1
|
Sato Y, Yamaya A, Sonoda K, Wakita A, Nagaki Y, Sasamori R, Sasaki Y, Yoneya T, Nozaki S, Takahashi T, Matsumoto M, Seya T, Imai K. Poly(I:C) signaling induces robust CXCL10 production and apoptosis in human esophageal squamous cell carcinoma cells. Hum Cell 2025; 38:63. [PMID: 40029556 PMCID: PMC11876272 DOI: 10.1007/s13577-025-01191-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
We previously reported that high tumoral expression of Toll-like receptor 3 (TLR3) and CXCL10, a member of the CXC chemokine family, was an independent positive prognostic factor in patients with advanced thoracic esophageal squamous cell carcinoma (ESCC). However, the direct relationships between TLR3 and CXCL10 in ESCC cells was not fully understood. Here, we analyzed TLR3 mRNA and protein expression in two ESCC lines (TE8 and KYSE180) and one esophageal adenocarcinoma (EAC) line (OE19). We also assessed the effect of the TLR3 agonist poly(I:C) on production of downstream adapter proteins and cytokines, including CXCL10, and further tested its effects on cell viability and caspase 3/7 activity with and without siRNA-induced knockdown of TLR3 and the TICAM-1 or MAVS adapter protein. Both ESCC lines, but not the EAC line, showed high expression of TLR3 mRNA and protein. TICAM-1 and MAVS were also expressed, and their knockdown suppressed responsiveness to poly(I:C) in the ESCC lines. Poly(I:C) induced strong CXCL10 production, resulting in significantly upregulated caspase3/7 activity and downregulated cell proliferation in both ESCC lines but not the EAC line. The effect of poly(I:C) on CXCL10 production was attenuated after transfecting the cells with siRNAs targeting TICAM-1 or MAVS. TLR3 is thus highly expressed in ESCC cells, where it induces strong CXCL10 production and significantly upregulates caspase3/7 activity and downregulates cell proliferation. TLR3 signaling and the resultant downstream CXCL10 production have the potential to serve as useful prognostic markers and therapeutic targets for the treatment of ESCC.
Collapse
Affiliation(s)
- Yusuke Sato
- Department of Esophageal Surgery, Akita University Hospital, Akita, 010-8543, Japan.
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan.
| | - Akari Yamaya
- Nebuta Research Institute for Life Sciences, Aomori University, Aomori, 030-0943, Japan
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, 011-0020, Japan
| | - Kento Sonoda
- Nebuta Research Institute for Life Sciences, Aomori University, Aomori, 030-0943, Japan
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, 011-0020, Japan
| | - Akiyuki Wakita
- Department of Esophageal Surgery, Akita University Hospital, Akita, 010-8543, Japan
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Yushi Nagaki
- Department of Esophageal Surgery, Akita University Hospital, Akita, 010-8543, Japan
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Ryohei Sasamori
- Department of Esophageal Surgery, Akita University Hospital, Akita, 010-8543, Japan
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Yoshihiro Sasaki
- Department of Esophageal Surgery, Akita University Hospital, Akita, 010-8543, Japan
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Takatoshi Yoneya
- Department of Esophageal Surgery, Akita University Hospital, Akita, 010-8543, Japan
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Shu Nozaki
- Department of Esophageal Surgery, Akita University Hospital, Akita, 010-8543, Japan
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Tsukasa Takahashi
- Department of Esophageal Surgery, Akita University Hospital, Akita, 010-8543, Japan
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Misako Matsumoto
- Nebuta Research Institute for Life Sciences, Aomori University, Aomori, 030-0943, Japan
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, 011-0020, Japan
| | - Tsukasa Seya
- Nebuta Research Institute for Life Sciences, Aomori University, Aomori, 030-0943, Japan
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, 011-0020, Japan
| | - Kazuhiro Imai
- Department of Esophageal Surgery, Akita University Hospital, Akita, 010-8543, Japan
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| |
Collapse
|
2
|
Wang Z, Fang Z, Gui Y, Xi B, Xie Z. Elevated HSPB1 Expression Is Associated with a Poor Prognosis in Glioblastoma Multiforme Patients. J Neurol Surg A Cent Eur Neurosurg 2025; 86:17-29. [PMID: 38959943 DOI: 10.1055/s-0043-1777761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a highly aggressive form of brain cancer. This study investigated the clinical predictive value of heat shock protein β1 (HSPB1) in patients with GBM. METHODS A correlation was established between HSPB1 expression and GBM progression using data from The Cancer Genome Atlas (TCGA) dataset, Chinese Glioma Genome Atlas dataset, Gene Expression Omnibus dataset, and Human Protein Atlas database. A survival analysis was conducted and an HSPB1-based nomogram was constructed to evaluate the prognostic value of HSPB1 in patients with GBM. RESULTS Based on TCGA data mining, we discovered that HSPB1 was significantly elevated in patients with GBM and may reflect their response to immunotherapy. In survival analysis, it appeared to have a predictive role in the prognosis of patients with GBM. Five signaling pathways were significantly enriched in the high HSPB1 expression phenotype according to the gene set enrichment analysis. In addition, a significant association was found between HSPB1 expression and immune checkpoints, tumor immune infiltration, tumor immune microenvironment, and immune cell markers in glioma. Overall, our results suggest that HSPB1 may regulate the function of immune cells, serve as a new immunotherapy target, and predict the response to immunotherapy in patients with GBM. CONCLUSION HSPB1 appears to serve as a potential predictor of the clinical prognosis and response to immunotherapy in patients with GBM. It may be possible to identify patients who are likely to benefit from immunotherapy by assessing the expression level of HSPB1.
Collapse
Affiliation(s)
- Zhihua Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhaohua Fang
- Department of Neurosurgery, Chongren County People's Hospital, Fuzhou, Jiangxi, China
| | - Yongping Gui
- Department of Neurosurgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Department of Neurosurgery, Xiangya Hospital Jiangxi Hospital, Central South University, Nanchang, Jiangxi, China
| | - Bin Xi
- Department of Neurosurgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Department of Neurosurgery, Xiangya Hospital Jiangxi Hospital, Central South University, Nanchang, Jiangxi, China
| | - Zhiping Xie
- Department of Neurosurgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Department of Neurosurgery, Xiangya Hospital Jiangxi Hospital, Central South University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Cheng T, Huang X, Yang H, Gu J, Lu C, Zhan C, Xu F, Ge D. Development of a TLR-Based Model That Can Predict Prognosis, Tumor Microenvironment, and Drug Response for Esophageal Squamous Cell Carcinoma. Biochem Genet 2024; 62:3740-3760. [PMID: 38206423 DOI: 10.1007/s10528-023-10629-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
The toll-like receptor (TLR) family is an important class of proteins involved in the immune response. However, little is known about the association between TLRs and Esophageal squamous cell cancer (ESCC). We explored differentially expressed genes (DEGs) between ESCC and esophagus tissues in TCGA and GTEx database. By taking the intersection with TLR gene set and using univariate Cox analysis and multivariate Cox regression analysis to discriminate the hub genes, we created a TLR-prognostic model. Our model separated patients with ESCC into high- and low-risk score (RS) groups. Prognostic analysis was performed with Kaplan-Meier curves. The two groups were also compared regarding tumor immune microenvironment and drug sensitivity. Six hub genes (including CD36, LGR4, MAP2K3, NINJ1, PIK3R1, and TRAF3) were screened to construct a TLR-prognostic model. High-RS group had a worse survival (p < 0.01), lower immune checkpoint expression (p < 0.05), immune cell abundance (p < 0.05) and decreased sensitivity to Epirubicin (p < 0.001), 5-fluorouracil (p < 0.0001), Sorafenib (p < 0.01) and Oxaliplatin (p < 0.05). We constructed a TLR-based model, which could be used to assess the prognosis of patients with ESCC, provide new insights into drug treatment for ESCC patients and investigate the TME and drug response.
Collapse
Affiliation(s)
- Tao Cheng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Xiaolong Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Huiqin Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Jie Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Chunlai Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Fengkai Xu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
4
|
Bhardwaj A, Prasad D, Mukherjee S. Role of toll-like receptor in the pathogenesis of oral cancer. Cell Biochem Biophys 2024; 82:91-105. [PMID: 37853249 DOI: 10.1007/s12013-023-01191-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
Toll-like receptors are important molecules of innate immunity. They are known as pattern recognition receptors. They recognise certain molecules known as pathogen-associated molecular pattern on a pathogen and release chemicals that causes inflammation. Toll-like receptors (TLR) help in the removal of the infected cell and thus stop the spread of infection and are being studied for their association with cancer. Oral carcinoma has emerged as a major problem of our country today; it is found ranks first in men and third in women. Toll-like receptors have been implicated in the development of cancer. Certain polymorphisms in toll-like receptor can make a cell more susceptible to develop oral cancer. The identification of toll-like receptors and the different genotypes that are involved in the development of cancer can be utilised for using them as biomarkers of the disease. The study revealed that toll-like receptors like TLR7 and TLR5 are found to have a role in suppression of oral cancer while toll-like receptors like TLR4 and TLR2 are found to be associated with the progression of oral cancer. Toll-like receptors can turn out as important target molecules in the future in designing therapeutic strategies for oral cancer.
Collapse
Affiliation(s)
- Ananya Bhardwaj
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
| | - Divya Prasad
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
| | - Sayali Mukherjee
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
5
|
Xu T, Zhu C, Song F, Zhang W, Yuan M, Pan Z, Huang P. Immunological characteristics of immunogenic cell death genes and malignant progression driving roles of TLR4 in anaplastic thyroid carcinoma. BMC Cancer 2023; 23:1131. [PMID: 37990304 PMCID: PMC10664293 DOI: 10.1186/s12885-023-11647-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023] Open
Abstract
Anaplastic thyroid carcinoma (ATC) was a rare malignancy featured with the weak immunotherapeutic response. So far, disorders of immunogenic cell death genes (ICDGs) were identified as the driving factors in cancer progression, while their roles in ATC remained poorly clear. Datasets analysis identified that most ICDGs were high expressed in ATC, while DE-ICDGs were located in module c1_112, which was mainly enriched in Toll-like receptor signalings. Subsequently, the ICD score was established to classify ATC samples into the high and low ICD score groups, and function analysis indicated that high ICD score was associated with the immune characteristics. The high ICD score group had higher proportions of specific immune and stromal cells, as well as increased expression of immune checkpoints. Additionally, TLR4, ENTPD1, LY96, CASP1 and PDIA3 were identified as the dynamic signature in the malignant progression of ATC. Notably, TLR4 was significantly upregulated in ATC tissues, associated with poor prognosis. Silence of TLR4 inhibited the proliferation, metastasis and clone formation of ATC cells. Eventually, silence of TLR4 synergistically enhanced paclitaxel-induced proliferation inhibition, apoptosis, CALR exposure and release of ATP. Our findings highlighted that the aberrant expression of TLR4 drove the malignant progression of ATC, which contributed to our understanding of the roles of ICDGs in ATC.
Collapse
Affiliation(s)
- Tong Xu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Xiacheng District, Hangzhou, Zhejiang, 310014, China
| | - Chaozhuang Zhu
- Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Xiacheng District, Hangzhou, Zhejiang, 310014, China
| | - Wanli Zhang
- Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Mengnan Yuan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Xiacheng District, Hangzhou, Zhejiang, 310014, China
| | - Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Xiacheng District, Hangzhou, Zhejiang, 310014, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310014, China
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Xiacheng District, Hangzhou, Zhejiang, 310014, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
6
|
Yang Z, Man J, Liu Y, Zhang H, Wu D, Shao D, Hao B, Wang S. Study on the Alleviating Effect and Potential Mechanism of Ethanolic Extract of Limonium aureum (L.) Hill. on Lipopolysaccharide-Induced Inflammatory Responses in Macrophages. Int J Mol Sci 2023; 24:16272. [PMID: 38003461 PMCID: PMC10671607 DOI: 10.3390/ijms242216272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Inflammation is the host response of immune cells during infection and traumatic tissue injury. An uncontrolled inflammatory response leads to inflammatory cascade, which in turn triggers a variety of diseases threatening human and animal health. The use of existing inflammatory therapeutic drugs is constrained by their high cost and susceptibility to systemic side effects, and therefore new therapeutic candidates for inflammatory diseases need to be urgently developed. Natural products are characterized by wide sources and rich pharmacological activities, which are valuable resources for the development of new drugs. This study aimed to uncover the alleviating effect and potential mechanism of natural product Limonium aureum (LAH) on LPS-induced inflammatory responses in macrophages. The experimental results showed that the optimized conditions for LAH ultrasound-assisted extraction via response surface methodology were an ethanol concentration of 72%, a material-to-solvent ratio of 1:37 g/mL, an extraction temperature of 73 °C, and an extraction power of 70 W, and the average extraction rate of LAH total flavonoids was 0.3776%. Then, data of 1666 components in LAH ethanol extracts were obtained through quasi-targeted metabolomics analysis. The ELISA showed that LAH significantly inhibited the production of pro-inflammatory cytokines while promoting the secretion of anti-inflammatory cytokines. Finally, combined with the results of network pharmacology analysis and protein expression validation of hub genes, it was speculated that LAH may alleviate LPS-induced inflammatory responses of macrophages through the AKT1/RELA/PTGS2 signaling pathway and the MAPK3/JUN signaling pathway. This study preliminarily revealed the anti-inflammatory activity of LAH and the molecular mechanism of its anti-inflammatory action, and provided a theoretical basis for the development of LAH as a new natural anti-inflammatory drug.
