DOI: 10.22074/cellj.2022.7798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 01/23/2021] [Indexed: 11/21/2022]
Abstract
Objective Aberrant alterations in DNA methylation are known as one of the hallmarks of oncogenesis and play a vital role in the progression of acute myeloid leukemia (AML). SMG1 is a member of the Phosphoinositide 3-kinases family, acting as a tumor suppressor gene. The aim of this study was the evaluation of the expression level and methylation status of SMG1 in AML. Materials and Methods In this follow-up study on AML patients admitted to Shariati Hospital, Tehran, Iran, the methylation status of SMG1 [performed by methylation-specific polymerase chain reaction (PCR)] and its expression level (performed by qRT-PCR) were evaluated in three phases: newly diagnosed, under treatment and complete remission. The correlation of the methylation status of SMG1, its expression level, and clinical/paraclinical data was analyzed by SPSS ver.25. Results This study on 18 patients and five control individuals showed that the CpG-islands of the SMG1 promoter in newly diagnosed cases is hypomethylated compared to the normal group (P=0.002) The fold change of SMG1 expression levels in new cases is 0.464 ± 0.468, while the fold change of SMG1 expression levels in under-treatment and in-remission patients is 0.973 ± 1.159 and 0.685 ± 0.885, respectively. In under-treatment patients, white blood cell (WBC) count decreases 114176.36 cell/μl with each unit of increase in fold change of SMG1 (P<0.0001), and Hb unit increases 2.062 g/dl with each unit of increase in fold change (P<0.0001). Also, in the remission phase, the Hb unit increases 1.395 g/dl with each unit increase in fold change (P=0.019). Conclusion The robust results of our study suggest that the methylation and expression of have a high impact on the pathogenesis of AML. Also, the methylation and expression of SMG1 can play a prognostic role in AML.
Collapse
Affiliation(s)
- Neda Karami
- Department of Medicine Biotechnology, Faculty of Allied Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Mohammad Hossein Ahmadi
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Saeed Mohammadi
- Hematology-Oncology and Stem Cell Transplantation Research Center, Shariati Hospital of Tehran, Tehran, Iran
| | - Amirhosein Maali
- Department of Medicine Biotechnology, Faculty of Allied Medicine, Qazvin University of Medical Science, Qazvin, Iran,Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Ahad Alizadeh
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical
Sciences, Qazvin, Iran
| | | | - Mehdi Azad
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran ,P.O.Box: 34197-59811Department of Medical Laboratory SciencesFaculty of Allied MedicineQazvin University of
Medical SciencesQazvinIran
| |
Collapse
|
12
|
A Novel Ferroptosis-Related Gene Signature to Predict Prognosis in Patients with Head and Neck Squamous Cell Carcinoma. DISEASE MARKERS 2021; 2021:5759927. [PMID: 34853622 PMCID: PMC8629675 DOI: 10.1155/2021/5759927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/13/2021] [Accepted: 10/28/2021] [Indexed: 12/24/2022]
Abstract
The clinical TNM staging system is currently used to evaluate the prognosis of head and neck squamous cell carcinoma (HNSCC). The 5-year survival rate for patients with HNSCC is less than 50%, which is attributed to the lack of reliable prognostic biomarkers. Ferroptosis-related genes (FRGs) regulate cancer initiation and progression. Therefore, we analyzed the correlation between FRGs and the clinical outcomes of patients with HNSCC. A typical prognostic model of FRGs for HNSCC was constructed using bioinformatics tools and data from public databases, including The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and GeneCards. The model was generated based on the following six FRGs: ATG5, PRDX6, OTUB1, FTH1, SOCS1, and MAP3K5. The accuracy of model prediction was analyzed systematically. The overall survival (OS) of the high-risk group was significantly lower than that of the low-risk group. The AUC for 1-year, 3-year, and 5-year survival were 0.645, 0.721, and 0.737, respectively, in the training set (TCGA cohort) and 0.726, 0.620, and 0.584, respectively, in the validation set (GSE65858). The multivariate Cox regression analysis revealed that the risk score was an independent prognostic factor for HNSCC. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that six FRGs were enriched in the ferroptosis pathway. A novel FRG prognostic signature model was established for HNSCC. The findings of this study reveal that FRGs are potential biomarkers for HNSCC.
Collapse
|
13
|
Zhou P, Yu YF, Lian CL, Wang J, Zhuo RG, Wu SG. Survival Outcomes and Treatment Decision by Human Papillomavirus Status Among Patients With Stage IVC Head and Neck Squamous Cell Carcinoma. Front Oncol 2021; 11:668066. [PMID: 34136400 PMCID: PMC8201515 DOI: 10.3389/fonc.2021.668066] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/12/2021] [Indexed: 11/28/2022] Open
Abstract
Purpose To investigate the influence of human papillomavirus (HPV) status on survival outcomes and treatment decisions for patients with de novo stage IV head and neck squamous cell cancers (HNSCC). Methods Patients initially diagnosed with de novo stage IVC HNSCC between 2010 and 2015 were identified from the Surveillance, Epidemiology, and End Results database. Cox multivariable analyses were performed to determine prognostic factors associated with head and neck cancers specific survival (HNCSS) and overall survival (OS). Results We identified 303 patients who received chemotherapy in this study, including 52.5% of them had HPV-positive disease. HPV-positive HNSCC had better HNCSS (P < 0.001) and OS (P < 0.001) compared to those with HPV-negative disease. The results of Cox multivariable analyses showed that HPV-negative status (P = 0.007), N3 stage (P = 0.004), bone metastases (P < 0.001), and lung metastases (P = 0.003) were associated with worse HNCSS. Similar results were found regarding the OS. The sensitivity analyses indicated that HPV-positive HNSCC patients who were treated with radiotherapy had better survival outcomes. However, no survival benefits were found in those with HPV-positive disease receiving surgery. For HPV-negative patients, no survival benefit was observed among those treated with radiotherapy or surgery. Conclusions Approximately half of the stage IVC HNSCC patients are HPV-related. The presence of HPV infection appears to be strongly associated with the survival outcome in patients with de novo stage IV HNSCC. Determination of HPV status may help guide clinicians in prognostic assessment and treatment decision-making in this population.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yi-Feng Yu
- Department of Radiation Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Chen-Lu Lian
- Department of Radiation Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jun Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Ren-Gong Zhuo
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China
| | - San-Gang Wu
- Department of Radiation Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
14
|
Global Genome Demethylation Causes Transcription-Associated DNA Double Strand Breaks in HPV-Associated Head and Neck Cancer Cells. Cancers (Basel) 2020; 13:cancers13010021. [PMID: 33374558 PMCID: PMC7793113 DOI: 10.3390/cancers13010021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
High levels of DNA methylation at CpG loci are associated with transcriptional repression of tumor suppressor genes and dysregulation of DNA repair genes. Human papilloma virus (HPV)-associated head and neck squamous cell carcinomas (HNSCC) have high levels of DNA methylation and methylation has been associated with dampening of an innate immune response in virally infected cells. We have been exploring demethylation as a potential treatment in HPV+ HNSCC and recently reported results of a window clinical trial showing that HNSCCs are particularly sensitive to demethylating agent 5-azacytidine (5-aza). Mechanistically, sensitivity is partially due to downregulation of HPV genes expression and restoration of tumor suppressors p53 and Rb. Here, for the first time, we show that 5-azaC treatment of HPV+ HNSCC induces replication and transcription-associated DNA double strand breaks (DSBs) that occur preferentially at demethylated genomic DNA. Blocking replication or transcription prevented formation of DNA DSBs and reduced sensitivity of HPV-positive head and neck cancer cells to 5-azaC, demonstrating that both replication and active transcription are required for formation of DSBs associated with 5-azaC.
Collapse
|
15
|
Zhang C, Chen H, Deng Z, Long D, Xu L, Liu Z. DGCR8/miR-106 Axis Enhances Radiosensitivity of Head and Neck Squamous Cell Carcinomas by Downregulating RUNX3. Front Med (Lausanne) 2020; 7:582097. [PMID: 33385002 PMCID: PMC7770216 DOI: 10.3389/fmed.2020.582097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose: Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent malignant tumor worldwide, and the radiotherapy effect is strongly associated with human papillomavirus (HPV) infection. Therefore, the aim of our study was to analyze the mechanism of HPV E7 and its effects on radiosensitivity in HNSCC cells. Methods: The mRNA expression of DiGeorge syndrome critical region gene 8 (DGCR8), has-miR-106a, and Runt-related transcription factor 3 (RUNX3) was examined by quantitative real-time PCR (RT-qPCR). The protein expression of DGCR8, E7, RUNX3, caspase-3/cleaved caspase-3, poly(ADP-ribose) polymerase (PARP)/cleaved PARP, and γH2AX was measured by Western blot. The expression level of DGCR8 was measured by immunofluorescence assay. Starbase database (http://starbase.sysu.edu.cn/) was used to analyze the correlation between has-miR-106a-5p and DGCR8. TargetScan database (http://www.targetscan.org/vert_72/) was adopted to calculate the prediction of binding sites. Radiosensitivity was evaluated through clone formation assays and Cell Counting Kit-8 (CCK-8) assays. Results: In our study, we found that the mRNA and protein expression levels of HPV E7 and DGCR8 in HPV-positive HNSCC cells were higher than those in HPV-negative cells. The expression of DGCR8 was increased in FaDu and UM-SCC-4 with E7 overexpression, while the expression of DGCR8 was decreased in UM-SCC-47 and UPCI-SCC-090 with E7 silence. The miR-106a expression was increased after DGCR8 overexpression in FaDu and UM-SCC-4. However, the miR-106a expression was decreased in UM-SCC-47 and UPCI-SCC-090 with E7 silence. In radiation conditions, clone formation assays found that less clones formed in FaDu and UM-SCC-4 cells subsequent to silencing DGCR8 or miR-106a than that in the control group, and more clones were formed in UM-SCC-47 and UPCI-SCC-090 cells overexpressing DGCR8 or miR-106a than that in the control group. Luciferase reporter gene assays verified that miR-106a targeted the 3' untranslated region (UTR) of RUNX3 mRNA. MiR-106a overexpression resulted in a decrease in RUNX3 expression, and miR-106a silence increased RUNX3 expression. Rescue experiments conducted with miR-106a inhibitor restored radiation resistance and reduced DNA damage in radiation condition. Conclusions: Our study indicated that HPV E7 activated DGCR8/miR-106a/RUNX3 axis to enhance radiation sensitivity and provided directions for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Chunlin Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hangqi Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zeyi Deng
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Dan Long
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Li Xu
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhaohui Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
16
|
Kadian LK, Yadav R, Nanda S, Gulshan G, Sharma S, Yadav C. High-risk HPV infection modulates the promoter hypermethylation of APC, SFRP1, and PTEN in cervical cancer patients of North India. Mol Biol Rep 2020; 47:9725-9732. [PMID: 33230782 DOI: 10.1007/s11033-020-05960-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/29/2020] [Indexed: 12/18/2022]
Abstract
Persistent infection with oncogenic HPV and downregulation of tumor suppressor genes play an essential role in the development and progression of cervical cancer. The present study aimed to identify the promoter methylation status of APC, SFRP1, and PTEN which are important regulators of Wnt pathway and their association with high-risk HPV infection and gene expression. Methylation Specific PCR (MSP) and quantitative reverse transcription PCR (RT-qPCR) were used to detect methylation status and gene expression levels of APC, SFRP1, and PTEN in cervical cancer biopsies (110) and paired non-cancerous biopsies (28). APC promoter was methylated in 38%, SFRP1 in 95%, and PTEN in 55% of the cervical cancer biopsies. Our data showed a trend of a higher rate of methylation of the gene promoters in cervical cancer biopsies while; they were majorly un-methylated in non-cancerous biopsies. Corresponding to a higher rate of methylation in cancer biopsies, the gene expression levels of APC, SFRP1, and PTEN were reduced in cervical cancer samples in comparison to normal cervix tissues. Further, we observed that 97% cancer biopsies were HPV infected and high-risk type HPV16 and 18 infections were significantly positively associated with APC (p = 0.008 and p = 0.007), SFRP1 (p = 0.003 and p = 0.0067), and PTEN (p = 0.049 and p = 0.008) promoter methylation. APC, SFRP1, and PTEN promoter hyper-methylation is positively associated with high-risk HPV infection and inversely associated with gene expression. Our findings show that high-risk HPV infection promotes methylation of these genes and further promotes their silencing.
