1
|
Piecoro DW, Allison DB. Precision Medicine in Cytopathology. Surg Pathol Clin 2024; 17:329-345. [PMID: 39129134 DOI: 10.1016/j.path.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Over the last decade, cancer diagnostics has undergone a notable transformation with increasing complexity. Minimally invasive diagnostic tests, driven by advanced imaging and early detection protocols, are redefining patient care and reducing the need for more invasive procedures. Modern cytopathologists now safeguard patient samples for vital biomarker and molecular testing. In this article, we explore ancillary testing modalities and the role of biomarkers in organ-specific contexts, underscoring the transformative impact of precision medicine. Finally, the advent of more than 80 Food and Drug Administration-approved predictive biomarkers signals a new era, guiding cancer care toward personalized and targeted strategies.
Collapse
Affiliation(s)
- Dava W Piecoro
- Department of Pathology and Laboratory Medicine, 800 Rose Street, MS117, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Derek B Allison
- Department of Pathology and Laboratory Medicine, 800 Rose Street, MS117, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Markey Cancer Center, Lexington, KY 40536, USA; Department of Urology, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
2
|
Hu J, Fu S, Zhan Z, Zhang J. Advancements in dual-target inhibitors of PI3K for tumor therapy: Clinical progress, development strategies, prospects. Eur J Med Chem 2024; 265:116109. [PMID: 38183777 DOI: 10.1016/j.ejmech.2023.116109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
Phosphoinositide 3-kinases (PI3Ks) modify lipids by the phosphorylation of inositol phospholipids at the 3'-OH position, thereby participating in signal transduction and exerting effects on various physiological processes such as cell growth, metabolism, and organism development. PI3K activation also drives cancer cell growth, survival, and metabolism, with genetic dysregulation of this pathway observed in diverse human cancers. Therefore, this target is considered a promising potential therapeutic target for various types of cancer. Currently, several selective PI3K inhibitors and one dual-target PI3K inhibitor have been approved and launched on the market. However, the majority of these inhibitors have faced revocation or voluntary withdrawal of indications due to concerns regarding their adverse effects. This article provides a comprehensive review of the structure and biological functions, and clinical status of PI3K inhibitors, with a specific emphasis on the development strategies and structure-activity relationships of dual-target PI3K inhibitors. The findings offer valuable insights and future directions for the development of highly promising dual-target drugs targeting PI3K.
Collapse
Affiliation(s)
- Jiarui Hu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Siyu Fu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zixuan Zhan
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
3
|
Ardor GD, Hanna H, Ozalp B, Nassar A. Molecular analysis with pancreaseq® in evaluation and management of pancreatic cysts: A cohort of 28 patients. Cytojournal 2023; 20:23. [PMID: 37681071 PMCID: PMC10481854 DOI: 10.25259/cytojournal_28_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/10/2023] [Indexed: 09/09/2023] Open
Abstract
Objectives Herein, we present the PancreaSeq® results of 28 patients and emphasize the usefulness of molecular testing in evaluation of pancreatic cysts. Material and Methods A total of 10 (35.7%) non-diagnostic, 6 (21.4%) negative, 5 (17.8%) atypical, and 7 (25%) were positive for mucinous cystic neoplasm (MCN) pancreatic cyst aspirates were analyzed with PancreaSeq® at Mayo Clinic, Jacksonville between September 2021 and February 2023. Results Three non-diagnostic, two negative, three atypical, and two positive for MCN cysts were positive for KRAS and GNAS mutations. They were interpreted as intraductal papillary mucinous neoplasm (IPMN) with low risk for progression to high-grade dysplasia/adenocarcinoma. One negative case was positive for KRAS and GNAS mutation and RNF43 copy number alteration. It was interpreted as IPMN with a low risk of progression. Two non-diagnostic, one negative, and two positive for MCN cysts were positive for KRAS mutation. All were interpreted as IPMN/MCNs with low risk of progression. One positive for MCN case was positive for GNAS mutation and ALK fusion and one positive for MCN case was positive for GNAS mutation, ALK fusion, and RNF43 copy number alteration. Both were interpreted as IPMN and their risk of progression was interpreted as not well understood. One atypical case was positive for KRAS and TP53 mutation and was interpreted as IPMN/ MCNs with a high risk of progression. VHL mutation was present in one non-diagnostic case. It was interpreted as serous cystadenoma and the risk for progression was low. Conclusion Molecular analysis of pancreatic cysts with PancreaSeq® is useful in accurate diagnosis, especially when cytologic material is non-diagnostic and helps improve patient management.
