1
|
Wang HC, Wu PE, He WD, Chen CY, Zheng RQ, Pang YC, Wu LC, Cheng YX, Liu YQ. Centipeda minima extracts and the active sesquiterpene lactones have therapeutic efficacy in non-small cell lung cancer by suppressing Skp2/p27 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119277. [PMID: 39722328 DOI: 10.1016/j.jep.2024.119277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
ETHNOPHAMACOLOGICAL RELEVANCE Centipeda minima (L.) A. Braun & Asch (C. minima) was applied to treat nasal allergy, headache, cough, and even nasopharyngeal carcinoma in traditional Chinese medicine. However, the underlying anticancer mechanisms of C. minima and its active components have not been systematically illustrated. AIM OF THE STUDY The study aims to examine the therapeutic efficacy of the ethanol extract of C. minima (ECM) and its active components in non-small cell lung cancer (NSCLC) and illustrate the underlying mechanisms. MATERIALS AND METHODS The main chemical components in the ethanol extract of C. minima (ECM) and the supercritical CO2 fluid extract of C. minima (CM-SFE) were determined by using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). The antitumor effects of ECM and CM-SFE were examined by using NSCLC cell xenografts. The flow cytometry, cell colony formation, wound-healing, transwell assay, and Western blotting were conducted to investigate the anticancer properties of ECM, CM-SFE, and these sesquiterpene lactones that abundantly distributed in these extracts. RESULTS We first determined that ECM contains high levels of sesquiterpene lactones. ECM can markedly induce cell cycle arrest and suppress migration and invasion of NSCLC cells. Mechanistically, ECM promoted proteasome-dependent degradation of Skp2 protein and induced the accumulation of its substrates p27; whereas Skp2 overexpression can attenuate the inhibitory effects of ECM on NSCLC proliferation and migration. Moreover, ECM at 200-600 mg/kg can significantly inhibit tumor growth and metastasis in A549-luciferase cell orthotopic xenografts by suppressing Skp2 expression. The sesquiterpene lactones that abundantly distributed in ECM, including 6-O-angeloylplenolin (6-OAP), arnicolide D (ArD) and arnicolide C (ArC), were also demonstrated to decrease Skp2 while increase p27 protein level, thereby significantly inducing cell cycle arrest and suppressing migration of NSCLC cells. Notably, CM-SFE, which mainly consisted of 6-OAP, ArD and ArC, exhibited much stronger anti-NSCLC activity than that of ECM in A549-luciferase cell orthotopic xenografts. CONCLUSION Our results demonstrate that the active components in C. minima possesses potential anti-NSCLC activities by suppressing Skp2/p27 signaling pathway, and these active sesquiterpene lactones can be further developed as potent Skp2 inhibitor to treat NSCLC.
Collapse
Affiliation(s)
- Han-Chen Wang
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006, China
| | - Pei-En Wu
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006, China
| | - Wen-Da He
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006, China
| | - Chu-Ying Chen
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006, China
| | - Rou-Qiao Zheng
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006, China
| | - Yan-Chun Pang
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006, China
| | - Li-Chuan Wu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, China
| | - Yong-Xian Cheng
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| | - Yong-Qiang Liu
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808, China.
| |
Collapse
|
2
|
Adachi Y, Noguchi R, Osaki J, Ono T, Iwata S, Akiyama T, Tsuchiya R, Toda Y, Tetsuya S, Iwata S, Kobayashi E, Kojima N, Yoshida A, Yokoo H, Kawai A, Kondo T. Establishment and characterization of two novel patient-derived cell lines from myxofibrosarcoma: NCC-MFS7-C1 and NCC-MFS8-C1. Hum Cell 2024; 37:1742-1750. [PMID: 39214957 DOI: 10.1007/s13577-024-01124-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Myxofibrosarcoma (MFS), an aggressive soft tissue sarcoma, presents a significant challenge because of its high recurrence rate, distal metastasis, and complex genetic background. Although surgical resection is the standard treatment for MFS, the outcomes are unsatisfactory and effective non-surgical treatment strategies, including drug therapy, are urgently warranted. MFS is a rare tumor that requires comprehensive preclinical research to develop promising drug therapies; however, only two MFS cell lines are publicly available worldwide. The present study reports two novel patient-derived MFS cell lines, NCC-MFS7-C1 and NCC-MFS8-C1. These cell lines have been extensively characterized for their genetic profile, proliferation, spheroid-forming capacity, and invasive behavior, confirming that they retain MFS hallmarks. Furthermore, we conducted comprehensive drug screening against these cell lines and six others previously established in our laboratory to identify potential therapeutic candidates for MFS. Among the screened agents, actinomycin D, bortezomib, and romidepsin demonstrated considerable antiproliferative effects that were superior to those of doxorubicin, a standard drug, highlighting their potential as novel drugs. In conclusion, NCC-MFS7-C1 and NCC-MFS8-C1 are valuable research resources that contribute to the understanding of the pathogenesis and development of novel therapies for MFS.
Collapse
Affiliation(s)
- Yuki Adachi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Division of Hepato-Biliary-Pancreatic Surgery and Transplant Surgery, Department of Surgery, Asahikawa Medical University, 2-1-1 Midorigaoka Higashi, Asahikawa, Hokkaido, Japan
| | - Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Julia Osaki
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Takuya Ono
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Shuhei Iwata
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Taro Akiyama
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, 260-8670, Japan
| | - Ryuto Tsuchiya
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Department of Musculoskeletal Oncology and Rehabilitation, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, 260-8670, Japan
| | - Yu Toda
- Department of Musculoskeletal Oncology and Rehabilitation, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Sekita Tetsuya
- Department of Musculoskeletal Oncology and Rehabilitation, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Shintaro Iwata
- Department of Musculoskeletal Oncology and Rehabilitation, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Eisuke Kobayashi
- Department of Musculoskeletal Oncology and Rehabilitation, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Naoki Kojima
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Hideki Yokoo
- Division of Hepato-Biliary-Pancreatic Surgery and Transplant Surgery, Department of Surgery, Asahikawa Medical University, 2-1-1 Midorigaoka Higashi, Asahikawa, Hokkaido, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology and Rehabilitation, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
3
|
Li Z, Yin Z, Luan Z, Zhang C, Wang Y, Zhang K, Chen F, Yang Z, Tian Y. Comprehensive analyses for the coagulation and macrophage-related genes to reveal their joint roles in the prognosis and immunotherapy of lung adenocarcinoma patients. Front Immunol 2023; 14:1273422. [PMID: 38022584 PMCID: PMC10644034 DOI: 10.3389/fimmu.2023.1273422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose This study aims to explore novel biomarkers related to the coagulation process and tumor-associated macrophage (TAM) infiltration in lung adenocarcinoma (LUAD). Methods The macrophage M2-related genes were obtained by Weighted Gene Co-expression Network Analysis (WGCNA) in bulk RNA-seq data, while the TAM marker genes were identified by analyzing the scRNA-seq data, and the coagulation-associated genes were obtained from MSigDB and KEGG databases. Survival analysis was performed for the intersectional genes. A risk score model was subsequently constructed based on the survival-related genes for prognosis prediction and validated in external datasets. Results In total, 33 coagulation and macrophage-related (COMAR) genes were obtained, 19 of which were selected for the risk score model construction. Finally, 10 survival-associated genes (APOE, ARRB2, C1QB, F13A1, FCGR2A, FYN, ITGB2, MMP9, OLR1, and VSIG4) were involved in the COMAR risk score model. According to the risk score, patients were equally divided into low- and high-risk groups, and the prognosis of patients in the high-risk group was significantly worse than that in the low-risk group. The ROC curve indicated that the risk score model had high sensitivity and specificity, which was validated in multiple external datasets. Moreover, the model also had high efficacy in predicting the clinical outcomes of LUAD patients who received anti-PD-1/PD-L1 immunotherapy. Conclusion The COMAR risk score model constructed in this study has excellent predictive value for the prognosis and immunotherapeutic clinical outcomes of patients with LUAD, which provides potential biomarkers for the treatment and prognostic prediction.
Collapse
Affiliation(s)
- Zhuoqi Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Radiotherapy Department, Shandong Second Provincial General Hospital, Shandong University, Jinan, China
| | - Zongxiu Yin
- Department of Pulmonary and Critical Care Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zupeng Luan
- Department of Radiation Oncology, Jinan Third People’s Hospital, Jinan, China
| | - Chi Zhang
- Department of Cardiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuanyuan Wang
- Department of Oncology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kai Zhang
- Generalsurgery Department, Wen-shang County People’s Hospital, Wenshang, China
| | - Feng Chen
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhensong Yang
- Department of Gastrointestinal Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yuan Tian
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Radiotherapy Department, Shandong Second Provincial General Hospital, Shandong University, Jinan, China
| |
Collapse
|
4
|
Lucarelli E, De Vita A, Bellotti C, Frisoni T, Vanni S, Guerrieri AN, Pannella M, Mercatali L, Gambarotti M, Duchi S, Miserocchi G, Maioli M, Liverani C, Ibrahim T. Modeling Myxofibrosarcoma: Where Do We Stand and What Is Missing? Cancers (Basel) 2023; 15:5132. [PMID: 37958307 PMCID: PMC10650645 DOI: 10.3390/cancers15215132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Myxofibrosarcoma (MFS) is a malignant soft tissue sarcoma (STS) that originates in the body's connective tissues. It is characterized by the presence of myxoid (gel-like) and fibrous components and typically affects patients after the fifth decade of life. Considering the ongoing trend of increasing lifespans across many nations, MFS is likely to become the most common musculoskeletal sarcoma in the future. Although MFS patients have a lower risk of developing distant metastases compared with other STS cases, MFS is characterized by a high frequency of local recurrence. Notably, in 40-60% of the patients where the tumor recurs, it does so multiple times. Consequently, patients may undergo multiple local surgeries, removing the risk of potential amputation. Furthermore, because the tumor relapses generally have a higher grade, they exhibit a decreased response to radio and chemotherapy and an increased tendency to form metastases. Thus, a better understanding of MFS is required, and improved therapeutic options must be developed. Historically, preclinical models for other types of tumors have been instrumental in obtaining a better understanding of tumor development and in testing new therapeutic approaches. However, few MFS models are currently available. In this review, we will describe the MFS models available and will provide insights into the advantages and constraints of each model.
Collapse
Affiliation(s)
- Enrico Lucarelli
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.L.); (A.N.G.); (M.P.); (L.M.); (T.I.)
| | - Alessandro De Vita
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.D.V.); (S.V.); (G.M.); (C.L.)
| | - Chiara Bellotti
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.L.); (A.N.G.); (M.P.); (L.M.); (T.I.)
| | - Tommaso Frisoni
- Unit of 3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Silvia Vanni
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.D.V.); (S.V.); (G.M.); (C.L.)
| | - Ania Naila Guerrieri
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.L.); (A.N.G.); (M.P.); (L.M.); (T.I.)
| | - Micaela Pannella
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.L.); (A.N.G.); (M.P.); (L.M.); (T.I.)
| | - Laura Mercatali
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.L.); (A.N.G.); (M.P.); (L.M.); (T.I.)
| | - Marco Gambarotti
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.G.); (M.M.)
| | - Serena Duchi
- Department of Surgery-ACMD, St. Vincent’s Hospital Melbourne, University of Melbourne, Melbourne, VIC 3065, Australia;
| | - Giacomo Miserocchi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.D.V.); (S.V.); (G.M.); (C.L.)
| | - Margherita Maioli
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.G.); (M.M.)
| | - Chiara Liverani
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.D.V.); (S.V.); (G.M.); (C.L.)
