1
|
Gbadamosi MO, Bhise N, Ghosh TM, Molchan EK, Streeks K, Puglise J, Ohaegbulam A, Makarem M, Olabige O, Yang C, Ricks-Santi L, Mitchell DA, Fridley BL, Lamba JK. A genome-wide association study using HapMap cell lines reveals modulators of cellular response to cyclophosphamide. Future Oncol 2025:1-14. [PMID: 40356407 DOI: 10.1080/14796694.2025.2501517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
AIMS This study identifies single-nucleotide polymorphisms (SNPs) associated with cellular response to cyclophosphamide (CTX) using phosphoramide mustard (PM), its primary cytotoxic metabolite, and explores the downstream consequences for breast cancer (BC) patients. METHODS We analyzed 1,978,545 SNPs from EBV-transformed lymphoblastic cell lines (LCLs) derived from 53 unrelated European individuals, in a genome-wide association study using cellular PM sensitivity data. We filtered SNPs associated with PM sensitivity (p < 5 × 10-5) predicted to overlap with regulatory elements in breast tissue using a chromatin state prediction model. We then assessed the consequences using LCL transcriptomic data and data from BC patients treated with (ACT-BC; N = 155) and without CTX. RESULTS Twenty SNPs were filtered out including rs12408401, which was associated with PM resistance (p = 3.89 × 10-5), potentially disrupted a CTCF-loop, and was associated with increased RFX5 expression (p = 0.036), which was associated with poor disease-free interval in ACT-BC patients (HR = 5.32; p = 0.028); and rs784562, which was associated with improved PM sensitivity (p = 6.41 × 10-6), potentially altered nearby enhancer functionality, and reduced expression of KRT72 which was associated with poor progression-free survival in ACT-BC patients (HR = 3.61; p = 0.040). CONCLUSION Our study identifies SNPs significantly associated with cellular CTX response with potential mechanistic and clinical relevance, thereby providing insights toward optimized CTX treatment strategies.
Collapse
Affiliation(s)
- Mohammed O Gbadamosi
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Gainesville, FL, USA
- Department of Neurosurgery, Brain Tumor Immunotherapy Program, Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Neha Bhise
- Department of Experimental & Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Taraswi Mitra Ghosh
- Department of Experimental & Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - Elizabeth K Molchan
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Gainesville, FL, USA
- Department of Neurosurgery, Brain Tumor Immunotherapy Program, Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Kathleen Streeks
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Gainesville, FL, USA
| | - Jason Puglise
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Gainesville, FL, USA
| | - Alyssa Ohaegbulam
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Gainesville, FL, USA
| | - Mariana Makarem
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Gainesville, FL, USA
| | - Oluwaseyi Olabige
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Gainesville, FL, USA
- Department of Neurosurgery, Brain Tumor Immunotherapy Program, Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Changlin Yang
- Department of Neurosurgery, Brain Tumor Immunotherapy Program, Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Luisel Ricks-Santi
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Gainesville, FL, USA
| | - Duane A Mitchell
- Department of Neurosurgery, Brain Tumor Immunotherapy Program, Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Brooke L Fridley
- Division of Health Services and Outcomes Research, Children's Mercy, Kansas City, MO, USA
| | - Jatinder K Lamba
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| |
Collapse
|
2
|
Wang G, Seidler NJ, Röhm S, Pan Y, Liang XJ, Haarer L, Berger BT, Sivashanmugam SA, Wydra VR, Forster M, Laufer SA, Chaikuad A, Gehringer M, Knapp S. Probing the Protein Kinases' Cysteinome by Covalent Fragments. Angew Chem Int Ed Engl 2025; 64:e202419736. [PMID: 39716901 DOI: 10.1002/anie.202419736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/23/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024]
Abstract
Protein kinases are important drug targets, yet specific inhibitors have been developed for only a fraction of the more than 500 human kinases. A major challenge in designing inhibitors for highly related kinases is selectivity. Unlike their non-covalent counterparts, covalent inhibitors offer the advantage of selectively targeting structurally similar kinases by modifying specific protein side chains, particularly non-conserved cysteines. Previously, covalent fragment screens yielded potent and selective inhibitors for individual kinases such as ERK1/2 but have not been applied to the broader kinome. Furthermore, many of the accessible cysteine positions have not been addressed so far. Here, we outline a generalizable approach to sample ATP-site cysteines with fragment-like covalent inhibitors. We present the development of a kinase-focused covalent fragment library and its systematic screening against a curated selection of 47 kinases, with 60 active site-proximal cysteines using LC/MS and differential scanning fluorimetry (DSF) assays, followed by hit validation through various complementary techniques. Our findings expand the repertoire of targetable cysteines within protein kinases, provide insight into unique binding modes identified from crystal structures and deliver isoform-specific hits with promising profiles as starting points for the development of highly potent and selective covalent inhibitors.
Collapse
Affiliation(s)
- Guiqun Wang
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), DKTK Site Frankfurt-Mainz, German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany
| | - Nico J Seidler
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
| | - Sandra Röhm
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
| | - Yufeng Pan
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
| | - Xiaojun Julia Liang
- Faculty of Medicine, Institute for Biomedical Engineering, Department for Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Lisa Haarer
- Faculty of Medicine, Institute for Biomedical Engineering, Department for Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Benedict-Tilman Berger
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
| | - Saran Aswathaman Sivashanmugam
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
| | - Valentin R Wydra
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
| | - Michael Forster
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Stefan A Laufer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Apirat Chaikuad
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
| | - Matthias Gehringer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
- Faculty of Medicine, Institute for Biomedical Engineering, Department for Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), DKTK Site Frankfurt-Mainz, German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany
| |
Collapse
|
3
|
Yu F, Zheng S, Yu C, Gao S, Shen Z, Nar R, Liu Z, Huang S, Wu L, Gu T, Qian Z. KRAS mutants confer platinum resistance by regulating ALKBH5 posttranslational modifications in lung cancer. J Clin Invest 2025; 135:e185149. [PMID: 39960727 PMCID: PMC11910214 DOI: 10.1172/jci185149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/24/2025] [Indexed: 03/18/2025] Open
Abstract
Constitutively active mutations of KRAS are prevalent in non-small cell lung cancer (NSCLC). However, the relationship between these mutations and resistance to platinum-based chemotherapy and the underlying mechanisms remain elusive. In this study, we demonstrate that KRAS mutants confer resistance to platinum in NSCLC. Mechanistically, KRAS mutants mediate platinum resistance in NSCLC cells by activating ERK/JNK signaling, which inhibits AlkB homolog 5 (ALKBH5) N6-methyladenosine (m6A) demethylase activity by regulating posttranslational modifications (PTMs) of ALKBH5. Consequently, the KRAS mutant leads to a global increase in m6A methylation of mRNAs, particularly damage-specific DNA-binding protein 2 (DDB2) and XPC, which are essential for nucleotide excision repair. This methylation stabilized the mRNA of these 2 genes, thus enhancing NSCLC cells' capability to repair platinum-induced DNA damage and avoid apoptosis, thereby contributing to drug resistance. Furthermore, blocking KRAS-mutant-induced m6A methylation, either by overexpressing a SUMOylation-deficient mutant of ALKBH5 or by inhibiting methyltransferase-like 3 (METTL3) pharmacologically, significantly sensitizes KRAS-mutant NSCLC cells to platinum drugs in vitro and in vivo. Collectively, our study uncovers a mechanism that mediates KRAS-mutant-induced chemoresistance in NSCLC cells by activating DNA repair through the modulation of the ERK/JNK/ALKBH5 PTM-induced m6A modification in DNA damage repair-related genes.
Collapse
MESH Headings
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/enzymology
- Proto-Oncogene Proteins p21(ras)/genetics
- Proto-Oncogene Proteins p21(ras)/metabolism
- AlkB Homolog 5, RNA Demethylase/genetics
- AlkB Homolog 5, RNA Demethylase/metabolism
- Drug Resistance, Neoplasm/genetics
- Protein Processing, Post-Translational/genetics
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Animals
- Mice
- Mutation
- Cell Line, Tumor
- Mice, Nude
- Cisplatin/pharmacology
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- MAP Kinase Signaling System/genetics
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- A549 Cells
Collapse
Affiliation(s)
- Fang Yu
- Department of Medicine, University of Florida Health Cancer Center and
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Shikan Zheng
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
| | - Chunjie Yu
- Department of Medicine, University of Florida Health Cancer Center and
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Sanhui Gao
- Department of Medicine, University of Florida Health Cancer Center and
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Zuqi Shen
- Department of Medicine, University of Florida Health Cancer Center and
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Rukiye Nar
- Department of Medicine, University of Florida Health Cancer Center and
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Zhexin Liu
- Department of Medicine, University of Florida Health Cancer Center and
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Shuang Huang
- Department of Anatomy & Cell Biology, University of Florida, Gainesville, Florida, USA
| | - Lizi Wu
- Department of Molecular Genetics and Microbiology, University of Florida Health Cancer Center, University of Florida Genetic Institute, University of Florida, Gainesville, Florida, USA
| | - Tongjun Gu
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Zhijian Qian
- Department of Medicine, University of Florida Health Cancer Center and
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Datta KK, Kore H, Gowda H. Multi-omics analysis delineates resistance mechanisms associated with BRAF inhibition in melanoma cells. Exp Cell Res 2024; 442:114215. [PMID: 39182666 DOI: 10.1016/j.yexcr.2024.114215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Mutant BRAF is a critical oncogenic driver in melanoma, making it an attractive therapeutic target. However, the success of targeted therapy using BRAF inhibitors vemurafenib and dabrafenib has been limited due to development of resistance, restricting their clinical efficacy. A prior knowledge of resistance mechanisms to BRAFi or any cancer drug can lead to development of drugs that overcome resistance thus improving clinical outcomes. In vitro cellular models are powerful systems that can be utilized to mimic and study resistance mechanisms. In this study, we employed a multi-omics approach to characterize a panel of BRAF mutant melanoma cell lines to develop and systematically characterize BRAFi persister and resistant cells using exome sequencing, proteomics and phosphoproteomics. Our datasets revealed frequently observed intrinsic and acquired, genetic and non-genetic mechanisms of BRAFi resistance that have been studied in patients who developed resistance. In addition, we identified proteins that can be potentially targeted to overcome BRAFi resistance. Overall, we demonstrate that in vitro systems can be utilized not only to predict resistance mechanisms but also to identify putative therapeutic targets.
Collapse
Affiliation(s)
- Keshava K Datta
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| | - Hitesh Kore
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Harsha Gowda
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia; Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
5
|
Li Y, Wang J. Contrast-induced acute kidney injury: a review of definition, pathogenesis, risk factors, prevention and treatment. BMC Nephrol 2024; 25:140. [PMID: 38649939 PMCID: PMC11034108 DOI: 10.1186/s12882-024-03570-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Contrast-induced acute kidney injury (CI-AKI) has become the third leading cause of hospital-acquired AKI, which seriously threatens the health of patients. To date, the precise pathogenesis of CI-AKI has remained not clear and may be related to the direct cytotoxicity, hypoxia and ischemia of medulla, and oxidative stress caused by iodine contrast medium, which have diverse physicochemical properties, including cytotoxicity, permeability and viscosity. The latest research shows that microRNAs (miRNAs) are also involved in apoptosis, pyroptosis, and autophagy which caused by iodine contrast medium (ICM), which may be implicated in the pathogenesis of CI-AKI. Unfortunately, effective therapy of CI-AKI is very limited at present. Therefore, effective prevention of CI-AKI is of great significance, and several preventive options, including hydration, antagonistic vasoconstriction, and antioxidant drugs, have been developed. Here, we review current knowledge about the features of iodine contrast medium, the definition, pathogenesis, molecular mechanism, risk factors, prevention and treatment of CI-AKI.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Pharmacy, Chongqing Traditional Chinese Medicine Hospital, 400021, Chongqing, P.R. China
| | - Junda Wang
- Department of Radiology, Chongqing Traditional Chinese Medicine Hospital, No. 6 Panxi 7 Branch Road, 400021, Chongqing, P.R. China.
| |
Collapse
|
6
|
Al-Sheikh A, Jaber MA, Khalaf H, AlKhawaja N, Abuarqoub D. Synthesis and biological evaluation of novel 2-morpholino-4-anilinoquinoline derivatives as antitumor agents against HepG2 cell line. RSC Adv 2024; 14:3304-3313. [PMID: 38249681 PMCID: PMC10798140 DOI: 10.1039/d3ra07495a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Cancer is a life-threatening illness all over the world, and developing anticancer treatments with high efficacy and low side effects remains a challenge. The quinoline ring structure has long been recognized as a flexible nucleus in the design and synthesis of physiologically active chemicals. In this study, five new 2-morpholino-4-anilinoquinoline compounds were synthesized and their biological anticancer potential against the HepG2 cell line was assessed. The compounds produced demonstrated varying responses against HepG2 cells, with compounds 3c, 3d, and 3e exhibiting the highest activity, with IC50 values of 11.42, 8.50, and 12.76 μM, respectively. It is a critical requirement that anticancer medications are able to selectively decrease cancer growth while not causing damage to normal cells. Compound 3e exhibited increased activity while maintaining adequate selectivity. It was also the most effective chemical against cell migration and adhesion, which could play an important role in drug resistance and cell metastasis. In total, the findings revealed good possibilities for anticancer therapy, suggesting a target for future development of anticancer medication.