Collapse
Affiliation(s)
- Lokesh Kumari Kadian
- Department of Genetics, Maharishi Dayanand University, Rohtak, 124001, Haryana, India
| | - Ritu Yadav
- Department of Genetics, Maharishi Dayanand University, Rohtak, 124001, Haryana, India.
| | - Smiti Nanda
- Departments of Obstetrics and Gynaecology, PGIMS, Rohtak, Haryana, India
| | - Gulshan Gulshan
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India
| | - Shivkant Sharma
- Department of Genetics, Maharishi Dayanand University, Rohtak, 124001, Haryana, India
| | - Chetna Yadav
- Department of Genetics, Maharishi Dayanand University, Rohtak, 124001, Haryana, India
| |
Collapse
|
17
|
Szymonowicz KA, Chen J. Biological and clinical aspects of HPV-related cancers. Cancer Biol Med 2020; 17:864-878. [PMID: 33299640 PMCID: PMC7721094 DOI: 10.20892/j.issn.2095-3941.2020.0370] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer-related diseases represent the second overall cause of death worldwide. Human papilloma virus (HPV) is an infectious agent which is mainly sexually transmitted and may lead to HPV-associated cancers in both men and women. Almost all cervical cancers are HPV-associated, however, an increasing number of head and neck cancers (HNCs), especially oropharyngeal cancer, can be linked to HPV infection. Moreover, anogenital cancers, including vaginal, vulvar, penial, and anal cancers, represent a subset of HPV-related cancers. Whereas testing and prevention of cervical cancer have significantly improved over past decades, anogenital cancers remain more difficult to confirm. Current clinical trials including patients with HPV-related cancers focus on finding proper testing for all HPV-associated cancers as well as improve the currently applied treatments. The HPV viral oncoproteins, E6 and E7, lead to degradation of, respectively, p53 and pRb resulting in entering the S phase without G1 arrest. These high-risk HPV viral oncogenes alter numerous cellular processes, including DNA repair, angiogenesis, and/or apoptosis, which eventually result in carcinogenesis. Additionally, a comprehensive analysis of gene expression and alteration among a panel of DNA double strand breaks (DSB) repair genes in HPV-negative and HPV-positive HNC cancers reveals differences pointing to HPV-dependent modifications of DNA repair processes in these cancers. In this review, we discuss the current knowledge regarding HPV-related cancers, current screening, and treatment options as well as DNA damage response-related biological aspects of the HPV infection and clinical trials.
Collapse
Affiliation(s)
- Klaudia Anna Szymonowicz
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
18
|
Khanal S, Strickley JD, Ha T, Demehri S, Ghim SJ, Jenson AB, Redman RA, Joh JJ. Human papillomavirus-positivity is associated with EREG down-regulation and promoter hypermethylation in head and neck squamous cell carcinoma. Exp Mol Pathol 2020; 117:104549. [PMID: 33007298 DOI: 10.1016/j.yexmp.2020.104549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 09/14/2020] [Accepted: 09/24/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Human papillomavirus (HPV) etiology has become evident in head and neck cancers (HNCs) and HPV positivity showed a strong association with its malignant progression. Since aberrant DNA methylation is known to drive carcinogenesis and progression in HNCs, we investigated to determine target gene(s) associated with this modification. METHODS We characterized epigenetic changes in tumor-related genes (TRGs) that are known to be associated with HNC development and its progression. RESULTS The expression levels of 42 candidate HNC-associated genes were analyzed. Of these, 7 TGRs (CHFR, RARβ, GRB7, EREG, RUNX2, RUNX3, and SMG-1) showed decreased expressions in HPV-positive (+) HNC cells compared with HPV-negative (-) HNC cells. When gene expression levels were compared corresponding to the DNA methylation conditions, GRB7 and EREG showed significant differential expression between HPV+ and HPV- cells, which suggested these genes as primary targets of epigenetic regulation in HPV-induced carcinogenesis. Furthermore, treatment with a demethylation agent, 5-aza-2'-deoxycytidine (5-aza-dc), caused restoration of EREG expression and was associated with hypomethylation of its promoter in HPV+ cells, while no changes was noted in HPV- cells. EREG promoter hypermethylation in HPV+ cells was confirmed using methylation-specific PCR (MS-PCR). CONCLUSION We conclude that EREG is the target of epigenetic regulation in HPV+ HNCs and its suppressed expression through promoter hypermethylation is associated with the development of HPV-associated HNCs.
Collapse
Affiliation(s)
- Sujita Khanal
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - John D Strickley
- Center for Cancer Immunology and Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Thinh Ha
- Center for Cancer Immunology and Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology and Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shin-Je Ghim
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Alfred B Jenson
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Rebecca A Redman
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Joongho J Joh
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Medicine, University of Louisville, Louisville, KY, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
19
|
Zhou C, Parsons JL. The radiobiology of HPV-positive and HPV-negative head and neck squamous cell carcinoma. Expert Rev Mol Med 2020; 22:e3. [PMID: 32611474 PMCID: PMC7754878 DOI: 10.1017/erm.2020.4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/04/2020] [Accepted: 05/28/2020] [Indexed: 12/24/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, with reported incidences of ~800 000 cases each year. One of the critical determinants in patient response to radiotherapy, particularly for oropharyngeal cancers, is human papillomavirus (HPV) status where HPV-positive patients display improved survival rates and outcomes particularly because of increased responsiveness to radiotherapy. The increased radiosensitivity of HPV-positive HNSCC has been largely linked with defects in the signalling and repair of DNA double-strand breaks. Therefore, strategies to further radiosensitise HPV-positive HNSCC, but also radioresistant HPV-negative HNSCC, have focussed on targeting key DNA repair proteins including PARP, DNA-Pk, ATM and ATR. However, inhibitors against CHK1 and WEE1 involved in cell-cycle checkpoint activation have also been investigated as targets for radiosensitisation in HNSCC. These studies, largely conducted using established HNSCC cell lines in vitro, have demonstrated variability in the response dependent on the specific inhibitors and cell models utilised. However, promising results are evident targeting specifically PARP, DNA-Pk, ATR and CHK1 in synergising with radiation in HNSCC cell killing. Nevertheless, these preclinical studies require further expansion and investigation for translational opportunities for the effective treatment of HNSCC in combination with radiotherapy.
Collapse
Affiliation(s)
- Chumin Zhou
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 200 London Road, LiverpoolL3 9TA, UK
| | - Jason L. Parsons
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 200 London Road, LiverpoolL3 9TA, UK
| |
Collapse
|
20
|
DNA Methylation Changes in Human Papillomavirus-Driven Head and Neck Cancers. Cells 2020; 9:cells9061359. [PMID: 32486347 PMCID: PMC7348958 DOI: 10.3390/cells9061359] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Disruption of DNA methylation patterns is one of the hallmarks of cancer. Similar to other cancer types, human papillomavirus (HPV)-driven head and neck cancer (HNC) also reveals alterations in its methylation profile. The intrinsic ability of HPV oncoproteins E6 and E7 to interfere with DNA methyltransferase activity contributes to these methylation changes. There are many genes that have been reported to be differentially methylated in HPV-driven HNC. Some of these genes are involved in major cellular pathways, indicating that DNA methylation, at least in certain instances, may contribute to the development and progression of HPV-driven HNC. Furthermore, the HPV genome itself becomes a target of the cellular DNA methylation machinery. Some of these methylation changes appearing in the viral long control region (LCR) may contribute to uncontrolled oncoprotein expression, leading to carcinogenesis. Consistent with these observations, demethylation therapy appears to have significant effects on HPV-driven HNC. This review article comprehensively summarizes DNA methylation changes and their diagnostic and therapeutic indications in HPV-driven HNC.
Collapse
|
21
|
Zhang C, Mi J, Deng Y, Deng Z, Long D, Liu Z. DNMT1 Enhances the Radiosensitivity of HPV-Positive Head and Neck Squamous Cell Carcinomas via Downregulating SMG1. Onco Targets Ther 2020; 13:4201-4211. [PMID: 32523356 PMCID: PMC7237113 DOI: 10.2147/ott.s227395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 02/18/2020] [Indexed: 01/21/2023] Open
Abstract
Introduction Head and neck squamous cell carcinoma (HNSCC), which rank the 7th malignant tumors worldwide, is closely related to methylation and HPV infection. Ionizing radiation therapy is the main strategy for HNSCC patients in advanced stage. Previously, HPV-positive HNSCC predict better prognosis than HPV-negative HNSCCs under radiotherapy, however its molecular mechanism is unresolved. SMG1 serves as a potential tumor suppressor in various cancers, including HNSCC. Methods The mRNAs and proteins expression of HPV E6/E7, p16, p53, DNMT1, SMG1 were detected after different treatments by qPCR and Western blot. The clone formation ability was measured in radiation dose after different treatments. Results In our study, the expression of HPV16 E6, DNA Methyltransferase 1(DNMT1) and SMG1 in head and neck carcinomas cell lines was detected by RT-qPCR and Western blot. Forced E6 level in HPV-negative cells by overexpression plasmid promoted the expression of DNMT1, which resulted in decreased SMG1 expression. Silenced SMG1 in HPV-negative HNSCC cells elicited increased radiation sensitivity, suggesting that SMG1 may be an effective switch to regulate the effect of radiotherapy in HNSCC. Conclusion Our study indicated that DNMT1 enhances the radiosensitivity of HPV-positive head and neck squamous cell carcinomas via downregulating SMG1.