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.L.); (A.N.G.); (M.P.); (L.M.); (T.I.)
| |
Collapse
|
5
|
Nishio J, Nakayama S. Biology and Management of High-Grade Myxofibrosarcoma: State of the Art and Future Perspectives. Diagnostics (Basel) 2023; 13:3022. [PMID: 37835765 PMCID: PMC10572210 DOI: 10.3390/diagnostics13193022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Myxofibrosarcoma (MFS) is one of the most common adult soft tissue sarcomas, typically arising in the extremities. Histologically, MFS is classified into three grades: low, intermediate, and high. Histological grades correlate with distant metastases and tumor-associated mortality. The diagnosis of MFS is challenging due to a lack of well-characterized immunohistochemical markers. High-grade MFS displays highly complex karyotypes with multiple copy number alterations. Recent integrated genomic studies have shown the predominance of somatic copy number aberrations. However, the molecular pathogenesis of high-grade MFS remains poorly understood. The standard treatment for localized MFS is surgical resection. The systemic treatment options for advanced disease are limited. This review provides an updated overview of the clinical and imaging features, pathogenesis, histopathology, and treatment of high-grade MFS.
Collapse
Affiliation(s)
- Jun Nishio
- Section of Orthopaedic Surgery, Department of Medicine, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Shizuhide Nakayama
- Department of Orthopaedic Surgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan;
| |
Collapse
|
6
|
Washimi K, Kasajima R, Shimizu E, Sato S, Okubo Y, Yoshioka E, Narimatsu H, Hiruma T, Katayama K, Yamaguchi R, Yamaguchi K, Furukawa Y, Miyano S, Imoto S, Yokose T, Miyagi Y. Histological markers, sickle-shaped blood vessels, myxoid area, and infiltrating growth pattern help stratify the prognosis of patients with myxofibrosarcoma/undifferentiated sarcoma. Sci Rep 2023; 13:6744. [PMID: 37185612 PMCID: PMC10130155 DOI: 10.1038/s41598-023-34026-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/22/2023] [Indexed: 05/17/2023] Open
Abstract
Myxofibrosarcoma (MFS) and undifferentiated sarcoma (US) have been considered as tumors of the same lineage based on genetic/epigenetic profiling. Although MFS shows a notably better prognosis than US, there are no clear criteria for distinguishing between them. Here, we examined 85 patients with MFS/US and found that tumors with infiltrative growth patterns tended to have more myxoid areas and higher local recurrence rates but fewer distant metastases and better overall survival. Morphologically characteristic sickle-shaped blood vessels, which tended to have fewer αSMA-positive cells, were also observed in these tumors, compared with normal vessels. Based on the incidence of these sickle-shaped blood vessels, we subdivided conventionally diagnosed US into two groups. This stratification was significantly correlated with metastasis and prognosis. RNA sequencing of 24 tumors (9 MFS and 15 US tumors) demonstrated that the proteasome, NF-kB, and VEGF pathways were differentially regulated among these tumors. Expression levels of KDR and NFATC4, which encode a transcription factor responsible for the neuritin-insulin receptor angiogenic signaling, were elevated in the sickle-shaped blood vessel-rich US tumors. These findings indicate that further analyses may help elucidate the malignant potential of MFS/US tumors as well as the development of therapeutic strategies for such tumors.
Collapse
Affiliation(s)
- Kota Washimi
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan.
| | - Rika Kasajima
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Eigo Shimizu
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shinya Sato
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| | - Yoichiro Okubo
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Emi Yoshioka
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Hiroto Narimatsu
- Cancer Prevention and Control Division, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| | - Toru Hiruma
- Division of Musculoskeletal Tumor Surgery, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Kotoe Katayama
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Rui Yamaguchi
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cancer Informatics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Integrated Data Science, Medical and Dental Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Yokose
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| |
Collapse
|
7
|
Toniyan KA, Gorbacheva EY, Boyarintsev VV, Ogneva IV. Endometriosis of the Cervix: A Rare Clinical Case with the Possibility of Comparing the Eutopic and Ectopic Endometrium at the Cellular Level. Int J Mol Sci 2023; 24:ijms24032184. [PMID: 36768508 PMCID: PMC9916952 DOI: 10.3390/ijms24032184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023] Open
Abstract
Endometriosis of the cervix is a rare form of genital endometriosis, which is characterized by the appearance of tissue on the vaginal part of the cervix, similar to the tissue of the mucous membrane of the uterine cavity. We describe a clinical case in which we compared the content of cytoskeletal proteins, H3 histone modifications and DNA methylation (total and 5-hydroxymethylcytosine content) in the eutopic endometrium and in tissue from endometriosis foci on the cervix. The patient had elevated levels of estradiol, interleukin-1β and interleukin-8. At the cellular level, the content of tubulin and the marker of stable microtubules were reduced in the ectopic endometrium (by 45% and 37%, p < 0.05, respectively), but the alpha-actinin-1 content was increased (by 75%, p < 0.05) with an increase in the expression of its gene. At the same time, the total level of DNA methylation in the endometriotic focus was reduced by more than 2 times with the accumulation of the intermediate product 5-hydroxymethylcytosine (the content increased by more than 3 times), probably due to an increase in the content of tet methylcytosine dioxygenase 1 (more than 4 times).
Collapse
Affiliation(s)
- Konstantin A. Toniyan
- Gynecology Department, FGBU KB1 (Volynskaya) UDP RF, 121352 Moscow, Russia
- Cell Biophysics Lab., State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia
| | - Elena Yu. Gorbacheva
- Gynecology Department, FGBU KB1 (Volynskaya) UDP RF, 121352 Moscow, Russia
- Cell Biophysics Lab., State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia
| | - Valery V. Boyarintsev
- Emergency and Extreme Medicine Department, FGBU DPO CGMA UDP RF, 121359 Moscow, Russia
| | - Irina V. Ogneva
- Cell Biophysics Lab., State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia
- Correspondence: ; Tel.: +7-499-195-6398
| |
Collapse
|
8
|
Akiyama T, Yoshimatsu Y, Noguchi R, Sin Y, Tsuchiya R, Ono T, Sugaya J, Kobayashi E, Yoshida A, Ohtori S, Kawai A, Kondo T. Establishment and characterization of NCC-PS1-C1: a novel cell line of pleomorphic sarcoma from a patient after neoadjuvant radiotherapy. Hum Cell 2022; 35:2011-2019. [PMID: 36103079 DOI: 10.1007/s13577-022-00787-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
Pleomorphic sarcoma (PS) is a heterogeneous group of malignant mesenchymal tumors without a specific histological lineage of differentiation. PS is genetically characterized by genetic instability and diversity and histologically characterized by morphological pleomorphism. PS is one of the most common soft tissue sarcomas. The only curative treatment for PS is complete surgical resection, in which neoadjuvant radiotherapy is frequently combined. PS demonstrates both local recurrence and metastasis after surgical treatment, and effective systemic chemotherapy has not yet been established. Patient-derived cancer cell lines are critical tools for basic and preclinical studies in the development of chemotherapy. However, only six PS cell lines are available from the public cell bank, and none of them are derived from PS after neoadjuvant radiotherapy, despite the fact that radiotherapy causes changes in the posttreatment cancer genome. Here, we reported a novel cell line of PS from a primary tumor specimen resected after neoadjuvant radiotherapy and named it NCC-PS1-C1. NCC-PS1-C1 cells showed a variety of copy number alterations and pathological mutations in TP53. NCC-PS1-C1 cells demonstrated constant proliferation, spheroid formation, and invasion capability in vitro. The screening of antitumor agents in NCC-PS1-C1 cells showed that bortezomib and romidepsin were effective against PS. In conclusion, we report a novel PS cell line from a primary tumor resected after neoadjuvant radiotherapy. We believe that NCC-PS1-C1 will be a useful tool for the development of novel chemotherapies for PS, especially for recurrent cases after neoadjuvant radiotherapy.
Collapse
Affiliation(s)
- Taro Akiyama
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Orthopaedic Surgery, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, 260-0856, Japan
| | - Yuki Yoshimatsu
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Division of Patient-Derived Cancer Model, Tochigi Cancer Center, 4-9-13 Yonan, Utsunomiya, Tochigi, 320-0834, Japan
| | - Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yooksil Sin
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ryuto Tsuchiya
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Orthopaedic Surgery, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, 260-0856, Japan
| | - Takuya Ono
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Jun Sugaya
- Division of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Eisuke Kobayashi
- Division of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, 260-0856, Japan
| | - Akira Kawai
- Division of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
9
|
Vanni S, De Vita A, Gurrieri L, Fausti V, Miserocchi G, Spadazzi C, Liverani C, Cocchi C, Calabrese C, Bongiovanni A, Riva N, Mercatali L, Pieri F, Casadei R, Lucarelli E, Ibrahim T. Myxofibrosarcoma landscape: diagnostic pitfalls, clinical management and future perspectives. Ther Adv Med Oncol 2022; 14:17588359221093973. [PMID: 35782752 PMCID: PMC9244941 DOI: 10.1177/17588359221093973] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 01/12/2022] [Indexed: 12/26/2022] Open
Abstract
Myxofibrosarcoma (MFS) is a common entity of adult soft tissue sarcomas (STS) characterized by a predilection of the extremities and a high local recurrence rate. Originally classified as a myxoid variant of malignant fibrous histiocytoma, this musculoskeletal tumor has been recognized since 2002 as a distinct histotype showing a spectrum of malignant fibroblastic lesions with myxoid stroma, pleomorphism and curvilinear vessels. Currently, the molecular pathogenesis of MFS is still poorly understood and its genomic profile exhibits a complex karyotype with a number of aberrations including amplifications, deletions and loss of function. The diagnosis is challenging due to the unavailability of specific immunohistochemical markers and is based on the analysis of cytomorphologic features. The mainstay of treatment for localized disease is represented by surgical resection, with (neo)-adjuvant radio- and chemotherapy. In the metastatic setting, chemotherapy represents the backbone of treatments, however its role is still controversial and the outcome is very poor. Recent advent of genomic profiling, targeted therapies and larger enrollment of patients in translational and clinical studies, have improved the understanding of biological behavior and clinical outcome of such a disease. This review will provide an overview of current diagnostic pitfalls and clinical management of MFS. Finally, a look at future directions will be discussed.