Collapse
Affiliation(s)
- Ahmed Al-Sheikh
- Department of Pharmaceutical Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy and Medical Sciences, University of Petra Amman 11196 Jordan
| | - Malak A Jaber
- Department of Pharmaceutical Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy and Medical Sciences, University of Petra Amman 11196 Jordan
| | - Hana'a Khalaf
- Department of Clinical Nutrition and Diets, Faculty of Pharmacy and Medical Sciences, University of Petra Amman 11196 Jordan
| | - Nour AlKhawaja
- Pharmaceutical Studies Center, Faculty of Pharmacy and Medical Sciences, University of Petra Amman 11196 Jordan
| | - Duaa Abuarqoub
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra Amman 11196 Jordan
- Cell Therapy Center, University of Jordan Amman 11942 Jordan
| |
Collapse
|
7
|
Fumero-Velázquez M, Hagstrom M, Dhillon S, Geraminejad T, Olivares S, Donati M, Nosek D, Waldenbäck P, Kazakov D, Sheffield BS, Tron VA, Gerami P. Clinical, Morphologic, and Molecular Features of Benign and Intermediate-grade Melanocytic Tumors With Activating Mutations in MAP2K1. Am J Surg Pathol 2023; 47:1438-1448. [PMID: 37773074 DOI: 10.1097/pas.0000000000002131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Activating mutations in MAP2K1 can be seen in benign and intermediate-grade melanocytic neoplasms with spitzoid morphology. We analyzed the clinical, histopathologic, and genetic features for 16 cases of benign and intermediate-grade melanocytic tumors harboring activating MAP2K1 mutations. We compared them to Spitz neoplasms with characteristic Spitz fusions or HRAS mutation. We also compared the mutational pattern of benign and intermediate-grade MAP2K1 -mutated neoplasms and melanomas with activating MAP2K1 mutations. Among the 16 cases, the favored morphologic diagnosis was Spitz nevus (8/16), atypical Spitz tumors (6/16), and deep penetrating nevus (2/16). The 2 most common architectural patterns seen included a plaque-like silhouette with fibroplasia around the rete reminiscent of a dysplastic nevus (n=7) or a wedge-shaped or nodular pattern with the plexiform arrangement of the nests aggregating around the adnexa or neurovascular bundle (n=8). The cases with dysplastic architecture and spitzoid cytology resembled dysplastic Spitz nevi. Compared with true Spitz neoplasms, MAP2K1 -mutated neoplasms occurred in older age groups and had more frequent pagetosis and a lower average mitotic count. The most common type of mutation in the benign and intermediate-grade cases in the literature involves an in-frame deletion, while, in melanomas, missense mutations are predominant. Benign and intermediate-grade melanocytic neoplasms with activating mutations in MAP2K1 can have morphologic overlap with Spitz neoplasms. A significant proportion of melanomas also have activating MAP2K1 mutations. In-frame deletions are predominantly seen in the benign and intermediate-grade cases, and missense mutations are predominantly seen in melanomas.
Collapse
Affiliation(s)
- Mónica Fumero-Velázquez
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Michael Hagstrom
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Soneet Dhillon
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Tara Geraminejad
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Shantel Olivares
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Michele Donati
- Department of Pathology, University Hospital Campus Bio-Medico, Rome, Italy
| | - Daniel Nosek
- Department of Pathology, Umeå University, Umeå, Sweden
| | | | - Dmitry Kazakov
- Institute for Dermatohistopathology, Pathology Institute Enge, Zürich, Switzerland
| | | | - Victor A Tron
- Department of Laboratory Medicine and Pathology, University of Toronto
- Department of Laboratory Medicine, Lifelabs LP, Toronto, ON, Canada
| | - Pedram Gerami
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
8
|
Pan P, Geng T, Li Z, Ding X, Shi M, Li Y, Wang Y, Shi Y, Wu J, Zhong L, Ji D, Li Z, Meng X. Design, Synthesis, and Biological Evaluation of Proteolysis-Targeting Chimeras as Highly Selective and Efficient Degraders of Extracellular Signal-Regulated Kinase 5. J Med Chem 2023; 66:13568-13586. [PMID: 37751283 DOI: 10.1021/acs.jmedchem.3c00864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Extracellular signal-regulated kinase 5 (ERK5) is recognized as a key member of the mitogen-activated protein kinase family and is involved in tumor growth, migration, and angiogenesis. However, the results of ERK5 inhibition in multiple studies are controversial, and a highly specific ERK5-targeting agent is required to confirm physiological functions. Using proteolysis-targeting chimera technology, we designed the selective ERK5 degrader PPM-3 and examined its biological effect on cancer cells. Interestingly, the selective degradation of ERK5 with PPM-3 did not influence tumor cell growth directly. Based on proteomics analysis, the ERK5 deletion may be associated with tumor immunity. PPM-3 influences tumor development by affecting the differentiation of macrophages. Therefore, PPM-3 is an effective small-molecule tool for studying ERK5 and a promising immunotherapy drug candidate.
Collapse
Affiliation(s)
- Pengming Pan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Tongtong Geng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhongtang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xuyang Ding
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Mengyuan Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yang Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yashuai Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuanyuan Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jiaojiao Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Liang Zhong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dengbo Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhongjun Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiangbao Meng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
9
|
Antileukemic properties of the kinase inhibitor OTSSP167 in T-cell acute lymphoblastic leukemia. Blood Adv 2022; 7:422-435. [PMID: 36399528 PMCID: PMC9979715 DOI: 10.1182/bloodadvances.2022008548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022] Open
Abstract
Novel drugs are needed to increase treatment response in children with high-risk T-cell acute lymphoblastic leukemia (T-ALL). Following up on our previous report on the activation of the MAP2K7-JNK pathway in pediatric T-ALL, here we demonstrate that OTSSP167, recently shown to inhibit MAP2K7, has antileukemic capacity in T-ALL. OTSSP167 exhibited dose-dependent cytotoxicity against a panel of T-ALL cell lines with IC50 in the nanomolar range (10-50 nM). OTSSP167 induces apoptosis and cell cycle arrest in T-ALL cell lines, associated at least partially with the inhibition of MAP2K7 kinase activity and lower activation of its downstream substrate, JNK. Other leukemic T-cell survival pathways, such as mTOR and NOTCH1 were also inhibited. Daily intraperitoneal administration of 10 mg/kg OTSSP167 was well tolerated, with mice showing no hematological toxicity, and effective at reducing the expansion of human T-ALL cells in a cell-based xenograft model. The same dosage of OTSSP167 efficiently controlled the leukemia burden in the blood, bone marrow, and spleen of 3 patient-derived xenografts, which resulted in prolonged survival. OTSSP167 exhibited synergistic interactions when combined with dexamethasone, L-asparaginase, vincristine, and etoposide. Our findings reveal novel antileukemic properties of OTSSP167 in T-ALL and support the use of OTSSP167 as an adjuvant drug to increase treatment response and reduce relapses in pediatric T-ALL.
Collapse
|
10
|
Chow CY, Lie EF, Wu CH, Chow LW. Clinical implication of genetic composition and molecular mechanism on treatment strategies of HER2-positive breast cancers. Front Oncol 2022; 12:964824. [PMID: 36387174 PMCID: PMC9659858 DOI: 10.3389/fonc.2022.964824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/14/2022] [Indexed: 12/01/2022] Open
Abstract
The current clinical management model of HER2-positive breast cancers is commonly based on guidelines, which in turn are based on the design and outcome of clinical trials. While this model is useful to most practicing clinicians, the treatment outcome of individual patient is not certain at the start of treatment. As the understanding of the translational research of carcinogenesis and the related changes in cancer genetics and tumor microenvironment during treatment is critical in the selection of right choice of treatment to maximize the successful clinical outcome for the patient, this review article intends to discuss the latest developments in the genetic and molecular mechanisms of cancer progression and treatment resistance, and how they influence the planning of the treatment strategies of HER2-positive breast cancers.
Collapse
Affiliation(s)
- Christopher Y.C. Chow
- UNIMED Medical Institute, Hong Kong, Hong Kong SAR, China
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | | | - Cheng-Hsun Wu
- Department of Anatomy, China Medical University, Taichung, Taiwan
| | - Louis W.C. Chow
- UNIMED Medical Institute, Hong Kong, Hong Kong SAR, China
- Organisation for Oncology and Translational Research, Hong Kong, Hong Kong SAR, China
- *Correspondence: Louis W.C. Chow,
| |
Collapse
|
11
|
Fajardo P, Taskova M, Martín-Serrano MA, Hansen J, Slott S, Jakobsen AK, Wibom ML, Salegi B, Muñoz A, Barbachano A, Sharma A, Gubatan JM, Habtezion A, Sanz-Ezquerro JJ, Astakhova K, Cuenda A. p38γ and p38δ as biomarkers in the interplay of colon cancer and inflammatory bowel diseases. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:897-901. [PMID: 35796643 PMCID: PMC9456697 DOI: 10.1002/cac2.12331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/07/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Pilar Fajardo
- Department of Immunology and Oncology, National Centre of Biotechnology/Consejo Superior de Investigaciones Científicas, Darwin 3, Madrid, 28049, Spain.,PhD Programme in Molecular Bioscience, Doctoral School, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Maria Taskova
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.,Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Miguel A Martín-Serrano
- Department of Immunology and Oncology, National Centre of Biotechnology/Consejo Superior de Investigaciones Científicas, Darwin 3, Madrid, 28049, Spain
| | - Jonas Hansen
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.,Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Sofie Slott
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Anna K Jakobsen
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Marie-Louise Wibom
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Beñat Salegi
- Department of Immunology and Oncology, National Centre of Biotechnology/Consejo Superior de Investigaciones Científicas, Darwin 3, Madrid, 28049, Spain
| | - Alberto Muñoz
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, 28029, Spain.,Centro de Investigación Biomédica en Red-Cáncer, Instituto de Salud Carlos III, Madrid, 28029, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario La Paz, Madrid, 28029, Spain
| | - Antonio Barbachano
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, 28029, Spain.,Centro de Investigación Biomédica en Red-Cáncer, Instituto de Salud Carlos III, Madrid, 28029, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario La Paz, Madrid, 28029, Spain
| | - Arpita Sharma
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - John Mark Gubatan
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Aida Habtezion
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Juan J Sanz-Ezquerro
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología/ Consejo Superior de Investigaciones Científicas, Darwin 3, Madrid, 28049, Spain
| | - Kira Astakhova
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Ana Cuenda
- Department of Immunology and Oncology, National Centre of Biotechnology/Consejo Superior de Investigaciones Científicas, Darwin 3, Madrid, 28049, Spain
| |
Collapse
|
12
|
Yang T, Shen J. Small nucleolar RNAs and SNHGs in the intestinal mucosal barrier: Emerging insights and current roles. J Adv Res 2022; 46:75-85. [PMID: 35700920 PMCID: PMC10105082 DOI: 10.1016/j.jare.2022.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Previous studies have focused on the involvement of small nucleolar RNAs (snoRNAs) and SNHGs in tumor cell proliferation, apoptosis, invasion, and metastasis via multiple pathways, including phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT), Wnt/β catenin, and mitogen-activated protein kinase (MAPK). These molecular mechanisms affect the integrity of the intestinal mucosal barrier. AIM OF REVIEW Current evidence regarding snoRNAs and SNHGs in the context of the mucosal barrier and modulation of homeostasis is fragmented. In this review, we collate the established information on snoRNAs and SNHGs as well as discuss the major pathways affecting the mucosal barrier. KEY SCIENTIFIC CONCEPTS OF REVIEW Intestinal mucosal immunity, microflora, and the physical barrier are altered in non-neoplastic diseases such as inflammatory bowel diseases. Dysregulated snoRNAs and SNHGs may impact the intestinal mucosal barrier to promote the pathogenesis and progression of multiple diseases. SnoRNAs or SNHGs has been shown to be associated with poor disease behaviors, indicating that they may be exploited as prognostic biomarkers. Additionally, clarifying the complicated interactions between snoRNAs or SNHGs and the mucosal barrier may provide novel insights for the therapeutic treatment targeting strengthen the intestinal mucosal barrier.