Collapse
Affiliation(s)
- Chunlin Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| | - Jiaoping Mi
- Department of Otorhinolaryngology, Head and Neck Surgery, The Fifth Affiliated Hospital of Sun Yat-Sun University, Zunyi, People's Republic of China
| | - Yuan Deng
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| | - Zeyi Deng
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Dan Long
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China.,The Graduate School of Zunyi Medical University, Zunyi, People's Republic of China
| | - Zhaohui Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| |
Collapse
|
22
|
Perri F, Longo F, Caponigro F, Sandomenico F, Guida A, Della Vittoria Scarpati G, Ottaiano A, Muto P, Ionna F. Management of HPV-Related Squamous Cell Carcinoma of the Head and Neck: Pitfalls and Caveat. Cancers (Basel) 2020; 12:cancers12040975. [PMID: 32326465 PMCID: PMC7226389 DOI: 10.3390/cancers12040975] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/31/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are a very heterogeneous group of malignancies arising from the upper aerodigestive tract. They show different clinical behaviors depending on their origin site and genetics. Several data support the existence of at least two genetically different types of HNSCC, one virus-related and the other alcohol and/or tobacco and oral trauma-related, which show both clinical and biological opposite features. In fact, human papillomavirus (HPV)-related HNSCCs, which are mainly located in the oropharynx, are characterized by better prognosis and response to therapies when compared to HPV-negative HNSCCs. Interestingly, virus-related HNSCC has shown a better response to conservative (nonsurgical) treatments and immunotherapy, opening questions about the possibility to perform a pretherapy assessment which could totally guide the treatment strategy. In this review, we summarize molecular differences and similarities between HPV-positive and HPV-negative HNSCC, highlighting their impact on clinical behavior and on therapeutic strategies.
Collapse
Affiliation(s)
- Francesco Perri
- Head and Neck Medical Oncology Unit, Istituto Nazionale Tumori, IRCCS G. Pascale, 80131 Naples, Italy;
- Correspondence: ; Tel.: +39-081-590-3362
| | - Francesco Longo
- Division of Surgical Oncology Maxillo-Facial Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Via Mariano Semmola, 80131 Naples, Italy; (F.L.); (A.G.); (F.I.)
| | - Francesco Caponigro
- Head and Neck Medical Oncology Unit, Istituto Nazionale Tumori, IRCCS G. Pascale, 80131 Naples, Italy;
| | - Fabio Sandomenico
- Unit, Istituto Nazionale Tumori—IRCCS—G. Pascale, 80131 Naples, Italy;
| | - Agostino Guida
- Division of Surgical Oncology Maxillo-Facial Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Via Mariano Semmola, 80131 Naples, Italy; (F.L.); (A.G.); (F.I.)
| | | | - Alessandro Ottaiano
- SSD Innovative Therapies for Abdominal Metastases, Department of Abdominal Oncology, INT IRCCS Fondazione G. Pascale, 80131 Naples, Italy;
| | - Paolo Muto
- Radiation Oncology Unit, Istituto Nazionale Tumori—IRCCS—G. Pascale, 80131 Naples, Italy;
| | - Franco Ionna
- Division of Surgical Oncology Maxillo-Facial Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Via Mariano Semmola, 80131 Naples, Italy; (F.L.); (A.G.); (F.I.)
| |
Collapse
|
23
|
Nonsense-Mediated mRNA Decay: Pathologies and the Potential for Novel Therapeutics. Cancers (Basel) 2020; 12:cancers12030765. [PMID: 32213869 PMCID: PMC7140085 DOI: 10.3390/cancers12030765] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 12/22/2022] Open
Abstract
Nonsense-mediated messenger RNA (mRNA) decay (NMD) is a surveillance pathway used by cells to control the quality mRNAs and to fine-tune transcript abundance. NMD plays an important role in cell cycle regulation, cell viability, DNA damage response, while also serving as a barrier to virus infection. Disturbance of this control mechanism caused by genetic mutations or dys-regulation of the NMD pathway can lead to pathologies, including neurological disorders, immune diseases and cancers. The role of NMD in cancer development is complex, acting as both a promoter and a barrier to tumour progression. Cancer cells can exploit NMD for the downregulation of key tumour suppressor genes, or tumours adjust NMD activity to adapt to an aggressive immune microenvironment. The latter case might provide an avenue for therapeutic intervention as NMD inhibition has been shown to lead to the production of neoantigens that stimulate an immune system attack on tumours. For this reason, understanding the biology and co-option pathways of NMD is important for the development of novel therapeutic agents. Inhibitors, whose design can make use of the many structures available for NMD study, will play a crucial role in characterizing and providing diverse therapeutic options for this pathway in cancer and other diseases.
Collapse
|
24
|
Han P, Hanlon D, Arshad N, Lee JS, Tatsuno K, Robinson E, Filler R, Sobolev O, Cote C, Rivera-Molina F, Toomre D, Fahmy T, Edelson R. Platelet P-selectin initiates cross-presentation and dendritic cell differentiation in blood monocytes. SCIENCE ADVANCES 2020; 6:eaaz1580. [PMID: 32195350 PMCID: PMC7065880 DOI: 10.1126/sciadv.aaz1580] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/17/2019] [Indexed: 05/04/2023]
Abstract
Dendritic cells (DCs) are adept at cross-presentation and initiation of antigen-specific immunity. Clinically, however, DCs produced by in vitro differentiation of monocytes in the presence of exogenous cytokines have been met with limited success. We hypothesized that DCs produced in a physiological manner may be more effective and found that platelets activate a cross-presentation program in peripheral blood monocytes with rapid (18 hours) maturation into physiological DCs (phDCs). Differentiation of monocytes into phDCs was concomitant with the formation of an "adhesion synapse," a biophysical junction enriched with platelet P-selectin and monocyte P-selectin glycoprotein ligand 1, followed by intracellular calcium fluxing and nuclear localization of nuclear factor κB. phDCs were more efficient than cytokine-derived DCs in generating tumor-specific T cell immunity. Our findings demonstrate that platelets mediate a cytokine-independent, physiologic maturation of DC and suggest a novel strategy for DC-based immunotherapies.
Collapse
Affiliation(s)
- Patrick Han
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT 06511, USA
| | - Douglas Hanlon
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Najla Arshad
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Jung Seok Lee
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT 06511, USA
| | - Kazuki Tatsuno
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Eve Robinson
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Renata Filler
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Olga Sobolev
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Christine Cote
- Yale Flow Cytometry Facility, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Felix Rivera-Molina
- Yale CINEMA Lab, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Derek Toomre
- Yale CINEMA Lab, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Tarek Fahmy
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT 06511, USA
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT 06511, USA
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT 06511, USA
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT 06511, USA
- Corresponding author. (T.F.); (R.E.)
| | - Richard Edelson
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT 06511, USA
- Corresponding author. (T.F.); (R.E.)
| |
Collapse
|
25
|
Kurokawa T, Nakagawa T, Matsusaka K, Fukuyo M, Mima M, Misawa K, Rahmutulla B, Ikeda JI, Hanazawa T, Okamoto Y, Kaneda A. Establishment of epigenetic markers to predict irradiation efficacy against oropharyngeal cancer. Cancer Sci 2020; 111:1407-1416. [PMID: 32012407 PMCID: PMC7156782 DOI: 10.1111/cas.14338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/11/2020] [Accepted: 01/14/2020] [Indexed: 12/23/2022] Open
Abstract
Irradiation, or chemoradiotherapy, is a curative treatment for oropharyngeal squamous cell carcinoma (OPSCC). Its invasiveness, however, can often negate its efficacy. Therefore, developing methods to predict which patients would benefit from irradiation is urgent. Promoter DNA hypermethylation was recently reported to correlate with favorable OPSCC prognosis. It is still unclear, however, whether there is an association between promoter DNA methylation and response to irradiation. In this study, we analyzed DNA methylation in the specimens from 40 OPSCC patients who had undergone irradiation, using the Infinium assay. Our results showed significant correlation between high levels of promoter DNA methylation and better response to treatment (P < 0.01). We used the 10 most differentially-methylated genes between responders and non-responders to develop a panel of predictive markers for efficacy. Our panel had high sensitivity, specificity and accuracy (92%, 93% and 93%, respectively). We conducted pyrosequencing to quantitatively validate the methylation levels of 8 of the 10 marker genes (ROBO1, ULK4P3, MYOD1, LBX1, CACNA1A, IRX4, DPYSL3 and ELAVL2) obtained by Infinium. The validation by pyrosequencing showed that these 8 genes had a high prediction performance for the training set of 40 specimens and for a validation set of 35 OPSCC specimens, showing 96% sensitivity, 89% specificity and 94% accuracy. Methylation of these markers correlated significantly with better progression-free and overall survival rates, regardless of human papillomavirus status. These results indicate that increased DNA methylation is associated with better responses to irradiation therapy and that DNA methylation can help establish efficacy prediction markers in OPSCC.
Collapse
Affiliation(s)
- Tomoya Kurokawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takuya Nakagawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Keisuke Matsusaka
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Pathology, Chiba University Hospital, Chiba, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masato Mima
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Chiba, Japan
| | - Kiyoshi Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jun-Ichiro Ikeda
- Department of Pathology, Chiba University Hospital, Chiba, Japan
| | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshitaka Okamoto
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan.,Japan Organization of Occupational Health and Safety Chiba Rosai Hospital, Chiba, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
26
|
Mai S, Xiao R, Shi L, Zhou X, Yang T, Zhang M, Weng N, Zhao X, Wang R, Liu J, Sun R, Qin H, Wang H. MicroRNA-18a promotes cancer progression through SMG1 suppression and mTOR pathway activation in nasopharyngeal carcinoma. Cell Death Dis 2019; 10:819. [PMID: 31659158 PMCID: PMC6817863 DOI: 10.1038/s41419-019-2060-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/17/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
Abstract
miR-18a has been reported to be upregulated in nasopharyngeal carcinoma (NPC) tissues by microarray assays. However, the roles and the underlying mechanisms of miR-18a in NPC remain poorly understood. Here we demonstrated by real-time RT-PCR that miR-18a expression is upregulated in NPC tissues, and positively correlated with tumor size and TNM stage. Moreover, miR-18a expression could be upregulated by NF-κB activation or Epstein-Barr virus encoded latent membrane protein 1 expression. The ectopic expression of miR-18a promoted NPC cell proliferation, migration and invasion, while the repression of miR-18a had opposite effects. Candidate genes under regulation by miR-18a were screened out through a whole-genome microarray assay, further identified by a reporter assay and verified in clinical samples. SMG1, a member of the phosphoinositide 3-kinase-related kinases family and an mTOR antagonist, was identified as functional target of miR-18a. Our results confirmed that miR-18a exerts its oncogenic role through suppression of SMG1 and activation of mTOR pathway in NPC cells. Importantly, in vivo xenograft tumor growth in nude mice was effectively inhibited by intratumor injection of miR-18a antagomir. Our data support an oncogenic role of miR-18a through a novel miR-18a/SMG1/mTOR axis and suggest that the antitumor effects of antagomir-18a may make it suitable for NPC therapy.