Collapse
Affiliation(s)
- Silvia Vanni
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Alessandro De Vita
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Via P. Maroncelli 40, Meldola 47014, Forlì-Cesena, Italy
| | - Lorena Gurrieri
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Valentina Fausti
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Giacomo Miserocchi
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Chiara Spadazzi
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Chiara Liverani
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Claudia Cocchi
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Chiara Calabrese
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Alberto Bongiovanni
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Nada Riva
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Laura Mercatali
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - Federica Pieri
- Pathology Unit, 'Morgagni-Pierantoni' Hospital, Forlì, Italy
| | - Roberto Casadei
- Orthopedic Unit, 'Morgagni-Pierantoni' Hospital, Forlì, Italy
| | - Enrico Lucarelli
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
10
|
Pauli C, De Boni L, Pauwels JE, Chen Y, Planas-Paz L, Shaw R, Emerling BM, Grandori C, Hopkins BD, Rubin MA. A Functional Precision Oncology Approach to Identify Treatment Strategies for Myxofibrosarcoma Patients. Mol Cancer Res 2022; 20:244-252. [PMID: 34728552 PMCID: PMC8900059 DOI: 10.1158/1541-7786.mcr-21-0255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/09/2021] [Accepted: 10/22/2021] [Indexed: 01/09/2023]
Abstract
In this era of precision medicine, numerous workflows for the targeting of high-recurrent mutations in common tumor types have been developed, leaving patients with rare diseases with few options. Here, we implement a functional precision oncology approach utilizing comprehensive genomic profiling in combination with high-throughput drug screening, to identify tumor-specific drug sensitivities for patients with rare tumor types such as myxofibrosarcoma. From a patient with a high-grade myxofibrosarcoma, who was enrolled in the Englander Institute for Precision Medicine (EIPM) program, we established patient-derived 3D sarco-spheres and xenograft models for functional testing. In the absence of a large cohort of clinically similar cases, high-throughput drug screening was performed on the patient-derived cells, and compared with two other myxofibrosarcoma lines and a benign fibroblast line to functionally identify tumor-specific drug sensitivities. The addition of functional drug sensitivity testing to complement genomic profiling identified multiple therapeutic options that were further validated in patient derived xenograft models. Genomic analyses detected the frequently known codeletion of the tumor suppressors CDKN2A/B together with the methylthioadenosine phosphorylase (MTAP) and a TP53 E286fs*50 mutation. High-throughput drug screening demonstrated tumor-specific sensitivity to compounds targeting the cell cycle. Based on genomic analysis and high-throughput drug screening, we show that targeting the cell cycle in these tumors is a powerful approach. IMPLICATIONS: This study demonstrates the potential of functional testing to aid clinical decision making for patients with rare or molecularly complex malignancies when combined with comprehensive genomic profiling.
Collapse
Affiliation(s)
- Chantal Pauli
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland.
| | - Lamberto De Boni
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jonathan E Pauwels
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York Presbyterian Hospital. New York, New York
| | - Yanjiang Chen
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Lara Planas-Paz
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Reid Shaw
- SEngine Precision Medicine, Seattle, Washington
| | - Brooke M Emerling
- Cancer Metabolism and Signaling Networks, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | | | - Benjamin D Hopkins
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mark A Rubin
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York Presbyterian Hospital. New York, New York
- Department for BioMedical Research, Bern, Switzerland
| |
Collapse
|
11
|
Tsuchiya R, Yoshimatsu Y, Noguchi R, Sin Y, Ono T, Akiyama T, Sugaya J, Kobayashi E, Kojima N, Yoshida A, Ohtori S, Kawai A, Kondo T. Establishment and Characterization of NCC-MFS5-C1: A Novel Patient-Derived Cell Line of Myxofibrosarcoma. Cells 2022; 11:207. [PMID: 35053323 PMCID: PMC8773631 DOI: 10.3390/cells11020207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 01/22/2023] Open
Abstract
Myxofibrosarcoma (MFS) is a highly aggressive malignancy with complex karyotypes and a postoperative recurrence tendency, owing to its strong invasiveness. Although systemic chemotherapy is considered in patients with unresectable MFS, the efficacy of conventional chemotherapy is hitherto unclear. Recently, drug screening analysis using a large number of tumor cell lines has been attempted to discover novel therapeutic candidate drugs for common cancers. However, the number of MFS cell lines is extremely small because of its low incidence-this hinders the conduction of screening studies and slows down the development of therapeutic drugs. To overcome this problem, we established a novel MFS cell line, NCC-MFS5-C1, which was shown to harbor typical MFS genetic abnormalities and thus had useful properties for in vitro studies. We conducted the largest integrated screening analysis of 210 drugs using NCC-MFS5-C1 cells along with four MFS cell lines, which we previously reported. Bortezomib (a proteasome inhibitor) and romidepsin (a histone deacetylase inhibitor) showed stronger antitumor effects than the standard drug, doxorubicin. Therefore, the NCC-MFS5-C1 cell line can potentially contribute to elucidating MFS pathogenesis and developing a novel MFS treatment.
Collapse
Affiliation(s)
- Ryuto Tsuchiya
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (R.T.); (Y.Y.); (R.N.); (Y.S.); (T.O.); (T.A.)
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan;
| | - Yuki Yoshimatsu
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (R.T.); (Y.Y.); (R.N.); (Y.S.); (T.O.); (T.A.)
| | - Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (R.T.); (Y.Y.); (R.N.); (Y.S.); (T.O.); (T.A.)
| | - Yooksil Sin
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (R.T.); (Y.Y.); (R.N.); (Y.S.); (T.O.); (T.A.)
| | - Takuya Ono
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (R.T.); (Y.Y.); (R.N.); (Y.S.); (T.O.); (T.A.)
| | - Taro Akiyama
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (R.T.); (Y.Y.); (R.N.); (Y.S.); (T.O.); (T.A.)
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan;
| | - Jun Sugaya
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (J.S.); (E.K.); (A.K.)
| | - Eisuke Kobayashi
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (J.S.); (E.K.); (A.K.)
| | - Naoki Kojima
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (N.K.); (A.Y.)
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (N.K.); (A.Y.)
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan;
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (J.S.); (E.K.); (A.K.)
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (R.T.); (Y.Y.); (R.N.); (Y.S.); (T.O.); (T.A.)
| |
Collapse
|
12
|
Establishment and characterization of NCC-MFS4-C1: a novel patient-derived cell line of myxofibrosarcoma. Hum Cell 2021; 34:1911-1918. [PMID: 34383271 DOI: 10.1007/s13577-021-00589-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/01/2021] [Indexed: 02/07/2023]
Abstract
Myxofibrosarcoma (MFS) is an aggressive sarcoma with a highly complex karyotype. Complete resection is the only curative treatment for MFS because it is refractory to chemotherapy. To improve clinical outcomes, it is critical to develop novel treatments for MFS. Although patient-derived cell lines play a key role in cancer research, only 12 MFS cell lines have been reported to date, and considering the diversity of the disease, more cell lines need to be established. Hence, in the present study, we established a novel MFS cell line, NCC-MFS4-C1, using a surgically resected tumor tissue from a patient with MFS. NCC-MFS4-C1 cells exhibited copy number alterations similar to those of the original tumors and showed constant proliferation, spheroid formation, and aggressive invasion. By screening a drug library, we found that actinomycin D, bortezomib, docetaxel, eribulin, and romidepsin significantly reduced the proliferation of NCC-MFS4-C1 cells. Therefore, the NCC-MFS4-C1 cell line may be a useful resource for researching MFS.
Collapse
|
13
|
Toniyan KA, Povorova VV, Gorbacheva EY, Boyarintsev VV, Ogneva IV. Organization of the Cytoskeleton in Ectopic Foci of the Endometrium with Rare Localization. Biomedicines 2021; 9:998. [PMID: 34440202 PMCID: PMC8394853 DOI: 10.3390/biomedicines9080998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Endometriosis is a common pathology of the female reproductive system, often accompanied by pain and decreased fertility. However, its pathogenesis has not been sufficiently studied regarding the role of the cytoskeleton. In this study, we describe two clinical cases involving rare localization of extragenital endometriosis (umbilicus) and compare them with genital endometriosis of different localization (ovaries and uterus), as well as eutopic endometrium obtained with separate diagnostic curettage without confirmed pathology. (2) Methods: The relative content of actin and tubulin cytoskeleton proteins was determined by Western blotting, and the expression of genes encoding these proteins was determined by RT-PCR in the obtained intraoperative biopsies. The content of 5hmC was estimated by dot blot experiments, and the methylase/demethylase and acetylase/deacetylase contents were determined. (3) Results: The obtained results indicate that the content of the actin-binding protein alpha-actinin1 significantly increased (p < 0.05) in the groups with endometriosis, and this increase was most pronounced in patients with umbilical endometriosis. In addition, both the mRNA content of the ACTN1 gene and 5hmC content increased. It can be assumed that the increase in 5hmC is associated with a decrease in the TET3 demethylase content. Moreover, in the groups with extragenital endometriosis, alpha- and beta-tubulin content was decreased (p < 0.05) compared to the control levels. (4) Conclusions: In analyzing the results, further distance of ectopic endometrial foci from the eutopic localization may be associated with an increase in the content of alpha-actinin1, probably due to an increase in the expression of its gene and an increase in migration potential. In this case, a favorable prognosis can be explained by a decrease in tubulin content and, consequently, a decrease in the rate of cell division.
Collapse
Affiliation(s)
- Konstantin A. Toniyan
- Gynecology Department, FGBU KB1 (Volynskaya) UDP RF, 121352 Moscow, Russia; (K.A.T.); (V.V.P.); (E.Y.G.)