Collapse
Affiliation(s)
- Gokce Deniz Ardor
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Jacksonville, United States
| | - Helena Hanna
- Department of Biomedical Sciences, University of South Florida, Tampa, Florida, United States
| | - Bora Ozalp
- Department of Biomedical Sciences, Upper School, Detroit Country Day School, Detroit, Michigan, United States
| | - Aziza Nassar
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Jacksonville, United States
| |
Collapse
|
4
|
Pitman MB, Centeno BA, Reid MD, Saeig M, Siddiqui MT, Layfield LJ, Perez-Machado M, Weynand B, Stelow EB, Lozano MD, Fukushima N, Cree IA, Mehrotra R, Schmitt FC, Field AS. A brief review of the WHO reporting system for pancreaticobiliary cytopathology. J Am Soc Cytopathol 2023; 12:243-250. [PMID: 37003924 DOI: 10.1016/j.jasc.2023.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
The World Health Organization (WHO), the International Academy of Cytology, and the International Agency for Research on Cancer have developed an approach to standardized reporting of pancreaticobiliary cytopathology. The WHO Reporting System for Pancreaticobiliary Cytopathology (WHO System) revises the Papanicolaou Society of Cytopathology (PSC) System for Reporting Pancreaticobiliary Cytology published in 2015 and replaces the 6 PSC categories with 7 categories: "Insufficient/Inadequate/Nondiagnostic"; "Benign/Negative for malignancy"; "Atypical"; "Pancreaticobiliary neoplasm, low risk/grade (PaN-low)"; "Pancreatic neoplasm, high risk/grade (PaN-High)"; "Suspicious for malignancy"; and "Malignant". In the PSC system, there is a single category for "Neoplastic" lesions that includes 2 groups, 1 for benign neoplasms and 1 named "Neoplastic-other", dominated by premalignant intraductal neoplasms primarily intraductal papillary mucinous neoplasms and low-grade malignant neoplasms (pancreatic neuroendocrine tumors (PanNET) and solid pseudopapillary neoplasms (SPN). In the WHO System, benign neoplasms with virtually no risk of malignancy are included in the "Benign" category and low-grade malignancies (PanNET and SPN) are included in the "Malignant" category, as per the 5th edition of the WHO Classification of Digestive System Tumors, while the non-invasive pre-malignant lesions of the ducts are divided by the cytomorphological grade of the epithelium into PaN-low and PaN-high with distinctly different risks of malignancy. Within each category, key diagnostic cytopathologic features and the ancillary studies for diagnostic and prognostic evaluation, as well as the implications of diagnosis for patient care and management, are outlined. Reporting and diagnostic management options recognize the variations in the availability of diagnostic and prognostic ancillary testing modalities in low- and middle-income countries.