Collapse
Affiliation(s)
- Tian Yang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center. Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160# Pu Jian Ave, Shanghai 200127, China; Shanghai Institute of Digestive Disease, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center. Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160# Pu Jian Ave, Shanghai 200127, China; Shanghai Institute of Digestive Disease, China.
| |
Collapse
|
13
|
Park HB, Baek KH. E3 ligases and deubiquitinating enzymes regulating the MAPK signaling pathway in cancers. Biochim Biophys Acta Rev Cancer 2022; 1877:188736. [DOI: 10.1016/j.bbcan.2022.188736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 12/13/2022]
|
14
|
Randon G, Maddalena G, Germani MM, Pircher CC, Manca P, Bergamo F, Giordano M, Sposetti C, Montagna A, Vetere G, Zambelli L, Rasola C, Boccaccino A, Pagani F, Ambrosini M, Massafra M, Fontanini G, Milione M, Fassan M, Cremolini C, Lonardi S, Pietrantonio F. Negative Ultraselection of Patients With RAS/ BRAF Wild-Type, Microsatellite-Stable Metastatic Colorectal Cancer Receiving Anti-EGFR-Based Therapy. JCO Precis Oncol 2022; 6:e2200037. [PMID: 35544729 PMCID: PMC9200389 DOI: 10.1200/po.22.00037] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/06/2022] [Accepted: 03/30/2022] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Several uncommon genomic alterations beyond RAS and BRAFV600E mutations drive primary resistance to anti-epidermal growth factor receptors (EGFRs) in metastatic colorectal cancer (mCRC). Our PRESSING panel (including PIK3CA exon 20/AKT1/PTEN mutations, ERBB2/MET amplifications, gene fusions, and microsatellite instability-high status) represented a paradigm of negative hyperselection with more precise tailoring of EGFR blockade. However, a modest proportion of hyperselected mCRC has intrinsic resistance potentially driven by even rarer genomic alterations. MATERIALS AND METHODS A prospective data set at three Italian Academic Hospitals included 650 patients with mCRC with comprehensive genomic profiling by FoundationOne CDx and treated with anti-EGFRs. PRESSING2 panel alterations were selected on the basis of previous clinico-biologic studies and included NTRKs, ERBB3, NF1, MAP2K1/2/4, AKT2 pathogenic mutations; PTEN/NF1 loss; ERBB3, FGFR2, IGF1R, KRAS, ARAF, and AKT1-2 amplification; and EGFR rearrangements. These were collectively associated with outcomes in patients with hyperselected disease, ie, RAS/BRAF wild-type, PRESSING-negative, and microsatellite stable. RESULTS Among 162 hyperselected patients, 24 (15%) had PRESSING2 alterations, which were mutually exclusive except in two samples and were numerically higher in right-sided versus left-sided cancers (28% v 13%; P = .149). Independently of sidedness and other factors, patients with PRESSING2-positive status had significantly worse progression-free survival and overall survival compared with PRESSING2-negative ones (median progression-free survival 6.4 v 12.8 months, adjusted hazard ratio 4.19 [95% CI, 2.58 to 6.79]; median overall survival: 22.6 v 49.9 months, adjusted hazard ratio 2.98 [95% CI, 1.49 to 5.96]). The combined analysis of primary tumor sidedness and PRESSING2 status allowed us to better stratify outcomes. CONCLUSION Negative ultraselection warrants further investigation with the aim of maximizing the benefit of EGFR blockade strategies in patients with RAS and BRAF wild-type, microsatellite stable mCRC.
Collapse
Affiliation(s)
- Giovanni Randon
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Giulia Maddalena
- Oncology Unit 1, Veneto Institute of Oncology—IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padova, Italy
| | - Marco Maria Germani
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Chiara Carlotta Pircher
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Paolo Manca
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | | | - Mirella Giordano
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Caterina Sposetti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Aldo Montagna
- Oncology Unit 1, Veneto Institute of Oncology—IRCCS, Padova, Italy
| | - Guglielmo Vetere
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Luca Zambelli
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Cosimo Rasola
- Oncology Unit 1, Veneto Institute of Oncology—IRCCS, Padova, Italy
| | - Alessandra Boccaccino
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Filippo Pagani
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Margherita Ambrosini
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Marco Massafra
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Gabriella Fontanini
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Massimo Milione
- First Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padova, Italy
- Veneto Institute of Oncology—IRCCS, Padova, Italy
| | - Chiara Cremolini
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Sara Lonardi
- Oncology Unit 3, Veneto Institute of Oncology—IRCCS, Padova, Italy
| | - Filippo Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| |
Collapse
|
15
|
Martinez R, Huang W, Buck H, Rea S, Defnet AE, Kane MA, Shapiro P. Proteomic Changes in the Monolayer and Spheroid Melanoma Cell Models of Acquired Resistance to BRAF and MEK1/2 Inhibitors. ACS OMEGA 2022; 7:3293-3311. [PMID: 35128241 PMCID: PMC8811929 DOI: 10.1021/acsomega.1c05361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Extracellular signal-regulated kinase-1/2 (ERK1/2) pathway inhibitors are important therapies for treating many cancers. However, acquired resistance to most protein kinase inhibitors limits their ability to provide durable responses. Approximately 50% of malignant melanomas contain activating mutations in BRAF, which promotes cancer cell survival through the direct phosphorylation of the mitogen-activated protein kinase MAPK/ERK 1/2 (MEK1/2) and the activation of ERK1/2. Although the combination treatment with BRAF and MEK1/2 inhibitors is a recommended approach to treat melanoma, the development of drug resistance remains a barrier to achieving long-term patient benefits. Few studies have compared the global proteomic changes in BRAF/MEK1/2 inhibitor-resistant melanoma cells under different growth conditions. The current study uses high-resolution label-free mass spectrometry to compare relative protein changes in BRAF/MEK1/2 inhibitor-resistant A375 melanoma cells grown as monolayers or spheroids. While approximately 66% of proteins identified were common in the monolayer and spheroid cultures, only 6.2 or 3.6% of proteins that significantly increased or decreased, respectively, were common between the drug-resistant monolayer and spheroid cells. Drug-resistant monolayers showed upregulation of ERK-independent signaling pathways, whereas drug-resistant spheroids showed primarily elevated catabolic metabolism to support oxidative phosphorylation. These studies highlight the similarities and differences between monolayer and spheroid cell models in identifying actionable targets to overcome drug resistance.
Collapse
Affiliation(s)
- Ramon Martinez
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United
States
| | - Weiliang Huang
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United
States
| | - Heather Buck
- Nathan
Schnaper Internship Program in Translational Cancer Research, Marlene
and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22S. Greene Street, Baltimore, Maryland 21201, United States
| | - Samantha Rea
- Nathan
Schnaper Internship Program in Translational Cancer Research, Marlene
and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22S. Greene Street, Baltimore, Maryland 21201, United States
| | - Amy E. Defnet
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United
States
| | - Maureen A. Kane
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United
States
| | - Paul Shapiro
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United
States
| |
Collapse
|
16
|
Mishra N, Rana K, Seelam SD, Kumar R, Pandey V, Salimath BP, Agsar D. Characterization and Cytotoxicity of Pseudomonas Mediated Rhamnolipids Against Breast Cancer MDA-MB-231 Cell Line. Front Bioeng Biotechnol 2021; 9:761266. [PMID: 34950641 PMCID: PMC8691732 DOI: 10.3389/fbioe.2021.761266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/27/2021] [Indexed: 01/08/2023] Open
Abstract
A biosurfactant producing bacterium was identified as Pseudomonas aeruginosa DNM50 based on molecular characterization (NCBI accession no. MK351591). Structural characterization using MALDI-TOF revealed the presence of 12 different congeners of rhamnolipid such as Rha-C8-C8:1, Rha-C10-C8:1, Rha-C10-C10, Rha-C10-C12:1, Rha-C16:1, Rha-C16, Rha-C17:1, Rha-Rha-C10:1-C10:1, Rha-Rha-C10-C12, Rha-Rha-C10-C8, Rha-Rha-C10-C8:1, and Rha-Rha-C8-C8. The radical scavenging activity of rhamnolipid (DNM50RL) was determined by 2, 3-diphenyl-1-picrylhydrazyl (DPPH) assay which showed an IC50 value of 101.8 μg/ ml. The cytotoxic activity was investigated against MDA-MB-231 breast cancer cell line by MTT (4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide) assay which showed a very low IC50 of 0.05 μg/ ml at 72 h of treatment. Further, its activity was confirmed by resazurin and trypan blue assay with IC50 values of 0.01 μg/ml and 0.64 μg/ ml at 72 h of treatment, respectively. Thus, the DNM50RL would play a vital role in the treatment of breast cancer targeting inhibition of p38MAPK.
Collapse
Affiliation(s)
- Neelam Mishra
- Department of Microbiology, Gulbarga University, Gulbarga, India
| | - Kavita Rana
- Department of Toxicology, Chaudhary Charan Singh University, Meerut, India
| | | | - Rakesh Kumar
- Department of Life Science, School of Life Sciences, Central University of Karnataka, Kadaganchi, India
| | - Vijyendra Pandey
- Department of Psychology, School of Social and Behavioural Sciences, Central University of Karnataka, Kadaganchi, India
| | - Bharathi P Salimath
- Department of Biotechnology, University of Mysore, Mysore, India.,Sanorva Biotech Pvt. Ltd., Mysuru, India
| | - Dayanand Agsar
- Department of Microbiology, Gulbarga University, Gulbarga, India
| |
Collapse
|
17
|
Jain AS, Prasad A, Pradeep S, Dharmashekar C, Achar RR, Silina E, Stupin V, Amachawadi RG, Prasad SK, Pruthvish R, Syed A, Shivamallu C, Kollur SP. Everything Old Is New Again: Drug Repurposing Approach for Non-Small Cell Lung Cancer Targeting MAPK Signaling Pathway. Front Oncol 2021; 11:741326. [PMID: 34692523 PMCID: PMC8526962 DOI: 10.3389/fonc.2021.741326] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a prominent subtype of lung carcinoma that accounts for the majority of cancer-related deaths globally, and it is responsible for about 80% to 85% of lung cancers. Mitogen-Activated Protein Kinase (MAPK) signaling pathways are a vital aspect of NSCLC, and have aided in the advancement of therapies for this carcinoma. Targeting the Ras/Raf/MEK/ERK pathway is a promising and alternative method in NSCLC treatment, which is highlighted in this review. The introduction of targeted medicines has revolutionized the treatment of patients with this carcinoma. When combined with current systems biology-driven stratagems, repurposing non-cancer drugs into new therapeutic niches presents a cost-effective and efficient technique with enhancing outcomes for discovering novel pharmacological activity. This article highlights the successful cutting-edge techniques while focusing on NSCLC targeted therapies. The ultimate challenge will be integrating these repurposed drugs into the therapeutic regimen of patients affected with NSCLC to potentially increase lung cancer cure rates.