Collapse
Affiliation(s)
- ShiJuan Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - RuoWen Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Lu Shi
- Department of thoracic oncology, the cancer center of the fifth affiliated hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - XiaoMin Zhou
- ZhouKou Hospital of Traditional Chinese Medicine, Zhoukou, 466000, China
| | - Te Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - MeiYin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - NuoQing Weng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - XinGe Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - RuiQi Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ji Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Rui Sun
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - HaiDe Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - HuiYun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
27
|
Lu X, Jiang L, Zhang L, Zhu Y, Hu W, Wang J, Ruan X, Xu Z, Meng X, Gao J, Su X, Yan F. Immune Signature-Based Subtypes of Cervical Squamous Cell Carcinoma Tightly Associated with Human Papillomavirus Type 16 Expression, Molecular Features, and Clinical Outcome. Neoplasia 2019; 21:591-601. [PMID: 31055200 PMCID: PMC6658934 DOI: 10.1016/j.neo.2019.04.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023] Open
Abstract
Substantial heterogeneity exists within cervical cancer that is generally infected by human papillomavirus (HPV). However, the most common histological subtype of cervical cancer, cervical squamous cell carcinoma (CSCC), is poorly characterized regarding the association between its heterogeneity and HPV oncoprotein expression. We filtered out 138 CSCC samples with infection of HPV16 only as the first step; then we compressed HPV16 E6/E7 expression as HPVpca and correlated HPVpca with the immunological profiling of CSCC based on supervised clustering to discover subtypes and to characterize the differences between subgroups in terms of the HPVpca level, pathway activity, epigenetic dysregulation, somatic mutation frequencies, and likelihood of responding to chemo/immunotherapies. Supervised clustering of immune signatures revealed two HPV16 subtypes (namely, HPV16-IMM and HPV16-KRT) that correlated with HPVpca and clinical outcomes. HPV16-KRT is characterized by elevated expression of genes in keratinization, biological oxidation, and Wnt signaling, whereas HPV16-IMM has a strong immune response and mesenchymal features. HPV16-IMM exhibited much more epigenetic silencing and significant mutation at FBXW7, while MUC4 and PIK3CA were mutated frequently for HPV16-KRT. We also imputed that HPV16-IMM is much more sensitive to chemo/immunotherapy than is HPV16-KRT. Our characterization tightly links the expression of HPV16 E6/E7 with biological and clinical outcomes of CSCC, providing valuable molecular-level information that points to decoding heterogeneity. Together, these results shed light on stratifications of CSCC infected by HPV16 and shall help to guide personalized management and treatment of patients.
Collapse
Affiliation(s)
- Xiaofan Lu
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, PR, China
| | - Liyun Jiang
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, PR, China
| | - Liya Zhang
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, PR, China
| | - Yue Zhu
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, PR, China
| | - Wenjun Hu
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, PR, China
| | - Jiashuo Wang
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, PR, China
| | - Xinjia Ruan
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, PR, China
| | - Zhengbao Xu
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, PR, China
| | - Xiaowei Meng
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, PR, China
| | - Jun Gao
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, PR, China
| | - Xiaoping Su
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Fangrong Yan
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, PR, China.
| |
Collapse
|
28
|
Kanazawa T, Misawa K, Shinmura K, Misawa Y, Kusaka G, Maruta M, Sasaki T, Watanabe Y, Carey TE. Promoter methylation of galanin receptors as epigenetic biomarkers for head and neck squamous cell carcinomas. Expert Rev Mol Diagn 2019; 19:137-148. [PMID: 30640567 DOI: 10.1080/14737159.2019.1567334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION While remarkable progress has been made in standard treatments for head and neck squamous cell carcinomas (HNSCCs), the long-term survival remains at an unsatisfactory 40-50%. To improve the survival rate, biomarkers for optimal treatment selection and prognostic prediction, as well as novel, low-toxicity treatment strategies, are required. Galanin receptor (GALR) 1 and GALR2 are well-studied tumor suppressors in HNSCCs. Compared with other clinicopathological factors, the epigenetic variants of GALRs have been found to be the most powerful markers to predict the prognosis of HNSCC patients. Areas covered: This review outlines the functions and signaling pathways of GALRs and explains the potential of GALR promoter methylation as a biomarker for HNSCC prognosis. We also summarize recent developments in promoter methylation studies in HNSCC and indicate future directions for GALR promoter methylation studies. Expert commentary: GALR studies have highlighted two major aspects with implications in HNSCC - that G-protein coupled receptors (GPCRs) act as tumor suppressor genes and that GALR promoter methylation is significantly related to the carcinogenesis of HNSCC. The findings of GALR studies can be applied to studies on other GPCRs and further in-depth DNA methylation studies. Deeper insights into GPCR epigenetics are expected to markedly improve HNSCC treatment.
Collapse
Affiliation(s)
- Takeharu Kanazawa
- a Department of Otolaryngology-Head and Neck Surgery , International University of Health and Welfare , Tokyo , Japan.,b Department of Otolaryngology-Head and Neck Surgery , Jichi Medical University , Shimotsuke , Japan
| | - Kiyoshi Misawa
- c Department of Otolaryngology/Head and Neck Surgery , Hamamatsu University School of Medicine , Hamamatsu , Japan
| | - Kazuya Shinmura
- d Department of Tumor Pathology , Hamamatsu University School of Medicine , Hamamatsu , Japan
| | - Yuki Misawa
- c Department of Otolaryngology/Head and Neck Surgery , Hamamatsu University School of Medicine , Hamamatsu , Japan
| | - Gen Kusaka
- e Department of Neurosurgery , Jichi Medical University Saitama Medical Center , Saitama , Saitama , Japan
| | - Mikiko Maruta
- b Department of Otolaryngology-Head and Neck Surgery , Jichi Medical University , Shimotsuke , Japan
| | - Toru Sasaki
- b Department of Otolaryngology-Head and Neck Surgery , Jichi Medical University , Shimotsuke , Japan
| | - Yusuke Watanabe
- a Department of Otolaryngology-Head and Neck Surgery , International University of Health and Welfare , Tokyo , Japan
| | - Thomas E Carey
- f Laboratory of Head and Neck Center Biology, Department of Otolaryngology, Head and Neck Surgery , The University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
29
|
Göttgens EL, Ostheimer C, Span PN, Bussink J, Hammond EM. HPV, hypoxia and radiation response in head and neck cancer. Br J Radiol 2019; 92:20180047. [PMID: 29493265 PMCID: PMC6435089 DOI: 10.1259/bjr.20180047] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 12/21/2022] Open
Abstract
Over the last decades, the incidence of human papilloma virus (HPV) positive head and neck squamous-cell carcinoma (HNSCC) has significantly increased. Infection with high-risk HPV types drives tumourigenesis through expression of the oncoproteins E6 and E7. Currently, the primary treatment of HNSCC consists of radiotherapy, often combined with platinum-based chemotherapeutics. One of the common features of HNSCC is the occurrence of tumour hypoxia, which impairs the efficacy of radiotherapy and is a negative prognostic factor. Therefore, it is important to detect and quantify the severity of hypoxia, as well as develop strategies to specifically target hypoxic tumours. HPV-positive tumours are remarkably radiosensitive compared to HPV-negative tumours and consequently the HPV-positive patients have a better prognosis. This provides an opportunity to elucidate mechanisms of radiation sensitivity, which may reveal targets for improved therapy for HPV-negative head and neck cancers. In this review, we will discuss the differences between HPV-positive and HPV-negative head and neck tumours and methods of hypoxia detection and targeting in these disease types. Particular emphasis will be placed on the mechanisms by which HPV infection impacts radiosensitivity.
Collapse
Affiliation(s)
- Eva-Leonne Göttgens
- Department of Radiation Oncology, Radiotherapy & OncoImmunology laboratory, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Paul N Span
- Department of Radiation Oncology, Radiotherapy & OncoImmunology laboratory, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jan Bussink
- Department of Radiation Oncology, Radiotherapy & OncoImmunology laboratory, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ester M Hammond
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
30
|
Modulation of radiation sensitivity and antitumor immunity by viral pathogenic factors: Implications for radio-immunotherapy. Biochim Biophys Acta Rev Cancer 2018; 1871:126-137. [PMID: 30605716 DOI: 10.1016/j.bbcan.2018.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/17/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023]
Abstract
Several DNA viruses including Human Papillomavirus (HPV), Epstein-Barr virus (EBV), and Human cytomegalovirus (HCMV) are mechanistically associated with the development of human cancers (HPV, EBV) and/or modulation of the immune system (HCMV). Moreover, a number of distinct mechanisms have been described regarding the modulation of tumor cell response to ionizing radiation and evasion from the host immune system by viral factors. There is further accumulating interest in the treatment with immune-modulatory therapies such as immune checkpoint inhibitors for malignancies with a viral etiology. Also, patients with HPV-positive tumors have a significantly improved prognosis that is attributable to increased intrinsic radiation sensitivity and may also arise from modulation of a cytotoxic T cell response in the tumor microenvironment (TME). In this review, we will highlight recent advances in the understanding of the biological basis of radiation response mediated by viral pathogenic factors and evasion from and modulation of the immune system by viruses.
Collapse
|
31
|
Pan C, Issaeva N, Yarbrough WG. HPV-driven oropharyngeal cancer: current knowledge of molecular biology and mechanisms of carcinogenesis. CANCERS OF THE HEAD & NECK 2018; 3:12. [PMID: 31093365 PMCID: PMC6460765 DOI: 10.1186/s41199-018-0039-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/09/2018] [Indexed: 12/21/2022]
Abstract
Understanding of oropharyngeal squamous cell carcinoma has significantly progressed over the last decades, and the concept that this disease can be subdivided into two distinct entities based on human papilloma virus (HPV) status has gained acceptance. To combat the constantly growing epidemic of HPV+ oropharyngeal cancer, further investigation and characterization the unique features of the disease, along with the development and implementation of new, targeted therapies, is crucial. In this review, we summarize the etiology, pathogenesis, diagnosis, treatment, and molecular characteristics of HPV-associated oropharyngeal squamous cell carcinoma.