- Cell Biophysics Laboratory, SSC RF-IBMP RAS, 123007 Moscow, Russia
| | - Victoria V. Povorova
- Gynecology Department, FGBU KB1 (Volynskaya) UDP RF, 121352 Moscow, Russia; (K.A.T.); (V.V.P.); (E.Y.G.)
| | - Elena Yu. Gorbacheva
- Gynecology Department, FGBU KB1 (Volynskaya) UDP RF, 121352 Moscow, Russia; (K.A.T.); (V.V.P.); (E.Y.G.)
| | - Valery V. Boyarintsev
- Emergency and Extreme Medicine Department, FGBU DPO CGMA UDP RF, 121359 Moscow, Russia;
| | - Irina V. Ogneva
- Cell Biophysics Laboratory, SSC RF-IBMP RAS, 123007 Moscow, Russia
- Medical and Biological Physics Department, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
14
|
Li CF, Chan TC, Wang CI, Fang FM, Lin PC, Yu SC, Huang HY. RSF1 requires CEBP/β and hSNF2H to promote IL-1β-mediated angiogenesis: the clinical and therapeutic relevance of RSF1 overexpression and amplification in myxofibrosarcomas. Angiogenesis 2021; 24:533-548. [PMID: 33496909 DOI: 10.1007/s10456-020-09764-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
Abstract
Myxofibrosarcoma is genetically complex and lacks effective nonsurgical treatment strategies; thus, elucidation of novel molecular drivers is urgently needed. Reanalyzing public myxofibrosarcoma datasets, we identified mRNA upregulation and recurrent gain of RSF1 and characterized this chromatin remodeling gene. Myxofibrosarcoma cell lines were employed to elucidate the oncogenic mechanisms of RSF1 by genetic manipulation and two IL-1β-neutralizing antibodies (RD24, P2D7KK), highlighting the regulatory basis and targetability of downstream IL-1β-mediated angiogenesis. Tumor samples were assessed for RSF1, IL-1β, and microvascular density (MVD) by immunohistochemistry and for RSF1 gene status by FISH. In vivo, RSF1-silenced and P2D7KK-treated xenografts were analyzed for tumor-promoting effects and the IL-1β-linked therapeutic relevance of RSF1, respectively. In vitro, RSF1 overexpression promoted invasive and angiogenic phenotypes with a stronger proangiogenic effect. RT-PCR profiling identified IL1B as a top-ranking candidate upregulated by RSF1. RSF1 required hSNF2H and CEBP/β to cotransactivate the IL1B promoter, which increased the IL1B mRNA level, IL-1β secretion and angiogenic capacity. Angiogenesis induced by RSF1-upregulated IL-1β was counteracted by IL1B knockdown and both IL-1β-neutralizing antibodies. Clinically, RSF1 overexpression was highly associated with RSF1 amplification, IL-1β overexpression, increased MVD and higher grades (all P ≤ 0.01) and independently predicted shorter disease-specific survival (P = 0.019, hazard ratio: 4.556). In vivo, both RSF1 knockdown and anti-IL-1β P2D7KK (200 μg twice weekly) enabled significant growth inhibition and devascularization in xenografts. In conclusion, RSF1 overexpression, partly attributable to RSF1 amplification, contributes a novel proangiogenic function by partnering with CEBP/β to cotransactivate IL1B, highlighting its prognostic, pathogenetic, and therapeutic relevance in myxofibrosarcomas.
Collapse
Affiliation(s)
- Chien-Feng Li
- Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ti-Chen Chan
- Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Cheng-I Wang
- Singapore Immunology Network; Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Fu-Min Fang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Po-Chun Lin
- Department of Orthopedics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shih-Chen Yu
- Department of Anatomic Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Ta-Pei Rd., Niao-Sung District, Kaohsiung, Taiwan
| | - Hsuan-Ying Huang
- Department of Anatomic Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Ta-Pei Rd., Niao-Sung District, Kaohsiung, Taiwan.
| |
Collapse
|
15
|
Tsuchiya R, Yoshimatsu Y, Noguchi R, Sin Y, Ono T, Sei A, Takeshita F, Sugaya J, Iwata S, Yoshida A, Ohtori S, Kawai A, Kondo T. Establishment and characterization of NCC-MFS3-C1: a novel patient-derived cell line of myxofibrosarcoma. Hum Cell 2021; 34:1266-1273. [PMID: 33990915 DOI: 10.1007/s13577-021-00548-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/03/2021] [Indexed: 12/16/2022]
Abstract
Myxofibrosarcoma (MFS) is one of the most aggressive sarcomas with highly complex karyotypes and genomic profiles. Although a complete resection is required in the treatment of MFS, it is often not achieved due to its strong invasive nature. Additionally, MFS is refractory to conventional chemotherapy, leading to poor prognosis. Therefore, it is necessary to develop novel treatment modalities for MFS. Patient-derived cell lines are important tools in basic research and preclinical studies. However, only 10 MFS cell lines have been reported to date. Furthermore, among these cell lines, merely two MFS cell lines are publicly available. Hence, we established a novel MFS cell line named NCC-MFS3-C1, using a surgically resected tumor specimen from a patient with MFS. NCC-MFS3-C1 cells had copy number alterations corresponding to the original tumor. NCC-MFS3-C1 cells demonstrate constant proliferation, spheroid formation, and aggressive invasion. In drug screening tests, the proteasome inhibitor bortezomib and the histone deacetylase inhibitor romidepsin demonstrated significant antiproliferative effects on NCC-MFS3-C1 cells. Thus, the NCC-MFS3-C1 cell line is a useful tool in both basic and preclinical studies for MFS.
Collapse
Affiliation(s)
- Ryuto Tsuchiya
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yuki Yoshimatsu
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yooksil Sin
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takuya Ono
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akane Sei
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Fumitaka Takeshita
- Department of Translational Oncology, Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Jun Sugaya
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shintaro Iwata
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
16
|
Pancreatic ductal adenocarcinomas from Mexican patients present a distinct genomic mutational pattern. Mol Biol Rep 2020; 47:5175-5184. [PMID: 32583281 DOI: 10.1007/s11033-020-05592-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/17/2020] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in humans, with less than 5% 5-year survival rate. PDAC is characterized by a small number of recurrent mutations, including KRAS, CDKN2A, TP53, and SMAD4 and a long "tail" of infrequent mutated genes. Most of the studies have been performed in US and European populations, so new studies are needed to describe the mutational landscape of these tumors in other cohorts. The present study analyzed the exome and transcriptome of four PDAC tumors from Mexican patients. We found a paucity of the previously described recurrent mutations, with mutations in only three genes (HERC2, CNTNAP2 and HMCN1) previously reported in PDAC with a frequency > 1%. In addition, we discovered several recurrent putative copy number aberrations in SKP2, BRAF, CSSF1R, FOXE1, JAK2 and MET genes and in genes previously reported as putative drivers in PDAC, including KRAS, SF3B1, BRAF, MYC and MET. Although a larger cohort is needed to validate these findings, our results could be pointing toward potential differences in contributing factors for PDAC in Latin-American populations.
Collapse
|
17
|
Sambri A, De Paolis M, Spinnato P, Donati DM, Bianchi G. The Biology of Myxofibrosarcoma: State of the Art and Future Perspectives. Oncol Res Treat 2020; 43:314-322. [PMID: 32450554 DOI: 10.1159/000507334] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/18/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Myxofibrosarcoma (MFS) is among the most highly complex sarcoma types. Molecular cytogenetic studies have identified a high level of genomic complexity. SUMMARY This review provides an update of the current research related to MFS, with particular emphasis on emerging mechanisms of tumorigenesis and their potential therapeutic impact. Many novel possible molecular markers have been identified, not only for prognostication in MFS, but also to serve as possible therapeutic targets, and thereby improve clinical outcomes. However, the molecular pathogenesis of MFS remains incompletely understood. Key Messages: Patients suffering from advanced MFS might benefit from expanded molecular evaluation in order to detect specific expression profiles and identify drug-able targets. Moreover, immunotherapy represents an intriguingly perspective due to the presence of "T-cell inflamed" tumor microenvironment.
Collapse
Affiliation(s)
- Andrea Sambri
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy, .,University of Bologna, Bologna, Italy,
| | | | | | - Davide Maria Donati
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,University of Bologna, Bologna, Italy
| | | |
Collapse
|
18
|
Li GZ, Okada T, Kim YM, Agaram NP, Sanchez-Vega F, Shen Y, Tsubokawa N, Rios J, Martin AS, Dickson MA, Qin LX, Socci ND, Singer S. Rb and p53-Deficient Myxofibrosarcoma and Undifferentiated Pleomorphic Sarcoma Require Skp2 for Survival. Cancer Res 2020; 80:2461-2471. [PMID: 32161142 DOI: 10.1158/0008-5472.can-19-1269] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 12/19/2019] [Accepted: 03/06/2020] [Indexed: 12/20/2022]
Abstract
Myxofibrosarcoma (MFS) and undifferentiated pleomorphic sarcoma (UPS) are highly genetically complex soft tissue sarcomas. Up to 50% of patients develop distant metastases, but current systemic therapies have limited efficacy. MFS and UPS have recently been shown to commonly harbor copy number alterations or mutations in the tumor suppressor genes RB1 and TP53. As these alterations have been shown to engender dependence on the oncogenic protein Skp2 for survival of transformed cells in mouse models, we sought to examine its function and potential as a therapeutic target in MFS/UPS. Comparative genomic hybridization and next-generation sequencing confirmed that a significant fraction of MFS and UPS patient samples (n = 94) harbor chromosomal deletions and/or loss-of-function mutations in RB1 and TP53 (88% carry alterations in at least one gene; 60% carry alterations in both). Tissue microarray analysis identified a correlation between absent Rb and p53 expression and positive expression of Skp2. Downregulation of Skp2 or treatment with the Skp2-specific inhibitor C1 revealed that Skp2 drives proliferation of patient-derived MFS/UPS cell lines deficient in both Rb and p53 by degrading p21 and p27. Inhibition of Skp2 using the neddylation-activating enzyme inhibitor pevonedistat decreased growth of Rb/p53-negative patient-derived cell lines and mouse xenografts. These results demonstrate that loss of both Rb and p53 renders MFS and UPS dependent on Skp2, which can be therapeutically exploited and could provide the basis for promising novel systemic therapies for MFS and UPS. SIGNIFICANCE: Loss of both Rb and p53 renders myxofibrosarcoma and undifferentiated pleomorphic sarcoma dependent on Skp2, which could provide the basis for promising novel systemic therapies.See related commentary by Lambert and Jones, p. 2437.
Collapse
Affiliation(s)
- George Z Li
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Tomoyo Okada
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Young-Mi Kim
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Narasimhan P Agaram
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Yawei Shen
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Norifumi Tsubokawa
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jordan Rios
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Axel S Martin
- Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mark A Dickson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Li-Xuan Qin
- Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Nicholas D Socci
- Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samuel Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.
- Department of Surgery, Weill Cornell Medical College, New York, New York
| |
Collapse
|
19
|
Integrated genetic and epigenetic analysis of myxofibrosarcoma. Nat Commun 2018; 9:2765. [PMID: 30018380 PMCID: PMC6050269 DOI: 10.1038/s41467-018-03891-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 03/20/2018] [Indexed: 12/27/2022] Open
Abstract
Myxofibrosarcoma (MFS) is a common adult soft tissue sarcoma characterized by an infiltrative growth pattern and a high local recurrence rate. Here we report the genetic and epigenetic landscape of MFS based on the results of whole-exome sequencing (N = 41), RNA sequencing (N = 29), and methylation analysis (N = 41), using 41 MFSs as a discovery set, and subsequent targeted sequencing of 140 genes in the entire cohort of 99 MFSs and 17 MFSs' data from TCGA. Fourteen driver genes are identified, including potentially actionable therapeutic targets seen in 37% of cases. There are frequent alterations in p53 signaling (51%) and cell cycle checkpoint genes (43%). Other conceivably actionable driver genes including ATRX, JAK1, NF1, NTRK1, and novel oncogenic BRAF fusion gene are identified. Methylation patterns cluster into three subtypes associated with unique combinations of driver mutations, clinical outcomes, and immune cell compositions. Our results provide a valuable genomic resource to enable the design of precision medicine for MFS. Myxofibrosarcoma occurs in adults and is associated with high local relapse. Here, based on exome/transcriptome sequencing and DNA methylation analysis, the authors identify driver genes and methylation clusters associated with unique combinations of mutations, outcomes, and immune cell compositions.