Collapse
Affiliation(s)
- Anisha S. Jain
- Department of Microbiology, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Ashwini Prasad
- Department of Microbiology, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Sushma Pradeep
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Chandan Dharmashekar
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Ekaterina Silina
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Victor Stupin
- Department of Hospital Surgery, N.I. Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Raghavendra G. Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Shashanka K. Prasad
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - R Pruthvish
- Department of Biotechnology, Acharya Institute of Technology, Bengaluru, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Shiva Prasad Kollur
- Department of Sciences, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Mysuru, India
| |
Collapse
|
18
|
Muyinda IJ, Park JG, Jang EJ, Yoo BC. KRAS, A Prime Mediator in Pancreatic Lipid Synthesis through Extra Mitochondrial Glutamine and Citrate Metabolism. Int J Mol Sci 2021; 22:5070. [PMID: 34064761 PMCID: PMC8150642 DOI: 10.3390/ijms22105070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS)-driven pancreatic cancer is very lethal, with a five-year survival rate of <9%, irrespective of therapeutic advances. Different treatment modalities including chemotherapy, radiotherapy, and immunotherapy demonstrated only marginal efficacies because of pancreatic tumor specificities. Surgery at the early stage of the disease remains the only curative option, although only in 20% of patients with early stage disease. Clinical trials targeting the main oncogenic driver, KRAS, have largely been unsuccessful. Recently, global metabolic reprogramming has been identified in patients with pancreatic cancer and oncogenic KRAS mouse models. The newly reprogrammed metabolic pathways and oncometabolites affect the tumorigenic environment. The development of methods modulating metabolic reprogramming in pancreatic cancer cells might constitute a new approach to its therapy. In this review, we describe the major metabolic pathways providing acetyl-CoA and NADPH essential to sustain lipid synthesis and cell proliferation in pancreatic cancer cells.
Collapse
Affiliation(s)
- Isaac James Muyinda
- Department of Translational Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si 10408, Korea; (I.J.M.); (E.-J.J.)
- Uganda Cancer Institute, Mulago-Kampala 3935, Uganda
| | - Jae-Gwang Park
- Department of Translational Science, Research Institute, National Cancer Center, Goyang-si 10408, Korea;
| | - Eun-Jung Jang
- Department of Translational Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si 10408, Korea; (I.J.M.); (E.-J.J.)
| | - Byong-Chul Yoo
- Department of Translational Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si 10408, Korea; (I.J.M.); (E.-J.J.)
- Department of Translational Science, Research Institute, National Cancer Center, Goyang-si 10408, Korea;
| |
Collapse
|
19
|
Kusirisin P, Chattipakorn SC, Chattipakorn N. Contrast-induced nephropathy and oxidative stress: mechanistic insights for better interventional approaches. J Transl Med 2020; 18:400. [PMID: 33081797 PMCID: PMC7576747 DOI: 10.1186/s12967-020-02574-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Contrast-induced nephropathy (CIN) or contrast-induced acute kidney injury (CI-AKI) is an iatrogenic acute kidney injury observed after intravascular administration of contrast media for intravascular diagnostic procedures or therapeutic angiographic intervention. High risk patients including those with chronic kidney disease (CKD), diabetes mellitus with impaired renal function, congestive heart failure, intraarterial intervention, higher volume of contrast, volume depletion, old age, multiple myeloma, hypertension, and hyperuricemia had increased prevalence of CIN. Although CIN is reversible by itself, some patients suffer this condition without renal recovery leading to CKD or even end-stage renal disease which required long term renal replacement therapy. In addition, both CIN and CKD have been associated with increasing of mortality. Three pathophysiological mechanisms have been proposed including direct tubular toxicity, intrarenal vasoconstriction, and excessive production of reactive oxygen species (ROS), all of which lead to impaired renal function. Reports from basic and clinical studies showing potential preventive strategies for CIN pathophysiology including low- or iso-osmolar contrast media are summarized and discussed. In addition, reports on pharmacological interventions to reduce ROS and attenuate CIN are summarized, highlighting potential for use in clinical practice. Understanding this contributory mechanism could pave ways to improve therapeutic strategies in combating CIN.
Collapse
Affiliation(s)
- Prit Kusirisin
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
20
|
Kerckhoffs KGP, Aallali T, Ambarus CA, Sigurdsson V, Jansen AML, Blokx WAM. Expanding spectrum of "spitzoid" lesions: a small series of 4 cases with MAP2K1 mutations. Virchows Arch 2020; 479:195-202. [PMID: 33040161 PMCID: PMC8298358 DOI: 10.1007/s00428-020-02940-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/10/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023]
Abstract
The molecular background of a significant proportion of spitzoid neoplasms is still unknown. Recently, activating mutations in MAP2K1 have been described in a few spitzoid lesions, but not in benign Spitz nevi. We report four cases of melanocytic tumors with spitzoid features in which a MAP2K1 mutation was detected. The lesions did not show a single distinct phenotype and ranged from benign to malignant. Two cases resembled desmoplastic Spitz nevi. Based on the combination of morphological, immunohistochemical, and molecular findings, one case was classified as benign, one as probably benign, possibly intermediate low-grade (MELTUMP—melanocytic tumor of unknown malignant potential), one case was classified as intermediate (MELTUMP), and one case was considered a superficial spreading melanoma with spitzoid features. Based on this, we conclude that MAP2K1 mutations can indicate a spitzoid genetic signature and can be found in both benign and malignant spitzoid neoplasms.
Collapse
Affiliation(s)
- K G P Kerckhoffs
- Department of Pathology, Maastricht University Medical Center+, Maastricht, The Netherlands.
| | - T Aallali
- Symbiant Pathology Expert Center, Hoorn/Zaandam, The Netherlands
| | - C A Ambarus
- Department of Pathology, Sint Antonius Hospital, Nieuwegein, The Netherlands
| | - V Sigurdsson
- Department of Dermatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A M L Jansen
- Department of Pathology, Division of Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - W A M Blokx
- Department of Pathology, Division of Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
21
|
Wang S, Zhou D, Xu Z, Song J, Qian X, Lv X, Luan J. Anti-tumor Drug Targets Analysis: Current Insight and Future Prospect. Curr Drug Targets 2020; 20:1180-1202. [PMID: 30947670 DOI: 10.2174/1389450120666190402145325] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/13/2022]
Abstract
The incidence and mortality of malignant tumors are on the rise, which has become the second leading cause of death in the world. At present, anti-tumor drugs are one of the most common methods for treating cancer. In recent years, with the in-depth study of tumor biology and related disciplines, it has been gradually discovered that the essence of cell carcinogenesis is the infinite proliferation of cells caused by the disorder of cell signal transduction pathways, followed by a major shift in the concept of anti-tumor drugs research and development. The focus of research and development is shifting from traditional cytotoxic drugs to a new generation of anti-tumor drugs targeted at abnormal signaling system targets in tumor cells. In this review, we summarize the targets of anti-tumor drugs and analyse the molecular mechanisms of their effects, which lay a foundation for subsequent treatment, research and development.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Dexi Zhou
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Zhenyu Xu
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Jing Song
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Xueyi Qian
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province, China
| | - Jiajie Luan
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| |
Collapse
|
22
|
Górniak P, Wasylecka-Juszczyńska M, Ługowska I, Rutkowski P, Polak A, Szydłowski M, Juszczyński P. BRAF inhibition curtails IFN-gamma-inducible PD-L1 expression and upregulates the immunoregulatory protein galectin-1 in melanoma cells. Mol Oncol 2020; 14:1817-1832. [PMID: 32330348 PMCID: PMC7400781 DOI: 10.1002/1878-0261.12695] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/10/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Although melanoma is considered one of the most immunogenic malignancies, spontaneous T‐cell responses to melanoma antigens are ineffective due to tumor cell‐intrinsic or microenvironment‐driven immune evasion mechanisms. For example, oncogenic BRAF V600E mutation in melanoma cells fosters tumor immune escape by modulating cell immunogenicity and microenvironment composition. BRAF inhibition has been shown to increase melanoma cell immunogenicity, but these effects are transient and long‐term responses are uncommon. For these reasons, we aimed to further characterize the role of BRAF‐V600E mutation in the modulation of PD‐L1, a known immunoregulatory molecule, and galectin‐1 (Gal‐1), a potent immunoregulatory lectin involved in melanoma immune privilege. We report herein that vemurafenib downregulates IFN‐γ‐induced PD‐L1 expression by interfering with STAT1 activity and by decreasing PD‐L1 protein translation. Surprisingly, melanoma cells exposed to vemurafenib expressed higher levels of Gal‐1. In coculture experiments, A375 melanoma cells pretreated with vemurafenib induced apoptosis of interacting Jurkat T cells, whereas genetic inhibition of Gal‐1 in these cells restored the viability of cocultured T lymphocytes, indicating that Gal‐1 contributes to tumor immune escape. Importantly, Gal‐1 plasma concentration increased in patients progressing on BRAF/MEK inhibitor treatment, but remained stable in responding patients. Taken together, these results suggest a two‐faceted nature of BRAF inhibition‐associated immunomodulatory effects: an early immunostimulatory activity, mediated at least in part by decreased PD‐L1 expression, and a delayed immunosuppressive effect associated with Gal‐1 induction. Importantly, our observations suggest that Gal‐1 might be utilized as a potential biomarker and a putative therapeutic target in melanoma patients.
Collapse
Affiliation(s)
- Patryk Górniak
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | | - Iwona Ługowska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.,Department of Biostatistics, Institute of Mother and Child, Warsaw, Poland.,Early Phase Clinical Trial Unit, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Anna Polak
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Maciej Szydłowski
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Przemysław Juszczyński
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| |
Collapse
|
23
|
The p38 Pathway: From Biology to Cancer Therapy. Int J Mol Sci 2020; 21:ijms21061913. [PMID: 32168915 PMCID: PMC7139330 DOI: 10.3390/ijms21061913] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/27/2022] Open
Abstract
The p38 MAPK pathway is well known for its role in transducing stress signals from the environment. Many key players and regulatory mechanisms of this signaling cascade have been described to some extent. Nevertheless, p38 participates in a broad range of cellular activities, for many of which detailed molecular pictures are still lacking. Originally described as a tumor-suppressor kinase for its inhibitory role in RAS-dependent transformation, p38 can also function as a tumor promoter, as demonstrated by extensive experimental data. This finding has prompted the development of specific inhibitors that have been used in clinical trials to treat several human malignancies, although without much success to date. However, elucidating critical aspects of p38 biology, such as isoform-specific functions or its apparent dual nature during tumorigenesis, might open up new possibilities for therapy with unexpected potential. In this review, we provide an extensive description of the main biological functions of p38 and focus on recent studies that have addressed its role in cancer. Furthermore, we provide an updated overview of therapeutic strategies targeting p38 in cancer and promising alternatives currently being explored.