Collapse
Affiliation(s)
- Martha B Pitman
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| | | | - Michelle D Reid
- Department of Pathology, Emory University Hospital, Atlanta, Georgia
| | - Mauro Saeig
- Santa Casa Medical School, Sao Paulo, Brazil
| | - Momin T Siddiqui
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Lester J Layfield
- Pathology and Anatomic Science Department, University of Missouri, Columbia, Missouri
| | - Miguel Perez-Machado
- Department of Cellular Pathology, Royal Free Hampstead NHS Trust, London, England
| | - Birgit Weynand
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Edward B Stelow
- Department of Pathology, University of Virginia Hospital, Charlottesville, Virginia
| | - Maria D Lozano
- Department of Pathology, Clinical University of Navarra, Pamplona, Spain
| | - Noriyoshi Fukushima
- Department of Diagnostic Pathology, Jichi Medical University Hospital, Shimotsuke, Japan
| | - Ian A Cree
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| | - Ravi Mehrotra
- Indian Cancer Genomic Atlas, Centre for Health, Innovation and Policy Foundation, Noida, India
| | - Fernando C Schmitt
- Department of Pathology, Faculty of Medicine of University of Porto, Porto, Portugal
| | - Andrew S Field
- Department of Anatomical Pathology, St Vincent's Hospital, Sydney, and University of New South Wales Sydney and University of Notre Dame, Sydney, Australia
| |
Collapse
|
5
|
van Huijgevoort NCM, Hoogenboom SAM, Lekkerkerker SJ, Busch OR, Del Chiaro M, Fockens P, Somers I, Verheij J, Voermans RP, Besselink MG, van Hooft JE. Diagnostic accuracy of the AGA, IAP, and European guidelines for detecting advanced neoplasia in intraductal papillary mucinous neoplasm/neoplasia. Pancreatology 2023; 23:251-257. [PMID: 36805049 DOI: 10.1016/j.pan.2023.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/31/2022] [Accepted: 01/23/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Follow-up in patients with intraductal papillary mucinous neoplasm (IPMN) aims to detect advanced neoplasia (high-grade dysplasia/cancer) in an early stage. The 2015 American Gastroenterological Association (AGA), 2017 International Association of Pancreatology (IAP), and the 2018 European Study Group on Cystic tumours of the Pancreas (European) guidelines differ in their recommendations on indications for surgery. However, it remains unclear which guideline is most accurate in predicting advanced neoplasia in IPMN. METHODS Patients who underwent surgery were extracted from a prospective database (January 2006-January 2021). In patients with IPMN, final pathology was compared with the indication for surgery according to the guidelines. ROC-curves were calculated to determine the diagnostic accuracy for each guideline. RESULTS Overall, 247 patients underwent surgery for cystic lesions. In 145 patients with IPMN, 52 had advanced neoplasia, of which the AGA guideline would have advised surgery in 14 (27%), the IAP and European guideline in 49 (94%) and 50 (96%). In 93 patients without advanced neoplasia, the AGA, IAP, and European guidelines would incorrectly have advised surgery in 8 (8.6%), 77 (83%) and 71 (76%). CONCLUSION The European and IAP guidelines are clearly superior in detecting advanced neoplasia in IPMN as compared to the AGA, albeit at the cost of a higher rate of unnecessary surgery. To harmonize care and to avoid confusion caused by conflicting statements, a global evidence-based guideline for PCN in collaboration with the various guidelines groups is required once the current guidelines require an update.
Collapse
Affiliation(s)
- Nadine C M van Huijgevoort
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Sanne A M Hoogenboom
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Selma J Lekkerkerker
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Olivier R Busch
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Marco Del Chiaro
- Department of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paul Fockens
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Inne Somers
- Department of Radiology, Amsterdam UMC, University of Amsterdam, the Netherlands; Department of Radiology, Meander Medical Center, Amersfoort, the Netherlands
| | - Joanne Verheij
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Rogier P Voermans
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Marc G Besselink
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Jeanin E van Hooft
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
6
|