Collapse
Affiliation(s)
- Cassie Pan
- 1Department of Surgery, Division of Otolaryngology, Yale University, New Haven, CT USA
| | - Natalia Issaeva
- 2Department of Otolaryngology/Head and Neck Surgery; Lineberger Cancer Center, University of North Carolina at Chapel Hill, 170 Manning Drive, Campus Box 7070, Chapel Hill, NC 27599 USA
| | - Wendell G Yarbrough
- 2Department of Otolaryngology/Head and Neck Surgery; Lineberger Cancer Center, University of North Carolina at Chapel Hill, 170 Manning Drive, Campus Box 7070, Chapel Hill, NC 27599 USA
| |
Collapse
|
32
|
Kahue CN, Jerrell RJ, Parekh A. Expression of human papillomavirus oncoproteins E6 and E7 inhibits invadopodia activity but promotes cell migration in HPV-positive head and neck squamous cell carcinoma cells. Cancer Rep (Hoboken) 2018; 1:e1125. [PMID: 32721084 PMCID: PMC7941430 DOI: 10.1002/cnr2.1125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 12/30/2022] Open
Abstract
Background The rapid increase in the incidence of head and neck squamous cell carcinoma (HNSCC) is caused by high‐risk human papillomavirus (HPV) infections. The HPV oncogenes E6 and E7 promote carcinogenesis by disrupting signaling pathways that control survival and proliferation. Although these cancers are often diagnosed with metastases, the mechanisms that regulate their dissemination are unknown. Aims The aim of this study was to determine whether the HPV‐16 E6 and E7 oncogenes affected the invasive and migratory properties of HNSCC cells which promote their spread and metastasis. Methods and results Invasiveness was determined using invadopodia assays which allow for quantitation of extracellular matrix (ECM) degradation by invadopodia which are proteolytic membrane protrusions that facilitate invasion. Using cell lines and genetic manipulations, we found that HPV inhibited invadopodia activity in aggressive cell lines which was mediated by the E6 and E7 oncogenes. Given these findings, we also tested whether HPV caused differences in the migratory ability of HNSCC cells using Transwell assays. In contrast to our invadopodia results, we found no correlation between HPV status and cell migration; however, blocking the expression of the E6 and E7 oncoproteins in a HPV‐positive (HPV+) HNSCC cell line resulted in decreased migration. Conclusions Our data suggest that the E6 and E7 oncoproteins are negative regulators of invadopodia activity but may promote migration in HPV+ HNSCC cells. Despite the need for ECM proteolysis to penetrate most tissues, the unique structure of the head and neck tissues in which these cancers arise may facilitate the spread of migratory cancer cells without significant proteolytic ability.
Collapse
Affiliation(s)
- Charissa N Kahue
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachel J Jerrell
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Aron Parekh
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
33
|
Nickson CM, Moori P, Carter RJ, Rubbi CP, Parsons JL. Misregulation of DNA damage repair pathways in HPV-positive head and neck squamous cell carcinoma contributes to cellular radiosensitivity. Oncotarget 2018; 8:29963-29975. [PMID: 28415784 PMCID: PMC5444717 DOI: 10.18632/oncotarget.16265] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/08/2017] [Indexed: 11/29/2022] Open
Abstract
Patients with human papillomavirus type 16 (HPV)-associated oropharyngeal squamous cell carcinomas (OPSCC) display increased sensitivity to radiotherapy and improved survival rates in comparison to HPV-negative forms of the disease. However the cellular mechanisms responsible for this characteristic difference are unclear. Here, we have investigated the contribution of DNA damage repair pathways to the in vitro radiosensitivity of OPSCC cell lines. We demonstrate that two HPV-positive OPSCC cells are indeed more radiosensitive than two HPV-negative OPSCC cells, which correlates with reduced efficiency for the repair of ionising radiation (IR)-induced DNA double strand breaks (DSB). Interestingly, we show that HPV-positive OPSCC cells consequently have upregulated levels of the proteins XRCC1, DNA polymerase β, PNKP and PARP-1 which are involved in base excision repair (BER) and single strand break (SSB) repair. This translates to an increased capacity and efficiency for the repair of DNA base damage and SSBs in these cells. In addition, we demonstrate that HPV-positive but interestingly more so HPV-negative OPSCC display increased radiosensitivity in combination with the PARP inhibitor olaparib. This suggests that PARP inhibition in combination with radiotherapy may be an effective treatment for both forms of OPSCC, particularly for HPV-negative OPSCC which is relatively radioresistant.
Collapse
Affiliation(s)
- Catherine M Nickson
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L3 9TA, UK
| | - Parisa Moori
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L3 9TA, UK
| | - Rachel J Carter
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L3 9TA, UK
| | - Carlos P Rubbi
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L3 9TA, UK
| | - Jason L Parsons
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L3 9TA, UK
| |
Collapse
|
34
|
Boda D, Docea AO, Calina D, Ilie MA, Caruntu C, Zurac S, Neagu M, Constantin C, Branisteanu DE, Voiculescu V, Mamoulakis C, Tzanakakis G, Spandidos DA, Drakoulis N, Tsatsakis AM. Human papilloma virus: Apprehending the link with carcinogenesis and unveiling new research avenues (Review). Int J Oncol 2018; 52:637-655. [PMID: 29393378 PMCID: PMC5807043 DOI: 10.3892/ijo.2018.4256] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 12/28/2017] [Indexed: 12/17/2022] Open
Abstract
Human papilloma viruses (HPV) are a small group of non‑enveloped viruses belonging to the Papillomaviridae family with strong similarities to polyoma viruses. The viral particles consist of a genome in the form of a circular double‑stranded DNA, encompassing eight open reading frames, as well as a non‑enveloped icosahedral capsid. HPV infection is considered the most common sexually transmitted disease in both sexes and is strongly implicated in the pathogenesis of different types of cancer. 'High‑risk' mucosal HPV types, predominantly types 16, 18, 31, 33 and 35, are associated with most cervical, penile, vulvar, vaginal, anal, oropharyngeal cancers and pre‑cancers. Screening for HPV is necessary for the prognosis and for determining treatment strategies for cancer. Novel HPV markers, including proteomic and genomic markers, as well as anti‑papillomavirus vaccines are currently available. The aim of this comprehensive review was to thoroughly present the updated information on virus development, cancer occurrence, treatment and prevention strategies, in an attempt to shed further light into the field, including novel research avenues.
Collapse
Affiliation(s)
- Daniel Boda
- Dermatology Research Laboratory, ‘Carol Davila’ University of Medicine and Pharmacy, 030167 Bucharest
- Department of Dermatology, ‘Prof. N. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova
| | - Mihaela Adriana Ilie
- Dermatology Research Laboratory, ‘Carol Davila’ University of Medicine and Pharmacy, 030167 Bucharest
- Department of Biochemistry
| | - Constantin Caruntu
- Dermatology Research Laboratory, ‘Carol Davila’ University of Medicine and Pharmacy, 030167 Bucharest
- Department of Dermatology, ‘Prof. N. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest
- Department of Physiology
| | - Sabina Zurac
- Department of Pathology, ‘Carol Davila’ University of Medicine and Pharmacy, 030167 Bucharest
- Colentina University Hospital, Sector 2 19-21, Bucharest
| | - Monica Neagu
- ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest
| | | | | | - Vlad Voiculescu
- Department of Dermatology and Allergology, Elias Emergency University Hospital, 011461 Bucharest, Romania
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, University of Crete Medical School
| | | | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Crete
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens
| | - Aristides M. Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| |
Collapse
|
35
|
Gary C, Hajek M, Biktasova A, Bellinger G, Yarbrough WG, Issaeva N. Selective antitumor activity of roscovitine in head and neck cancer. Oncotarget 2018; 7:38598-38611. [PMID: 27233076 PMCID: PMC5122414 DOI: 10.18632/oncotarget.9560] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 05/05/2016] [Indexed: 12/12/2022] Open
Abstract
Radiation and chemotherapy that are commonly used to treat human cancers damage cellular DNA. DNA damage appears to be more toxic to cancer cells than normal cells, most likely due to deregulated checkpoint activation and/or deficiency in DNA repair pathways that are characteristics of many tumors. However, unwanted side effects arise as a result of DNA damage to normal cells during the treatment. Here, we show that roscovitine, a cyclin-dependent kinase (CDK) inhibitor that inhibits CDK-1, CDK-2, CDK-5, CDK-7, and CDK-9 due to competitive binding to the ATP site on the kinases, causes significant DNA damage followed by p53-dependent cell death in human papilloma virus (HPV)-positive, but not in HPV-negative, head and neck cancer cells. Since HPV positivity was a molecular marker for increased sensitivity of cells to roscovitine, we reasoned that systemic roscovitine administration would not be toxic to healthy HPV-negative tissue. Indeed, low roscovitine doses significantly inhibited the growth of HPV-associated xenografted tumors in mice without causing any detectable side effects. Given that inhibition of CDKs has been shown to inhibit replication of several viruses, we suggest that roscovitine treatment may represent a selective and safe targeted therapeutic option against HPV-positive head and neck cancer.