Collapse
|
24
|
Stark MS, Denisova E, Kays TA, Heidenreich B, Rachakonda S, Requena C, Sturm RA, Soyer HP, Nagore E, Kumar R. Mutation Signatures in Melanocytic Nevi Reveal Characteristics of Defective DNA Repair. J Invest Dermatol 2020; 140:2093-2096.e2. [PMID: 32151667 DOI: 10.1016/j.jid.2020.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 11/17/2022]
Affiliation(s)
- Mitchell S Stark
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Australia.
| | - Evgeniya Denisova
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany; Division of Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Trent A Kays
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Australia
| | - Barbara Heidenreich
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Sivaramakrishna Rachakonda
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany; Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Celia Requena
- Department of Dermatology, Instituto Valenciano de Oncología, València, Spain
| | - Richard A Sturm
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Australia
| | - H Peter Soyer
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Australia; Department of Dermatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Eduardo Nagore
- Department of Dermatology, Instituto Valenciano de Oncología, València, Spain; School of Medicine, Universidad Católica de Valencia San Vicente Mártir, València, Spain
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany; Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
25
|
Targeted Avenues for Cancer Treatment: The MEK5-ERK5 Signaling Pathway. Trends Mol Med 2020; 26:394-407. [PMID: 32277933 DOI: 10.1016/j.molmed.2020.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/20/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Twenty years have passed since extracellular signal-regulated kinase 5 (ERK5) and its upstream activator, mitogen-activated protein kinase 5 (MEK5), first emerged onto the cancer research scene. Although we have come a long way in defining the liaison between dysregulated MEK5-ERK5 signaling and the pathogenesis of epithelial and nonepithelial malignancies, selective targeting of this unique pathway remains elusive. Here, we provide an updated review of the existing evidence for a correlation between aberrant MEK5-ERK5 (phospho)proteomic/transcriptomic profiles, aggressive cancer states, and poor patient outcomes. We then focus on emerging insights from preclinical models regarding the relevance of upregulated ERK5 activity in promoting tumor growth, metastasis, therapy resistance, undifferentiated traits, and immunosuppression, highlighting the opportunities, prospects, and challenges of selectively blocking this cascade for antineoplastic treatment and chemosensitization.
Collapse
|
26
|
Machine learning and data mining frameworks for predicting drug response in cancer: An overview and a novel in silico screening process based on association rule mining. Pharmacol Ther 2019; 203:107395. [DOI: 10.1016/j.pharmthera.2019.107395] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022]
|
27
|
Kazi JU, Rönnstrand L. FMS-like Tyrosine Kinase 3/FLT3: From Basic Science to Clinical Implications. Physiol Rev 2019; 99:1433-1466. [PMID: 31066629 DOI: 10.1152/physrev.00029.2018] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase that is expressed almost exclusively in the hematopoietic compartment. Its ligand, FLT3 ligand (FL), induces dimerization and activation of its intrinsic tyrosine kinase activity. Activation of FLT3 leads to its autophosphorylation and initiation of several signal transduction cascades. Signaling is initiated by the recruitment of signal transduction molecules to activated FLT3 through binding to specific phosphorylated tyrosine residues in the intracellular region of FLT3. Activation of FLT3 mediates cell survival, cell proliferation, and differentiation of hematopoietic progenitor cells. It acts in synergy with several other cytokines to promote its biological effects. Deregulated FLT3 activity has been implicated in several diseases, most prominently in acute myeloid leukemia where around one-third of patients carry an activating mutant of FLT3 which drives the disease and is correlated with poor prognosis. Overactivity of FLT3 has also been implicated in autoimmune diseases, such as rheumatoid arthritis. The observation that gain-of-function mutations of FLT3 can promote leukemogenesis has stimulated the development of inhibitors that target this receptor. Many of these are in clinical trials, and some have been approved for clinical use. However, problems with acquired resistance to these inhibitors are common and, furthermore, only a fraction of patients respond to these selective treatments. This review provides a summary of our current knowledge regarding structural and functional aspects of FLT3 signaling, both under normal and pathological conditions, and discusses challenges for the future regarding the use of targeted inhibition of these pathways for the treatment of patients.
Collapse
Affiliation(s)
- Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| |
Collapse
|
28
|
Gu J, Li Z, Zhou J, Sun Z, Bai C. Response prediction to oxaliplatin plus 5-fluorouracil chemotherapy in patients with colorectal cancer using a four-protein immunohistochemical model. Oncol Lett 2019; 18:2091-2101. [PMID: 31423282 DOI: 10.3892/ol.2019.10474] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 04/29/2019] [Indexed: 12/13/2022] Open
Abstract
The response of cancer patients to oxaliplatin combined with 5-fluorouracil (5-FU) is difficult to predict. It has been reported that carcinoma-associated fibroblasts (CAFs) could induce AKT and ERK phosphorylation, and upregulate survivin expression in colorectal cancer (CRC) cells, which could lead to oxaliplatin plus 5-FU resistance. A total of 71 patients with advanced CRC (aCRC) treated with oxaliplatin plus 5-FU were included in the present study. These patients comprised 46 chemotherapy responders and 25 non-responders. The expression levels of α-smooth muscle actin (α-SMA), phosphorylated (p)-AKT, p-ERK and survivin were determined by immunohistochemical evaluation of paraffin-embedded samples from patients. A predictive model was established using a Probabilistic Neural Network model. The high expression of α-SMA, p-AKT and survivin in patients with aCRC were associated with oxaliplatin plus 5-FU resistance (P<0.001, P=0.023 and P=0.001, respectively). Furthermore, patients with stage IV CRC exhibiting high expression levels of α-SMA and survivin experienced a reduced progression-free survival time compared with patients with low expressions of α-SMA and survivin (5.5 vs. 15.0 months; 5.5 vs. 15.0 months; P=0.005 and P=0.001, respectively). Stage IV CRC and high survivin expression predicted a reduced overall survival time compared with that for patients with stage IV CRC and low survivin expression (50.0 vs. 15.0 months; P<0.001). Patients with α-SMA, p-AKT, p-ERK and survivin overexpression were more likely to present with intrinsic resistance to the oxaliplatin plus 5-FU regimen (the accuracies of modeling, validation and prediction were 83.7, 92.9 and 85.7%, respectively). In conclusion, the multifactorial predictive biomarker model of α-SMA, p-AKT, p-ERK and survivin expression for patients with aCRC to predict intrinsic resistance to oxaliplatin plus 5-FU regimens is of great efficiency and accuracy. Patients with high expression of this predictive model may be intrinsically resistant to the oxaliplatin and 5-FU regimen.
Collapse
Affiliation(s)
- Junjie Gu
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100730, P.R. China
| | - Zhe Li
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100730, P.R. China
| | - Jianfeng Zhou
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Dongcheng, Beijing 100730, P.R. China
| | - Zhao Sun
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Dongcheng, Beijing 100730, P.R. China
| | - Chunmei Bai
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Dongcheng, Beijing 100730, P.R. China
| |
Collapse
|
29
|
Antitumor effects of a covalent cyclin-dependent kinase 7 inhibitor in colorectal cancer. Anticancer Drugs 2019; 30:466-474. [PMID: 30694816 DOI: 10.1097/cad.0000000000000749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Seebacher NA, Stacy AE, Porter GM, Merlot AM. Clinical development of targeted and immune based anti-cancer therapies. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:156. [PMID: 30975211 PMCID: PMC6460662 DOI: 10.1186/s13046-019-1094-2] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 02/07/2019] [Indexed: 02/08/2023]
Abstract
Cancer is currently the second leading cause of death globally and is expected to be responsible for approximately 9.6 million deaths in 2018. With an unprecedented understanding of the molecular pathways that drive the development and progression of human cancers, novel targeted therapies have become an exciting new development for anti-cancer medicine. These targeted therapies, also known as biologic therapies, have become a major modality of medical treatment, by acting to block the growth of cancer cells by specifically targeting molecules required for cell growth and tumorigenesis. Due to their specificity, these new therapies are expected to have better efficacy and limited adverse side effects when compared with other treatment options, including hormonal and cytotoxic therapies. In this review, we explore the clinical development, successes and challenges facing targeted anti-cancer therapies, including both small molecule inhibitors and antibody targeted therapies. Herein, we introduce targeted therapies to epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), human epidermal growth factor receptor 2 (HER2), anaplastic lymphoma kinase (ALK), BRAF, and the inhibitors of the T-cell mediated immune response, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein-1 (PD-1)/ PD-1 ligand (PD-1 L).
Collapse
Affiliation(s)
- N A Seebacher
- Faculty of Medicine, The University of Sydney, Camperdown, New South Wales, 2006, Australia
| | - A E Stacy
- Faculty of Medicine, The University of Notre Dame, Darlinghurst, New South Wales, 2010, Australia
| | - G M Porter
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Kensington, New South Wales, 2031, Australia
| | - A M Merlot
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Kensington, New South Wales, 2031, Australia. .,School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, 2031, Australia. .,UNSW Centre for Childhood Cancer Research, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, 2031, Australia.
| |
Collapse
|
31
|
Activating Structural Alterations in MAPK Genes Are Distinct Genetic Drivers in a Unique Subgroup Of Spitzoid Neoplasms. Am J Surg Pathol 2019; 43:538-548. [DOI: 10.1097/pas.0000000000001213] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
32
|
Yang C, Zhang W, Wang J, Chen P, Jin J. Effect of docetaxel on the regulation of proliferation and apoptosis of human prostate cancer cells. Mol Med Rep 2019; 19:3864-3870. [PMID: 30864701 DOI: 10.3892/mmr.2019.9998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/28/2018] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer is a common type of malignancy. Given the complexity of prostate cancer and the pressing challenge of chemoresistance, the current study was conducted to investigate the effect of docetaxel (Doc) on androgen receptor (AR)‑dependent and AR‑independent prostate cancers cells. Subsequent experiments were designed to explore the mechanism underlying the Doc‑induced apoptosis. Three different human prostate cancer cell lines, namely PC‑3, LNCaP and DU‑145, were exposed to various concentrations of Doc. The cytotoxic effects of Doc were evaluated by an MTT assay, while apoptosis and cell cycle distribution were determined by flow cytometric analysis of cells stained with Annexin V‑FITC and propidium iodide. Western blot assay was also used to measure the protein levels of B‑cell lymphoma 2 (Bcl‑2), Bcl‑2‑associated death promoter (Bad), total protein kinase B (Akt), phospho‑Akt and caspase‑3/9. Doc induced cytotoxicity in all three cell lines in a dose‑dependent manner. The half maximal inhibitory concentration values for the effect of Doc on PC‑3, DU‑145 and LNCaP cells were 3.72, 4.46 and 1.13 nM, respectively. Furthermore, the results indicated a significant difference in Doc sensitivity between AR‑dependent and AR‑independent prostate cancer cells. Evaluation of key gene expression at protein levels revealed a notable decrease in antiapoptotic Bcl‑2 and p‑Akt levels, along with a significant increase in pro‑apoptotic Bad, caspase‑3 and caspase‑9 levels. Therefore, Doc may induce cell apoptosis in prostate cancer via various pathways.
Collapse
Affiliation(s)
- Chongyi Yang
- School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Weijie Zhang
- Department of Urology, Ninghai First Hospital, Ninghai, Zhejiang 315600, P.R. China
| | - Jie Wang
- Department of Urology, Ninghai First Hospital, Ninghai, Zhejiang 315600, P.R. China
| | - Pengpeng Chen
- Department of Urology, Ninghai First Hospital, Ninghai, Zhejiang 315600, P.R. China
| | - Jiangjiang Jin
- Department of Urology, Ninghai First Hospital, Ninghai, Zhejiang 315600, P.R. China
| |
Collapse
|
33
|
Alvarez JGB, Otterson GA. Agents to treat BRAF-mutant lung cancer. Drugs Context 2019; 8:212566. [PMID: 30899313 PMCID: PMC6419923 DOI: 10.7573/dic.212566] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 01/06/2023] Open
Abstract
BRAF mutations are seen in up to 3.5–4% of the non-small cell lung cancer (NSCLC) patients. BRAF V600E mutations account for 50% of these cases, and the remaining BRAF mutations are non-V600E. The biologic behavior of BRAF-mutated lung tumors tends to be more aggressive and resistant to chemotherapy, but responses to tyrosine kinase inhibitors such as BRAF inhibitors with or without MEK inhibitors have provided another effective tool to attain better response rates when compared to cytotoxic chemotherapy. New strategies such as immunotherapy are becoming as well another option to treat in the second-line setting patients with BRAF-mutated NSCLC.