Xin R, Shen B, Jiang YJ, Liu JB, Li S, Hou LK, Wu W, Jia CY, Wu CY, Fu D, Ma YS, Jiang GX. Comprehensive analysis to identify a novel PTEN-associated ceRNA regulatory network as a prognostic biomarker for lung adenocarcinoma. Front Oncol 2022; 12:923026. [PMID: 36091160 PMCID: PMC9449356 DOI: 10.3389/fonc.2022.923026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the most prevalent forms of lung cancer. Competitive endogenous RNA (ceRNA) plays an important role in the pathogenesis of lung cancer. Phosphatase and tensin homolog (PTEN) is one of the most frequently deleted tumour suppressor genes in LUAD. The present study aimed to identify a novel PTEN-associated-ceRNA regulatory network and identify potential prognostic markers associated with LUAD. Transcriptome sequencing profiles of 533 patients with LUAD were obtained from TCGA database, and differentially expressed genes (DEGs) were screened in LUAD samples with PTEN high- (PTENhigh) and low- (PTENlow) expression. Eventually, an important PTEN-related marker was identified, namely, the LINC00460/miR-150-3p axis. Furthermore, the predicted target genes (EME1/HNRNPAB/PLAUR/SEMA3A) were closely related to overall survival and prognosis. The LINC00460/miR-150-3p axis was identified as a clinical prognostic factor through Cox regression analysis. Methylation analyses suggested that abnormal regulation of the predicted target genes might be caused by hypomethylation. Furthermore, immune infiltration analysis showed that the LINC00460/miR-150-3p axis could alter the levels of immune infiltration in the tumour immune microenvironment, and promote the clinical progression of LUAD. To specifically induce PTEN deletion in the lungs, we constructed an STP mouse model (SFTPC-rtTA/tetO-cre/Ptenflox/+). Quantitative PCR (qPCR) and immunohistochemical (IHC) analysis were used to detect predicted target genes. Therefore, we revealed that the PTEN-related LINC00460/miR-150-3p axis based on ceRNA mechanism plays an important role in the development of LUAD and provides a new direction and theoretical basis for its targeted therapy.
Collapse
Affiliation(s)
- Rui Xin
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Biao Shen
- Department of Thoracic Surgery, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Ying-Jie Jiang
- Department of Pathology, Navy Military Medical University Affiliated Changhai Hospital, Shanghai, China
| | - Ji-Bin Liu
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Sha Li
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li-Kun Hou
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Wu
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cheng-You Jia
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chun-Yan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Da Fu
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Geng-Xi Jiang, ; Yu-Shui Ma, ; Da Fu,
| | - Yu-Shui Ma
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Geng-Xi Jiang, ; Yu-Shui Ma, ; Da Fu,
| | - Geng-Xi Jiang
- Department of Thoracic Surgery, Navy Military Medical University Affiliated Changhai Hospital, Shanghai, China
- *Correspondence: Geng-Xi Jiang, ; Yu-Shui Ma, ; Da Fu,
| |
Collapse
|
7
|
Ozcan K, Klimstra DS. A Review of Mucinous Cystic and Intraductal Neoplasms of the Pancreatobiliary Tract. Arch Pathol Lab Med 2022; 146:298-311. [PMID: 35192699 DOI: 10.5858/arpa.2021-0399-ra] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Although most pancreatic and bile duct neoplasms are solid, mucinous cystic neoplasms and intraductal neoplasms have been increasingly recognized even when clinically silent, thanks to the increased use of sensitive imaging techniques. Cystic and intraductal neoplasms of the pancreas are often resectable and curable and constitute about 5% of all pancreatic neoplasms. Owing to their preinvasive nature and different biology, recognition of these entities remains a major priority. Mucinous cystic neoplasms are histologically and clinically distinct from other cystic pancreatic neoplasms. Pancreatic intraductal neoplasms encompass 3 major entities: intraductal papillary mucinous neoplasm, intraductal oncocytic papillary neoplasm, and intraductal tubulopapillary neoplasm. Intraductal papillary neoplasms of bile ducts are also preinvasive mass-forming neoplasms with both similarities and differences with their pancreatic counterparts. All of these pancreatobiliary neoplasms have diverse and distinctive clinicopathologic, genetic, and prognostic variations. OBJECTIVE.— To review the clinical, pathologic, and molecular features of mucinous cystic and intraductal neoplasms of the pancreatobiliary tract. DATA SOURCES.— Literature review, diagnostic manuals, and guidelines. CONCLUSIONS.— This review will briefly describe well-known clinical and pathologic features and will focus on selected recently described aspects of morphology, grading, classification, and genomic alterations of cystic and intraductal neoplasms of the pancreatobiliary tract.