Collapse
Affiliation(s)
- Zhen Yang
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Jingyuan Man
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yu Liu
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Hongjuan Zhang
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Di Wu
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Dan Shao
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Baocheng Hao
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| |
Collapse
|
7
|
Dong S, Zhang Y, Wang Y. Role of extracellular vesicle in human papillomavirus-associated cervical cancer. J Cancer Res Clin Oncol 2023; 149:16203-16212. [PMID: 37668793 DOI: 10.1007/s00432-023-05374-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Cervical cancer is a gynecological malignant tumor and a serious threat to women's health. Although human papillomavirus (HPV) infection and the occurrence of cervical cancer are known to be closely related, the underlying carcinogenic mechanism of HPV is not fully understood. Extracellular vesicles (EVs) are found in a variety of body fluids and play an important role in both intercellular communication and cancer progression. Furthermore, the presence of EVs makes liquid biopsy of cervical cancer possible. The study of EVs in cervical cancer can provide clinical ideas for the diagnosis and treatment of the disease. OBJECTIVES The purpose of this article is to summarizes the role of EV contents in HPV-associated cervical cancer and discusses the possible clinical application of EVs in cervical cancer treatment. METHODS The search terms included the following: HPV with cervical cancer and extracellular vesicles. The initial literature search ended on March 1, 2023. CONCLUSIONS In HPV-positive cervical cancer, EV contents are changed due to the presence of HPV. HPV-positive cervical cancer affects the cell microenvironment and other surrounding cells through the secretion of EVs.
Collapse
Affiliation(s)
- Shixiang Dong
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, China
| | - Yan Zhang
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, 255036, China.
| | - Yankui Wang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, China.
| |
Collapse
|
8
|
Zhang B, Huang B, Zhang X, Li S, Zhu J, Chen X, Song H, Shang D. PANoptosis-related molecular subtype and prognostic model associated with the immune microenvironment and individualized therapy in pancreatic cancer. Front Oncol 2023; 13:1217654. [PMID: 37519797 PMCID: PMC10382139 DOI: 10.3389/fonc.2023.1217654] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/20/2023] [Indexed: 08/01/2023] Open
Abstract
Background PANoptosis is an inflammatory type of programmed cell death regulated by PANopotosome. Mounting evidence has shown that PANoptosis could be involved in cancer pathogenesis and the tumor immune microenvironment. Nevertheless, there have been no studies on the mechanism of PANoptosis on pancreatic cancer (PC) pathogenesis. Methods We downloaded the data on transcriptomic and clinical features of PC patients from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases. Additionally, the data on copy number variation (CNV), methylation and somatic mutations of genes in 33 types of cancers were obtained from TCGA. Next, we identified the PANoptosis-related molecular subtype using the consensus clustering analysis, and constructed and validated the PANoptosis-related prognostic model using LASSO and Cox regression analyses. Moreover, RT-qPCR was performed to determine the expression of genes involved in the model. Results We obtained 66 PANoptosis-related genes (PANRGs) from published studies. Of these, 24 PC-specific prognosis-related genes were identified. Pan-cancer analysis revealed complex genetic changes, including CNV, methylation, and mutation in PANRGs were identified in various cancers. By consensus clustering analysis, PC patients were classified into two PANoptosis-related patterns: PANcluster A and B. In PANcluster A, the patient prognosis was significantly worse compared to PANcluster B. The CIBERSORT algorithm showed a significant increase in the infiltration of CD8+ T cells, monocytes, and naïve B cells, in patients in PANcluster B. Additionally, the infiltration of macrophages, activated mast cells, and dendritic cells were higher in patients in PANcluster A. Patients in PANcluster A were more sensitive to erlotinib, selumetinib and trametinib, whereas patients in PANcluster B were highly sensitive to irinotecan, oxaliplatin and sorafenib. Moreover, we constructed and validated the PANoptosis-related prognostic model to predict the patient's survival. Finally, the GEPIA and Human Protein Atlas databases were analyzed, and RT-qPCR was performed. Compared to normal tissues, a significant increase in CXCL10 and ITGB6 (associated with the model) expression was observed in PC tissues. Conclusion We first identified the PANoptosis-related molecular subtypes and established a PANoptosis-related prognostic model for predicting the survival of patients with PC. These results would aid in exploring the mechanisms of PANoptosis in PC pathogenesis.
Collapse
Affiliation(s)
- Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bingqian Huang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xiaonan Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Shuang Li
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingyi Zhu
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xu Chen
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huiyi Song
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
9
|
Chen B, Jin W. A comprehensive review of stroke-related signaling pathways and treatment in western medicine and traditional Chinese medicine. Front Neurosci 2023; 17:1200061. [PMID: 37351420 PMCID: PMC10282194 DOI: 10.3389/fnins.2023.1200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023] Open
Abstract
This review provides insight into the complex network of signaling pathways and mechanisms involved in stroke pathophysiology. It summarizes the historical progress of stroke-related signaling pathways, identifying potential interactions between them and emphasizing that stroke is a complex network disease. Of particular interest are the Hippo signaling pathway and ferroptosis signaling pathway, which remain understudied areas of research, and are therefore a focus of the review. The involvement of multiple signaling pathways, including Sonic Hedgehog (SHH), nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE), hypoxia-inducible factor-1α (HIF-1α), PI3K/AKT, JAK/STAT, and AMPK in pathophysiological mechanisms such as oxidative stress and apoptosis, highlights the complexity of stroke. The review also delves into the details of traditional Chinese medicine (TCM) therapies such as Rehmanniae and Astragalus, providing an analysis of the recent status of western medicine in the treatment of stroke and the advantages and disadvantages of TCM and western medicine in stroke treatment. The review proposes that since stroke is a network disease, TCM has the potential and advantages of a multi-target and multi-pathway mechanism of action in the treatment of stroke. Therefore, it is suggested that future research should explore more treasures of TCM and develop new therapies from the perspective of stroke as a network disease.
Collapse
Affiliation(s)
- Binhao Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weifeng Jin
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
10
|
Wang J, Zhang J, Wang J, Hu X, Ouyang L, Wang Y. Small-Molecule Modulators Targeting Toll-like Receptors for Potential Anticancer Therapeutics. J Med Chem 2023; 66:6437-6462. [PMID: 37163340 DOI: 10.1021/acs.jmedchem.2c01655] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Toll-like receptors (TLRs) are key components of the innate immune system and serve as a crucial link between innate and acquired immunity. In addition to immune function, TLRs are involved in other important pathological processes, including tumorigenesis. TLRs have dual regulatory effects on tumor immunity by activating nuclear factor κ-B signaling pathways, which induce tumor immune evasion or enhance the antitumor immune response. Therefore, TLRs have become a popular target for cancer prevention and treatment, and TLR agonists and antagonists offer considerable potential for drug development. The TLR7 agonist imiquimod (1) has been approved by the U.S. Food and Drug Administration as a treatment for malignant skin cancer. Herein, the structure, signaling pathways, and function of the TLR family are summarized, and the structure-activity relationships associated with TLR selective and multitarget modulators and their potential application in tumor therapy are systematically discussed.
Collapse
Affiliation(s)
- Jiayu Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
| | - Jifa Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Xinyue Hu
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
| | - Liang Ouyang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
11
|
Kou Y, Sun Q, Zhu R, Lin Z, Li Z, Xu H, Feng X, Liu Y. Dioscin induces M1 macrophage polarization through Connexin-43 Channels in Tumor-associated-macrophages-mediated melanoma metastasis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154559. [PMID: 36610151 DOI: 10.1016/j.phymed.2022.154559] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/01/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are important constituent parts of tumor microenvironment that connected with tumor metastasis in melanoma. Connexin 43 (Cx43) was expressed in all the immune cells which modulated different aspects of immune response. However, the concrete molecular mechanism maintains unclear. PURPOSE The study aimed to find a natural drug monomer effectively reversed the polarity of tumor-associated macrophages inhibiting melanoma metastasis and improving survival time. METHODS Flow cytometry was used to determine the effects of dioscin on the macrophage phenotype. Western bolt and ELISA were performed to explore the underlying mechanism of dioscin and a co-culture experiment in vitro was applied to assess the role of dioscin on TAMs-mediated melanoma proliferation, invasion and migration. Moreover, in vivo melanoma metastasis models were established for examining effects of dioscin on TAMs-mediated melanoma metastasis. RESULTS Dioscin repolarized macrophages from M2 towards M1-like phenotype. Dioscin suppressed M2-like phenotype macrophages through enhanced the expression and transport function of Cx43. Furthermore, the stimulation IFN-γ/STAT1 pathway and suppression IL-4/JAK2/STAT3 pathway were major mechanism of dioscin. Importantly, dioscin suppressed Cx43G21R mutation TAMs induced proliferation, invasion, migration and metastasis of melanoma cells. It worthily noting that dioscin ameliorated tumor-associated-macrophages-mediated melanoma metastasis in vitro and vivo. CONCLUSION Dioscin re-polarized macrophages from M2 to M1 phenotype through activation of Cx43-gap-junction-intercellular-communications (Cx43-GJs)/IFN-γ/STAT1 pathway and inhibition of Cx43-GJs/IL-4/JAK2/STAT3 suppressing migration, invasion and metastasis of melanoma, which provided a theoretical and experimental basis for treating melanoma metastasis.
Collapse
Affiliation(s)
- Yu Kou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225000, Jiangsu, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225000, Jiangsu, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medcine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225000, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225000, Jiangsu, China.
| | - Qidi Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225000, Jiangsu, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225000, Jiangsu, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medcine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225000, Jiangsu, China
| | - Rentao Zhu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225000, Jiangsu, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225000, Jiangsu, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medcine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225000, Jiangsu, China
| | - Zhijie Lin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225000, Jiangsu, China
| | - Zhuoqun Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225000, Jiangsu, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225000, Jiangsu, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medcine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225000, Jiangsu, China
| | - Hairong Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225000, Jiangsu, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225000, Jiangsu, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medcine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225000, Jiangsu, China
| | - Xuan Feng
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225000, Jiangsu, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225000, Jiangsu, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medcine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225000, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225000, Jiangsu, China
| | - Yanqing Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225000, Jiangsu, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225000, Jiangsu, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medcine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225000, Jiangsu, China.
| |
Collapse
|
12
|
Miranda KM, Ridnour LA, Cheng RY, Wink DA, Thomas DD. The Chemical Biology of NO that Regulates Oncogenic Signaling and Metabolism: NOS2 and Its Role in Inflammatory Disease. Crit Rev Oncog 2023; 28:27-45. [PMID: 37824385 PMCID: PMC11318306 DOI: 10.1615/critrevoncog.2023047302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Nitric oxide (NO) and the enzyme that synthesizes it, nitric oxide synthase 2 (NOS2), have emerged as key players in inflammation and cancer. Expression of NOS2 in tumors has been correlated both with positive outcomes and with poor prognoses. The chemistry of NO is the major determinate to the biological outcome and the concentration of NO, which can range over five orders of magnitude, is critical in determining which pathways are activated. It is the activation of specific oncogenic and immunological mechanisms that shape the outcome. The kinetics of specific reactions determine the mechanisms of action. In this review, the relevant reactions of NO and related species are discussed with respect to these oncogenic and immunological signals.
Collapse
Affiliation(s)
| | - Lisa A. Ridnour
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - Robert Y.S. Cheng
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - David A. Wink
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - Douglas D. Thomas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
13
|
Yang Y, Li H, Fotopoulou C, Cunnea P, Zhao X. Toll-like receptor-targeted anti-tumor therapies: Advances and challenges. Front Immunol 2022; 13:1049340. [PMID: 36479129 PMCID: PMC9721395 DOI: 10.3389/fimmu.2022.1049340] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors, originally discovered to stimulate innate immune reactions against microbial infection. TLRs also play essential roles in bridging the innate and adaptive immune system, playing multiple roles in inflammation, autoimmune diseases, and cancer. Thanks to the immune stimulatory potential of TLRs, TLR-targeted strategies in cancer treatment have proved to be able to regulate the tumor microenvironment towards tumoricidal phenotypes. Quantities of pre-clinical studies and clinical trials using TLR-targeted strategies in treating cancer have been initiated, with some drugs already becoming part of standard care. Here we review the structure, ligand, signaling pathways, and expression of TLRs; we then provide an overview of the pre-clinical studies and an updated clinical trial watch targeting each TLR in cancer treatment; and finally, we discuss the challenges and prospects of TLR-targeted therapy.
Collapse
Affiliation(s)
- Yang Yang
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Hongyi Li
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Christina Fotopoulou
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Paula Cunnea
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Xia Zhao
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Pharmacogenetics Role of Genetic Variants in Immune-Related Factors: A Systematic Review Focusing on mCRC. Pharmaceutics 2022; 14:pharmaceutics14112468. [PMID: 36432658 PMCID: PMC9693433 DOI: 10.3390/pharmaceutics14112468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
Pharmacogenetics plays a key role in personalized cancer treatment. Currently, the clinically available pharmacogenetic markers for metastatic colorectal cancer (mCRC) are in genes related to drug metabolism, such as DPYD for fluoropyrimidines and UGT1A1 for irinotecan. Recently, the impact of host variability in inflammatory and immune-response genes on treatment response has gained considerable attention, opening innovative perspectives for optimizing tailored mCRC therapy. A literature review was performed on the predictive role of immune-related germline genetic biomarkers on pharmacological outcomes in patients with mCRC. Particularly, that for efficacy and toxicity was reported and the potential role for clinical management of patients was discussed. Most of the available data regard therapy effectiveness, while the impact on toxicity remains limited. Several studies focused on the effects of polymorphisms in genes related to antibody-dependent cellular cytotoxicity (FCGR2A, FCGR3A) and yielded promising but inconclusive results on cetuximab efficacy. The remaining published data are sparse and mainly hypothesis-generating but suggest potentially interesting topics for future pharmacogenetic studies, including innovative gene-drug interactions in a clinical context. Besides the tumor immune escape pathway, genetic markers belonging to cytokines/interleukins (IL-8 and its receptors) and angiogenic mediators (IGF1) seem to be the best investigated and hopefully most promising to be translated into clinical practice after validation.