Collapse
|
20
|
Zhang J, Lei Z, Huang Z, Zhang X, Zhou Y, Luo Z, Zeng W, Su J, Peng C, Chen X. Epigallocatechin-3-gallate(EGCG) suppresses melanoma cell growth and metastasis by targeting TRAF6 activity. Oncotarget 2018; 7:79557-79571. [PMID: 27791197 PMCID: PMC5346735 DOI: 10.18632/oncotarget.12836] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/07/2016] [Indexed: 11/30/2022] Open
Abstract
TRAF6 (TNF Receptor-Associated Factor 6) is an E3 ubiquitin ligase that contains a Ring domain, induces K63-linked polyubiquitination, and plays a critical role in signaling transduction. Our previous results demonstrated that TRAF6 is overexpressed in melanoma and that TRAF6 knockdown dramatically attenuates tumor cell growth and metastasis. In this study, we found that EGCG can directly bind to TRAF6, and a computational model of the interaction between EGCG and TRAF6 revealed that EGCG probably interacts with TRAF6 at the residues of Gln54, Gly55, Asp57 ILe72, Cys73 and Lys96. Among these amino acids, mutation of Gln54, Asp57, ILe72 in TRAF6 could destroy EGCG bound to TRAF6, furthermore, our results demonstrated that EGCG significantly attenuates interaction between TRAF6 and UBC13(E2) and suppresses TRAF6 E3 ubiquitin ligase activity in vivo and in vitro. Additionally, the phosphorylation of IκBα, p-TAK1 expression are decreased and the nuclear translocation of p65 and p50 is blocked by treatment with EGCG, leading to inactivation of the NF-κB pathway. Moreover, EGCG significantly inhibits cell growth as well as the migration and invasion of melanoma cells. Taken together, these findings show that EGCG is a novel E3 ubiquitin ligase inhibitor that could be used to target TRAF6 for chemotherapy or the prevention of melanoma.
Collapse
Affiliation(s)
- Jianglin Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhou Lei
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zunnan Huang
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong, China
| | - Xu Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Youyou Zhou
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhongling Luo
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weiqi Zeng
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Su
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
21
|
Xu XL, Li Z, Liu A, Fan X, Hu DN, Qi DL, Chitty DW, Jia R, Qui J, Wang JQ, Sharaf J, Zou J, Weiss R, Huang H, Joseph WJ, Ng L, Rosen R, Shen B, Reid MW, Forrest D, Abramson DH, Singer S, Cobrinik D, Jhanwar SC. SKP2 Activation by Thyroid Hormone Receptor β2 Bypasses Rb-Dependent Proliferation in Rb-Deficient Cells. Cancer Res 2017; 77:6838-6850. [PMID: 28972075 DOI: 10.1158/0008-5472.can-16-3299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 07/29/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022]
Abstract
Germline RB1 mutations strongly predispose humans to cone precursor-derived retinoblastomas and strongly predispose mice to pituitary tumors, yet shared cell type-specific circuitry that sensitizes these different cell types to the loss of RB1 has not been defined. Here we show that the cell type-restricted thyroid hormone receptor isoform TRβ2 sensitizes to RB1 loss in both settings by antagonizing the widely expressed and tumor-suppressive TRβ1. TRβ2 promoted expression of the E3 ubiquitin ligase SKP2, a critical factor for RB1-mutant tumors, by enabling EMI1/FBXO5-dependent inhibition of SKP2 degradation. In RB1 wild-type neuroblastoma cells, endogenous Rb or ectopic TRβ2 was required to sustain SKP2 expression as well as cell viability and proliferation. These results suggest that in certain contexts, Rb loss enables TRβ1-dependent suppression of SKP2 as a safeguard against RB1-deficient tumorigenesis. TRβ2 counteracts TRβ1, thus disrupting this safeguard and promoting development of RB1-deficient malignancies. Cancer Res; 77(24); 6838-50. ©2017 AACR.
Collapse
Affiliation(s)
- Xiaoliang L Xu
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York.,Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York.,Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York.,Zhongshan Ophthalmic Center, Zhongshan University, Guangzhou, P.R. China.,New York Eye and Ear Infirmary, New York Medical College, New York, New York
| | - Zhengke Li
- The Vision Center, Department of Surgery and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California.,Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California
| | - Aihong Liu
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Dan-Ning Hu
- New York Eye and Ear Infirmary, New York Medical College, New York, New York
| | - Dong-Lai Qi
- The Vision Center, Department of Surgery and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - David W Chitty
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Renbing Jia
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York.,Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Jianping Qui
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Justin Q Wang
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York.,Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Jake Sharaf
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Jun Zou
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Rebecca Weiss
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Hongyan Huang
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Walter J Joseph
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Lily Ng
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland
| | - Richard Rosen
- New York Eye and Ear Infirmary, New York Medical College, New York, New York
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California
| | - Mark W Reid
- The Vision Center, Department of Surgery and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Douglas Forrest
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland
| | - David H Abramson
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Samuel Singer
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - David Cobrinik
- The Vision Center, Department of Surgery and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California.
| | - Suresh C Jhanwar
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York. .,Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| |
Collapse
|
22
|
Mandahl N, Magnusson L, Nilsson J, Viklund B, Arbajian E, von Steyern FV, Isaksson A, Mertens F. Scattered genomic amplification in dedifferentiated liposarcoma. Mol Cytogenet 2017; 10:25. [PMID: 28652867 PMCID: PMC5483303 DOI: 10.1186/s13039-017-0325-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/08/2017] [Indexed: 01/07/2023] Open
Abstract
Background Atypical lipomatous tumor (ALT), well differentiated liposarcoma (WDLS) and dedifferentiated liposarcoma (DDLS) are cytogenetically characterized by near-diploid karyotypes with no or few other aberrations than supernumerary ring or giant marker chromosomes, although DDLS tend to have somewhat more complex rearrangements. In contrast, pleomorphic liposarcomas (PLS) have highly aberrant and heterogeneous karyotypes. The ring and giant marker chromosomes contain discontinuous amplicons, in particular including multiple copies of the target genes CDK4, HMGA2 and MDM2 from 12q, but often also sequences from other chromosomes. Results The present study presents a DDLS with an atypical hypertriploid karyotype without any ring or giant marker chromosomes. SNP array analyses revealed amplification of almost the entire 5p and discontinuous amplicons of 12q including the classical target genes, in particular CDK4. In addition, amplicons from 1q, 3q, 7p, 9p, 11q and 20q, covering from 2 to 14 Mb, were present. FISH analyses showed that sequences from 5p and 12q were scattered, separately or together, over more than 10 chromosomes of varying size. At RNA sequencing, significantly elevated expression, compared to myxoid liposarcomas, was seen for TRIO and AMACR in 5p and of CDK4, HMGA2 and MDM2 in 12q. Conclusions The observed pattern of scattered amplification does not show the characteristics of chromothripsis, but is novel and differs from the well known cytogenetic manifestations of amplification, i.e., double minutes, homogeneously staining regions and ring chromosomes. Possible explanations for this unusual distribution of amplified sequences might be the mechanism of alternative lengthening of telomeres that is frequently active in DDLS and events associated with telomere crisis. Electronic supplementary material The online version of this article (doi:10.1186/s13039-017-0325-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nils Mandahl
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, SE-221 84 Lund, Sweden
| | - Linda Magnusson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, SE-221 84 Lund, Sweden
| | - Jenny Nilsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, SE-221 84 Lund, Sweden
| | - Björn Viklund
- Array and Analysis Facility, Uppsala University, Uppsala, Sweden
| | - Elsa Arbajian
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, SE-221 84 Lund, Sweden
| | - Fredrik Vult von Steyern
- Department of Orthopedics, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
| | - Anders Isaksson
- Array and Analysis Facility, Uppsala University, Uppsala, Sweden
| | - Fredrik Mertens
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, SE-221 84 Lund, Sweden
| |
Collapse
|
23
|
|
24
|
Okada T, Lee AY, Qin LX, Agaram N, Mimae T, Shen Y, O'Connor R, López-Lago MA, Craig A, Miller ML, Agius P, Molinelli E, Socci ND, Crago AM, Shima F, Sander C, Singer S. Integrin-α10 Dependency Identifies RAC and RICTOR as Therapeutic Targets in High-Grade Myxofibrosarcoma. Cancer Discov 2016; 6:1148-1165. [PMID: 27577794 PMCID: PMC5050162 DOI: 10.1158/2159-8290.cd-15-1481] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 08/25/2016] [Indexed: 12/31/2022]
Abstract
Myxofibrosarcoma is a common mesenchymal malignancy with complex genomics and heterogeneous clinical outcomes. Through gene-expression profiling of 64 primary high-grade myxofibrosarcomas, we defined an expression signature associated with clinical outcome. The gene most significantly associated with disease-specific death and distant metastasis was ITGA10 (integrin-α10). Functional studies revealed that myxofibrosarcoma cells strongly depended on integrin-α10, whereas normal mesenchymal cells did not. Integrin-α10 transmitted its tumor-specific signal via TRIO and RICTOR, two oncoproteins that are frequently co-overexpressed through gene amplification on chromosome 5p. TRIO and RICTOR activated RAC/PAK and AKT/mTOR to promote sarcoma cell survival. Inhibition of these proteins with EHop-016 (RAC inhibitor) and INK128 (mTOR inhibitor) had antitumor effects in tumor-derived cell lines and mouse xenografts, and combining the drugs enhanced the effects. Our results demonstrate the importance of integrin-α10/TRIO/RICTOR signaling for driving myxofibrosarcoma progression and provide the basis for promising targeted treatment strategies for patients with high-risk disease. SIGNIFICANCE Identifying the molecular pathogenesis for myxofibrosarcoma progression has proven challenging given the highly complex genomic alterations in this tumor type. We found that integrin-α10 promotes tumor cell survival through activation of TRIO-RAC-RICTOR-mTOR signaling, and that inhibitors of RAC and mTOR have antitumor effects in vivo, thus identifying a potential treatment strategy for patients with high-risk myxofibrosarcoma. Cancer Discov; 6(10); 1148-65. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 1069.