Collapse
Affiliation(s)
- Kerem Ozcan
- From the Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David S Klimstra
- From the Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
8
|
Li J, Wei T, Zhang J, Liang T. Intraductal Papillary Mucinous Neoplasms of the Pancreas: A Review of Their Genetic Characteristics and Mouse Models. Cancers (Basel) 2021; 13:cancers13215296. [PMID: 34771461 PMCID: PMC8582516 DOI: 10.3390/cancers13215296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/09/2021] [Accepted: 10/19/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Pancreatic cancer is one of the deadliest cancers with the lowest survival rate. Little progress has been achieved in prolonging the survival for patients with pancreatic adenocarcinoma. Hence, special attention should be paid to pre-cancerous lesions, for instance, an intraductal papillary mucinous neoplasm (IPMN). Here, we reviewed its genetic characteristics and the mouse models involving mutations in specific pathways, and updated our current perception of how this lesion develops into a precursor of invasive cancer. Abstract The intraductal papillary mucinous neoplasm (IPMN) is attracting research attention because of its increasing incidence and proven potential to progress into invasive pancreatic ductal adenocarcinoma (PDAC). In this review, we summarized the key signaling pathways or protein complexes (GPCR, TGF, SWI/SNF, WNT, and PI3K) that appear to be involved in IPMN pathogenesis. In addition, we collected information regarding all the genetic mouse models that mimic the human IPMN phenotype with specific immunohistochemistry techniques. The mouse models enable us to gain insight into the complex mechanism of the origin of IPMN, revealing that it can be developed from both acinar cells and duct cells according to different models. Furthermore, recent genomic studies describe the potential mechanism by which heterogeneous IPMN gives rise to malignant carcinoma through sequential, branch-off, or de novo approaches. The most intractable problem is that the risk of malignancy persists to some extent even if the primary IPMN is excised with a perfect margin, calling for the re-evaluation and improvement of diagnostic, pre-emptive, and therapeutic measures.
Collapse
Affiliation(s)
- Jin Li
- Department of Hepatobiliary and Pancreatic Surgery, School of Medicine, The First Affiliated Hospital of Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China; (J.L.); (T.W.); (J.Z.)
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou 310000, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou 310000, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou 310000, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Tao Wei
- Department of Hepatobiliary and Pancreatic Surgery, School of Medicine, The First Affiliated Hospital of Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China; (J.L.); (T.W.); (J.Z.)
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou 310000, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou 310000, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou 310000, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Jian Zhang
- Department of Hepatobiliary and Pancreatic Surgery, School of Medicine, The First Affiliated Hospital of Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China; (J.L.); (T.W.); (J.Z.)
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou 310000, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou 310000, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou 310000, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, School of Medicine, The First Affiliated Hospital of Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China; (J.L.); (T.W.); (J.Z.)
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou 310000, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou 310000, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou 310000, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Correspondence: ; Tel./Fax: +86-571-87236688
| |
Collapse
|
9
|
Wang X, Zhu D, Bao W, Li M, Wang S, Shen R. Case Report: Targeted Therapy for Metastatic Solid Pseudopapillary Neoplasm of the Pancreas With CTNNB1 and PTEN Mutations. Front Oncol 2021; 11:729151. [PMID: 34733780 PMCID: PMC8558400 DOI: 10.3389/fonc.2021.729151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Solid pseudopapillary neoplasm (SPN) of the pancreas shows an indolent clinical behavior in cases undergoing surgical resection. The efficacy of combination therapy in the metastatic extrapancreatic SPN treatment remains largely unknown and a clinical challenge. CASE PRESENTATION We report a case of a metastatic pancreatic SPN in a 45-year-old woman who presented with an aggressive peritoneal dissemination and hepatic metastases and still showed an indolent clinical course with combination therapy with repeated surgery and targeted therapy. Although the follow-up effect remains to be seen, this is the first report of practical experience of the targeted agents sunitinib and everolimus in metastatic SPN tumors based on the mutation status of PTEN (c.379G>A; p.G127R) and CTNNB1 (c.98C>G; p.S33C). To our knowledge, the PTEN variant identified in this case has not been previously reported in SPN. CONCLUSION Evidence on variant genetics indicates that future molecular studies may not only help to explain the mechanism of SPN occurrence and development but are also more likely to direct to future precision treatments.