Collapse
|
15
|
Eroğlu Güneş C, Seçer Çelik F, Seçme M, Elmas L, Dodurga Y, Kurar E. Glycoside oleandrin downregulates toll-like receptor pathway genes and associated miRNAs in human melanoma cells. Gene X 2022; 843:146805. [PMID: 35964872 DOI: 10.1016/j.gene.2022.146805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/29/2022] [Accepted: 08/06/2022] [Indexed: 12/01/2022] Open
Abstract
Melanoma accounts for the majority of skin cancer-related deaths. Nerium oleander is a plant known to be toxic and consumed due to the cardiac glycosides it contains. Oleandrin is a cardiac glycoside obtained from of N. oleander. Beside capable of inhibiting proliferation and metastasis of cancer cells, cardiac glycoside derivative compounds cause cardiovascular side effects. Because of cardiovascular toxicity of clinically used cardiac glycosides, it is necessary to investigate cardiac glycoside derivative compounds capable of inhibiting proliferation and metastasis of cancer cells. It is known that oleandrin has anticarcinogenic effects in other cancers. Previous studies have shown that toll-like receptors (TLRs) and their related microRNAs (miRNAs) are associated with cancer. Therefore, aim was to investigate the effect of oleandrin on genes and miRNAs associated with TLRs in A375 melanoma cells in this study. The effects of oleandrin on cell viability, cytokines, apoptosis were evaluated using XTT, ELISA and TUNEL analyses, respectively. The effect of oleandrin on expression of TLR genes and 5 associated miRNAs in A375 cells has been determined by qRT-PCR. In addition, the levels of MyD88, TLR2 and TLR4 proteins were analyzed by western blot method. ELISA indicated that oleandrin treatment (47 nM at 48 h) reduced the level of proinflammatory cytokine IFNG. TUNEL analysis showed that apoptosis rate was significantly increased in the oleandrin dose group. According to qRT-PCR results, there was a significant decrease in IRAK1, IRAK4, MyD88, TLR2-TLR7 and TRAF3 expressions in the oleandrin treated group compared to the control (untreated cell). Also, a significant decrease in TLR4 protein expression has been observed. In addition, oleandrin significantly downregulated the levels of hsa-miRNA-146a-5p and hsa-miRNA-21-5p. In conclusion, it has been observed that oleandrin has an effect on TLR pathway-related genes and miRNAs in melanoma cells. We show that TLRs pathways and hsa-miR-146a-5p and hsa-miR-21-5p can participate in the oleandrin molecular mechanism of action.
Collapse
Affiliation(s)
- Canan Eroğlu Güneş
- Department of Medical Biology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey.
| | - Fatma Seçer Çelik
- Department of Molecular Biology and Genetics, Konya Food and Agriculture University, Konya, Turkey
| | - Mücahit Seçme
- Department of Medical Biology, Faculty of Medicine, Ordu University, Ordu, Turkey
| | - Levent Elmas
- Department of Medical Biology, Faculty of Medicine, Bakırçay University, Izmir, Turkey
| | - Yavuz Dodurga
- Department of Medical Biology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Ercan Kurar
- Department of Medical Biology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
16
|
Fasoulakis Z, Koutras A, Ntounis T, Pergialiotis V, Chionis A, Katrachouras A, Palios VC, Symeonidis P, Valsamaki A, Syllaios A, Diakosavvas M, Angelou K, Samara AA, Pagkalos A, Theodora M, Schizas D, Kontomanolis EN. The Prognostic Role and Significance of Dll4 and Toll-like Receptors in Cancer Development. Cancers (Basel) 2022; 14:1649. [PMID: 35406423 PMCID: PMC8996945 DOI: 10.3390/cancers14071649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/05/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
The Notch signaling pathway regulates the development of embryonic and tissue homeostasis of various types of cells. It also controls cell proliferation, variation, fate and cell death because it emits short-range messages to nearby cells. The pathway plays an important role in the pathophysiology of various malignancies, controlling cancer creation. It also limits cancer development by adjusting preserved angiogenesis and cellular programs. One of the Notch signaling ligands (in mammals) is Delta-like ligand 4 (Dll4), which plays a significant role in the overall malignancies' advancement. Particularly, sequencing Notch gene mutations, including those of Dll4, have been detected in many types of cancers portraying information on the growth of particular gynecological types of tumors. The current research article examines the background theory that implies the ability of Dll4 in the development of endometrial and other cancer types, and the probable therapeutic results of Dll4 inhibition.
Collapse
Affiliation(s)
- Zacharias Fasoulakis
- 1st Department of Obstetrics and Gynecology, General Hospital of Athens ‘ALEXANDRA’, National and Kapodistrian University of Athens, Lourou and Vasilissis Sofias Ave, 11528 Athens, Greece; (Z.F.); (A.K.); (T.N.); (V.P.); (M.D.); (K.A.); (M.T.)
| | - Antonios Koutras
- 1st Department of Obstetrics and Gynecology, General Hospital of Athens ‘ALEXANDRA’, National and Kapodistrian University of Athens, Lourou and Vasilissis Sofias Ave, 11528 Athens, Greece; (Z.F.); (A.K.); (T.N.); (V.P.); (M.D.); (K.A.); (M.T.)
| | - Thomas Ntounis
- 1st Department of Obstetrics and Gynecology, General Hospital of Athens ‘ALEXANDRA’, National and Kapodistrian University of Athens, Lourou and Vasilissis Sofias Ave, 11528 Athens, Greece; (Z.F.); (A.K.); (T.N.); (V.P.); (M.D.); (K.A.); (M.T.)
| | - Vasilios Pergialiotis
- 1st Department of Obstetrics and Gynecology, General Hospital of Athens ‘ALEXANDRA’, National and Kapodistrian University of Athens, Lourou and Vasilissis Sofias Ave, 11528 Athens, Greece; (Z.F.); (A.K.); (T.N.); (V.P.); (M.D.); (K.A.); (M.T.)
| | - Athanasios Chionis
- Department of Obstetrics and Gynecology, Laiko General Hospital of Athens, Agiou Thoma 17, 11527 Athens, Greece;
| | - Alexandros Katrachouras
- Department of Obstetrics and Gynecology, University of Ioannina, University General Hospital of Ioannina, Stavros Niarchos Str., 45500 Ioannina, Greece;
| | - Vasileios-Chrysovalantis Palios
- Department of Obstetrics and Gynecology, University of Larisa, University General Hospital of Larisa, Mezourlo, 41110 Larisa, Greece;
| | - Panagiotis Symeonidis
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Vasilissis Sofias Str. 12, 67100 Alexandroupolis, Greece; (P.S.); (E.N.K.)
| | - Asimina Valsamaki
- Department of Internal Medicine, General Hospital of Larisa, Tsakal of 1, 41221 Larisa, Greece;
| | - Athanasios Syllaios
- 1st Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Agiou Thoma Str. 17, 11527 Athens, Greece
| | - Michail Diakosavvas
- 1st Department of Obstetrics and Gynecology, General Hospital of Athens ‘ALEXANDRA’, National and Kapodistrian University of Athens, Lourou and Vasilissis Sofias Ave, 11528 Athens, Greece; (Z.F.); (A.K.); (T.N.); (V.P.); (M.D.); (K.A.); (M.T.)
| | - Kyveli Angelou
- 1st Department of Obstetrics and Gynecology, General Hospital of Athens ‘ALEXANDRA’, National and Kapodistrian University of Athens, Lourou and Vasilissis Sofias Ave, 11528 Athens, Greece; (Z.F.); (A.K.); (T.N.); (V.P.); (M.D.); (K.A.); (M.T.)
| | - Athina A. Samara
- Department of Surgery, University Hospital of Larissa, Mezourlo, 41110 Larissa, Greece;
| | - Athanasios Pagkalos
- Department of Obstetrics and Gynecology, General Hospital of Xanthi, Neapoli, 67100 Xanthi, Greece;
| | - Marianna Theodora
- 1st Department of Obstetrics and Gynecology, General Hospital of Athens ‘ALEXANDRA’, National and Kapodistrian University of Athens, Lourou and Vasilissis Sofias Ave, 11528 Athens, Greece; (Z.F.); (A.K.); (T.N.); (V.P.); (M.D.); (K.A.); (M.T.)
| | - Dimitrios Schizas
- 1st Department of Surgery, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| | - Emmanuel N. Kontomanolis
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Vasilissis Sofias Str. 12, 67100 Alexandroupolis, Greece; (P.S.); (E.N.K.)
| |
Collapse
|
17
|
Guney Eskiler G, Deveci Özkan A. The relationship between the efficacy of talazoparib and the functional toll-like receptors 3 and 9 in triple negative breast cancer. Mol Immunol 2021; 141:280-286. [PMID: 34906906 DOI: 10.1016/j.molimm.2021.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/07/2021] [Accepted: 12/05/2021] [Indexed: 12/14/2022]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) induce cell death by inhibiting the repair of DNA strand breaks binding to PARP and regulate immune cells functions. Toll-like receptors (TLRs) mediate the tumor microenvironment through the modulation of proinflammatory cytokines and chemokines. In this context, this study addressed the relationship between the efficacy of talazoparib (TAL) as a PARPi and the activation of TLR3 or TLR9 by Polyinosinic:polycytidylic acid (Poly I:C) or CpG oligodeoxynucleotides (CpG-ODN) stimulation, respectively in triple negative breast cancer (TNBC). TAL alone and the combination of TAL with Poly I:C or CpG-ODN induced cell death were analyzed by water-soluble tetrazolium salt 1 (WST-1), Annexin V analysis, acridine orange staining and mRNA levels of caspase-3 and caspase-8 in HCC1937 and HCC1937-R (TAL resistant) TNBC cells. Additionally, the expression of TLR3, TLR9 and interferon regulatory factor 7 (IRF7) was observed with immunofluorescence staining and western blot analysis. Our findings showed that TAL induced TLR3 and TLR9 activation and acted in synergy with TLR3 and TLR9 agonists in TNBC cells. The stimulation of TLR3 or TLR9 and TAL treatment caused significantly more apoptosis in TNBC cells through the over-expression of caspase-3 and caspase-8. Additionally, TAL combined with Poly I:C or CpG-ODN more increased TLR3, TLR9 and IRF7 protein levels in HCC1937 cells and treatment with TAL and Poly I:C had greater potential for overcoming TAL resistance. In conclusion, the combination of PARPi with TLR agonists may be a new therapeutic combined strategy for the effective immunotherapy of TNBC.
Collapse
Affiliation(s)
- Gamze Guney Eskiler
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey.
| | - Asuman Deveci Özkan
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| |
Collapse
|
18
|
Miranda KM, Ridnour LA, McGinity CL, Bhattacharyya D, Wink DA. Nitric Oxide and Cancer: When to Give and When to Take Away? Inorg Chem 2021; 60:15941-15947. [PMID: 34694129 DOI: 10.1021/acs.inorgchem.1c02434] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mechanistic roles of nitric oxide (NO) during cancer progression have been important considerations since its discovery as an endogenously generated free radical. Nonetheless, the impacts of this signaling molecule can be seemingly contradictory, being both pro-and antitumorigenic, which complicates the development of cancer treatments based on the modulation of NO fluxes in tumors. At a fundamental level, low levels of NO drive oncogenic pathways, immunosuppression, metastasis, and angiogenesis, while higher levels lead to apoptosis and reduced hypoxia and also sensitize tumors to conventional therapies. However, clinical outcome depends on the type and stage of the tumor as well as the tumor microenvironment. In this Viewpoint, the current understanding of the concentration, spatial, and temporal dependence of responses to NO is correlated with potential treatment and prevention technologies and strategies.
Collapse
Affiliation(s)
- Katrina M Miranda
- Department of Chemistry and Biochemistry and the BIO5 Institute, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Lisa A Ridnour
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Christopher L McGinity
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Dana Bhattacharyya
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland 21702, United States
| | - David A Wink
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
19
|
Chung YH, Park J, Cai H, Steinmetz NF. S100A9-Targeted Cowpea Mosaic Virus as a Prophylactic and Therapeutic Immunotherapy against Metastatic Breast Cancer and Melanoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101796. [PMID: 34519180 PMCID: PMC8564454 DOI: 10.1002/advs.202101796] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/05/2021] [Indexed: 05/05/2023]
Abstract
Prognosis and treatment of metastatic cancer continues to be one of the most difficult and challenging areas of oncology. Treatment usually consists of chemotherapeutics, which may be ineffective due to drug resistance, adverse effects, and dose-limiting toxicity. Therefore, novel approaches such as immunotherapy have been investigated to improve patient outcomes and minimize side effects. S100A9 is a calcium-binding protein implicated in tumor metastasis, progression, and aggressiveness that modulates the tumor microenvironment into an immunosuppressive state. S100A9 is expressed in and secreted by immune cells in the pre-metastatic niche, as well as, post-tumor development, therefore making it a suitable targeted for prophylaxis and therapy. In previous work, it is demonstrated that cowpea mosaic virus (CPMV) acts as an adjuvant when administered intratumorally. Here, it is demonstrated that systemically administered, S100A9-targeted CPMV homes to the lungs leading to recruitment of innate immune cells. This approach is efficacious both prophylactically and therapeutically against lung metastasis from melanoma and breast cancer. The current research will facilitate and accelerate the development of next-generation targeted immunotherapies administered as prophylaxis, that is, after surgery of a primary breast tumor to prevent outgrowth of metastasis, as well as, therapy to treat established metastatic disease.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of BioengineeringUniversity of CaliforniaLa JollaSan DiegoCAUSA
| | - Jooneon Park
- Department of NanoengineeringUniversity of CaliforniaLa JollaSan DiegoCAUSA
| | - Hui Cai
- Department of NanoengineeringUniversity of CaliforniaLa JollaSan DiegoCAUSA
| | - Nicole F. Steinmetz
- Department of BioengineeringUniversity of CaliforniaLa JollaSan DiegoCAUSA
- Department of NanoengineeringUniversity of CaliforniaLa JollaSan DiegoCAUSA
- Department of RadiologyUniversity of CaliforniaLa JollaSan DiegoCAUSA
- Institute for Materials Discovery and DesignUniversity of CaliforniaLa JollaSan DiegoCAUSA
- Center for Nano‐ImmunoEngineeringUniversity of CaliforniaLa JollaSan DiegoCAUSA
- Moores Cancer CenterUniversity of CaliforniaLa JollaSan DiegoCAUSA
| |
Collapse
|
20
|
Sun Q, Chen Y, Liang C, Zhao Y, Lv X, Zou Y, Yan K, Zheng H, Liang D, Li ZC. Biologic Pathways Underlying Prognostic Radiomics Phenotypes from Paired MRI and RNA Sequencing in Glioblastoma. Radiology 2021; 301:654-663. [PMID: 34519578 DOI: 10.1148/radiol.2021203281] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background The biologic meaning of prognostic radiomics phenotypes remains poorly understood, hampered in part by lack of multicenter reproducible evidence. Purpose To uncover the biologic meaning of individual prognostic radiomics phenotypes in glioblastomas using paired MRI and RNA sequencing data and to validate the reproducibility of the identified radiogenomics linkages externally. Materials and Methods This retrospective multicenter study included four data sets gathered between January 2015 and December 2016. From a radiomics analysis set, a 13-feature radiomics signature was built using preoperative MRI for overall survival prediction. Using a radiogenomics training set with both MRI and RNA sequencing, biologic pathways were enriched and correlated with each of the 13 radiomics phenotypes. Radiomics-correlated key genes were identified to derive a prognostic radiomics gene expression (RadGene) score. The reproducibility of identified pathways and genes was validated with an external test set and a public data set (The Cancer Genome Atlas [TCGA]). A log-rank test was performed to assess prognostic significance. Results A total of 435 patients (mean age, 55 years ± 15 [standard deviation]; 263 men) were enrolled. The radiomics signature was associated with overall survival (hazard ratio [HR], 3.68; 95% CI: 2.08, 6.52; P < .001) in the radiomics validation subset. Four types of prognostic radiomics phenotypes were correlated with distinct pathways: immune, proliferative, treatment responsive, and cellular functions (false-discovery rate < 0.10). Thirty radiomics-correlated genes were identified. The prognostic significance of the RadGene score was confirmed in an external test set (HR, 2.02; 95% CI: 1.19, 3.41; P = .01) and a TCGA test set (HR, 1.43; 95% CI: 1.001, 2.04; P = .048). The radiomics-associated pathways and key genes can be replicated in an external test set. Conclusion Individual radiomics phenotypes on MRI scans predictive of overall survival were driven by distinct key pathways involved in immune regulation, tumor proliferation, treatment responses, and cellular functions in glioblastoma, which could be reproduced externally. © RSNA, 2021 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Qiuchang Sun
- From the Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, No. 1068, Xueyuan Ave, Shenzhen 518055, China (Q.S., Y. Zhao, K.Y., H.Z., D.L., Z.C.L.); University of Chinese Academy of Sciences, Beijing, China (Q.S., Z.C.L.); Departments of Neurosurgery/Neuro-oncology (Y.C.) and Medical Imaging (X.L.), Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Departments of Neurosurgery (C.L.) and Radiology (Y. Zou), Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Shenzhen Peng Cheng Laboratory, Shenzhen, China (K.Y.); and National Innovation Center for Advanced Medical Devices, Shenzhen, China (H.Z., D.L., Z.C.L.)