Collapse
Affiliation(s)
- Tomoyo Okada
- Sarcoma Biology Laboratory, Sarcoma Disease Management Program, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Ann Y Lee
- Sarcoma Biology Laboratory, Sarcoma Disease Management Program, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Li-Xuan Qin
- Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Narasimhan Agaram
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Takahiro Mimae
- Sarcoma Biology Laboratory, Sarcoma Disease Management Program, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yawei Shen
- Sarcoma Biology Laboratory, Sarcoma Disease Management Program, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rachael O'Connor
- Sarcoma Biology Laboratory, Sarcoma Disease Management Program, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Miguel A López-Lago
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Amanda Craig
- Sarcoma Biology Laboratory, Sarcoma Disease Management Program, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Martin L Miller
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Phaedra Agius
- Sarcoma Biology Laboratory, Sarcoma Disease Management Program, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Evan Molinelli
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nicholas D Socci
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Aimee M Crago
- Sarcoma Biology Laboratory, Sarcoma Disease Management Program, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York. Department of Surgery, Weill Cornell Medical College, New York, New York
| | - Fumi Shima
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Chris Sander
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samuel Singer
- Sarcoma Biology Laboratory, Sarcoma Disease Management Program, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York. Department of Surgery, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
25
|
Fu HC, Yang YC, Chen YJ, Lin H, Ou YC, Chien CCC, Huang EY, Huang HY, Lan J, Chi HP, Huang KE, Kang HY. Increased expression of SKP2 is an independent predictor of locoregional recurrence in cervical cancer via promoting DNA-damage response after irradiation. Oncotarget 2016; 7:44047-44061. [PMID: 27317767 PMCID: PMC5190078 DOI: 10.18632/oncotarget.10057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/16/2016] [Indexed: 11/25/2022] Open
Abstract
Although radiation therapy was known to be effective to cervical cancer, loco-regional recurrences are frequently found in patients. We aimed to identify a molecular marker predicting the response of cervical cancer to radiotherapy. We included the patients (n = 149) with cervical cancer who had undergone radiotherapy from 2004 to 2006. Tumor samples were collected to examine the association between the expression of S-phase kinase-associated protein 2 (SKP2) and prognosis in cervical cancer. We found higher expression of SKP2 associated with recurrence (HRs: 2.52, p < 0.001), death (HRs: 2.01, p < 0.001) and higher locoregional recurrence rate (HRs: 3.76, p < 0.001). Cervical cancer cell lines with higher expression of SKP2 showed higher colony formation, cell survival rate and fewer DNA damages after irradiation. SKP2-C25, an inhibitor for SKP2 activity, dose-dependently decreased cell viability after irradiation and knockdown of SKP2 impaired DNA-damage response and sensitized the cervical cancer cells to irradiation. Our data showed the SKP2 represents a promising tool to identify patients with cervical cancer who have a higher risk of locoregional recurrence after radiotherapy. Targeting SKP2 may serve as a potential radiosensitizer for developing effective therapeutic strategies against cervical cancer.
Collapse
Affiliation(s)
- Hung-Chun Fu
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, College of Medicine, Kaohsiung, Taiwan
- Center for Menopause and Reproductive Medicine Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Chien Yang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, College of Medicine, Kaohsiung, Taiwan
- Center for Menopause and Reproductive Medicine Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yun-Ju Chen
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, College of Medicine, Kaohsiung, Taiwan
- Center for Menopause and Reproductive Medicine Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Hao Lin
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Che Ou
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chan-Chao Chang Chien
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Eng-Yen Huang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsuan-Ying Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jui Lan
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsi-Ping Chi
- Medical Sciences Division, University of Oxford, Oxford, England, UK
| | - Ko-En Huang
- Center for Menopause and Reproductive Medicine Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hong-Yo Kang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, College of Medicine, Kaohsiung, Taiwan
- Center for Menopause and Reproductive Medicine Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
26
|
p27 and its ubiquitin ligase Skp2 expression in endometrium of IVF patients with repeated hormonal stimulation. Reprod Biomed Online 2016; 32:308-15. [PMID: 26795496 DOI: 10.1016/j.rbmo.2015.11.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 11/20/2015] [Accepted: 11/25/2015] [Indexed: 12/25/2022]
Abstract
This preliminary study examined a possible effect of long duration repeated hormonal stimulation on the endometrium using a molecular tool. The expression of the hormone stimulated, cell cycle regulators, p27 and its ligase S-phase kinase-interacting protein2 (Skp2), were assessed in 46 endometrial samples of patients who underwent repeated IVF cycles (3-21). Skp2 protein is usually undetectable in normal tissue and can be demonstrated only in rapidly dividing cells. Samples from non-stimulated, normal cycling women served as control group A. Samples of endometrial carcinoma served as control group B. In secretory endometrium, the expression of p27 was found to be lower and Skp2 higher in the study group compared with control group A. Moreover, in 25% of patients of the study group, Skp2 expression was significantly higher (P < 0.05) compared with control group A, reaching concentrations demonstrated in endometrial carcinoma. The findings of this study suggest that repeated hormone stimulation cycles may disrupt endometrial physiology, potentially towards abnormal proliferation. These changes in protein expression are described for the first time in IVF patients and should be further investigated.
Collapse
|
27
|
Qi J, Ronai ZA. Dysregulation of ubiquitin ligases in cancer. Drug Resist Updat 2015; 23:1-11. [PMID: 26690337 DOI: 10.1016/j.drup.2015.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 02/08/2023]
Abstract
Ubiquitin ligases (UBLs) are critical components of the ubiquitin proteasome system (UPS), which governs fundamental processes regulating normal cellular homeostasis, metabolism, and cell cycle in response to external stress signals and DNA damage. Among multiple steps of the UPS system required to regulate protein ubiquitination and stability, UBLs define specificity, as they recognize and interact with substrates in a temporally- and spatially-regulated manner. Such interactions are required for substrate modification by ubiquitin chains, which marks proteins for recognition and degradation by the proteasome or alters their subcellular localization or assembly into functional complexes. UBLs are often deregulated in cancer, altering substrate availability or activity in a manner that can promote cellular transformation. Such deregulation can occur at the epigenetic, genomic, or post-translational levels. Alterations in UBL can be used to predict their contributions, affecting tumor suppressors or oncogenes in select tumors. Better understanding of mechanisms underlying UBL expression and activities is expected to drive the development of next generation modulators that can serve as novel therapeutic modalities. This review summarizes our current understanding of UBL deregulation in cancer and highlights novel opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Jianfei Qi
- University of Maryland School of Medicine, Baltimore, 21201, USA.
| | - Ze'ev A Ronai
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, 92037, USA.
| |
Collapse
|
28
|
Abstract
PURPOSE P27(kip1) is a negative cell cycle regulator that plays an important role in tumor suppression. Deregulation of p27(kip1) is commonly observed in many human cancers. Numerous studies about p27(kip1) are reported in clinical patients despite variable data for the prognostic of p27(kip1) expression. Here we report a meta-analysis of the association of p27(kip1) expression with the survival of ovarian cancer. METHODS PubMed and Web of science were searched for studies evaluating expression of p27(kip1) and prognostic in ovarian cancer. Published data were extracted and computed into odds ratios (ORs) for death at 3 and 5 years. Data were pooled using the random-effect model. All statistical tests were two-sided. RESULTS Analysis included 9 studies: six studies were reported in European, three studies were reported in American, and one study was reported in Asian. Loss of p27(kip1) was associated with worse overall survival (OS) at both 3 years [OR = 2.61, 95 % confidence interval (CI) 1.95-3.49, p < 0.05] and 5 years (OR = 3.01, 95 % CI 2.17-4.17, p < 0.05). Among studies with different ethnicity (European, American and Asian), the results showed a more significant association in European, including Italy, Germany, and Greece [for both 3-year OS (OR = 3.53, 95 % CI 2.37-5.26) and 5-year OS (OR = 3.66, 95 % CI 2.30-5.83)]. CONCLUSIONS Loss of p27(kip1) is associated with worse survival in ovarian cancer. The development of strategies target p27(kip1) could be a reasonable therapeutic approach.
Collapse
|
29
|
Cell cycle and apoptosis regulatory proteins, proliferative markers, cell signaling molecules, CD209, and decorin immunoreactivity in low-grade myxofibrosarcoma and myxoma. Virchows Arch 2015; 467:211-6. [PMID: 25940995 DOI: 10.1007/s00428-015-1778-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/10/2015] [Accepted: 04/14/2015] [Indexed: 12/26/2022]
Abstract
The histologic differential diagnosis between intramuscular myxoma and low-grade myxofibrosarcoma can be quite difficult in some cases. To identify a diagnostic immunohistochemical marker, we compared the staining profiles of 19 different antigens, including cell cycle proteins, apoptosis proteins, and proliferative markers, and selected other signaling and structural proteins in these two tumors. Ten cases each of intramuscular myxoma and low-grade myxofibrosarcoma were stained with antibodies directed against apoptosis regulatory proteins (Bcl2, activated caspase-3, phospho-H2A.X, and cleaved PARP), cell cycle regulatory proteins (Rb1, Cyclin-A, CDKN1B, and Cdt1), proliferative markers (KI67, MCM2, phospho-histone H3, and geminin), cell signalling molecules (c-Myc, EGF, EGFR, PLA2G4A, and HSP90), a dendritic cell marker (CD209), and the extracellular matrix proteoglycan decorin. Staining patterns of myxoma and myxofibrosarcoma were compared using Fisher's exact test and the Mann-Whitney test. For each potential diagnostic marker studied, the proportions of cases scored as positive on both dichotomous or ordinal scales were not significantly different between myxoma and myxofibrosarcoma. Myxoma and myxofibrosarcoma share a common immunophenotype for each of the markers studied. Distinction between these tumors is still predominantly based on morphologic criteria.
Collapse
|
30
|
Li CF, Fang FM, Lan J, Wang JW, Kung HJ, Chen LT, Chen TJ, Li SH, Wang YH, Tai HC, Yu SC, Huang HY. AMACR amplification in myxofibrosarcomas: a mechanism of overexpression that promotes cell proliferation with therapeutic relevance. Clin Cancer Res 2014; 20:6141-6152. [PMID: 25384383 DOI: 10.1158/1078-0432.ccr-14-1182] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Myxofibrosarcomas frequently display arm-level gains on 5p. We characterized the pathogenetic and therapeutic relevance of the α-methylacyl coenzyme A racemase (AMACR) at 5p13.3. EXPERIMENTAL DESIGN AMACR mRNA expression in myxofibrosarcomas was analyzed using the public transcriptome and laser-microdissected sarcoma cells. We performed florescence in situ hybridization (FISH) and immunohistochemistry in independent samples for clinical correlates. In AMACR-overexpressing myxofibrosarcoma cells and xenografts, we elucidated the biologic function of AMACR using RNA interference and explored the therapeutic effect and mechanism of an AMACR inhibitor, ebselen oxide. RESULTS AMACR protein overexpression and gene amplification were significantly associated with each other (P < 0.001), with higher tumor grades (both P ≤ 0.002), and univariately with worse metastasis-free survival (MFS; both P < 0.0001) and disease-specific survival (DSS; P = 0.0002 for overexpression; P = 0.0062 for amplification). AMACR protein overexpression also independently portended adverse outcome (DSS, P = 0.007; MFS, P = 0.001). However, 39% of AMACR-overexpression cases did not show gene amplification, implying alternative regulatory mechanisms. In myxofibrosarcoma cell lines, stable AMACR knockdown suppressed cell proliferation, anchorage-independent growth, and expression of cyclin D1 and cyclin T2. These growth-promoting attributes of AMACR were corroborated in the AMACR-silenced xenograft model and AMACR-underexpressed myxofibrosarcomas, showing decreased labeling for cyclin D1, cyclin T2, and Ki-67. Compared with fibroblasts, AMACR-expressing myxofibrosarcoma cells were more susceptible to ebselen oxide, which not only decreased viable cells, promoted proteasome-mediated degradation of AMACR protein, and induced cellular apoptosis in vitro, but also dose-dependently suppressed xenografted tumor growth in vivo. CONCLUSIONS Overexpressed AMACR in myxofibrosarcomas can be amplification-driven, associated with tumor aggressiveness, and may be relevant as a druggable target.