Collapse
Affiliation(s)
- Jean G Bustamante Alvarez
- Division of Medical Oncology, Department of Internal Medicine, The James Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Gregory A Otterson
- Division of Medical Oncology, Department of Internal Medicine, The James Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
34
|
Andrés-Lencina JJ, Rachakonda S, García-Casado Z, Srinivas N, Skorokhod A, Requena C, Soriano V, Kumar R, Nagore E. TERT promoter mutation subtypes and survival in stage I and II melanoma patients. Int J Cancer 2018; 144:1027-1036. [PMID: 30070694 DOI: 10.1002/ijc.31780] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/16/2018] [Accepted: 07/27/2018] [Indexed: 12/18/2022]
Abstract
Mutations within the promoter of gene encoding telomerase reverse transcriptase subunit are frequent in many cancers including melanoma. Previously, the TERT promoter mutations were shown to associate with markers of poor outcome and reduced survival in patients with primary melanoma. In this study, we investigated the impact of the subtypes of TERT mutations on disease-free and melanoma-specific survival in 287 patients with stage I/II nonacral melanoma. Our results showed that of the three TERT promoter mutation subtypes, in multivariate models, the -138/-139 CC > TT tandem mutation associated with worst disease-free and melanoma-specific survival. In particular, in combination with BRAF/NRAS mutations, the -138/-139 CC > TT TERT promoter mutation associated with statistically significant poor disease-free and melanoma-specific survival with hazard ratios of 6.04 (95% CI 2.03-17.94, p = 0.001) and 12.59 (95% CI 2.18-72.70, p = 0.005), respectively. In contrast to the survival data, luciferase assays showed that the highest activity was observed in experiments with a promoter construct with -124 C > T mutation followed by the -138/-139 CC > TT and -146 C > T mutations, which showed similar activity. Based on previous reports, we speculate that the tandem mutation probably leads to greater genomic instability than the common TERT promoter mutations, hence the association with worst survival. However, the results from the study are only preliminary with limited patient data, therefore, require a cautious interpretation. The observations in this study, if confirmed, could have implications for melanoma patients treated with MAP-kinase inhibitors.
Collapse
Affiliation(s)
| | | | - Zaida García-Casado
- Laboratory of Molecular Biology, Instituto Valenciano de Oncología, València, Spain
| | - Nalini Srinivas
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Alexander Skorokhod
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Celia Requena
- Department of Dermatology, Instituto Valenciano de Oncología, València, Spain
| | - Virtudes Soriano
- Department of Medical Oncology, Instituto Valenciano de Oncología, València, Spain
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany.,German Consortium for Translational Research, German Cancer Research Center, Heidelberg, Germany
| | - Eduardo Nagore
- Department of Dermatology, Instituto Valenciano de Oncología, València, Spain.,School of Medicine, Universidad Católica de Valencia "San Vicente Mártir", València, Spain
| |
Collapse
|
35
|
Krisp C, Parker R, Pascovici D, Hayward NK, Wilmott JS, Thompson JF, Mann GJ, Long GV, Scolyer RA, Molloy MP. Proteomic phenotyping of metastatic melanoma reveals putative signatures of MEK inhibitor response and prognosis. Br J Cancer 2018; 119:713-723. [PMID: 30116025 PMCID: PMC6173697 DOI: 10.1038/s41416-018-0227-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Genotyping of melanomas is used to identify patients for treatment with BRAF and MEK inhibitors, but clinical responses are highly variable. This study investigated the utility of protein expression phenotyping to provide an integrated assessment of gene expression programs in BRAF/NRAS melanoma which would be useful for prognosis and may predict response to MEK inhibition. METHODS Mass spectrometry profiling of early passage cell lines established from Stage III cutaneous melanomas was conducted. Basal protein expression was correlated with in vitro response to the MEK inhibitor, selumetinib. Protein expression in a cohort of 32 drug naïve BRAF/NRAS metastatic melanoma specimens was examined. The prognostic utility of a subset of these proteins and mRNA transcripts from a separate cohort was determined. RESULTS Unsupervised analysis of basal cell line protein abundances delineated response to selumetinib, but BRAF/NRAS genotype did not. Resistance was associated with functions including cell motility, cell adhesion and cytoskeletal organization. Several of these response biomarkers were observed in lymph node biospecimens and correlated with melanoma-specific survival. Loss of ICAM-1 protein and mRNA expression was a strong prognosticator of diminished survival in BRAF/NRAS mutant melanoma. CONCLUSIONS These results demonstrate the utility of proteomic phenotyping to identify both putative biomarkers of response to MEK inhibition and prognostication associated with metastatic melanoma.
Collapse
Affiliation(s)
- Christoph Krisp
- Australian Proteome Analysis Facility (APAF), Department of Chemistry & Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
- University Medical Center Hamburg, Institute for Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics Group, Hamburg, Germany
| | - Robert Parker
- Australian Proteome Analysis Facility (APAF), Department of Chemistry & Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Dana Pascovici
- Australian Proteome Analysis Facility (APAF), Department of Chemistry & Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Nicholas K Hayward
- Oncogenomics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - John F Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Graham J Mann
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Royal North Shore Hospital, Sydney, NSW, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Mark P Molloy
- Australian Proteome Analysis Facility (APAF), Department of Chemistry & Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia.
- Kolling Institute, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
36
|
Broad targeting of triptolide to resistance and sensitization for cancer therapy. Biomed Pharmacother 2018; 104:771-780. [DOI: 10.1016/j.biopha.2018.05.088] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/06/2018] [Accepted: 05/18/2018] [Indexed: 12/29/2022] Open
|
37
|
Ghosh M, Öner D, Duca RC, Bekaert B, Vanoirbeek JAJ, Godderis L, Hoet PHM. Single-walled and multi-walled carbon nanotubes induce sequence-specific epigenetic alterations in 16 HBE cells. Oncotarget 2018; 9:20351-20365. [PMID: 29755656 PMCID: PMC5945544 DOI: 10.18632/oncotarget.24866] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/15/2018] [Indexed: 02/06/2023] Open
Abstract
Recent studies have identified carbon nanotube (CNT)-induced epigenetic changes as one of the key players in patho-physiological response. In the present study, we investigated whether CNT exposure is associated with epigenetic changes in human bronchial epithelial cells (16 HBE), in vitro. We focused on global DNA methylation, methylation of LINE-1 elements and promoter sequence of twelve functionally important genes (SKI, DNMT1, HDAC4, NPAT, ATM, BCL2L11, MAP3K10, PIK3R2, MYO1C, TCF3, FGFR 1 and AGRN). Additionally, we studied the influence of CNT exposure on miRNA expression. Using a LC-MS/MS method and pyrosequencing for LINE-1, we observed no significant changes in global DNA methylation (%) between the concentrations of multi-walled and single-walled CNT (MWCNT and SWCNT, respectively). Significant changes in sequence-specific methylation was observed in at least one CpG site for DNMT1 (SWCNT), HDAC4 (MWCNT), NPAT/ATM (MWCNT and SWCNT), MAP3K10 (MWCNT), PIK3R2 (MWCNT and SWCNT) and MYO1C (SWCNT). While changes in DNA methylation of the genes were relatively small, these changes were associated with changes in RNA expression, especially for MWCNT. However, the study did not reveal any significant alteration in the miRNA expression, associated with MWCNT and SWCNT exposure. Based on our results, mainly MWCNT influence DNA methylation and expression of the studied genes and could have significant impact on several critical cellular processes.
Collapse
Affiliation(s)
- Manosij Ghosh
- KU Leuven, Department of Public Health and Primary Care, Centre Environment and Health, B-3000 Leuven, Belgium
| | - Deniz Öner
- KU Leuven, Department of Public Health and Primary Care, Centre Environment and Health, B-3000 Leuven, Belgium
| | - Radu C Duca
- KU Leuven, Department of Public Health and Primary Care, Centre Environment and Health, B-3000 Leuven, Belgium
| | - Bram Bekaert
- Forensic Biomedical Sciences, Department of Imaging and Pathology, KU Leuven, University of Leuven, Leuven, Belgium.,Department of Forensic Medicine, Laboratory of Forensic Genetics and Molecular Archaeology, University Hospitals Leuven, Leuven, Belgium
| | - Jeroen A J Vanoirbeek
- KU Leuven, Department of Public Health and Primary Care, Centre Environment and Health, B-3000 Leuven, Belgium
| | - Lode Godderis
- KU Leuven, Department of Public Health and Primary Care, Centre Environment and Health, B-3000 Leuven, Belgium.,Idewe, External Service for Prevention and Protection at Work, B-3001 Heverlee, Belgium
| | - Peter H M Hoet
- KU Leuven, Department of Public Health and Primary Care, Centre Environment and Health, B-3000 Leuven, Belgium
| |
Collapse
|
38
|
Saligan LN, Lukkahatai N, Zhang ZJ, Cheung CW, Wang XM. Altered Cd8+ T lymphocyte Response Triggered by Arginase 1: Implication for Fatigue Intensification during Localized Radiation Therapy in Prostate Cancer Patients. ACTA ACUST UNITED AC 2018; 8:1249-1262. [PMID: 30364895 DOI: 10.4172/neuropsychiatry.1000454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Fatigue, the most common side effect of cancer treatments, is observed to intensify during external-beam radiation therapy (EBRT). The underlying molecular mechanisms remain unclear. This study investigated the differentially expressed genes/proteins and their association with fatigue intensification during EBRT. Fatigue scores measured by FACT-F and peripheral blood were collected prior to treatment (baseline D0), at midpoint (days 19-21, D21) and endpoint (days 38-42, D42) from men (n=30) with non-metastatic prostate cancer undergoing EBRT. RNA extracted from peripheral blood was used for gene expression analysis. Plasma arginase I and arginine were examined using ELISA and liquid chromatography-tandem mass spectrometry. Differences in fatigue scores, gene and protein expression between times points following EBRT were analyzed by one way ANOVA followed by Post Hoc t-test. Fatigue scores decreased significantly from baseline (44.6 ± 8.1) to midpoint (37.3 ± 10.6, p=0.000, low scores indicating high fatigue) and to endpoint (37.4 ± 10.1, p=0.001) during EBRT. ARG1 (encoding arginase type 1) was significantly up regulated from baseline to midpoint of EBRT (fold change =2.41, p<0.05) whereas genes associated with the adaptive immune functional pathway (CD28, CD27, CCR7, CD3D, CD8A and HLA-DOB) were significantly downregulated >2-fold between the study time points. The changes in gene expression were associated with patient reported fatigue intensity. Moreover, the upregulation of ARG1 was negatively correlated with the absolute lymphocyte count (R2=0.561, p=0.01) only in the high level of fatigue group (n=17) during EBRT. Increased ARG1 expression is known to result in arginine deficiency, which leads to immunosuppression by impairing lymphocyte proliferation and activation. EBRT-induced ARG1 upregulation may play an essential role in fatigue intensification via the arginine deficiency and suppression of T-cell proliferation pathways. These findings may provide novel insights into the molecular-genetic mechanisms underlying the development and intensification of cancer treatment-related fatigue.