| | - Yinsheng Chen
- From the Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, No. 1068, Xueyuan Ave, Shenzhen 518055, China (Q.S., Y. Zhao, K.Y., H.Z., D.L., Z.C.L.); University of Chinese Academy of Sciences, Beijing, China (Q.S., Z.C.L.); Departments of Neurosurgery/Neuro-oncology (Y.C.) and Medical Imaging (X.L.), Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Departments of Neurosurgery (C.L.) and Radiology (Y. Zou), Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Shenzhen Peng Cheng Laboratory, Shenzhen, China (K.Y.); and National Innovation Center for Advanced Medical Devices, Shenzhen, China (H.Z., D.L., Z.C.L.)
| | - Chaofeng Liang
- From the Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, No. 1068, Xueyuan Ave, Shenzhen 518055, China (Q.S., Y. Zhao, K.Y., H.Z., D.L., Z.C.L.); University of Chinese Academy of Sciences, Beijing, China (Q.S., Z.C.L.); Departments of Neurosurgery/Neuro-oncology (Y.C.) and Medical Imaging (X.L.), Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Departments of Neurosurgery (C.L.) and Radiology (Y. Zou), Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Shenzhen Peng Cheng Laboratory, Shenzhen, China (K.Y.); and National Innovation Center for Advanced Medical Devices, Shenzhen, China (H.Z., D.L., Z.C.L.)
| | - Yuanshen Zhao
- From the Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, No. 1068, Xueyuan Ave, Shenzhen 518055, China (Q.S., Y. Zhao, K.Y., H.Z., D.L., Z.C.L.); University of Chinese Academy of Sciences, Beijing, China (Q.S., Z.C.L.); Departments of Neurosurgery/Neuro-oncology (Y.C.) and Medical Imaging (X.L.), Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Departments of Neurosurgery (C.L.) and Radiology (Y. Zou), Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Shenzhen Peng Cheng Laboratory, Shenzhen, China (K.Y.); and National Innovation Center for Advanced Medical Devices, Shenzhen, China (H.Z., D.L., Z.C.L.)
| | - Xiaofei Lv
- From the Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, No. 1068, Xueyuan Ave, Shenzhen 518055, China (Q.S., Y. Zhao, K.Y., H.Z., D.L., Z.C.L.); University of Chinese Academy of Sciences, Beijing, China (Q.S., Z.C.L.); Departments of Neurosurgery/Neuro-oncology (Y.C.) and Medical Imaging (X.L.), Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Departments of Neurosurgery (C.L.) and Radiology (Y. Zou), Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Shenzhen Peng Cheng Laboratory, Shenzhen, China (K.Y.); and National Innovation Center for Advanced Medical Devices, Shenzhen, China (H.Z., D.L., Z.C.L.)
| | - Yan Zou
- From the Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, No. 1068, Xueyuan Ave, Shenzhen 518055, China (Q.S., Y. Zhao, K.Y., H.Z., D.L., Z.C.L.); University of Chinese Academy of Sciences, Beijing, China (Q.S., Z.C.L.); Departments of Neurosurgery/Neuro-oncology (Y.C.) and Medical Imaging (X.L.), Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Departments of Neurosurgery (C.L.) and Radiology (Y. Zou), Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Shenzhen Peng Cheng Laboratory, Shenzhen, China (K.Y.); and National Innovation Center for Advanced Medical Devices, Shenzhen, China (H.Z., D.L., Z.C.L.)
| | - Kai Yan
- From the Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, No. 1068, Xueyuan Ave, Shenzhen 518055, China (Q.S., Y. Zhao, K.Y., H.Z., D.L., Z.C.L.); University of Chinese Academy of Sciences, Beijing, China (Q.S., Z.C.L.); Departments of Neurosurgery/Neuro-oncology (Y.C.) and Medical Imaging (X.L.), Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Departments of Neurosurgery (C.L.) and Radiology (Y. Zou), Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Shenzhen Peng Cheng Laboratory, Shenzhen, China (K.Y.); and National Innovation Center for Advanced Medical Devices, Shenzhen, China (H.Z., D.L., Z.C.L.)
| | - Hairong Zheng
- From the Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, No. 1068, Xueyuan Ave, Shenzhen 518055, China (Q.S., Y. Zhao, K.Y., H.Z., D.L., Z.C.L.); University of Chinese Academy of Sciences, Beijing, China (Q.S., Z.C.L.); Departments of Neurosurgery/Neuro-oncology (Y.C.) and Medical Imaging (X.L.), Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Departments of Neurosurgery (C.L.) and Radiology (Y. Zou), Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Shenzhen Peng Cheng Laboratory, Shenzhen, China (K.Y.); and National Innovation Center for Advanced Medical Devices, Shenzhen, China (H.Z., D.L., Z.C.L.)
| | - Dong Liang
- From the Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, No. 1068, Xueyuan Ave, Shenzhen 518055, China (Q.S., Y. Zhao, K.Y., H.Z., D.L., Z.C.L.); University of Chinese Academy of Sciences, Beijing, China (Q.S., Z.C.L.); Departments of Neurosurgery/Neuro-oncology (Y.C.) and Medical Imaging (X.L.), Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Departments of Neurosurgery (C.L.) and Radiology (Y. Zou), Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Shenzhen Peng Cheng Laboratory, Shenzhen, China (K.Y.); and National Innovation Center for Advanced Medical Devices, Shenzhen, China (H.Z., D.L., Z.C.L.)
| | - Zhi-Cheng Li
- From the Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, No. 1068, Xueyuan Ave, Shenzhen 518055, China (Q.S., Y. Zhao, K.Y., H.Z., D.L., Z.C.L.); University of Chinese Academy of Sciences, Beijing, China (Q.S., Z.C.L.); Departments of Neurosurgery/Neuro-oncology (Y.C.) and Medical Imaging (X.L.), Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Departments of Neurosurgery (C.L.) and Radiology (Y. Zou), Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Shenzhen Peng Cheng Laboratory, Shenzhen, China (K.Y.); and National Innovation Center for Advanced Medical Devices, Shenzhen, China (H.Z., D.L., Z.C.L.)
| |
Collapse
|
21
|
Stierschneider A, Grünstäudl P, Colleselli K, Atzler J, Klein CT, Hundsberger H, Wiesner C. Light-Inducible Spatio-Temporal Control of TLR4 and NF-κB-Gluc Reporter in Human Pancreatic Cell Line. Int J Mol Sci 2021; 22:ijms22179232. [PMID: 34502140 PMCID: PMC8431472 DOI: 10.3390/ijms22179232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 11/18/2022] Open
Abstract
Augmented Toll-like receptor 4 (TLR4) expression was found in nearly 70% of patients with pancreatic adenocarcinoma, which is correlated with increased tumorigenesis and progression. In this study, we engineered a new light-oxygen-voltage-sensing (LOV) domain-based optogenetic cell line (opto-TLR4 PANC-1) that enables time-resolved activation of the NF-κB and extracellular-signal regulated kinases (ERK)1/2 signalling pathway upon blue light-sensitive homodimerisation of the TLR4-LOV fusion protein. Continuous stimulation with light indicated strong p65 and ERK1/2 phosphorylation even after 24 h, whereas brief light exposure peaked at 8 h and reached the ground level 24 h post-illumination. The cell line further allows a voltage-dependent TLR4 activation, which can be continuously monitored, turned on by light or off in the dark. Using this cell line, we performed different phenotypic cell-based assays with 2D and 3D cultures, with the aim of controlling cellular activity with spatial and temporal precision. Light exposure enhanced cell attachment, the formation and extension of invadopodia, and cell migration in 3D spheroid cultures, but no significant changes in proliferation or viability could be detected. We conclude that the opto-TLR4 PANC-1 cell line is an ideal tool for investigating the underlying molecular mechanisms of TLR4, thereby providing strategies for new therapeutic options.
Collapse
Affiliation(s)
- Anna Stierschneider
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria; (A.S.); (P.G.); (K.C.); (C.T.K.); (H.H.)
| | - Petra Grünstäudl
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria; (A.S.); (P.G.); (K.C.); (C.T.K.); (H.H.)
| | - Katrin Colleselli
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria; (A.S.); (P.G.); (K.C.); (C.T.K.); (H.H.)
| | - Josef Atzler
- Molecular Devices, LLC, 5071 Wals-Siezenheim, Austria;
| | - Christian T. Klein
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria; (A.S.); (P.G.); (K.C.); (C.T.K.); (H.H.)
| | - Harald Hundsberger
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria; (A.S.); (P.G.); (K.C.); (C.T.K.); (H.H.)
| | - Christoph Wiesner
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria; (A.S.); (P.G.); (K.C.); (C.T.K.); (H.H.)
- Correspondence:
| |
Collapse
|
22
|
McGinity CL, Palmieri EM, Somasundaram V, Bhattacharyya DD, Ridnour LA, Cheng RYS, Ryan AE, Glynn SA, Thomas DD, Miranda KM, Anderson SK, Lockett SJ, McVicar DW, Wink DA. Nitric Oxide Modulates Metabolic Processes in the Tumor Immune Microenvironment. Int J Mol Sci 2021; 22:7068. [PMID: 34209132 PMCID: PMC8268115 DOI: 10.3390/ijms22137068] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
The metabolic requirements and functions of cancer and normal tissues are vastly different. Due to the rapid growth of cancer cells in the tumor microenvironment, distorted vasculature is commonly observed, which creates harsh environments that require rigorous and constantly evolving cellular adaption. A common hallmark of aggressive and therapeutically resistant tumors is hypoxia and hypoxia-induced stress markers. However, recent studies have identified alterations in a wide spectrum of metabolic pathways that dictate tumor behavior and response to therapy. Accordingly, it is becoming clear that metabolic processes are not uniform throughout the tumor microenvironment. Metabolic processes differ and are cell type specific where various factors promote metabolic heterogeneity within the tumor microenvironment. Furthermore, within the tumor, these metabolically distinct cell types can organize to form cellular neighborhoods that serve to establish a pro-tumor milieu in which distant and spatially distinct cellular neighborhoods can communicate via signaling metabolites from stroma, immune and tumor cells. In this review, we will discuss how biochemical interactions of various metabolic pathways influence cancer and immune microenvironments, as well as associated mechanisms that lead to good or poor clinical outcomes.
Collapse
Affiliation(s)
- Christopher L. McGinity
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (C.L.M.); (E.M.P.); (V.S.); (D.D.B.); (L.A.R.); (R.Y.S.C.); (S.K.A.); (D.W.M.)
| | - Erika M. Palmieri
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (C.L.M.); (E.M.P.); (V.S.); (D.D.B.); (L.A.R.); (R.Y.S.C.); (S.K.A.); (D.W.M.)
| | - Veena Somasundaram
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (C.L.M.); (E.M.P.); (V.S.); (D.D.B.); (L.A.R.); (R.Y.S.C.); (S.K.A.); (D.W.M.)
| | - Dibyangana D. Bhattacharyya
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (C.L.M.); (E.M.P.); (V.S.); (D.D.B.); (L.A.R.); (R.Y.S.C.); (S.K.A.); (D.W.M.)
- Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 TK33 Galway, Ireland; (A.E.R.); (S.A.G.)
| | - Lisa A. Ridnour
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (C.L.M.); (E.M.P.); (V.S.); (D.D.B.); (L.A.R.); (R.Y.S.C.); (S.K.A.); (D.W.M.)
| | - Robert Y. S. Cheng
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (C.L.M.); (E.M.P.); (V.S.); (D.D.B.); (L.A.R.); (R.Y.S.C.); (S.K.A.); (D.W.M.)
| | - Aideen E. Ryan
- Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 TK33 Galway, Ireland; (A.E.R.); (S.A.G.)
| | - Sharon A. Glynn
- Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 TK33 Galway, Ireland; (A.E.R.); (S.A.G.)
| | - Douglas D. Thomas
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | | | - Stephen K. Anderson
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (C.L.M.); (E.M.P.); (V.S.); (D.D.B.); (L.A.R.); (R.Y.S.C.); (S.K.A.); (D.W.M.)
| | - Stephen J. Lockett
- Optical Microscopy and Analysis Laboratory, LEIDO Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA;
| | - Daniel W. McVicar
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (C.L.M.); (E.M.P.); (V.S.); (D.D.B.); (L.A.R.); (R.Y.S.C.); (S.K.A.); (D.W.M.)
| | - David A. Wink
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (C.L.M.); (E.M.P.); (V.S.); (D.D.B.); (L.A.R.); (R.Y.S.C.); (S.K.A.); (D.W.M.)
| |
Collapse
|
23
|
Lüke F, Harrer DC, Hahn J, Grube M, Pukrop T, Herr W, Reichle A, Heudobler D. Continuous Complete Remission in Two Patients with Acute Lymphoblastic Leukemia and Severe Fungal Infection Following Short-Term, Dose-Reduced Chemotherapy. Front Pharmacol 2021; 12:599552. [PMID: 34149402 PMCID: PMC8206565 DOI: 10.3389/fphar.2021.599552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 05/18/2021] [Indexed: 01/16/2023] Open
Abstract
Spontaneous remission in acute lymphoblastic leukemia (ALL) is a rare phenomenon, which typically involves a pattern of feverish or septic disease followed by quick but mostly transient remission. We report on two male patients (46-year-old (pt. 1) and 19-year-old (pt. 2)) with CD20 positive, BCR-ABL negative common B-ALL. Patient 1 had received dexamethasone and cyclophosphamide (1.2 g) as a prephase therapy, followed by rituximab and a cumulative dose of 200 mg daunorubicin combined with 2 mg vincristine as an induction therapy. Patient 2 was treated with a reduced therapy regimen (Vincristine 1 mg, dexamethasone and 80 mg daunorubicin, 12-month mercaptopurine maintenance) due to (alcohol-related) toxic liver failure and pontine myelinolysis. Both patients developed severe septic disease just few days into induction treatment. Patient 1 suffered from pulmonary mycosis, which had to be resected eventually. Histological work-up revealed invasive mucor mycosis. Patient 2 presented with elevated serum aspergillus antigen and radiographic pulmonary lesions, indicative of pulmonary mycosis. In both patients, chemotherapy had to be interrupted and could not be resumed. Both patients recovered under broad antimicrobial, antifungal and prophylactic antiviral therapy and achieved molecular complete remission. At data cut-off remissions had been on-going for 34 months (pt. 1) and 8 years (pt. 2). Short-term, reduced intensity induction chemotherapy accompanied by severe fungal infections was followed by long-lasting continuous complete remissions in ALL. Thus, we hypothesize that infection-associated immunogenic responses may not only prevent early relapse of ALL but could also eradicate minimal residual disease. The effects of combined cytotoxic therapy and severe infection may also be mimicked by biomodulatory treatment strategies aiming at reorganizing pathologically altered cellular signaling networks. This could reduce toxicity and comorbidity in adult patients requiring leukemia treatment. Therefore, these two cases should encourage systematic studies on how leukemia stroma interaction can be harnessed to achieve long lasting control of ALL.
Collapse
Affiliation(s)
- Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Dennis C Harrer
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Joachim Hahn
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Matthias Grube
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| |
Collapse
|
24
|
McWhirter SM, Jefferies CA. Nucleic Acid Sensors as Therapeutic Targets for Human Disease. Immunity 2021; 53:78-97. [PMID: 32668230 DOI: 10.1016/j.immuni.2020.04.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/26/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022]
Abstract
Innate immune sensors that detect nucleic acids are attractive targets for therapeutic intervention because of their diverse roles in many disease processes. In detecting RNA and DNA from either self or non-self, nucleic acid sensors mediate the pathogenesis of many autoimmune and inflammatory conditions. Despite promising pre-clinical data and investigational use in the clinic, relatively few drugs targeting nucleic acid sensors are approved for therapeutic use. Nevertheless, there is growing appreciation for the untapped potential of nucleic acid sensors as therapeutic targets, driven by the need for better therapies for cancer, infectious diseases, and autoimmune disorders. This review highlights the diverse mechanisms by which nucleic acid sensors are activated and exert their biological effects in the context of various disease settings. We discuss current therapeutic strategies utilizing agonists and antagonists targeting nucleic acid sensors to treat infectious disease, cancer, and autoimmune and inflammatory disorders.
Collapse
Affiliation(s)
| | - Caroline A Jefferies
- Department of Biomedical Sciences and Department of Medicine, Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
25
|
Kötting C, Hofmann L, Lotfi R, Engelhardt D, Laban S, Schuler PJ, Hoffmann TK, Brunner C, Theodoraki MN. Immune-Stimulatory Effects of Curcumin on the Tumor Microenvironment in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13061335. [PMID: 33809574 PMCID: PMC8001767 DOI: 10.3390/cancers13061335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 03/12/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Head and neck squamous cell carcinoma has been shown to downregulate the host’s antitumor immune response as well as inherent anticancer immunity, inter alia, via increased activation of nuclear factor kappa of activated B-cells (NF-κB). The aim of this study is to examine curcumin’s effects on certain pro- and antitumoral chemokines via NF-κB, as well as the combined effects of curcumin and toll-like receptor 3 agonist Poly I:C on NF-κB and regulatory T-cell attraction. Furthermore, we compare curcumin with established NF-κB inhibitors caffeic acid phenethyl ester and BAY 11-7082. We demonstrate that curcumin has immune-modulating effects, with potent inhibition of the regulatory T-cell-attracting effects of Poly I:C. Therefore, curcumin presents an adjuvant that not only improves the effects of established therapies but also holds the potential to reduce negative side effects in tumor entities with increased NF-κB activation. Abstract Curcumin is known to have immune-modulatory and antitumor effects by interacting with more than 30 different proteins. An important feature of curcumin is the inhibition of nuclear factor kappa of activated B-cells (NF-κB). Here, we evaluate the potential of curcumin to reverse the epithelial to mesenchymal transition (EMT) of head and neck squamous cell carcinoma (HNSCC) cells as a part of tumor escape mechanisms. We examined the impact of curcumin on the expression of different pro- and antitumoral chemokines in ex vivo HNSCC tumor tissue and primary macrophage cultures. Further, we evaluated the combinatorial effect of curcumin and toll-like receptor 3 (TLR3) agonist Poly I:C (PIC) on NF-κB inhibition and regulatory T-cell (Treg) attraction. Mesenchymal markers were significantly reduced in cancer specimens after incubation with curcumin, with simultaneous reduction of key transcription factors of EMT, Snail, and Twist. Furthermore, a decrease of the Treg-attracting chemokine CCL22 was observed. Additionally, curcumin-related inhibition of NF-κB nuclear translocation was evident. The combination of PIC with curcumin resulted in further NF-κB inhibition, whereas PIC alone contrarily resulted in NF-κB activation. Furthermore, curcumin was more effective in inhibiting PIC-dependent NF-κB activation and Treg attraction compared to known NF-κB inhibitors BAY 11-7082 or caffeic acid phenethyl ester (CAPE). The presented results show, for the first time, the immune-modulating effects of curcumin in HNSCC, with potent inhibition of the Treg-attracting effects of PIC. Hence, curcumin presents a promising drug in cancer therapy as a supplement to already established treatments.
Collapse
Affiliation(s)
- Charlotte Kötting
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89070 Ulm, Germany; (C.K.); (L.H.); (D.E.); (S.L.); (P.J.S.); (T.K.H.); (C.B.)
| | - Linda Hofmann
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89070 Ulm, Germany; (C.K.); (L.H.); (D.E.); (S.L.); (P.J.S.); (T.K.H.); (C.B.)
| | - Ramin Lotfi
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Services Baden-Württemberg-Hessen, 89081 Ulm, Germany;
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany
| | - Daphne Engelhardt
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89070 Ulm, Germany; (C.K.); (L.H.); (D.E.); (S.L.); (P.J.S.); (T.K.H.); (C.B.)
| | - Simon Laban
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89070 Ulm, Germany; (C.K.); (L.H.); (D.E.); (S.L.); (P.J.S.); (T.K.H.); (C.B.)
| | - Patrick J. Schuler
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89070 Ulm, Germany; (C.K.); (L.H.); (D.E.); (S.L.); (P.J.S.); (T.K.H.); (C.B.)
| | - Thomas K. Hoffmann
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89070 Ulm, Germany; (C.K.); (L.H.); (D.E.); (S.L.); (P.J.S.); (T.K.H.); (C.B.)
| | - Cornelia Brunner
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89070 Ulm, Germany; (C.K.); (L.H.); (D.E.); (S.L.); (P.J.S.); (T.K.H.); (C.B.)
| | - Marie-Nicole Theodoraki
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89070 Ulm, Germany; (C.K.); (L.H.); (D.E.); (S.L.); (P.J.S.); (T.K.H.); (C.B.)
- Correspondence: ; Tel.: +49-731-500-59521
| |
Collapse
|
26
|
Hossam N, Matboli M, Shehata HH, Aboelhussein MM, Hassan MK, Eissa S. Toll-like receptor immune modulatory role in personalized management of colorectal cancer, review of literature. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1816136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Nourhan Hossam
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Matboli
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hanan H. Shehata
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa M. Aboelhussein
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Kamel Hassan
- Zewail city for science and Technology, Helmy Institute for medical science, Center for Genomics, Giza, Egypt
- Department of Biology/Zoology, Biotechnology Program, Port Said University, Port Said, Egypt
| | - Sanaa Eissa
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
27
|
Bioinformatic Identification of Neuroblastoma Microenvironment-Associated Biomarkers with Prognostic Value. JOURNAL OF ONCOLOGY 2020; 2020:5943014. [PMID: 32963529 PMCID: PMC7501561 DOI: 10.1155/2020/5943014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/16/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
Abstract
The microenvironment plays a vital role in the tumor recurrence of neuroblastoma. This research aimed at exploring prognostic genes that are involved in neuroblastoma microenvironment. We used “estimate” R package to calculate the immune/stromal/ESTIMATE scores of each sample of ArrayExpress dataset E-MTAB-8248 based on the ESTIMATE algorithm. Then we found that immune/stromal/ESTIMATE scores were not correlated with age/chromosome 11q, but tumor stage, MYCN gene amplifications, and chromosome 1p. Samples were then divided into high- and low-score groups, and 280 common differentially expressed genes (DEGs) were identified. 64 potential prognostic genes were harvested through overall survival analysis from the common DEGs. 14 prognostic genes (ABCA6, SEPP1, SLAMF8, GPR171, ABCA9, ARHGAP15, IL7R, HLA-DPB1, GZMA, GPR183, CCL19, ITK, FGL2, and CD1C) were obtained after screening in two independent cohorts. GO and KEGG analysis discovered that common DEGs and 64 potential prognostic genes are mainly involved in T-cell activation, lymphocyte activation regulation, leukocyte migration, and the interaction of cytokines and cytokine receptors. Correlation analysis showed that all prognostic genes were negatively correlated with MYCN amplification. Cox analysis identified 5 independent prognostic genes (ARHGAP15, ABCA9, CCL19, SLAMF8, and CD1C).
Collapse
|
28
|
The Macrophages-Microbiota Interplay in Colorectal Cancer (CRC)-Related Inflammation: Prognostic and Therapeutic Significance. Int J Mol Sci 2020; 21:ijms21186866. [PMID: 32962159 PMCID: PMC7558485 DOI: 10.3390/ijms21186866] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are the main population of myeloid cells infiltrating solid tumors and the pivotal orchestrators of cancer-promoting inflammation. However, due to their exceptional plasticity, macrophages can be also key effector cells and powerful activators of adaptive anti-tumor immunity. This functional heterogeneity is emerging in human tumors, colorectal cancer (CRC) in particular, where the dynamic co-existence of different macrophage subtypes influences tumor development, outcome, and response to therapies. Intestinal macrophages are in close interaction with enteric microbiota, which contributes to carcinogenesis and affects treatment outcomes. This interplay may be particularly relevant in CRC, one of the most prevalent and lethal cancer types in the world. Therefore, both macrophages and intestinal microbiota are considered promising prognostic indicators and valuable targets for new therapeutic approaches. Here, we discuss the current understanding of the molecular circuits underlying the interplay between macrophages and microbiota in CRC development, progression, and response to both conventional therapies and immunotherapies.
Collapse
|
29
|
Guil-Luna S, Mena R, Navarrete-Sirvent C, López-Sánchez LM, Khouadri K, Toledano-Fonseca M, Mantrana A, Guler I, Villar C, Díaz C, Medina-Fernández FJ, De la Haba-Rodríguez JR, Aranda E, Rodríguez-Ariza A. Association of Tumor Budding With Immune Evasion Pathways in Primary Colorectal Cancer and Patient-Derived Xenografts. Front Med (Lausanne) 2020; 7:264. [PMID: 32719800 PMCID: PMC7347987 DOI: 10.3389/fmed.2020.00264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Tumor budding has been found to be of prognostic significance for several cancers, including colorectal cancer (CRC). Additionally, the molecular classification of CRC has led to the identification of different immune microenvironments linked to distinct prognosis and therapeutic response. However, the association between tumor budding and the different molecular subtypes of CRC and distinct immune profiles have not been fully elucidated. This study focused, firstly, on the validation of derived xenograft models (PDXs) for the evaluation of tumor budding and their human counterparts and, secondly, on the association between tumor budding and the immune tumor microenvironment by the analysis of gene expression signatures of immune checkpoints, Toll-like receptors (TLRs), and chemokine families. Clinical CRC samples with different grades of tumor budding and their corresponding PDXs were included in this study. Tumor budding grade was reliably reproduced in early passages of PDXs, and high-grade tumor budding was intimately related with a poor-prognosis CMS4 mesenchymal subtype. In addition, an upregulation of negative regulatory immune checkpoints (PDL1, TIM-3, NOX2, and IDO1), TLRs (TLR1, TLR3, TLR4, and TLR6), and chemokine receptors and ligands (CXCR2, CXCR4, CXCL1, CXCL2, CXCL6, and CXCL9) was detected in high-grade tumor budding in both human samples and their corresponding xenografts. Our data support a close link between high-grade tumor budding in CRC and a distinctive immune-suppressive microenvironment promoting tumor invasion, which may have a determinant role in the poor prognosis of the CMS4 mesenchymal subtype. In addition, our study demonstrates that PDX models may constitute a robust preclinical platform for the development of novel therapies directed against tumor budding in CRC.