Collapse
Affiliation(s)
- Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan. Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan. Department of Biotechnology, Southern Taiwan University, Tainan, Taiwan
| | - Fu-Min Fang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jui Lan
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jun-Wen Wang
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsing-Jien Kung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Tainan, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Tzu-Ju Chen
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Shau-Hsuan Li
- Division of Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Hui Wang
- Institute of Biosignal Transduction, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Chun Tai
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Shih-Chen Yu
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsuan-Ying Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
31
|
Li CF, Fang FM, Kung HJ, Chen LT, Wang JW, Tsai JW, Yu SC, Wang YH, Li SH, Huang HY. Downregulated MTAP expression in myxofibrosarcoma: A characterization of inactivating mechanisms, tumor suppressive function, and therapeutic relevance. Oncotarget 2014; 5:11428-11441. [PMID: 25426549 PMCID: PMC4294342 DOI: 10.18632/oncotarget.2552] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 10/01/2014] [Indexed: 12/22/2022] Open
Abstract
Myxofibrosarcomas are genetically complex and involve recurrently deleted chromosome 9p, for which we characterized the pathogenically relevant target(s) using genomic profiling. In 12 of the 15 samples, we detected complete or partial losses of 9p. The only aggressiveness-associated, differentially lost region was 9p21.3, spanning the potential inactivated methylthioadenosine phosphorylase (MTAP) that exhibited homozygous (4/15) or hemizygous (3/15) deletions. In independent samples, MTAP gene status was assessed using quantitative- and methylation-specific PCR assays, and immunoexpression was evaluated. We applied MTAP reexpression or knockdown to elucidate the functional roles of MTAP and the therapeutic potential of L-alanosine in MTAP-preserved and MTAP-deficient myxofibrosarcoma cell lines and xenografts. MTAP protein deficiency (37%) was associated with MTAP gene inactivation (P < 0.001) by homozygous deletion or promoter methylation, and independently portended unfavorable metastasis-free survival (P = 0.0318) and disease-specific survival (P = 0.014). Among the MTAP-deficient cases, the homozygous deletion of MTAP predicted adverse outcome. In MTAP-deficient cells, MTAP reexpression inhibited cell migration and invasion, proliferation, and anchorage-independent colony formation and downregulated cyclin D1. This approach also attenuated the tube-forming abilities of human umbilical venous endothelial cells, attributable to the transcriptional repression of MMP-9, and abrogated the susceptibility to L-alanosine. The inhibiting effects of MTAP expression on tumor growth, angiogenesis, and the induction of apoptosis by L-alanosine were validated using MTAP-reexpressing xenografts and reverted using RNA interference in MTAP-preserved cells. In conclusion, homozygous deletion primarily accounts for the adverse prognostic impact of MTAP deficiency and confers the biological aggressiveness and susceptibility to L-alanosine in myxofibrosarcomas.
Collapse
Affiliation(s)
- Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
- National Institute of Cancer Research National Health Research Institutes, Tainan, Taiwan
- Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fu-Min Fang
- Departments of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsing-Jien Kung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Tainan, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research National Health Research Institutes, Tainan, Taiwan
- Department of Internal Medicine and Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jun-Wen Wang
- Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jen-Wei Tsai
- Department of Anatomic Pathology, E-Da Hospital, Kaohsiung, Tawian
| | - Shih Chen Yu
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Hui Wang
- Institute of Biosignal Transduction, National Cheng Kung University, Tainan, Taiwan
| | - Shau-Hsuan Li
- Department of Internal Medicine, Division of Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsuan-Ying Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
32
|
Li CF, Chen LT, Lan J, Chou FF, Lin CY, Chen YY, Chen TJ, Li SH, Yu SC, Fang FM, Tai HC, Huang HY. AMACR amplification and overexpression in primary imatinib-naïve gastrointestinal stromal tumors: a driver of cell proliferation indicating adverse prognosis. Oncotarget 2014; 5:11588-11603. [PMID: 25473890 PMCID: PMC4294386 DOI: 10.18632/oncotarget.2597] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/18/2014] [Indexed: 12/12/2022] Open
Abstract
Non-random gains of chromosome 5p have been observed in clinically aggressive gastrointestinal stromal tumors, whereas the driving oncogenes on 5p remain to be characterized. We used an integrative genomic and functional approach to identify amplified oncogenes on 5p and to evaluate the relevance of AMACR amplification at 5p13.3 and its overexpression in gastrointestinal stromal tumors. Thirty-seven tumor samples, imatinib-sensitive GIST882 cell line, and imatinib-resistant GIST48 cell line were analyzed for DNA imbalances using array-based genomic profiling. Forty-one fresh tumor samples of various risk categories were enriched for pure tumor cells by laser capture microdissection and quantified for AMACR mRNA expression. AMACR-specific fluorescence in situ hybridization and immunohistochemistry were both informative in tissue microarray sections of 350 independent primary gastrointestinal stromal tumors, including 213 cases with confirmed KIT /PDGFRA genotypes. To assess the oncogenic functions of AMACR, GIST882 and GIST48 cell lines were stably silenced against their endogenous AMACR expression. In 59% of cases featuring 5p gains, two major amplicons encompassed discontinuous chromosomal regions that were differentially overrepresented in high-risk cases, including the one harboring the mRNA-upregulated AMACR gene. Gene amplification was detected in 19.7% of cases (69/350) and strongly related to protein overexpression (p<0.001), although 52% of AMACR-overexpressing cases exhibited no amplification. Both gene amplification and protein overexpression were significantly associated with epithelioid histology, larger size, increased mitoses, higher risk levels, and unfavorable genotypes (all p≦0.03). They were also independently predictive of decreased disease-free survival (overexpression, p<0.001; amplification, p=0.020) in the multivariate analysis. Concomitant with downregulated cyclin D1, cyclin E, and CDK4, AMACR knockdown suppressed cell proliferation and induced G1-phase arrest, but did not affect apoptosis in both GIST882 and GIST48 cells. In conclusion, AMACR amplification is a mechanism driving increased mRNA and protein expression and conferring aggressiveness through heightened cell proliferation in gastrointestinal stromal tumors.
Collapse
Affiliation(s)
- Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine and Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institutes of Molecular Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jui Lan
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Fong-Fu Chou
- Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ching-Yih Lin
- Department of Tourism Management, Southern Taiwan University of Science and Technology, Tainan, Taiwan
- Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yen-Yang Chen
- Division of Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tzu-Ju Chen
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Shau-Hsuan Li
- Division of Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shih-Chen Yu
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Fu-Ming Fang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hui-Chun Tai
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsuan-Ying Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
33
|
Xu F, Zhu X, Han T, You X, Liu F, Ye L, Zhang X, Wang X, Yao Y. The oncoprotein hepatitis B X-interacting protein promotes the migration of ovarian cancer cells through the upregulation of S-phase kinase-associated protein 2 by Sp1. Int J Oncol 2014; 45:255-63. [PMID: 24788380 DOI: 10.3892/ijo.2014.2411] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 11/18/2013] [Indexed: 11/05/2022] Open
Abstract
Hepatitis B X-interacting protein (HBXIP) is a novel oncoprotein. We have previously reported that HBXIP promotes the proliferation and migration of breast cancer cells. S-phase kinase-associated protein 2 (Skp2) is another oncoprotein which is important for migration. In this study, we investigated whether Skp2 is involved in the migration enhanced by HBXIP in ovarian cancer. The expression of HBXIP and Skp2 in ovarian cancer tissues was examined by immunohistochemistry using tissue microarrays. The role of HBXIP and Skp2 in the migration of ovarian cancer cells was investigated by wound-healing assay and Transwell migration assay. The effect of HBXIP on Skp2 was assessed by reverse transcription polymerase chain reaction (RT-PCR), western blot analysis, luciferase reporter gene assays and chromatin immunoprecipitation in ovarian cancer cells (SKOV3 and CAOV3). We found that both HBXIP and Skp2 were highly expressed in ovarian cancer tissues. We observed that the overexpression of HBXIP enhanced the migration of ovarian cancer cells, while Skp2 siRNAs decreased the cell migration enhanced by HBXIP. The HBXIP siRNAs inhibited ovarian cancer cell migration and Skp2 rescued the migration inhibition induced by HBXIP siRNA. HBXIP could upregulate Skp2 at the levels of mRNA and protein in ovarian cancer cells. Moreover, HBXIP increased the activity of Skp2 promoter via binding to the transcription factor Sp1. HBXIP is highly expressed in ovarian cancer tissues. HBXIP enhances the migration of ovarian cancer cells. HBXIP was able to stimulate the activity of Skp2 promoter via transcription factor Sp1 thus promoting the migration of ovarian cancer cells.
Collapse
Affiliation(s)
- Fuqiang Xu
- Department of Gynecology and Obstetrics, General Hospital Chinese PLA, Beijing 100853, P.R. China
| | - Xiaoming Zhu
- Department of Gynecology and Obstetrics, General Hospital Chinese PLA, Beijing 100853, P.R. China
| | - Tao Han
- Department of Orthopedics, Hainan Branch of PLA General Hospital, Sanya, Hainan 572013, P.R. China
| | - Xiaona You
- Department of Cancer Research, Key Laboratory of Molecular Microbiology and Technology of Ministry of Education, Institute for Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Fabao Liu
- Department of Biochemistry, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Lihong Ye
- Department of Biochemistry, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Xiaodong Zhang
- Department of Cancer Research, Key Laboratory of Molecular Microbiology and Technology of Ministry of Education, Institute for Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Xiaohong Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shanxi 710038, P.R. China
| | - Yuanqing Yao
- Department of Gynecology and Obstetrics, General Hospital Chinese PLA, Beijing 100853, P.R. China
| |
Collapse
|
34
|
Li B, Lu W, Yang Q, Yu X, Matusik RJ, Chen Z. Skp2 regulates androgen receptor through ubiquitin-mediated degradation independent of Akt/mTOR pathways in prostate cancer. Prostate 2014; 74:421-32. [PMID: 24347472 PMCID: PMC4062570 DOI: 10.1002/pros.22763] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/21/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND The intervention of advanced prostate cancer (PCa) in patients has been commonly depending on androgen deprivation therapy. Despite of tremendous research efforts, however, molecular mechanisms on AR regulation remain poorly understood, particularly for castration resistant prostate cancer (CRPC). Targeting AR and associated factors is considered an effective strategy in PCa treatment. METHODS Human prostate cancer cells were used in this study. Manipulations of Skp2 expression were achieved by Skp2 shRNA/siRNA or overexpression of plasmids. Dual luciferase reporter assay was applied for AR activity assessment. Western blot, ubiquitination assay, immunoprecipitation, and immunofluorescence were applied to detect the proteins. RESULTS Our results demonstrated that Skp2 directly involves the regulation of AR expression through ubiquitination-mediated degradation. Skp2 interacted with AR protein in PCa cells, and enforced expression of Skp2 resulted in a decreased level and activity of AR. By contrast, Skp2 knockdown increased the protein accumulation and activity of AR. Importantly, changes of AR contributed by Skp2 led to subsequent alterations of PSA level in PCa cells. AR ubiquitination was significantly increased upon Skp2 overexpression but greatly reduced upon Skp2 knockdown. AR mutant at K847R abrogated Skp2-mediated ubiquitination of AR. NVP-BEZ235, a dual PI3K/mTOR inhibitor, remarkably inhibited Skp2 level with a striking elevation of AR. CONCLUSIONS The results indicate that Skp2 is an E3 ligase for proteasome-dependent AR degradation, and K847 on AR is the recognition site for Skp2-mediated ubiquitination. Our findings reveal an essential role of Skp2 in AR signaling.