Collapse
Affiliation(s)
- Cyril Gary
- Department of Surgery Division of Otolaryngology, Yale University, New Haven, CT USA
| | - Michael Hajek
- Department of Surgery Division of Otolaryngology, Yale University, New Haven, CT USA
| | - Asel Biktasova
- Department of Surgery Division of Otolaryngology, Yale University, New Haven, CT USA.,Current address: Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Australia
| | - Gary Bellinger
- Department of Surgery Division of Otolaryngology, Yale University, New Haven, CT USA
| | - Wendell G Yarbrough
- Department of Surgery Division of Otolaryngology, Yale University, New Haven, CT USA.,Department of Pathology, Yale University, New Haven, CT USA.,Department of Yale Cancer Center, Yale University, New Haven, CT USA
| | - Natalia Issaeva
- Department of Surgery Division of Otolaryngology, Yale University, New Haven, CT USA.,Department of Yale Cancer Center, Yale University, New Haven, CT USA
| |
Collapse
|
36
|
Zhang X, Peng Y, Huang Y, Yang M, Yan R, Zhao Y, Cheng Y, Liu X, Deng S, Feng X, Lin H, Yu H, Chen S, Zhao Z, Li S, Li K, Wang L, Wei Y, He Z, Fan X, Meltzer SJ, Li S, Jin Z. SMG-1 inhibition by miR-192/-215 causes epithelial-mesenchymal transition in gastric carcinogenesis via activation of Wnt signaling. Cancer Med 2017; 7:146-156. [PMID: 29239144 PMCID: PMC5773975 DOI: 10.1002/cam4.1237] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/20/2017] [Indexed: 12/18/2022] Open
Abstract
SMG‐1,a member of the phosphoinositide kinase‐like kinase family, functioned as a tumor suppressor gene. However, the role of SMG‐1 in GC remain uncharacterized. In this study, regulation of SMG‐1 by miR‐192 and‐215, along with the biological effects of this modulation, were studied in GC. We used gene microarrays to screening and luciferase reporter assays were to verify the potential targets of miR‐192 and‐215. Tissue microarrays analyses were applied to measure the levels of SMG‐1 in GC tissues. Western blot assays were used to assess the signaling pathway of SMG‐1 regulated by miR‐192 and‐215 in GC. SMG‐1 was significantly downregulated in GC tissues.The proliferative and invasive properties of GC cells were decreased by inhibition of miR‐192 and‐215, whereas an SMG‐1siRNA rescued the inhibitory effects. Finally, SMG‐1 inhibition by miR‐192 and‐215 primed Wnt signaling and induced EMT. Wnt signaling pathway proteins were decreased markedly by inhibitors of miR‐192 and‐215, while SMG‐1 siRNA reversed the inhibition apparently. Meanwhile, miR‐192 and‐215 inhitibtors increased E‐cadherin expression and decreased N‐cadherin and cotransfection of SMG‐1 siRNA reversed these effects. In summary, these findings illustrate that SMG‐1 is suppressed by miR‐192 and‐215 and functions as a tumor suppressor in GC by inactivating Wnt signaling and suppressing EMT.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China.,Shenzhen Key Laboratory of Micromolecule Innovatal Drugs, Shenzhen Key Laboratory of translational Medicine of Tumor, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China.,Guangdong Province Key Laboratory of Molecular Oncologic Pathology, Guangzhou, Guangdong, China
| | - Yin Peng
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China.,Department of Pathology, Wuhan University School of Basic Medical Sciences, Hubei, China
| | - Yong Huang
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| | - Mengting Yang
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| | - Ruibin Yan
- Laboratory of Chemical Genomics, The Shenzhen Graduate School of Peking University, Shenzhen, Guangdong, China
| | - Yanqiu Zhao
- Laboratory of Chemical Genomics, The Shenzhen Graduate School of Peking University, Shenzhen, Guangdong, China
| | - Yulan Cheng
- Department of Medicine/GI Division, Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Xi Liu
- Department of Medicine/GI Division, Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Shiqi Deng
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| | - Xianling Feng
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| | - Huijuan Lin
- Department of Pathology and Pathophysiology, The Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Huimin Yu
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| | - Si Chen
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| | - Zhenfu Zhao
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| | - Shanni Li
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| | - Kuan Li
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| | - Liang Wang
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China.,Shenzhen Key Laboratory of Micromolecule Innovatal Drugs, Shenzhen Key Laboratory of translational Medicine of Tumor, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Yanjie Wei
- Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong, China
| | - Zhendan He
- Guangdong Province Key Laboratory of Molecular Oncologic Pathology, Guangzhou, Guangdong, China
| | - Xinmin Fan
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| | - Stephen J Meltzer
- Department of Medicine/GI Division, Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Song Li
- Laboratory of Chemical Genomics, The Shenzhen Graduate School of Peking University, Shenzhen, Guangdong, China
| | - Zhe Jin
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China.,Shenzhen Key Laboratory of Micromolecule Innovatal Drugs, Shenzhen Key Laboratory of translational Medicine of Tumor, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
37
|
Causier B, Li Z, De Smet R, Lloyd JPB, Van de Peer Y, Davies B. Conservation of Nonsense-Mediated mRNA Decay Complex Components Throughout Eukaryotic Evolution. Sci Rep 2017; 7:16692. [PMID: 29192227 PMCID: PMC5709506 DOI: 10.1038/s41598-017-16942-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/13/2017] [Indexed: 11/15/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is an essential eukaryotic process regulating transcript quality and abundance, and is involved in diverse processes including brain development and plant defenses. Although some of the NMD machinery is conserved between kingdoms, little is known about its evolution. Phosphorylation of the core NMD component UPF1 is critical for NMD and is regulated in mammals by the SURF complex (UPF1, SMG1 kinase, SMG8, SMG9 and eukaryotic release factors). However, since SMG1 is reportedly missing from the genomes of fungi and the plant Arabidopsis thaliana, it remains unclear how UPF1 is activated outside the metazoa. We used comparative genomics to determine the conservation of the NMD pathway across eukaryotic evolution. We show that SURF components are present in all major eukaryotic lineages, including fungi, suggesting that in addition to UPF1 and SMG1, SMG8 and SMG9 also existed in the last eukaryotic common ancestor, 1.8 billion years ago. However, despite the ancient origins of the SURF complex, we also found that SURF factors have been independently lost across the Eukarya, pointing to genetic buffering within the essential NMD pathway. We infer an ancient role for SURF in regulating UPF1, and the intriguing possibility of undiscovered NMD regulatory pathways.
Collapse
Affiliation(s)
- Barry Causier
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 927, B-9052, Gent, Belgium
| | - Riet De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 927, B-9052, Gent, Belgium
| | - James P B Lloyd
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 927, B-9052, Gent, Belgium.,Department of Genetics, Genomics Research Institute, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Brendan Davies
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
38
|
Boscolo-Rizzo P, Furlan C, Lupato V, Polesel J, Fratta E. Novel insights into epigenetic drivers of oropharyngeal squamous cell carcinoma: role of HPV and lifestyle factors. Clin Epigenetics 2017; 9:124. [PMID: 29209433 PMCID: PMC5704592 DOI: 10.1186/s13148-017-0424-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/18/2017] [Indexed: 12/22/2022] Open
Abstract
In the last years, the explosion of high throughput sequencing technologies has enabled epigenome-wide analyses, allowing a more comprehensive overview of the oropharyngeal squamous cell carcinoma (OPSCC) epigenetic landscape. In this setting, the cellular pathways contributing to the neoplastic phenotype, including cell cycle regulation, cell signaling, DNA repair, and apoptosis have been demonstrated to be potential targets of epigenetic alterations in OPSCC. Of note, it has becoming increasingly clear that HPV infection and OPSCC lifestyle risk factors differently drive the epigenetic machinery in cancer cells. Epigenetic changes, including DNA methylation, histone modifications, and non-coding RNA expression, can be used as powerful and reliable tools for early diagnosis of OPSCC patients and improve prognostication. Since epigenetic changes are dynamic and reversible, epigenetic enzymes may also represent suitable targets for the development of more effective OPSCC therapeutic strategies. Thus, this review will focus on the main known epigenetic modifications that can occur in OPSCC and their exploitation as potential biomarkers and therapeutic targets. Furthermore, we will address epigenetic alterations to OPSCC risk factors, with a particular focus on HPV infection, tobacco exposure, and heavy alcohol consumption.
Collapse
Affiliation(s)
- Paolo Boscolo-Rizzo
- Department of Neurosciences, ENT Clinic and Regional Center for Head and Neck Cancer, Treviso Regional Hospital, University of Padova, Treviso, Italy
| | - Carlo Furlan
- Division of Radiotherapy, Centro di Riferimento Oncologico, IRCCS-National Cancer Institute, Aviano, PN Italy
| | - Valentina Lupato
- Unit of Otolaryngology, General Hospital “S. Maria degli Angeli”, Pordenone, Italy
| | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico, IRCCS-National Cancer Institute, Aviano, PN Italy
| | - Elisabetta Fratta
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico, IRCCS-National Cancer Institute, Aviano, PN Italy
| |
Collapse
|
39
|
Biktasova A, Hajek M, Sewell A, Gary C, Bellinger G, Deshpande HA, Bhatia A, Burtness B, Judson B, Mehra S, Yarbrough WG, Issaeva N. Demethylation Therapy as a Targeted Treatment for Human Papillomavirus-Associated Head and Neck Cancer. Clin Cancer Res 2017; 23:7276-7287. [PMID: 28916527 DOI: 10.1158/1078-0432.ccr-17-1438] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/01/2017] [Accepted: 09/13/2017] [Indexed: 11/16/2022]
Abstract
Purpose: DNA methylation in human papillomavirus-associated (HPV+) head and neck squamous cell carcinoma (HNSCC) may have importance for continuous expression of HPV oncogenes, tumor cell proliferation, and survival. Here, we determined activity of a global DNA-demethylating agent, 5-azacytidine (5-aza), against HPV+ HNSCC in preclinical models and explored it as a targeted therapy in a window trial enrolling patients with HPV+ HNSCC.Experimental Design: Sensitivity of HNSCC cells to 5-aza treatment was determined, and then 5-aza activity was tested in vivo using xenografted tumors in a mouse model. Finally, tumor samples from patients enrolled in a window clinical trial were analyzed to identify activity of 5-aza therapy in patients with HPV+ HNSCC.Results: Clinical trial and experimental data show that 5-aza induced growth inhibition and cell death in HPV+ HNSCC. 5-aza reduced expression of HPV genes, stabilized p53, and induced p53-dependent apoptosis in HNSCC cells and tumors. 5-aza repressed expression and activity of matrix metalloproteinases (MMP) in HPV+ HNSCC, activated IFN response in some HPV+ head and neck cancer cells, and inhibited the ability of HPV+ xenografted tumors to invade mouse blood vessels.Conclusions: 5-aza may provide effective therapy for HPV-associated HNSCC as an alternative or complement to standard cytotoxic therapy. Clin Cancer Res; 23(23); 7276-87. ©2017 AACR.