Collapse
Affiliation(s)
- Silvia Guil-Luna
- Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Rafael Mena
- Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain
| | | | - Laura María López-Sánchez
- Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Karima Khouadri
- Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain
| | - Marta Toledano-Fonseca
- Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ana Mantrana
- Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain
| | - Ipek Guler
- Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain
| | - Carlos Villar
- Unidad de Gestión Clínica de Anatomía Patológica, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Cesar Díaz
- Unidad de Gestión Clínica de Cirugía General y del Aparato Digestivo, Hospital Universitario Reina Sofía, Córdoba, Spain
| | | | - Juan Rafael De la Haba-Rodríguez
- Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Unidad de Gestión Clínica de Oncología Médica, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Enrique Aranda
- Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Unidad de Gestión Clínica de Oncología Médica, Hospital Universitario Reina Sofía, Córdoba, Spain.,Departamento de Medicina, Facultad de Medicina de Córdoba, Universidad de Córdoba, Córdoba, Spain
| | - Antonio Rodríguez-Ariza
- Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Unidad de Gestión Clínica de Oncología Médica, Hospital Universitario Reina Sofía, Córdoba, Spain
| |
Collapse
|
30
|
Yan‐Fei H, Han Y, Yan‐Ting Z, Hui Y, Yu‐Qing Y, Ipsita P, Hui‐Ying H, Wei‐Gang F, Xin‐Xia T. Dysregulation in nucleic acid-sensing pathway genes is associated with cancer patients' prognosis. Cancer Sci 2020; 111:2212-2222. [PMID: 32391619 PMCID: PMC7385384 DOI: 10.1111/cas.14450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
The innate immune system, the first line of defense against pathogens, is activated by nucleic acids from microbial invaders that are recognized by nucleic acid-sensing receptors. Recent evidence affirms the ability of these receptors to respond to nucleic acids released by damaged cancer cells. The innate immune system is also involved in cancer immunosurveillance, and could be modulated for devising effective antitumor therapies by targeting nucleic acid-sensing pathways. A systematic, comprehensive analysis of dysregulation in nucleic acid-sensing pathways in cancer is required to fully understand its role. Based on multidimensional data of The Cancer Genome Atlas pan-cancer cohort, we revealed that upregulation of cytosolic DNA-sensing genes like AIM2 and CGAS was common in tumor tissues. We used 15 genes in the nucleic acid-sensing pathway to cluster all tumor patients into 2 subgroups and found that the subgroup with higher expression of nucleic acid-sensing pathway genes was associated with poorer prognosis across cancer types. However, in homologous recombination deficient patients, the nucleic acid recognition activated subgroup was associated with better prognosis, which confirms the therapeutic effect of nucleic acid recognition. This study contributes to a better understanding of the functions and mechanisms of nucleic acid recognition in cancer, lays the foundation for new therapeutic strategies, and enlarges the scope of development of new drugs.
Collapse
Affiliation(s)
- Huo Yan‐Fei
- Department of PathologySchool of Basic Medical SciencesThird HospitalPeking University Health Science CenterBeijingChina
| | - Yang Han
- Department of PathologySchool of Basic Medical SciencesThird HospitalPeking University Health Science CenterBeijingChina
| | - Zhou Yan‐Ting
- Department of PathologySchool of Basic Medical SciencesThird HospitalPeking University Health Science CenterBeijingChina
| | - Yang Hui
- Department of PathologySchool of Basic Medical SciencesThird HospitalPeking University Health Science CenterBeijingChina
| | - Yu Yu‐Qing
- Department of PathologySchool of Basic Medical SciencesThird HospitalPeking University Health Science CenterBeijingChina
| | - Panda Ipsita
- Department of PathologySchool of Basic Medical SciencesThird HospitalPeking University Health Science CenterBeijingChina
| | - He Hui‐Ying
- Department of PathologySchool of Basic Medical SciencesThird HospitalPeking University Health Science CenterBeijingChina
| | - Fang Wei‐Gang
- Department of PathologySchool of Basic Medical SciencesThird HospitalPeking University Health Science CenterBeijingChina
| | - Tian Xin‐Xia
- Department of PathologySchool of Basic Medical SciencesThird HospitalPeking University Health Science CenterBeijingChina
| |
Collapse
|
31
|
Angrini M, Varthaman A, Cremer I. Toll-Like Receptors (TLRs) in the Tumor Microenvironment (TME): A Dragon-Like Weapon in a Non-fantasy Game of Thrones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1263:145-173. [DOI: 10.1007/978-3-030-44518-8_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Mendoza-Reinoso V, McCauley LK, Fournier PG. Contribution of Macrophages and T Cells in Skeletal Metastasis. Cancers (Basel) 2020; 12:E1014. [PMID: 32326073 PMCID: PMC7226332 DOI: 10.3390/cancers12041014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
Bone is a common site for metastases with a local microenvironment that is highly conducive for tumor establishment and growth. The bone marrow is replete with myeloid and lymphoid linage cells that provide a fertile niche for metastatic cancer cells promoting their survival and growth. Here, we discuss the role of macrophages and T cells in pro- and anti-tumoral mechanisms, their interaction to support cancer cell growth, and their contribution to the development of skeletal metastases. Importantly, immunotherapeutic strategies targeting macrophages and T cells in cancer are also discussed in this review as they represent a great promise for patients suffering from incurable bone metastases.
Collapse
Affiliation(s)
- Veronica Mendoza-Reinoso
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (V.M.-R.); (L.K.M.)
| | - Laurie K. McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (V.M.-R.); (L.K.M.)
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Pierrick G.J. Fournier
- Biomedical Innovation Department, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, BC 22860, Mexico
| |
Collapse
|
33
|
Sharma Y, Bala K. Role of Toll like receptor in progression and suppression of oral squamous cell carcinoma. Oncol Rev 2020; 14:456. [PMID: 32477468 PMCID: PMC7246341 DOI: 10.4081/oncol.2020.456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/20/2020] [Indexed: 12/22/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common type of head and neck squamous cell carcinoma and one of the multifactorial process that consists of most contributing factors such as tobacco smoking, chewing and alcohol consumption that altered the intracellular environment. Recent studies have shown relevance of Toll like receptor (TLR) associated with carcinogenesis. This review aim’s to explore that how TLR associates with progression and suppression of OSCC. This review is a classical review that has confined to articles published in the past 19 years (i.e. 2000-2019) and has summarized the perspective of the authors. 62 articles were reviewed and it was found that progression and suppression of OSCC is associated with different TLRs promoting tumor development and also inhibiting the progression of oral neoplasm. It was found that TLR2, TLR3, TLR4, TLR5, TLR7 and TLR9 are associated with tumor development i.e. in progression of OSCC, where as suppression of OSCC through TLR3 and TLR7. We authors would like to conclude that literature survey has indicated effective TLR’s against OSCC development and can be explored to investigate other TLRs that can be used for therapeutic purposes in near future.
Collapse
Affiliation(s)
- Yash Sharma
- Therapeutics and Molecular Diagnostic Lab, Centre For Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Kumud Bala
- Therapeutics and Molecular Diagnostic Lab, Centre For Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
34
|
Shi S, Xu C, Fang X, Zhang Y, Li H, Wen W, Yang G. Expression profile of Toll‑like receptors in human breast cancer. Mol Med Rep 2019; 21:786-794. [PMID: 31789409 PMCID: PMC6947885 DOI: 10.3892/mmr.2019.10853] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/24/2019] [Indexed: 12/22/2022] Open
Abstract
Toll‑like receptors (TLRs) are the most widely studied pattern recognition receptors. Mounting evidence suggests an important association between TLRs and the occurrence and development of breast cancer. Thus, targeting these receptors may be a potential strategy for breast cancer treatment. The current study analyzed the data of 1,215 patients with breast cancer obtained from The Cancer Genome Atlas (TCGA) database. It was observed that, in addition to TLR6, TLR7 and TLR8, the expression of the remaining TLRs in breast cancer tissues was lower than that in normal tissues. In addition, TLR3 and TLR9 displayed significantly different expression levels in ER‑/PR‑negative breast cancer compared with the control tissues, while TLR5 expression was significantly reduced in HER2‑enriched breast cancer. Furthermore, TLR10 exhibited lower expression levels in advanced stages of the disease as compared with that observed in earlier stages. Survival analysis revealed that the expression of TLR4 and TLR7 had a significant impact on survival, and higher expression levels suggested worse prognosis. Finally, the expression levels of TLR1, TLR2, TLR4, TLR5, TLR6 and TLR10 were correlated with those of the inflammatory cytokines interleukin‑1β and tumor necrosis factor‑α, while the expression levels of TLR3, TLR7, TLR8 and TLR9 were correlated with those of interferon‑β and C‑X‑C motif chemokine ligand 10. Taken together, the current study results suggest that TLR expression may serve as a biomarker of cancer pathogenesis and progression, and may provide new insights for the treatment of breast cancer through the regulation and targeting of TLRs.
Collapse
Affiliation(s)
- Shuxun Shi
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Cong Xu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Xiaonan Fang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Yonghuan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Wujun Wen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
35
|
Park GB, Jeong JY, Kim D. Modified TLR-mediated downregulation of miR-125b-5p enhances CD248 (endosialin)-induced metastasis and drug resistance in colorectal cancer cells. Mol Carcinog 2019; 59:154-167. [PMID: 31746054 DOI: 10.1002/mc.23137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/01/2019] [Accepted: 11/11/2019] [Indexed: 12/23/2022]
Abstract
CD248, also called endosialin or tumor endothelial marker-1, is markedly upregulated in almost all cancers, including colon cancers. Changes in microRNA profiles are one of the direct causes of cancer development and progression. In this study, we investigated whether a change in CD248 expression in colon cancer cells could induce drug resistance after chemotherapy, and we explored the relationship between miR-125b-5p levels and CD248 expression in Toll-like receptor (TLR)-modified chemoresistant colon cancer cells. TLR2/6 and TLR5 upregulation in drug-resistant colon cancer cells contributed to miR-125b-5p downregulation and specificity protein 1 (Sp1)-mediated CD248 upregulation via nuclear factor-kappa B (NF-κB) activation. Exposure to specific TLR2/6 or TLR5 ligands enhanced the expression of mesenchymal markers as well as the migratory activity of oxaliplatin- or 5-fluorouracil-resistant colon cancer cells. The transfection of a synthetic miR-125b-5p mimic into chemoresistant cells prevented Sp1 and CD248 activation and significantly impaired invasive activity. Furthermore, Sp1 or CD248 gene silencing as well as miR-125b-5p overexpression markedly reversed drug resistance and inhibited epithelial-mesenchymal transition in colon cancer cells. Taken together, these results suggest that changes in miR-125b-5p levels play an important role in Sp1-mediated CD248 expression and the development of drug resistance in TLR-mutated colon cancer cells.
Collapse
Affiliation(s)
- Ga-Bin Park
- Department of Biochemistry, Kosin University College of Medicine, Busan, Republic of Korea
| | - Jee-Yeong Jeong
- Department of Biochemistry, Kosin University College of Medicine, Busan, Republic of Korea
| | - Daejin Kim
- Department of Anatomy, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
36
|
Wu JY, Huang TW, Hsieh YT, Wang YF, Yen CC, Lee GL, Yeh CC, Peng YJ, Kuo YY, Wen HT, Lin HC, Hsiao CW, Wu KK, Kung HJ, Hsu YJ, Kuo CC. Cancer-Derived Succinate Promotes Macrophage Polarization and Cancer Metastasis via Succinate Receptor. Mol Cell 2019; 77:213-227.e5. [PMID: 31735641 DOI: 10.1016/j.molcel.2019.10.023] [Citation(s) in RCA: 316] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/03/2019] [Accepted: 10/15/2019] [Indexed: 01/08/2023]
Abstract
Macrophages form a major cell population in the tumor microenvironment. They can be activated and polarized into tumor-associated macrophages (TAM) by the tumor-derived soluble molecules to promote tumor progression and metastasis. Here, we used comparative metabolomics coupled with biochemical and animal studies to show that cancer cells release succinate into their microenvironment and activate succinate receptor (SUCNR1) signaling to polarize macrophages into TAM. Furthermore, the results from in vitro and in vivo studies revealed that succinate promotes not only cancer cell migration and invasion but also cancer metastasis. These effects are mediated by SUCNR1-triggered PI3K-hypoxia-inducible factor 1α (HIF-1α) axis. Compared with healthy subjects and tumor-free lung tissues, serum succinate levels and lung cancer SUCNR1 expression were elevated in lung cancer patients, suggesting an important clinical relevance. Collectively, our findings indicate that the secreted tumor-derived succinate belongs to a novel class of cancer progression factors, controlling TAM polarization and promoting tumorigenic signaling.