Collapse
Affiliation(s)
- Bo Li
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee
| | - Wenfu Lu
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee
| | - Qing Yang
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee
| | - Xiuping Yu
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robert J. Matusik
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Zhenbang Chen
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee
- Correspondence to: Dr. Zhenbang Chen, Department of Biochemistry and Cancer Biology, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Blvd, Nashville, TN 37208.
| |
Collapse
|
35
|
Huang HY, Wu WR, Wang YH, Wang JW, Fang FM, Tsai JW, Li SH, Hung HC, Yu SC, Lan J, Shiue YL, Hsing CH, Chen LT, Li CF. ASS1 as a novel tumor suppressor gene in myxofibrosarcomas: aberrant loss via epigenetic DNA methylation confers aggressive phenotypes, negative prognostic impact, and therapeutic relevance. Clin Cancer Res 2013; 19:2861-2872. [PMID: 23549872 DOI: 10.1158/1078-0432.ccr-12-2641] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The principal goals were to identify and validate targetable metabolic drivers relevant to myxofibrosarcoma pathogenesis using a published transcriptome. EXPERIMENTAL DESIGN As the most significantly downregulated gene regulating amino acid metabolism, argininosuccinate synthetase (ASS1) was selected for further analysis by methylation-specific PCR, pyrosequencing, and immunohistochemistry of myxofibrosarcoma samples. The roles of ASS1 in tumorigenesis and the therapeutic relevance of the arginine-depriving agent pegylated arginine deiminase (ADI-PEG20) were elucidated in ASS1-deficient myxofibrosarcoma cell lines and xenografts with and without stable ASS1 reexpression. RESULTS ASS1 promoter hypermethylation was detected in myxofibrosarcoma samples and cell lines and was strongly linked to ASS1 protein deficiency. The latter correlated with increased tumor grade and stage and independently predicted a worse survival. ASS1-deficient cell lines were auxotrophic for arginine and susceptible to ADI-PEG20 treatment, with dose-dependent reductions in cell viability and tumor growth attributable to cell-cycle arrest in the S-phase. ASS1 expression was restored in 2 of 3 ASS1-deficient myxofibrosarcoma cell lines by 5-aza-2'-deoxycytidine, abrogating the inhibitory effect of ADI-PEG20. Conditioned media following ASS1 reexpression attenuated HUVEC tube-forming capability, which was associated with suppression of MMP-9 and an antiangiogenic effect in corresponding myxofibrosarcoma xenografts. In addition to delayed wound closure and fewer invading cells in a Matrigel assay, ASS1 reexpression reduced tumor cell proliferation, induced G1-phase arrest, and downregulated cyclin E with corresponding growth inhibition in soft agar and xenograft assays. CONCLUSIONS Our findings highlight ASS1 as a novel tumor suppressor in myxofibrosarcomas, with loss of expression linked to promoter methylation, clinical aggressiveness, and sensitivity to ADI-PEG20.
Collapse
Affiliation(s)
- Hsuan-Ying Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tian YF, Chen TJ, Lin CY, Chen LT, Lin LC, Hsing CH, Lee SW, Sheu MJ, Lee HH, Shiue YL, Huang HY, Pan HY, Li CF, Chen SH. SKP2 overexpression is associated with a poor prognosis of rectal cancer treated with chemoradiotherapy and represents a therapeutic target with high potential. Tumour Biol 2013; 34:1107-1117. [PMID: 23328995 DOI: 10.1007/s13277-013-0652-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/03/2013] [Indexed: 12/21/2022] Open
Abstract
The S-phase kinase-associated protein 2 (SKP2) oncoprotein is an E3 ubiquitin ligase. Overexpression of SKP2 was found in various human cancers, including colorectal cancers, but its potential role as a prognostic marker after neoadjuvant chemoradiotherapy (CRT) and for therapeutic intervention in rectal cancers is unknown. This study examined the correlation of SKP2 expression in the prognosis of rectal cancer patients and the viability of colorectal cancer cells treated with CRT. SKP2 immunoexpression was retrospectively assessed in pretreatment biopsies of 172 rectal cancer patients treated with neoadjuvant CRT followed by surgery. Results were correlated with clinicopathological features, therapeutic responses, and patient survival. Pharmacologic assays were used to evaluate the therapeutic relevance of Bortezomib in two colorectal cancer cell lines (HT-29 and SW480). High expression of SKP2 was correlated with the advanced Post-Tx nodal status (p = 0.002), Post-Tx International Union for Cancer Control stage (p = 0.002), and a lower-degree tumor regression grade (p < 0.001). Moreover, high expression of SKP2 (p = 0.027, hazard ratio 3.21) was an independent prognostic factor for local recurrence-free survival. In vitro, Bortezomib downregulated SKP2 expression, induced caspase activation, and decreased the viability of colorectal cancer cells with or without a combination with fluorouracil. Bortezomib also promoted caspase activation and gamma-H2AX formation in colorectal cancer cells concurrently treated with CRT. High expression of SKP2 was associated with a poor therapeutic response and adverse outcomes in rectal cancer patients treated with neoadjuvant CRT. In the presence of chemotherapy with or without radiotherapy, the promoted sensitivity of colorectal cancer cells to Bortezomib with an SKP2-repressing effect indicated that it is a potential therapeutic target.
Collapse
Affiliation(s)
- Yu-Feng Tian
- Division of General Surgery, Department of Surgery, Chi-Mei Medical Center, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wei Z, Jiang X, Liu F, Qiao H, Zhou B, Zhai B, Zhang L, Zhang X, Han L, Jiang H, Krissansen GW, Sun X. Downregulation of Skp2 inhibits the growth and metastasis of gastric cancer cells in vitro and in vivo. Tumour Biol 2013; 34:181-192. [PMID: 23229098 DOI: 10.1007/s13277-012-0527-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/17/2012] [Indexed: 01/14/2023] Open
Abstract
S-phase kinase-associated protein-2 (Skp2) is overexpressed in human cancers and associated with poor prognosis. Skp2 acts as an oncogenic protein by enhancing cancer cell growth and tumor metastasis. The present study has demonstrated that small hairpin RNA (shRNA)-mediated downregulation of Skp2 markedly inhibits the viability, proliferation, colony formation, migration, invasion, and apoptosis of human gastric cancer MGC803 cells, which express a high level of Skp2. In contrast, Skp2 shRNA had only a slight effect on the above properties of BGC823 cells, which express a low level of Skp2. In accord, knockdown of Skp2 suppressed the ability of MGC803 cells to form tumors and to metastasize to the lungs of mice, and the growth of established tumors, by inhibiting cell proliferation and enhancing cell apoptosis. In contrast, overexpression of Skp2 promoted tumorigenesis of BGC823 cells in mice. Skp2 depletion induced cell cycle arrest in the G(1)/S phase by upregulating p27, p21, and p57 and downregulating cyclin E and cyclin-dependent kinase 2. Skp2 depletion also increased caspase-3 activity, impeded the ability of cells to form filopoidia and locomote, upregulated RECK (reversion-inducing cysteine-rich protein with kazal motifs), and downregulated matrix metalloproteinase (MMP)-2 and MMP-9 activity and expression. The results suggest that downregulating Skp2 warrants investigation as a promising strategy to treat gastric cancers that express high levels of Skp2.
Collapse
Affiliation(s)
- Zheng Wei
- The Hepatosplenic Surgery Center, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Xu F, You X, Liu F, Shen X, Yao Y, Ye L, Zhang X. The oncoprotein HBXIP up-regulates Skp2 via activating transcription factor E2F1 to promote proliferation of breast cancer cells. Cancer Lett 2013; 333:124-32. [PMID: 23352642 DOI: 10.1016/j.canlet.2013.01.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 01/07/2013] [Accepted: 01/15/2013] [Indexed: 02/08/2023]
Abstract
Hepatitis B X-interacting protein (HBXIP) is a novel oncoprotein. In this study, we found that the expression levels of HBXIP were positively associated with those of S-phase kinase-associated protein 2 (Skp2) in clinical breast cancer tissues and cell lines. Moreover, we found that HBXIP was able to stimulate the promoter of Skp2 through binding to the -640/-443 region in Skp2 promoter involving activating E2F transcription factor 1 (E2F1). Skp2 plays crucial roles in HBXIP-enhanced proliferation of breast cancer cells in vitro and in vivo. We conclude that HBXIP up-regulates Skp2 via activating E2F1 to promote proliferation of breast cancer cells.
Collapse
Affiliation(s)
- Fuqiang Xu
- Department of Cancer Research, Key Laboratory of Molecular Microbiology and Technology of Ministry of Education, Institute for Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | | | | | | | | | | | | |
Collapse
|
39
|
Chen L, Tweddle DA. p53, SKP2, and DKK3 as MYCN Target Genes and Their Potential Therapeutic Significance. Front Oncol 2012; 2:173. [PMID: 23226679 PMCID: PMC3508619 DOI: 10.3389/fonc.2012.00173] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/01/2012] [Indexed: 12/15/2022] Open
Abstract
Neuroblastoma is the most common extra-cranial solid tumor of childhood. Despite significant advances, it currently still remains one of the most difficult childhood cancers to cure, with less than 40% of patients with high-risk disease being long-term survivors. MYCN is a proto-oncogene implicated to be directly involved in neuroblastoma development. Amplification of MYCN is associated with rapid tumor progression and poor prognosis. Novel therapeutic strategies which can improve the survival rates whilst reducing the toxicity in these patients are therefore required. Here we discuss genes regulated by MYCN in neuroblastoma, with particular reference to p53, SKP2, and DKK3 and strategies that may be employed to target them.
Collapse
Affiliation(s)
- Lindi Chen
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Newcastle University Newcastle, UK
| | | |
Collapse
|