Collapse
Affiliation(s)
- Asel Biktasova
- Department of Surgery, Division of Otolaryngology, Yale University, New Haven, Connecticut
| | - Michael Hajek
- Department of Surgery, Division of Otolaryngology, Yale University, New Haven, Connecticut
| | - Andrew Sewell
- Department of Surgery, Division of Otolaryngology, Yale University, New Haven, Connecticut
| | - Cyril Gary
- Department of Surgery, Division of Otolaryngology, Yale University, New Haven, Connecticut
| | - Gary Bellinger
- Department of Surgery, Division of Otolaryngology, Yale University, New Haven, Connecticut
| | - Hari A Deshpande
- Department of Medicine, Division of Medical Oncology, Yale University, New Haven, Connecticut
| | - Aarti Bhatia
- Department of Medicine, Division of Medical Oncology, Yale University, New Haven, Connecticut
| | - Barbara Burtness
- Department of Medicine, Division of Medical Oncology, Yale University, New Haven, Connecticut.,Yale Cancer Center, Yale University, New Haven, Connecticut
| | - Benjamin Judson
- Department of Surgery, Division of Otolaryngology, Yale University, New Haven, Connecticut.,Yale Cancer Center, Yale University, New Haven, Connecticut
| | - Saral Mehra
- Department of Surgery, Division of Otolaryngology, Yale University, New Haven, Connecticut
| | - Wendell G Yarbrough
- Department of Surgery, Division of Otolaryngology, Yale University, New Haven, Connecticut. .,Yale Cancer Center, Yale University, New Haven, Connecticut.,Department of Pathology, Yale University, New Haven, Connecticut
| | - Natalia Issaeva
- Department of Surgery, Division of Otolaryngology, Yale University, New Haven, Connecticut. .,Yale Cancer Center, Yale University, New Haven, Connecticut
| |
Collapse
|
40
|
González-Huici V, Wang B, Gartner A. A Role for the Nonsense-Mediated mRNA Decay Pathway in Maintaining Genome Stability in Caenorhabditis elegans. Genetics 2017; 206:1853-1864. [PMID: 28634159 PMCID: PMC5560793 DOI: 10.1534/genetics.117.203414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/05/2017] [Indexed: 12/31/2022] Open
Abstract
Ionizing radiation (IR) is commonly used in cancer therapy and is a main source of DNA double-strand breaks (DSBs), one of the most toxic forms of DNA damage. We have used Caenorhabditis elegans as an invertebrate model to identify novel factors required for repair of DNA damage inflicted by IR. We have performed an unbiased genetic screen, finding that smg-1 mutations confer strong hyper-sensitivity to IR. SMG-1 is a phosphoinositide-3 kinase (PI3K) involved in mediating nonsense-mediated mRNA decay (NMD) of transcripts containing premature stop codons and related to the ATM and ATR kinases which are at the apex of DNA damage signaling pathways. Hyper-sensitivity to IR also occurs when other genes mediating NMD are mutated. The hyper-sensitivity to bleomycin, a drug known to induce DSBs, further supports that NMD pathway mutants are defective in DSB repair. Hyper-sensitivity was not observed upon treatment with alkylating agents or UV irradiation. We show that SMG-1 mainly acts in mitotically dividing germ cells, and during late embryonic and larval development. Based on epistasis experiments, SMG-1 does not appear to act in any of the three major pathways known to mend DNA DSBs, namely homologous recombination (HR), nonhomologous end-joining (NHEJ), and microhomology-mediated end-joining (MMEJ). We speculate that SMG-1 kinase activity could be activated following DNA damage to phosphorylate specific DNA repair proteins and/or that NMD inactivation may lead to aberrant mRNAs leading to synthesis of malfunctioning DNA repair proteins.
Collapse
Affiliation(s)
- Víctor González-Huici
- School of Life Sciences, Centre for Gene Regulation and Expression, University of Dundee, DD1 5EH, UK
| | - Bin Wang
- School of Life Sciences, Centre for Gene Regulation and Expression, University of Dundee, DD1 5EH, UK
| | - Anton Gartner
- School of Life Sciences, Centre for Gene Regulation and Expression, University of Dundee, DD1 5EH, UK
| |
Collapse
|
41
|
Worsham MJ, Chen KM, Datta I, Stephen JK, Chitale D, Gothard A, Divine G. The biological significance of methylome differences in human papilloma virus associated head and neck cancer. Oncol Lett 2016; 12:4949-4956. [PMID: 28101231 PMCID: PMC5228097 DOI: 10.3892/ol.2016.5303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/26/2016] [Indexed: 01/02/2023] Open
Abstract
In recent years, studies have suggested that promoter methylation in human papilloma virus (HPV) positive head and neck squamous cell carcinoma (HNSCC) has a mechanistic role and has the potential to improve patient survival. The present study aimed to replicate key molecular findings from previous analyses of the methylomes of HPV positive and HPV negative HNSCC in an independent cohort, to assess the reliability of differentially methylated markers in HPV-associated tumors. HPV was measured using real-time quantitative PCR and the biological significance of methylation differences was assessed by Ingenuity Pathway Analysis (IPA). Using an identical experimental design of a 450K methylation platform, 7 of the 11 genes were detected to be significantly differentially methylated and all 11 genes were either hypo- or hypermethylated, which was in agreement with the results of a previous study. IPA's enriched networks analysis identified one network with msh homeobox 2 (MSX2) as a central node. Locally dense interactions between genes in networks tend to reflect significant biology; therefore MSX2 was selected as an important gene. Sequestration in the top four canonical pathways was noted for 5-hydroxytryptamine receptor 1E (serotonin signaling), collapsin response mediator protein 1 (semaphorin signaling) and paired like homeodomain 2 (bone morphogenic protein and transforming growth factor-β signaling). Placement of 9 of the 11 genes in highly ranked pathways and bionetworks identified key biological processes to further emphasize differences between HNSCC HPV positive and negative pathogenesis.
Collapse
Affiliation(s)
- Maria J Worsham
- Department of Otolaryngology/Head and Neck Research, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Kang Mei Chen
- Department of Otolaryngology/Head and Neck Research, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Indrani Datta
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Josena K Stephen
- Department of Otolaryngology/Head and Neck Research, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Dhananjay Chitale
- Department of Pathology, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | - George Divine
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI 48202, USA
| |
Collapse
|
42
|
MicroRNA-585 acts as a tumor suppressor in non-small-cell lung cancer by targeting hSMG-1. Clin Transl Oncol 2016; 19:546-552. [PMID: 27743168 DOI: 10.1007/s12094-016-1562-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/06/2016] [Indexed: 10/20/2022]
Abstract
PURPOSE To investigate the role of miR-585 in the development and progression of non-small-cell lung cancer (NSCLC). METHODS The expression levels of miR-585 in NSCLC cell lines and clinical samples were measured by quantitative PCR. NSCLC cells, A549 and H1299, were stably transfected with lentiviral vectors of miR-585 mimics or negative control. The effects of miR-585 on cell proliferation were detected both in vitro and in vivo. Cell migration and invasion were evaluated using wound healing assay and Transwell assay. Furthermore, luciferase reporter assay was used to identify the direct regulation of hSMG-1 by miR-585. RESULTS Our results showed that miR-585 was downregulated in NSCLC cell lines and tumor tissues. Ectopic expression of miR-585 inhibited the ability of cell proliferation, migration, and invasion in vitro. In addition, miR-585 also decreased the growth rate of xenografted tumor in nude mice. Mechanically, miR-585 directly targeted the 3'-untranslated region (UTR) of hSMG-1 gene, which likely resulted in a dysfunction of mRNA surveillance and nonsense-mediated mRNA decay. CONCLUSION Taken together, miR-585 probably has an inhibitory effect on tumor growth and is a prognostic biomarker of NSCLC.
Collapse
|
43
|
Low GM, Thylur DS, Yamamoto V, Sinha UK. The effect of human papillomavirus on DNA repair in head and neck squamous cell carcinoma. Oral Oncol 2016; 61:27-30. [PMID: 27688101 DOI: 10.1016/j.oraloncology.2016.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 02/08/2023]
Abstract
Much of the current literature regarding the molecular pathophysiology of human papillomavirus (HPV) in head and neck squamous cell carcinoma (HNSCC) has focused on the virus's effect on cell cycle modulation and cell proliferation. A second mechanism of pathogenicity employed by HPV, dysregulation of cellular DNA repair processes, has been more sparsely studied. The purpose of this review is to describe current understanding about the effect of HPV on DNA repair in HNSCC, taking cues from cervical cancer literature. HPV affects DNA-damage response pathways by interacting with many proteins, including ATM, ATR, MRN, γ-H2AX, Chk1, Chk2, p53, BRCA1, BRCA2, RAD51, Rb-related proteins 107 and 130, Tip60, and p16INK4A. Further elucidation of these pathways could lead to development of targeted therapies and improvement of current treatment protocols.
Collapse
Affiliation(s)
- Garren M Low
- USC Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - David S Thylur
- USC Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - Vicky Yamamoto
- USC Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - Uttam K Sinha
- USC Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
44
|
Dok R, Nuyts S. HPV Positive Head and Neck Cancers: Molecular Pathogenesis and Evolving Treatment Strategies. Cancers (Basel) 2016; 8:cancers8040041. [PMID: 27043631 PMCID: PMC4846850 DOI: 10.3390/cancers8040041] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/09/2016] [Accepted: 03/23/2016] [Indexed: 01/02/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a highly heterogeneous disease that is the result of tobacco and/or alcohol abuse or infection with high-risk Human papillomaviruses. Despite the fact that HPV positive HNSCC cancers form a distinct clinical entity with better treatment outcome, all HNSCC are currently treated uniformly with the same treatment modality. At present, biologic basis of these different outcomes and their therapeutic influence are areas of intense investigation. In this review, we will summarize the molecular basis for this different outcome, novel treatment opportunities and possible biomarkers for HPV positive HNSCC. In particular, the focus will be on several molecular targeted strategies that can improve the chemoradiation response by influencing DNA repair mechanisms.
Collapse
Affiliation(s)
- Rüveyda Dok
- Laboratory of Experimental Radiotherapy, Department of Oncology, Katholieke Universiteit Leuven (KU Leuven), 3000 Leuven, Belgium.
| | - Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, Katholieke Universiteit Leuven (KU Leuven), 3000 Leuven, Belgium.
- Department of Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
45
|
Zhang Y, Zheng Y, Faheem A, Sun T, Li C, Li Z, Zhao D, Wu C, Liu J. A novel AKT inhibitor, AZD5363, inhibits phosphorylation of AKT downstream molecules, and activates phosphorylation of mTOR and SMG-1 dependent on the liver cancer cell type. Oncol Lett 2016; 11:1685-1692. [PMID: 26998062 PMCID: PMC4774473 DOI: 10.3892/ol.2016.4111] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 12/10/2015] [Indexed: 12/22/2022] Open
Abstract
Due to frequent phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway dysregulation, AKT is typically accepted as a promising anticancer therapeutic target. mTOR, in particular, represents a suitable therapeutic target for hepatocellular carcinoma, whilst suppressor with morphogenetic effect on genitalia family member-1 (SMG-1) is believed to serve a potential tumor suppressor role in human cancer. Despite SMG-1 and mTOR belonging to the same PI3K-related kinase family, the interactions between them are not yet fully understood. In the present study, a novel pyrrolopyrimidine-derived compound, AZD5363, was observed to suppress proliferation in liver cancer Hep-G2 and Huh-7 cells by inhibiting the phosphorylation of downstream molecules in the AKT signal pathway, in a dose- and time-dependent manner. AZD5363 activated the phosphorylation of mTOR, dependent on the liver cancer cell type, as it may have differing effects in various liver cancer cell lines. Additionally, AZD5363 also activated SMG-1 within the same liver cancer cells types, which subsequently activated the phosphorylation of mTOR. In conclusion, the present study indicates that AZD5363 inhibited phosphorylation of AKT downstream molecules, and activated phosphorylation of mTOR and SMG-1, dependent on the liver cancer type.