Collapse
Affiliation(s)
- Jing-Yiing Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Tsai-Wang Huang
- Division of Thoracic Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Ting Hsieh
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Yi-Fu Wang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Chia-Chien Yen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Guan-Lin Lee
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Chang-Ching Yeh
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan; Graduate Institutes of Life Sciences and Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Jen Peng
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ya-Yi Kuo
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Hsiu-Ting Wen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Hui-Chen Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Cheng-Wen Hsiao
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kenneth K Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan; Metabolomic Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan; Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Hsing-Jien Kung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Chin Kuo
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan; Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan; Graduate Institutes of Life Sciences and Biochemistry, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
37
|
Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov 2019; 18:197-218. [PMID: 30610226 DOI: 10.1038/s41573-018-0007-y] [Citation(s) in RCA: 2156] [Impact Index Per Article: 359.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunotherapies are the most rapidly growing drug class and have a major impact in oncology and on human health. It is increasingly clear that the effectiveness of immunomodulatory strategies depends on the presence of a baseline immune response and on unleashing of pre-existing immunity. Therefore, a general consensus emerged on the central part played by effector T cells in the antitumour responses. Recent technological, analytical and mechanistic advances in immunology have enabled the identification of patients who are more likely to respond to immunotherapy. In this Review, we focus on defining hot, altered and cold tumours, the complexity of the tumour microenvironment, the Immunoscore and immune contexture of tumours, and we describe approaches to treat such tumours with combination immunotherapies, including checkpoint inhibitors. In the upcoming era of combination immunotherapy, it is becoming critical to understand the mechanisms responsible for hot, altered or cold immune tumours in order to boost a weak antitumour immunity. The impact of combination therapy on the immune response to convert an immune cold into a hot tumour will be discussed.
Collapse
|
38
|
Mohan S, Lawton R, Palmer C, Rojas AC. Competitive ELISA method for novel estrogen-negative breast cancer biomarker quantitation. J Immunol Methods 2019; 474:112671. [DOI: 10.1016/j.jim.2019.112671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/29/2019] [Accepted: 09/12/2019] [Indexed: 12/28/2022]
|
39
|
Braunstein MJ, Kucharczyk J, Adams S. Targeting Toll-Like Receptors for Cancer Therapy. Target Oncol 2019; 13:583-598. [PMID: 30229471 DOI: 10.1007/s11523-018-0589-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The immune system encompasses a broad array of defense mechanisms against foreign threats, including invading pathogens and transformed neoplastic cells. Toll-like receptors (TLRs) are critically involved in innate immunity, serving as pattern recognition receptors whose stimulation leads to additional innate and adaptive immune responses. Malignant cells exploit the natural immunomodulatory functions of TLRs, expressed mainly by infiltrating immune cells but also aberrantly by tumor cells, to foster their survival, invasion, and evasion of anti-tumor immune responses. An extensive body of research has demonstrated context-specific roles for TLR activation in different malignancies, promoting disease progression in certain instances while limiting cancer growth in others. Despite these conflicting roles, TLR agonists have established therapeutic benefits as anti-cancer agents that activate immune cells in the tumor microenvironment and facilitate the expression of cytokines that allow for infiltration of anti-tumor lymphocytes and the suppression of oncogenic signaling pathways. This review focuses on the clinical application of TLR agonists for cancer treatment. We also highlight agents that are undergoing development in clinical trials, including investigations of TLR agonists in combination with other immunotherapies.
Collapse
Affiliation(s)
- Marc J Braunstein
- Department of Medicine, NYU Winthrop Hospital, 120 Mineola Blvd. Suite 500, Mineola, 11501, NY, USA
| | - John Kucharczyk
- Department of Medicine, NYU Winthrop Hospital, 120 Mineola Blvd. Suite 500, Mineola, 11501, NY, USA
| | - Sylvia Adams
- Department of Medicine, NYU Langone Medical Center, Laura and Isaac Perlmutter Cancer Center, 160 East 34th Street, 4th Floor, New York, 10016, NY, USA.
| |
Collapse
|
40
|
Sun Z, Xu L. Expression of PDK-1 and DMBT1 in the thyroid carcinoma and its clinicopathological significance. Oncol Lett 2019; 18:2819-2824. [PMID: 31452760 PMCID: PMC6676455 DOI: 10.3892/ol.2019.10639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/10/2019] [Indexed: 12/14/2022] Open
Abstract
This study was designed to explore the expression of phosphoinositide-dependent protein kinase 1 (PDK-1), deleted in malignant brain tumors (DMBT1) in the thyroid carcinoma. A total of 87 fresh samples of thyroid carcinoma from surgical resection in The Second People's Hospital of Lianyungang from June 2016 to March 2018 were collected for the ELISA to detect the protein expression of PDK-1 and DMBT1. Then the pathological significance of the expression of PDK-1 and DMBT1 in the thyroid carcinoma and the correlation between them were analyzed, using the ROC curve to study the diagnostic value of each index. The expression of PDK-1 in the thyroid carcinoma tissue was significantly higher than that in the normal thyroid tissue with a statistical difference between them (P<0.05); the expression of DMBT1 in the thyroid carcinoma was statistically significantly lower than that in the normal thyroid tissue (P<0.05); the PDK-1 and DMBT1 expressions were in negative correlation in the thyroid carcinoma (r=−0.889, P<0.001). The AUG, specificity and the sensitivity of the PDK-1 in diagnosing the thyroid carcinoma were 0.862, 86.21% and 78.16%, respectively; the AUG, specificity and the sensitivity of the DMBT1 in diagnosing the thyroid carcinoma were 0.708, 66.67% and 67.82%, respectively; while the AUG, the specificity and the sensitivity of the combination of PDK-1 and DMBT1 in diagnosing the thyroid carcinoma were 0.888, 89.66% and 81.61%. In conclusion, the occurrence and progression of the thyroid carcinoma were related to the high expression of the PDK-1 and the low expression of the DMBT1 in the thyroid carcinoma tissues, the two of which were in connection with factors involving lymph node metastasis, pathological type, neoplasm staging, and clinical staging. Thus, the combined detection of PDK-1 and DMBT1 could be used as an effective index to determine the occurrence of thyroid carcinoma.
Collapse
Affiliation(s)
- Zhichao Sun
- Department of Pathology, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu 222006, P.R. China
| | - Lei Xu
- Department of Pathology, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu 222006, P.R. China
| |
Collapse
|
41
|
Wu Y, Huang W, Chen L, Jin M, Gao Z, An C, Lin H. Anti-tumor outcome evaluation against non-small cell lung cancer in vitro and in vivo using PolyI:C as nucleic acid therapeutic agent. Am J Transl Res 2019; 11:1919-1937. [PMID: 31105808 PMCID: PMC6511752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
PolyI:C as a ligand of toll-like receptor 3 has been explored as a nucleic acid therapeutic agent for anti-tumor therapy. The previous PolyI:C studies mainly focused on anti-tumor evaluation at cell level and anti-tumor mechanism involved in MyD88-independent pathway. However, there is a lack of information about the ability of PolyI:C to affect PI3K/Akt/p53 signaling pathway in non-small cell lung cancer (NSCLC), and its pharmacodynamic evaluation in vivo still remain unclear so far. In this study, we explored the anti-tumor mechanism and efficacy in vivo of PolyI:C in NSCLC. Our results showed that PolyI:C had the ability to inhibit tumor cell proliferation and promote cell apoptosis by inducing G1 cell cycle block in LL/2 and A549 NSCLC cells. In vivo animal studies also demonstrated that PolyI:C effectively inhibited the tumor growth, suppressed spontaneous metastasis and prolonged the survival time of LL/2 tumor-bearing mice. Moreover, western blotting and immunohistochemistry assays showed that its anti-tumor mechanism was associated with the interference with PI3K/Akt/p53 signaling pathway. Our results confirmed that PolyI:C increased the expression of CD80, CD86 in spleen dendritic cells of tumor-bearing mice and cytokine secretion in healthy mice. Generally, our study suggests that PolyI:C can become a promising anti-tumor agent.
Collapse
Affiliation(s)
- Yedan Wu
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian UniversityYanji 133000, Jilin, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100050, China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100050, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100050, China
| | - Changshan An
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian UniversityYanji 133000, Jilin, China
| | - Haixiang Lin
- Xinfu (Beijing) Pharmaceutical Technology Co., LtdBeijing 100085, China
| |
Collapse
|
42
|
Basudhar D, Bharadwaj G, Somasundaram V, Cheng RYS, Ridnour LA, Fujita M, Lockett SJ, Anderson SK, McVicar DW, Wink DA. Understanding the tumour micro-environment communication network from an NOS2/COX2 perspective. Br J Pharmacol 2019; 176:155-176. [PMID: 30152521 PMCID: PMC6295414 DOI: 10.1111/bph.14488] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022] Open
Abstract
Recent findings suggest that co-expression of NOS2 and COX2 is a strong prognostic indicator in triple-negative breast cancer patients. These two key inflammation-associated enzymes are responsible for the biosynthesis of NO and PGE2 , respectively, and can exert their effect in both an autocrine and paracrine manner. Impairment of their physiological regulation leads to critical changes in both intra-tumoural and intercellular communication with the immune system and their adaptation to the hypoxic tumour micro-environment. Recent studies have also established a key role of NOS2-COX2 in causing metabolic shift. This review provides an extensive overview of the role of NO and PGE2 in shaping communication between the tumour micro-environment composed of tumour and immune cells that in turn favours tumour progression and metastasis. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.
Collapse
Affiliation(s)
- Debashree Basudhar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Gaurav Bharadwaj
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Veena Somasundaram
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Robert Y S Cheng
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Lisa A Ridnour
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Mayumi Fujita
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChiba‐kenJapan
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Stephen K Anderson
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Daniel W McVicar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - David A Wink
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| |
Collapse
|
43
|
Wen ZF, Liu H, Gao R, Zhou M, Ma J, Zhang Y, Zhao J, Chen Y, Zhang T, Huang F, Pan N, Zhang J, Fox BA, Hu HM, Wang LX. Tumor cell-released autophagosomes (TRAPs) promote immunosuppression through induction of M2-like macrophages with increased expression of PD-L1. J Immunother Cancer 2018; 6:151. [PMID: 30563569 PMCID: PMC6299637 DOI: 10.1186/s40425-018-0452-5] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/16/2018] [Indexed: 12/13/2022] Open
Abstract
Background Tumor-associated macrophages (TAMs) facilitate tumor progression via establishment of an immunosuppressive tumor microenvironment (TME). However, it is poorly understood how tumor cells could functionally modulate TAMs. Our previous work indicated that tumor cell-released autophagosomes (TRAPs), a type of LC3-II+ double-membrane extracellular vesicles (EVs) was sufficient to suppress anti-tumor immune responses by inducing IL-10-producing B cells and immune suppressive neutrophils. Here, we hypothesized that TRAPs may participate in regulating macrophage polarization. Methods TRAPs isolated from multiple murine tumor cell lines and pleural effusions or ascites of cancer patients were incubated with bone marrow-derived macrophages (BMDMs) and monocytes, respectively. Cellular phenotypes were examined by flow cytometry, ELISA and quantitative PCR. TRAPs treated BMDMs were tested for the ability to suppress T-cell proliferation in vitro, and for promotion of tumor growth in vivo. Transwell chamber and neutralization antibodies were added to ascertain the inhibitory molecules expressed on BMDMs exposed to TRAPs. Knockout mice were used to identify the receptors responsible for TRAPs-induced BMDMs polarization and the signaling mechanism was examined by western blot. Autophagy-deficient tumors were profiled for phenotypic changes of TAMs and IFN-γ secretion of T cells by flow cytometry. The phenotype of monocytes from pleural effusions or ascites of cancer patients was assessed by flow cytometry. Results TRAPs converted macrophages into an immunosuppressive M2-like phenotype characterized by the expression of PD-L1 and IL-10. These macrophages inhibited the proliferation of both CD4+ and CD8+ T cells in vitro, and promoted tumor growth mainly through PD-L1 in vivo. TRAPs-induced macrophage polarization was dependent on TLR4-mediated MyD88-p38-STAT3 signaling. In vivo studies indicated that disruption of autophagosome formation in B16F10 cells by silencing the autophagy gene Beclin1 resulted in a remarkable delay in tumor growth, which was associated with reduced autophagosome secretion, TAMs reprogramming and enhanced T cell activation. Moreover, the levels of LC3B+ EVs appeared to correlate significantly with up-regulation of PD-L1 and IL-10 in matched monocytes from effusions or ascites of cancer patients, and TRAPs isolated from these samples could also polarize monocytes to an M2-like phenotype with increased expression of PD-L1, CD163 and IL-10, decreased expression of HLA-DR, and T cell-suppressive function. Conclusions These findings suggest the TRAPs-PD-L1 axis as a major driver of immunosuppression in the TME by eliciting macrophage polarization towards an M2-like phenotype, and highlight the potential novel therapeutic approach of simultaneously targeting autophagy and PD-L1. Electronic supplementary material The online version of this article (10.1186/s40425-018-0452-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhi-Fa Wen
- Department of Microbiology and Immunology, Medical School of Southeast University, 87 Dingjiaqiao Rd, Nanjing, 210009, People's Republic of China
| | - Hongxiang Liu
- Department of Microbiology and Immunology, Medical School of Southeast University, 87 Dingjiaqiao Rd, Nanjing, 210009, People's Republic of China
| | - Rong Gao
- Department of Microbiology and Immunology, Medical School of Southeast University, 87 Dingjiaqiao Rd, Nanjing, 210009, People's Republic of China
| | - Meng Zhou
- Department of Microbiology and Immunology, Medical School of Southeast University, 87 Dingjiaqiao Rd, Nanjing, 210009, People's Republic of China
| | - Jie Ma
- Department of Microbiology and Immunology, Medical School of Southeast University, 87 Dingjiaqiao Rd, Nanjing, 210009, People's Republic of China
| | - Yue Zhang
- Department of Microbiology and Immunology, Medical School of Southeast University, 87 Dingjiaqiao Rd, Nanjing, 210009, People's Republic of China
| | - Jinjin Zhao
- Department of Microbiology and Immunology, Medical School of Southeast University, 87 Dingjiaqiao Rd, Nanjing, 210009, People's Republic of China
| | - Yongqiang Chen
- Department of Microbiology and Immunology, Medical School of Southeast University, 87 Dingjiaqiao Rd, Nanjing, 210009, People's Republic of China
| | - Tianyu Zhang
- Department of Microbiology and Immunology, Medical School of Southeast University, 87 Dingjiaqiao Rd, Nanjing, 210009, People's Republic of China
| | - Fang Huang
- Department of Microbiology and Immunology, Medical School of Southeast University, 87 Dingjiaqiao Rd, Nanjing, 210009, People's Republic of China
| | - Ning Pan
- Department of Microbiology and Immunology, Medical School of Southeast University, 87 Dingjiaqiao Rd, Nanjing, 210009, People's Republic of China
| | - Jinping Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, People's Republic of China
| | - Bernard A Fox
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 2N81 North Pavilion, 4805 N.E. Glisan St, Portland, OR, 97213, USA
| | - Hong-Ming Hu
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 2N81 North Pavilion, 4805 N.E. Glisan St, Portland, OR, 97213, USA.
| | - Li-Xin Wang
- Department of Microbiology and Immunology, Medical School of Southeast University, 87 Dingjiaqiao Rd, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
44
|
Englinger B, Pirker C, Heffeter P, Terenzi A, Kowol CR, Keppler BK, Berger W. Metal Drugs and the Anticancer Immune Response. Chem Rev 2018; 119:1519-1624. [DOI: 10.1021/acs.chemrev.8b00396] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Alessio Terenzi
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Christian R. Kowol
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Bernhard K. Keppler
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
45
|
Smith M, García-Martínez E, Pitter MR, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Toll-like receptor agonists in cancer immunotherapy. Oncoimmunology 2018; 7:e1526250. [PMID: 30524908 PMCID: PMC6279325 DOI: 10.1080/2162402x.2018.1526250] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Indexed: 12/14/2022] Open
Abstract
Toll-like receptor (TLR) agonists demonstrate therapeutic promise as immunological adjuvants for anticancer immunotherapy. To date, three TLR agonists have been approved by US regulatory agencies for use in cancer patients. Additionally, the potential of hitherto experimental TLR ligands to mediate clinically useful immunostimulatory effects has been extensively investigated over the past few years. Here, we summarize recent preclinical and clinical advances in the development of TLR agonists for cancer therapy.