Collapse
Affiliation(s)
- Leorey N Saligan
- Nursing Research, Division of Intramural Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nada Lukkahatai
- School of Nursing, Johns Hopkins University, 525 North Wolfe Street, Baltimore, MD 21205 USA
| | - Zhang-Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Chi Wai Cheung
- Laboratory and Clinical research Institute for Pain, the University of Hong Kong, Hong Kong.,Department of Anesthesiology, the University of Hong Kong, Hong Kong
| | - Xiao-Min Wang
- Laboratory and Clinical research Institute for Pain, the University of Hong Kong, Hong Kong.,Department of Anesthesiology, the University of Hong Kong, Hong Kong
| |
Collapse
|
39
|
de Souza DC, de Figueiredo AF, Ney Garcia DR, da Costa ES, Othman MAK, Liehr T, Abdelhay E, Silva MLM, de Souza Fernandez T. A unique set of complex chromosomal abnormalities in an infant with myeloid leukemia associated with Down syndrome. Mol Cytogenet 2017; 10:35. [PMID: 28912835 PMCID: PMC5594429 DOI: 10.1186/s13039-017-0335-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022] Open
Abstract
Background Children with Down syndrome (DS) have an enhanced risk of developing acute leukemia, with the most common subtype being acute megakaryoblastic leukemia (AMKL). Myeloid leukemia in Down syndrome (ML-DS) is considered a disease with distinct clinical and biological features. There are few studies focusing on the clonal cytogenetic changes during evolution of ML-DS. Case presentation Here, we describe a complex karyotype involving a previously unreported set of chromosomal abnormalities acquired during progression of ML-DS in an infant boy: derivative der(1)t(1;15)(q24;q23), translocation t(4;5)(q26;q33) and derivative der(15)t(7;15)(p21;q23). Different molecular cytogenetic probes and probesets including whole chromosome painting (WCP) and locus specific probes, as well as, multicolor-FISH and multicolor chromosome banding (MCB) were performed in order to characterize the chromosomal abnormalities involved in this complex karyotype. The patient was treated according to the acute myeloid leukemia-Berlin-Frankfurt-Munich-2004 (AML-BFM 2004) treatment protocol for patients with Down syndrome; however, he experienced a poor clinical outcome. Conclusion The molecular cytogenetic studies performed, allowed the characterization of novel chromosomal abnormalities in ML-DS and possible candidate genes involved in the leukemogenic process. Our findings suggest that the complex karyotype described here was associated with the poor prognosis.
Collapse
Affiliation(s)
- Daiane Correa de Souza
- Cytogenetic Laboratory, Bone Marrow Transplantation Center, National Cancer Institute (INCA), Praça Cruz Vermelha no. 23, 6° andar. Centro, CEP, Rio de Janeiro, RJ 20230-130 Brazil
| | - Amanda Faria de Figueiredo
- Cytogenetic Laboratory, Bone Marrow Transplantation Center, National Cancer Institute (INCA), Praça Cruz Vermelha no. 23, 6° andar. Centro, CEP, Rio de Janeiro, RJ 20230-130 Brazil
| | - Daniela R Ney Garcia
- Cytogenetic Laboratory, Bone Marrow Transplantation Center, National Cancer Institute (INCA), Praça Cruz Vermelha no. 23, 6° andar. Centro, CEP, Rio de Janeiro, RJ 20230-130 Brazil
| | - Elaine Sobral da Costa
- Pediatric and Puericulture Martagão Gesteira Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-590 Brazil
| | - Moneeb A K Othman
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Eliana Abdelhay
- Cytogenetic Laboratory, Bone Marrow Transplantation Center, National Cancer Institute (INCA), Praça Cruz Vermelha no. 23, 6° andar. Centro, CEP, Rio de Janeiro, RJ 20230-130 Brazil
| | - Maria Luiza Macedo Silva
- Cytogenetic Laboratory, Bone Marrow Transplantation Center, National Cancer Institute (INCA), Praça Cruz Vermelha no. 23, 6° andar. Centro, CEP, Rio de Janeiro, RJ 20230-130 Brazil
| | - Teresa de Souza Fernandez
- Cytogenetic Laboratory, Bone Marrow Transplantation Center, National Cancer Institute (INCA), Praça Cruz Vermelha no. 23, 6° andar. Centro, CEP, Rio de Janeiro, RJ 20230-130 Brazil
| |
Collapse
|
40
|
Huang S, Wang D, Zhang S, Huang X, Wang D, Ijaz M, Shi Y. Tunicamycin potentiates paclitaxel-induced apoptosis through inhibition of PI3K/AKT and MAPK pathways in breast cancer. Cancer Chemother Pharmacol 2017; 80:685-696. [DOI: 10.1007/s00280-017-3393-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
|
41
|
Liou JT, Lin CS, Liao YC, Ho LJ, Yang SP, Lai JH. JNK/AP-1 activation contributes to tetrandrine resistance in T-cell acute lymphoblastic leukaemia. Acta Pharmacol Sin 2017; 38:1171-1183. [PMID: 28603286 DOI: 10.1038/aps.2017.26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/12/2017] [Indexed: 01/10/2023]
Abstract
T-cell acute lymphoblastic leukaemia (T-ALL) is a challenging malignancy with a high relapse rate attributed to drug resistance. Tetrandrine (TET), a bisbenzylisoquinoline alkaloid extracted from a Chinese herb, is a potential anti-cancer and anti-leukaemic drug. In this study we investigated the mechanisms of TET resistance in T-ALL cells in vitro. Among the four T-ALL cell lines tested, Jurkat and CEM cells exhibited the lowest and highest resistance to TET with IC50 values at 24 h of 4.31±0.12 and 16.53±3.32 μmol/L, respectively. When treated with TET, the activity of transcription factor activator protein 1 (AP-1) was significantly decreased in Jurkat cells but nearly constant in CEM cells. To avoid cell-specific variation in drug resistance and transcription factor activities, we established a TET-R Jurkat subclone with the estimated IC50 value of 10.90±.92 μmol/L by exposing the cells to increasing concentrations of TET. Interestingly, when treated with TET, TET-R Jurkat cells exhibited enhanced AP-1 and NF-κB activity, along with upregulation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) signaling pathways, whereas the expression of P-gp was not altered. Selective inhibition of JNK but not ERK suppressed AP-1 activity and TET resistance in TET-R Jurkat cells and in CEM cells. These results demonstrate that Jurkat cells acquire TET resistance through activation of the JNK/AP-1 pathway but not through P-gp expression. The JNK/AP-1 pathway may be a potential therapeutic target in relapsed T-ALL.
Collapse
|
42
|
Anelli V, Villefranc JA, Chhangawala S, Martinez-McFaline R, Riva E, Nguyen A, Verma A, Bareja R, Chen Z, Scognamiglio T, Elemento O, Houvras Y. Oncogenic BRAF disrupts thyroid morphogenesis and function via twist expression. eLife 2017; 6:e20728. [PMID: 28350298 PMCID: PMC5389860 DOI: 10.7554/elife.20728] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 03/15/2017] [Indexed: 12/15/2022] Open
Abstract
Thyroid cancer is common, yet the sequence of alterations that promote tumor formation are incompletely understood. Here, we describe a novel model of thyroid carcinoma in zebrafish that reveals temporal changes due to BRAFV600E. Through the use of real-time in vivo imaging, we observe disruption in thyroid follicle structure that occurs early in thyroid development. Combinatorial treatment using BRAF and MEK inhibitors reversed the developmental effects induced by BRAFV600E. Adult zebrafish expressing BRAFV600E in thyrocytes developed invasive carcinoma. We identified a gene expression signature from zebrafish thyroid cancer that is predictive of disease-free survival in patients with papillary thyroid cancer. Gene expression studies nominated TWIST2 as a key effector downstream of BRAF. Using CRISPR/Cas9 to genetically inactivate a TWIST2 orthologue, we suppressed the effects of BRAFV600E and restored thyroid morphology and hormone synthesis. These data suggest that expression of TWIST2 plays a role in an early step of BRAFV600E-mediated transformation.
Collapse
Affiliation(s)
- Viviana Anelli
- Department of Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York City, United States
| | - Jacques A Villefranc
- Department of Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York City, United States
| | - Sagar Chhangawala
- Department of Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York City, United States
| | - Raul Martinez-McFaline
- Department of Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York City, United States
| | - Eleonora Riva
- Section of Endocrinology, Department of Medical Science, University of Ferrara, Ferrara, Italy
| | - Anvy Nguyen
- Department of Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York City, United States
| | - Akanksha Verma
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York City, United States
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York City, United States
| | - Rohan Bareja
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York City, United States
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York City, United States
| | - Zhengming Chen
- Department of Healthcare Policy & Research, Weill Cornell Medical College, New York City, United States
| | - Theresa Scognamiglio
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York Presbyterian Hospital, New York City, United States
| | - Olivier Elemento
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York City, United States
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York City, United States
| | - Yariv Houvras
- Department of Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York City, United States
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York Presbyterian Hospital, New York City, United States
- Department of Medicine, Weill Cornell Medical College, New York Presbyterian Hospital, New York City, United States
| |
Collapse
|
43
|
MD Aksam V, Chandrasekaran V, Pandurangan S. Identification of cluster of proteins in the network of MAPK pathways as cancer drug targets. INFORMATICS IN MEDICINE UNLOCKED 2017. [DOI: 10.1016/j.imu.2017.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
44
|
Yao M, Wang X, Zhao Y, Wang X, Gao F. Expression of MMPs is dependent on the activity of mitogen-activated protein kinase in chondrosarcoma. Mol Med Rep 2016; 15:915-921. [PMID: 28035378 DOI: 10.3892/mmr.2016.6077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/10/2016] [Indexed: 11/05/2022] Open
Abstract
Matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) serve an important role in chondrosarcoma. The present study investigated whether the expression of MMPs was dependent on the activity of mitogen-activated protein kinase (MAPK) in chondrosarcoma. Surgical pathological specimens were collected to detect MMP-1, MMP-13, TIMP-1, type II collagen and phosphorylated MAPK levels in normal cartilage, enchondroma and chondrosarcoma tissues. The expression of MMP‑1, MMP‑13, TIMP‑1 and type II collagen was investigated utilizing MAPK inhibitors in chondrosarcoma cells. It was noted that the expression levels of MMP‑1, MMP‑13 and TIMP‑1 were increased in chondrosarcoma with the activity of MAPK. After chondrosarcoma cells were pretreated with MAPK inhibitors, the levels of MMP‑1, MMP‑13 and TIMP‑1 were inhibited. Furthermore, MMP‑1 and MMP‑13 are essential in regulating the degradation of type II collagen and decomposing cartilage matrix major. The high expression levels of MMP‑1 and MMP‑13 in chondrosarcoma expedite the invasion by chondrosarcoma cells and their expression can be depressed by MAPK inhibitors.
Collapse
Affiliation(s)
- Min Yao
- Department of Pathology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Xiaomei Wang
- Department of Pathology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Yufeng Zhao
- Department of Pathology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Xiaomeng Wang
- Department of Pathology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Feng Gao
- Department of Pathology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
45
|
Zhang N, Lu C, Chen L. miR-217 regulates tumor growth and apoptosis by targeting the MAPK signaling pathway in colorectal cancer. Oncol Lett 2016; 12:4589-4597. [PMID: 28105166 PMCID: PMC5228443 DOI: 10.3892/ol.2016.5249] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/28/2016] [Indexed: 12/31/2022] Open
Abstract
MicroRNA (miR)-217 has been reported to participate in carcinogenesis and tumor progression in several cancers; however, its expression and biological functions in colorectal cancer (CRC) are still unclear. The present study demonstrated that miR-217 expression was significantly higher in matched adjacent noncancerous tissues than in CRC tissues (P<0.001). In addition, it was observed that low-grade CRC exhibited greater expression of miR-217 compared with high-grade CRC (P<0.05). Kaplan-Meier survival and Cox regression analyses revealed that overall survival rates were significantly poorer in the low-expression group relative to the high-expression group (P<0.005). Next, a potential miR-217 target, mitogen-activated protein kinase (MAPK) 1, was identified. Upregulation of miR-217 could significantly downregulate MAPK1 expression. CRC cells overexpressing miR-217 exhibited cell growth inhibition by significant enhancement of apoptosis in vitro. The present study further investigated the MAPK signaling pathway to verify the mechanisms, and revealed that KRAS and Raf-1 expression was downregulated in miR-217-overexpressing RKO cells. Taken together, our results revealed that miR-217 inhibits tumor growth and enhances apoptosis in CRC, and that this is associated with the downregulation of MAPK signaling. These results indicate that miR-217 is a promising therapeutic target for the treatment of CRC.