Collapse
Affiliation(s)
- Yuncheng Zhang
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yuanwen Zheng
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Ali Faheem
- Shandong University School of Medicine, Jinan, Shandong 250021, P.R. China
| | - Tiantong Sun
- Shandong University School of Medicine, Jinan, Shandong 250021, P.R. China
| | - Chunyou Li
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhe Li
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Diantang Zhao
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Chao Wu
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jun Liu
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
46
|
Wu CC, Horowitz DP, Deutsch I, Rahmati R, Schecter JM, Saqi A, Wang TJC. De-escalation of radiation dose for human papillomavirus-positive oropharyngeal head and neck squamous cell carcinoma: A case report and preclinical and clinical literature review. Oncol Lett 2015; 11:141-149. [PMID: 26870181 PMCID: PMC4727039 DOI: 10.3892/ol.2015.3836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 07/28/2015] [Indexed: 12/21/2022] Open
Abstract
Traditionally, head and neck squamous cell carcinoma (HNSCC) has been considered to be a relatively homogeneous disease. However, recent data have demonstrated that human papillomavirus (HPV)-positive and HPV-negative disease are two different clinical entities associated with different outcomes. Preclinical and clinical studies have reported a divergence in treatment strategies as well as prognostic outcomes for HNSCCs that are HPV-positive versus HPV-negative. The present study describes the case of a 52-year-old man who presented with stage IVB cT2N3M0 right tonsillar HPV-positive squamous cell carcinoma. Induction chemotherapy with docetaxel, cisplatin and 5-fluorouracil (TPF), followed by chemoradiation therapy with carboplatin and 70 Gray (Gy) radiation in daily fractions was recommended. The patient completed the TPF and carboplatin treatment; however, he was unable to tolerate the radiation course, receiving a final dose of 46 Gy. A 60-day follow-up right neck salvage dissection was subsequently performed. Despite having received a partial radiation treatment of 46 Gy, the patient had no pathological evidence of disease at 60 days post radiation treatment. Repeat positron emission tomography-computed tomography at 32 months after the right neck dissection revealed no evidence of disease. The present study also discusses the current preclinical in vitro and in vivo targets for HPV-positive HNSCC and the obstacles presented in advancing clinical treatment modalities. Previous preclinical models investigating radiation sensitivity have yielded mixed results. Thus, it is important to understand and establish representative preclinical models for studying HPV and HNSCC to improve clinical research and therapeutic development. This review may guide future understanding of the role of HPV in HNSCC.
Collapse
Affiliation(s)
- Cheng-Chia Wu
- Department of Radiation Oncology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - David P Horowitz
- Department of Radiation Oncology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Israel Deutsch
- Department of Radiation Oncology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Rahmatullah Rahmati
- Department of Otolaryngology-Head and Neck Surgery, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jordan M Schecter
- Department of Medical Oncology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Anjali Saqi
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Tony J C Wang
- Department of Radiation Oncology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
47
|
Banerji J. Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis). Int J Mol Med 2015; 36:607-26. [PMID: 26178806 PMCID: PMC4533780 DOI: 10.3892/ijmm.2015.2285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/15/2015] [Indexed: 12/14/2022] Open
Abstract
The present treatment of childhood T-cell leukemias involves the systemic administration of prokary-otic L-asparaginase (ASNase), which depletes plasma Asparagine (Asn) and inhibits protein synthesis. The mechanism of therapeutic action of ASNase is poorly understood, as are the etiologies of the side-effects incurred by treatment. Protein expression from genes bearing Asn homopolymeric coding regions (N-hCR) may be particularly susceptible to Asn level fluctuation. In mammals, N-hCR are rare, short and conserved. In humans, misfunctions of genes encoding N-hCR are associated with a cluster of disorders that mimic ASNase therapy side-effects which include impaired glycemic control, dislipidemia, pancreatitis, compromised vascular integrity, and neurological dysfunction. This paper proposes that dysregulation of Asn homeostasis, potentially even by ASNase produced by the microbiome, may contribute to several clinically important syndromes by altering expression of N-hCR bearing genes. By altering amino acid abundance and modulating ribosome translocation rates at codon repeats, the microbiomic environment may contribute to genome decoding and to shaping the proteome. We suggest that impaired translation at poly Asn codons elevates diabetes risk and severity.
Collapse
Affiliation(s)
- Julian Banerji
- Center for Computational and Integrative Biology, MGH, Simches Research Center, Boston, MA 02114, USA
| |
Collapse
|
48
|
Stephen JK, Worsham MJ. Human papilloma virus (HPV) modulation of the HNSCC epigenome. Methods Mol Biol 2015; 1238:369-79. [PMID: 25421671 DOI: 10.1007/978-1-4939-1804-1_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Currently, the human papilloma virus (HPV), in addition to tobacco and alcohol, is considered another independent risk factor for oropharyngeal squamous head and neck cancer (OPSCC), where the prevalence of HPV-16 increases to 50-90 % for the oropharynx. Also, incidence and mortality in head and neck SCC (HNSCC) continue to be higher in African Americans (AA) than in Caucasian Americans (CA). A recent study found that poorer survival outcomes for AA versus CA with oropharyngeal tumors were attributable to racial differences in the prevalence of HPV positive (+) tumors; HPV negative (-) AA and CA patients had similar outcomes (Settle et al., Cancer Prev Res (Phila) 2:776-781, 2009). Evidence indicates that a HPV+ diagnosis has significant prognostic implications; these patients have at least half the risk of death when compared with the HPV- patient, due in part to a better response to chemoradiotherapy (Fakhry et al., J Natl Cancer Inst 100:261-269, 2008).Epigenetic events of promoter hypermethylation are emerging as promising molecular strategies for cancer detection, representing tumor-specific markers occurring early in tumor progression. HPV infection is now recognized to play a role in the pathogenesis of OPSCC, where HPV+ and HPV- patients appear to be clinically and biologically distinct with reported genome-wide hypomethylation and promoter hypermethylation in HPV+ HNSCC tumors. A recent study from our group applying pathway analysis to investigate the biological role of the differentially methylated genes in HPV+ and HPV- HNSCC reported 8 signal transduction pathways germane to HNSCC (Worsham et al., Otolaryngol Head Neck Surg 149:409-416, 2013).
Collapse
Affiliation(s)
- Josena K Stephen
- Department of Otolaryngology/Head and Neck Surgery, Henry Ford Hospital, 1 Ford Place, 1D, Detroit, MI, 48202, USA
| | | |
Collapse
|
49
|
Wang WL, Wang YC, Lee CT, Chang CY, Lo JL, Kuo YH, Hsu YC, Mo LR. The impact of human papillomavirus infection on the survival and treatment response of patients with esophageal cancers. J Dig Dis 2015; 16:256-63. [PMID: 25708698 DOI: 10.1111/1751-2980.12236] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE This study aimed to investigate the impact of human papillomavirus (HPV) infection on the prognosis and treatment response of esophageal squamous cell carcinoma (ESCC). METHODS We examined the presence and subtypes of HPV in the tumors by polymerase chain reaction and sequencing in 150 ESCC patients. Their clinicopathological characteristics, treatment response and survival were further analyzed according to the presence of HPV infection. RESULTS Of 150 ESCC tumor samples, 27 (18.0%) were HPV-positive, of which 22 (81.5%) had HPV-16 infection. The risk of developing multifocal ESCC was not significantly different in the HPV-positive and HPV-negative groups (29.6% vs 28.5%, P = 0.90). In subgroup analysis, patients with HPV-16-positive advanced ESCC had a significantly better survival than those with HPV-negative ESCC (3-year survival: 55% vs 21%, log-rank P = 0.03). Cox proportional hazards model showed that the presence of HPV-16 was associated with a significant reduction in the mortality rate (hazard ratio 0.41, 95% CI 0.18-0.96). Patients with HPV-16 infection had better response to chemoradiotherapy (CRT) than those without HPV-16 infection (P = 0.026). CONCLUSIONS In patients with advanced ESCC, HPV-16-positive patients had a significantly favorable survival, especially those who received CRT. Larger scale studies are needed to determine the causal relationship.
Collapse
Affiliation(s)
- Wen-Lun Wang
- Department of Internal Medicine, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan, China
| | - Yu-Chi Wang
- Department of Biological Science & Technology, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan, China
| | - Ching-Tai Lee
- Department of Internal Medicine, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan, China
| | - Chi-Yang Chang
- Department of Internal Medicine, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan, China
| | - Jo-Lin Lo
- Department of Oncology, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan, China
| | - Yao-Hung Kuo
- Department of Radiation Oncology, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan, China
| | - Yao-Chun Hsu
- Department of Internal Medicine, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan, China
| | - Lein-Ray Mo
- Department of Internal Medicine, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan, China
| |
Collapse
|
50
|
Prediction of recurrence-free survival using a protein expression-based risk classifier for head and neck cancer. Oncogenesis 2015; 4:e147. [PMID: 25893634 PMCID: PMC4491610 DOI: 10.1038/oncsis.2015.7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/28/2015] [Accepted: 02/09/2015] [Indexed: 12/21/2022] Open
Abstract
Loco-regional recurrence in 50% of oral squamous cell carcinoma (OSCC) patients poses major challenge for oncologists. Lack of biomarkers that can predict disease aggressiveness and recurrence risk makes the scenario more dismal. On the basis of our earlier global proteomic analyses we identified five differentially expressed proteins in OSCC. This study aimed to develop protein biomarkers-based prognostic risk prediction model for OSCC. Sub-cellular expression of five proteins, S100A7, heterogeneous nuclear ribonucleoproteinK (hnRNPK), prothymosin α (PTMA), 14-3-3ζ and 14-3-3σ was analyzed by immunohistochemistry in test set (282 Indian OSCCs and 209 normal tissues), correlated with clinic-pathological parameters and clinical outcome over 12 years to develop a risk model for prediction of recurrence-free survival. This risk classifier was externally validated in 135 Canadian OSCC and 96 normal tissues. Biomarker signature score based on PTMA, S100A7 and hnRNPK was associated with recurrence free survival of OSCC patients (hazard ratio=1.11; 95% confidence interval 1.08, 1.13, P<0.001, optimism-corrected c-statistic=0.69) independent of clinical parameters. Biomarker signature score stratified OSCC patients into high- and low-risk groups with significant difference for disease recurrence. The high-risk group had median survival 14 months, and 3-year survival rate of 30%, whereas low-risk group survival probability did not reach 50%, and had 3-year survival rate of 71%. As a powerful predictor of 3-year recurrence-free survival in OSCC patients, the newly developed biomarkers panel risk classifier will facilitate patient counseling for personalized treatment.
Collapse
|