Collapse
Affiliation(s)
- Melody Smith
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elena García-Martínez
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Michael R. Pitter
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jitka Fucikova
- Sotio a.c., Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio a.c., Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- INSERM, U1015, Villejuif, France
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/ Paris V, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- INSERM, U1138, Paris, France
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
- Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP; Paris, France
| | - Lorenzo Galluzzi
- Université Paris Descartes/ Paris V, Paris, France
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
46
|
Tang J, Pulliam N, Özeş A, Buechlein A, Ding N, Keer H, Rusch D, O'Hagan H, Stack MS, Nephew KP. Epigenetic Targeting of Adipocytes Inhibits High-Grade Serous Ovarian Cancer Cell Migration and Invasion. Mol Cancer Res 2018; 16:1226-1240. [PMID: 29759990 PMCID: PMC6072573 DOI: 10.1158/1541-7786.mcr-17-0406] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/16/2017] [Accepted: 04/27/2018] [Indexed: 01/17/2023]
Abstract
Ovarian cancer (OC) cells frequently metastasize to the omentum, and adipocytes play a significant role in ovarian tumor progression. Therapeutic interventions targeting aberrant DNA methylation in ovarian tumors have shown promise in the clinic, but the effects of epigenetic therapy on the tumor microenvironment are understudied. Here, we examined the effect of adipocytes on OC cell behavior in culture and impact of targeting DNA methylation in adipocytes on OC metastasis. The presence of adipocytes increased OC cell migration and invasion, and proximal and direct coculture of adipocytes increased OC proliferation alone or after treatment with carboplatin. Treatment of adipocytes with hypomethylating agent guadecitabine decreased migration and invasion of OC cells toward adipocytes. Subcellular protein fractionation of adipocytes treated with guadecitabine revealed decreased DNA methyltransferase 1 (DNMT1) levels even in the presence of DNA synthesis inhibitor, aphidicolin. Methyl-Capture- and RNA-sequencing analysis of guadecitabine-treated adipocytes revealed derepression of tumor-suppressor genes and epithelial-mesenchymal transition inhibitors. SUSD2, a secreted tumor suppressor downregulated by promoter CpG island methylation in adipocytes, was upregulated after guadecitabine treatment, and recombinant SUSD2 decreased OC cell migration and invasion. Integrated analysis of the methylomic and transcriptomic data identified pathways associated with inhibition of matrix metalloproteases and fatty acid α-oxidation, suggesting a possible mechanism of how epigenetic therapy of adipocytes decreases metastasis. In conclusion, the effect of DNMT inhibitor on fully differentiated adipocytes suggests that hypomethylating agents may affect the tumor microenvironment to decrease cancer cell metastasis.Implications: Epigenetic targeting of tumor microenvironment can affect metastatic behavior of ovarian cancer cells. Mol Cancer Res; 16(8); 1226-40. ©2018 AACR.
Collapse
Affiliation(s)
- Jessica Tang
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Nicholas Pulliam
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana
| | - Ali Özeş
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana
| | - Aaron Buechlein
- Center of Genomics and Bioinformatics, Indiana University, Bloomington, Indiana
| | - Ning Ding
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Harold Keer
- Astex Pharmaceuticals Inc., Pleasanton, California
| | - Doug Rusch
- Center of Genomics and Bioinformatics, Indiana University, Bloomington, Indiana
| | - Heather O'Hagan
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana University Simon Cancer Center, Indianapolis, Indiana
| | - M Sharon Stack
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana
| | - Kenneth P Nephew
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana.
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana
- Indiana University Simon Cancer Center, Indianapolis, Indiana
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
47
|
Smith CK, Trinchieri G. The interplay between neutrophils and microbiota in cancer. J Leukoc Biol 2018; 104:701-715. [PMID: 30044897 DOI: 10.1002/jlb.4ri0418-151r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
The role of the microbiota in many diseases including cancer has gained increasing attention. Paired with this is our expanding appreciation for the heterogeneity of the neutrophil compartment regarding surface marker expression and functionality. In this review, we will discuss the influence of the microbiota on granulopoiesis and consequent activity of neutrophils in cancer. As evidence for this microbiota-neutrophil-cancer axis builds, it exposes new therapeutic targets to improve a cancer patient's outcome.
Collapse
Affiliation(s)
- Carolyne K Smith
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
48
|
Martinez D, Zuhdi N, Reyes M, Ortega B, Giovannone D, Lee VM, de Bellard ME. Screen for Slit/Robo signaling in trunk neural cells reveals new players. Gene Expr Patterns 2018; 28:22-33. [PMID: 29427758 PMCID: PMC5980643 DOI: 10.1016/j.gep.2018.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/19/2018] [Accepted: 01/20/2018] [Indexed: 01/15/2023]
Abstract
Slits ligands and their Robo receptors are involved in quite disparate cell signaling pathways that include axon guidance, cell proliferation, cell motility and angiogenesis. Neural crest cells emerge by delamination from neural cells in the dorsal neural tube, and give rise to various components of the peripheral nervous system in vertebrates. It is well established that these cells change from a non-migratory to a highly migratory state allowing them to reach distant regions before they differentiate. However, but the mechanism controlling this delamination and subsequent migration are still not fully understood. The repulsive Slit ligand family members, have been classified also as true tumor suppressor molecules. The present study explored in further detail what possible Slit/Robo signals are at play in the trunk neural cells and neural crest cells by carrying out a microarray after Slit2 gain of function in trunk neural tubes. We found that in addition to molecules known to be downstream of Slit/Robo signaling, there were a large set of molecules known to be important in maintaining cells in non-motile, epithelia phenotype. Furthermore, we found new molecules previously not associated with Slit/Robo signaling: cell proliferation markers, Ankyrins and RAB intracellular transporters. Our findings suggest that neural crest cells use and array of different Slit/Robo pathways during their transformation from non-motile to highly motile cells.
Collapse
Affiliation(s)
- Darwin Martinez
- California State University Northridge, Biology Dept., MC 8303, 18111 Nordhoff Street, Northridge, CA, 91330, United States
| | - Nora Zuhdi
- California State University Northridge, Biology Dept., MC 8303, 18111 Nordhoff Street, Northridge, CA, 91330, United States
| | - Michelle Reyes
- California State University Northridge, Biology Dept., MC 8303, 18111 Nordhoff Street, Northridge, CA, 91330, United States
| | - Blanca Ortega
- California State University Northridge, Biology Dept., MC 8303, 18111 Nordhoff Street, Northridge, CA, 91330, United States
| | - Dion Giovannone
- California State University Northridge, Biology Dept., MC 8303, 18111 Nordhoff Street, Northridge, CA, 91330, United States
| | - Vivian M Lee
- California State University Northridge, Biology Dept., MC 8303, 18111 Nordhoff Street, Northridge, CA, 91330, United States
| | - Maria Elena de Bellard
- California State University Northridge, Biology Dept., MC 8303, 18111 Nordhoff Street, Northridge, CA, 91330, United States.
| |
Collapse
|
49
|
Camargo JA, Passos GR, Ferrari KL, Billis A, Saad MJA, Reis LO. Intravesical Immunomodulatory Imiquimod Enhances Bacillus Calmette-Guérin Downregulation of Nonmuscle-invasive Bladder Cancer. Clin Genitourin Cancer 2018; 16:e587-e593. [PMID: 29174504 DOI: 10.1016/j.clgc.2017.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND The Toll-like receptor (TLR)2/4 agonist bacillus Calmette-Guérin (BCG), although not failure proof, has been the most efficient immunomodulatory treatment of immunogenic nonmuscle-invasive bladder cancer (NMIBC) for > 40 years. We investigated the role of the immunomodulatory molecule TLR7 agonist imiquimod through the BCG key receptors TLR2/4 and the main downstream molecules of the mammalian target of rapamycin pathway in NMIBC treatment. MATERIALS AND METHODS A total of 40 Fischer-344 rats, 7 weeks old, received 4 doses of 1.5 mg/kg N-methyl-N-nitrosourea intravesically on weeks 0, 2, 4, and 6 for cancer induction. At week 8, the rats were randomized into 4 groups (10 per group) and treated intravesically once a week for 6 weeks: control (0.2 mL of vehicle); BCG (2 × 106 colony-forming units Connaught strain in 0.2 mL); imiquimod (20 mg/kg in 0.2 mL), and associated treatment BCG plus imiquimod in 0.2 mL. The bladders were extracted and analyzed for histopathology, immunohistochemistry, cell proliferation (Ki-67), apoptosis (terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling [TUNEL]), and immunoblotting for TLR2, TLR4, p-P70S6K, and p-4E-BP1 proteins. RESULTS The histopathology results showed that BCG and imiquimod decreased bladder tumorigenesis compared with the control group, with a proliferation decrease (Ki-67) and an apoptosis increase (TUNEL). BCG upregulated TLR2/4, imiquimod upregulated TLR4, and both downregulated P70S6K1. CONCLUSION Imiquimod is able to efficiently decrease bladder carcinogenesis through upregulation of TLR7/4 and downregulation of P70S6K1 protein, generating new perspectives to boost BCG effects in the future.
Collapse
Affiliation(s)
- Juliana A Camargo
- Faculty of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Gabriela R Passos
- Faculty of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Karen L Ferrari
- Faculty of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Athanase Billis
- Faculty of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Mário J A Saad
- Faculty of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Leonardo O Reis
- Faculty of Medical Sciences, University of Campinas, São Paulo, Brazil; Department of Urologic Oncology, Pontifical Catholic University of Campinas, São Paulo, Brazil.
| |
Collapse
|
50
|
Iuliano M, Mangino G, Chiantore MV, Zangrillo MS, Accardi R, Tommasino M, Fiorucci G, Romeo G. Human Papillomavirus E6 and E7 oncoproteins affect the cell microenvironment by classical secretion and extracellular vesicles delivery of inflammatory mediators. Cytokine 2018; 106:182-189. [PMID: 29137858 DOI: 10.1016/j.cyto.2017.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/26/2017] [Accepted: 11/06/2017] [Indexed: 12/16/2022]
Abstract
The connection between chronic inflammation and risk of cancer has been supported by several studies. The development of cancer might be a process driven by the presence of a specific combination of inflammatory mediators, including cytokines, chemokines and enzymes, in the tumor microenvironment. Virus-induced tumors, like HPV-induced Squamous Cell Carcinomas, represent a paradigmatic example of the interplay between inflammation, as integral part of the innate antiviral response, and malignant transformation. Here, the role of inflammatory microenvironment in the HPV-induced carcinogenesis is addressed, with a specific focus on the involvement of the immune molecules as well as their delivery through the microvesicle cargo possibly correlated to the different HPV genotype. The expression of the inflammatory mediators in HPV positive cells has been analyzed in primary human foreskin keratinocytes and keratinocytes transduced by E6 and E7 from mucosal HPV-16 or cutaneous HPV-38 genotypes. HPV E6 and E7 proteins can modulate the expression of immune mediators in HPV-infected cells and can affect the levels of immune molecules, mainly chemokines, in the extracellular milieu. HPV-16 E6 and E7 oncoproteins have been silenced to confirm the specificity of the modulation of the inflammatory microenvironment. Our results suggest that the expression of HPV oncoproteins allows the modification of the tumor milieu through the synthesis and release of specific pro-inflammatory cytokines and chemokines, affecting the efficacy of the immune response. The microenvironment can also be conditioned by an altered mRNA cargo delivered by extracellular vesicles, thereby efficiently affecting the surrounding cells with possible implication for tumorigenesis and tumor diagnosis.
Collapse
Affiliation(s)
- Marco Iuliano
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Maria Vincenza Chiantore
- Department of Infectious Diseases, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161 Rome, Italy
| | - Maria Simona Zangrillo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Rosita Accardi
- Infections and Cancer Biology Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - Gianna Fiorucci
- Department of Infectious Diseases, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161 Rome, Italy; Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, Via Palestro 32, 00185 Rome, Italy
| | - Giovanna Romeo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy; Department of Infectious Diseases, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|