Collapse
Affiliation(s)
- Nan Zhang
- General Surgery Center Department of Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Canrong Lu
- General Surgery Center Department of Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Lin Chen
- General Surgery Center Department of Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
46
|
Sankpal UT, Ingersoll SB, Ahmad S, Holloway RW, Bhat VB, Simecka JW, Daniel L, Kariali E, Vishwanatha JK, Basha R. Association of Sp1 and survivin in epithelial ovarian cancer: Sp1 inhibitor and cisplatin, a novel combination for inhibiting epithelial ovarian cancer cell proliferation. Tumour Biol 2016; 37:14259-14269. [PMID: 27581819 DOI: 10.1007/s13277-016-5290-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/14/2016] [Indexed: 10/21/2022] Open
Abstract
The expression of specificity protein 1 (Sp1) and survivin was evaluated in clinical specimens of epithelial ovarian cancer (EOC) patients. When compared to normal tissue, EOC samples showed high expression of Sp1 and survivin using qPCR (Sp1: ∼2-fold; survivin: ∼5-fold) and Western blot (Sp1: >2.6-fold; survivin: >100-fold). The Sp1 inhibitor, and anti-cancer small molecule, tolfenamic acid (TA), was tested to enhance the response of Cisplatin (Cis) in EOC cell lines. Cell viability (CellTiter-Glo), combination index (CalcuSyn software), apoptosis (Annexin-V staining), cell cycle analyses (flow cytometry), and reactive oxygen species (flow cytometry) were determined. Cell migration and invasion was assessed using matrigel coated transwell chambers. Agilent Technologies proteomics analysis identified potential signaling pathways involved. The combination of TA (50 μM) and Cis (5 μM) synergistically increased the growth inhibition in ES2 (∼80 %, p < 0.001) and OVCAR-3 (60 %, p < 0.001) cells. TA or TA + Cis treatment in ES2 cells caused cell cycle arrest in G1 Phase (TA) or S-Phase (TA + Cis) and unregulated reactive oxygen species. Invasion and migration was decreased in ES2 cells. Global proteomic profiling showed modulation of proteins associated with oxidative phosphorylation, apoptosis, electron transport chain, DNA damage, and cell cycle proteins. These results demonstrate an association of Sp1 and survivin in EOC and confirm targeting these candidates with TA potentially sensitizes EOC cells to cisplatin.
Collapse
MESH Headings
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Carcinoma, Ovarian Epithelial
- Cell Cycle/drug effects
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cisplatin/pharmacology
- Drug Therapy, Combination
- Female
- Humans
- Inhibitor of Apoptosis Proteins/genetics
- Inhibitor of Apoptosis Proteins/metabolism
- Neoplasms, Glandular and Epithelial/drug therapy
- Neoplasms, Glandular and Epithelial/metabolism
- Neoplasms, Glandular and Epithelial/pathology
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Proteomics/methods
- RNA, Messenger/genetics
- Reactive Oxygen Species/metabolism
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Sp1 Transcription Factor/antagonists & inhibitors
- Sp1 Transcription Factor/genetics
- Sp1 Transcription Factor/metabolism
- Survivin
- Tumor Cells, Cultured
- ortho-Aminobenzoates/pharmacology
Collapse
Affiliation(s)
- Umesh T Sankpal
- Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Susan B Ingersoll
- Department of Gynecologic Oncology, Florida Hospital Cancer Institute, Orlando, FL, 32804, USA
| | - Sarfraz Ahmad
- Department of Gynecologic Oncology, Florida Hospital Cancer Institute, Orlando, FL, 32804, USA
| | - Robert W Holloway
- Department of Gynecologic Oncology, Florida Hospital Cancer Institute, Orlando, FL, 32804, USA
| | | | - Jerry W Simecka
- Pre-clinical Services, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Liz Daniel
- MD Anderson Cancer Center Orlando, Orlando, FL, 32806, USA
| | - Ekamber Kariali
- Department of Biotechnology, Sambalpur University, Jyoti Vihar, Sambalpur, Odisha, 768019, India
| | - Jamboor K Vishwanatha
- Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- Molecular and Medical Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Riyaz Basha
- Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.
- Pre-clinical Services, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.
- Molecular and Medical Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.
| |
Collapse
|
47
|
Abstract
INTRODUCTION Approximately 2% of lung adenocarcinomas have BRAF (v-Raf murine sarcoma viral oncogene homolog B) mutations, including V600E and other types. Vemurafenib, dabrafenib, and sorafenib as BRAF inhibitors are currently tested in clinical trials, but access for patients is limited. The aim of this study was to document the clinical course of patients treated outside of clinical trials. METHODS We conducted a retrospective multicenter cohort study in Europe of patients with advanced BRAF-mutant lung cancer treated with known BRAF inhibitors. Data were anonymized and centrally assessed for age, gender, smoking, histology, stage, local molecular diagnostic results, systemic therapies, and survival. Best response was assessed locally by RECIST1.1. RESULTS We documented 35 patients treated in 17 centers with vemurafenib, dabrafenib, or sorafenib. Median age was 63 years (range 42-85); gender was balanced; 14 (40%) were never smokers; all (100%) had adenocarcinoma; 29 (83%) had V600E; 6 (17%) had other mutations; one of them had a concomitant KRAS mutation. Thirty (86%) patients had chemotherapy in the first line. Overall survival with first-line therapy was 25.3 months for V600E and 11.8 months for non-V600E. Thirty-one patients received one BRAF inhibitor, and four received a second inhibitor. Overall response rate with BRAF therapy was 53%, and disease control rate was 85%. Median progression-free survival with BRAF therapy was 5.0 months, and overall survival was 10.8 months. CONCLUSIONS These results confirm the activity of targeted therapy in patients with BRAF-mutant lung adenocarcinoma. Further trials are warranted to study combination therapies and drug resistance mechanisms.
Collapse
|
48
|
García-Cano J, Roche O, Cimas FJ, Pascual-Serra R, Ortega-Muelas M, Fernández-Aroca DM, Sánchez-Prieto R. p38MAPK and Chemotherapy: We Always Need to Hear Both Sides of the Story. Front Cell Dev Biol 2016; 4:69. [PMID: 27446920 PMCID: PMC4928511 DOI: 10.3389/fcell.2016.00069] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/13/2016] [Indexed: 12/14/2022] Open
Abstract
The p38MAPK signaling pathway was initially described as a stress response mechanism. In fact, during previous decades, it was considered a pathway with little interest in oncology especially in comparison with other MAPKs such as ERK1/2, known to be target of oncogenes like Ras. However, its involvement in apoptotic cell death phenomena makes this signaling pathway more attractive for many cancer research laboratories. This apoptotic role allows to establish a link between p38MAPK and regular chemotherapeutic agents such as Cisplatin or base analogs (Cytarabine, Gemcitabine or 5-Fluorouracil) which are currently used in hospitals across the world. In fact, and more recently, p38MAPK has also been connected with targeted therapies like tyrosine kinase inhibitors (vg. Imatinib, Sorafenib) and, to a lesser extent, with monoclonal antibodies. In addition, the oncogenic or tumor suppressor potential of this signaling pathway has aroused the interest of the scientific community in evaluating p38MAPK as a novel target for cancer therapy. In this review, we will summarize the role of p38MAPK in chemotherapy as well as the potential that p38MAPK inhibition can bring to cancer therapy. All the evidences suggest that p38MAPK could be a double-edged sword and that the search for the most appropriate candidate patients, depending on their pathology and treatment, will lead to a more rational use of this new therapeutic tool.
Collapse
Affiliation(s)
- Jesús García-Cano
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Olga Roche
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Francisco J Cimas
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Raquel Pascual-Serra
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Marta Ortega-Muelas
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Diego M Fernández-Aroca
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Ricardo Sánchez-Prieto
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| |
Collapse
|
49
|
Chen SY, Zheng XW, Cai JX, Zhang WP, You HS, Xing JF, Dong YL. Histone deacetylase inhibitor reverses multidrug resistance by attenuating the nucleophosmin level through PI3K/Akt pathway in breast cancer. Int J Oncol 2016; 49:294-304. [PMID: 27211281 DOI: 10.3892/ijo.2016.3528] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/26/2016] [Indexed: 11/05/2022] Open
Abstract
The development of multidrug resistance (MDR) is the major obstacle in the chemotherapy of breast cancer, and it restricts the application of antitumor drugs in the clinic. Therefore it is urgent to search for ways to reverse MDR and restore sensitivity to chemotherapeutics in breast carcinoma. Currently, histone deacetylase inhibitors (HDACIs) offer a promising strategy for tumor therapy as the effective anticancer drugs. Based on the potential resistant target of nucleophosmin (NPM), the purpose of this study was to explore the reversal effect of a new synthetic histone deacetylase inhibitor, FA17, on MDR in methotrexate-resistant breast cancer cells (MCF-7/MTX) and xenograft tumors. It was shown that the abnormal expression of NPM induced MDR and inhibited downstream mitochondrial apoptotic pathway by activating PI3K/Akt signaling pathway in MCF-7/MTX cells. The reversal effect and molecular mechanism of FA17 were investigated both in vitro and in vivo. We found that FA17 could significantly reverse resistance and sensitize MCF-7/MTX cells to methotrexate. FA17 obviously enhanced resistant cell apoptosis, inhibited expressions of NPM and efflux transporters. Additionally, FA17 could reverse MDR via inactivating PI3K/Akt pathway and accelerating mitochondrial apoptotic pathway both in MCF-7/MTX cells and in xenograft tumors. Taken together, the novel histone deacetylase inhibitor could effectively reverse drug resistance due to suppressing the activity of NPM and drug efflux pumps by PI3K/Akt and mitochondrial apoptotic pathway. The above not only indicated the potential applied value of FA17 in reversing MDR and enhancing the sensitivity of chemotherapy, but also confirmed the role of NPM in the development of MDR in breast cancer.
Collapse
Affiliation(s)
- Si-Ying Chen
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, P.R. China
| | - Xiao-Wei Zheng
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, P.R. China
| | - Jiang-Xia Cai
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, P.R. China
| | - Wei-Peng Zhang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, P.R. China
| | - Hai-Sheng You
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, P.R. China
| | - Jian-Feng Xing
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, P.R. China
| | - Ya-Lin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, P.R. China
| |
Collapse
|
50
|
Johnson MD, Reeder JE, O'Connell M. p38MAPK activation and DUSP10 expression in meningiomas. J Clin Neurosci 2016; 30:110-114. [PMID: 27050915 DOI: 10.1016/j.jocn.2015.12.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 12/29/2015] [Indexed: 11/17/2022]
Abstract
The mitogen activated protein kinase (MAPK) p38MAPK has been implicated in regulation of cell proliferation and apoptosis. However, expression, activation and regulation has not been studied in meningiomas, to our knowledge. p38MAPK is regulated, in part, by dual specificity phosphatases (DUSP) that inactivate signaling by dephosphorylation. DUSP10 is also a likely participant in regulating meningioma proliferation. Five fetal and an adult human leptomeninges and 37 meningioma cultures (MC) were evaluated for DUSP10 as well as phosphorylation of its substrates p38MAPK and p44/42MAPK by western blot and DUSP10 expression by polymerase chain reaction. Platelet derived growth factor-BB (PDGF-BB), transforming growth factor B1 (TGFB1) and cerebrospinal fluid effects on DUSP10 and signaling were also studied in vitro. DUSP10 and phospho-p38MAPK and phospho-p44/42MAPK were detected in all six leptomeninges. DUSP10 was detected in 13 of 17 World Health Organization grade I, 11 of 14 grade II and four of six grade III meningiomas. Phospho-p38MAPK was detected in nine of 17 grade I, two of six grade II, and four of six grade III meningiomas. In the majority of meningiomas DUSP10 expression correlated inversely with phosphorylation of p38MAPK. PDGF-BB increased DUSP10 in MC2 and MC4 and weakly in MC3. TGFB1 increased phosphorylation of p38MAPK and caspase 3 activation. Thus p38MAPK and DUSP10 likely participate in the pathogenesis of meningiomas.
Collapse
Affiliation(s)
- Mahlon D Johnson
- Department of Pathology, Division of Neuropathology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 626, Rochester, NY 14623, USA.
| | - Jay E Reeder
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Mary O'Connell
- Department of Pathology, Division of Neuropathology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 626, Rochester, NY 14623, USA
| |
Collapse
|