Collapse
Affiliation(s)
- Xinbo Wang
- Research Institute of General Surgery, Jinling Hospital, Nanjing University Medical School, Nanjing, China
| | - Daojun Zhu
- Research Institute of General Surgery, Jinling Hospital, Nanjing University Medical School, Nanjing, China
| | - Wei Bao
- Department of Clinical Pathology, Jinling Hospital, Nanjing University Medical School, Nanjing, China
| | - Min Li
- Research Institute of General Surgery, Jinling Hospital, Nanjing University Medical School, Nanjing, China
| | - Sizhen Wang
- Research Institute of General Surgery, Jinling Hospital, Nanjing University Medical School, Nanjing, China
| | - Rongxi Shen
- Research Institute of General Surgery, Jinling Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
10
|
Tonini V, Zanni M. Pancreatic cancer in 2021: What you need to know to win. World J Gastroenterol 2021; 27:5851-5889. [PMID: 34629806 PMCID: PMC8475010 DOI: 10.3748/wjg.v27.i35.5851] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/14/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the solid tumors with the worst prognosis. Five-year survival rate is less than 10%. Surgical resection is the only potentially curative treatment, but the tumor is often diagnosed at an advanced stage of the disease and surgery could be performed in a very limited number of patients. Moreover, surgery is still associated with high post-operative morbidity, while other therapies still offer very disappointing results. This article reviews every aspect of pancreatic cancer, focusing on the elements that can improve prognosis. It was written with the aim of describing everything you need to know in 2021 in order to face this difficult challenge.
Collapse
Affiliation(s)
- Valeria Tonini
- Department of Medical Sciences and Surgery, University of Bologna- Emergency Surgery Unit, IRCCS Sant’Orsola Hospital, Bologna 40121, Italy
| | - Manuel Zanni
- University of Bologna, Emergency Surgery Unit, IRCCS Sant'Orsola Hospital, Bologna 40121, Italy
| |
Collapse
|
11
|
Schmitz D, Kazdal D, Allgäuer M, Trunk M, Vornhusen S, Nahm AM, Doll M, Weingärtner S, Endris V, Penzel R, Kirchner M, Brandt R, Neumann O, Sültmann H, Budczies J, Kienle P, Magdeburg R, Hetjens S, Schirmacher P, Bergmann F, Rudi J, Stenzinger A, Volckmar AL. KRAS/GNAS-testing by highly sensitive deep targeted next generation sequencing improves the endoscopic ultrasound-guided workup of suspected mucinous neoplasms of the pancreas. Genes Chromosomes Cancer 2021; 60:489-497. [PMID: 33686791 DOI: 10.1002/gcc.22946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/28/2022] Open
Abstract
Pancreatic cysts or dilated pancreatic ducts are often found by cross-sectional imaging, but only mucinous lesions can become malignant. Therefore, distinction between mucinous and non-mucinous lesions is crucial for adequate patient management. We performed a prospective study including targeted next generation sequencing (NGS) of cell-free DNA in the diagnostic endoscopic ultrasound (EUS)-guided workup. Pancreatic cyst(s) or main duct fluid obtained by EUS-guided FNA was analysed by carcinoembryonic antigen (CEA), cytology and deep targeted NGS of 14 known gastrointestinal cancer genes (AKT1, BRAF, CTNNB1, EGFR, ERBB2, FBXW7, GNAS, KRAS, MAP2K1, NRAS, PIK3CA, SMAD4, TP53, APC) with a limit of detection down to variant allele frequency of 0.01%. Results were correlated to histopathology and clinical follow-up. One hundred and thirteen patients with pancreatic cyst(s) and/or a dilated pancreatic main duct (≥5 mm) were screened. Sixty-six patients had to be excluded, mainly due to inoperability or small cyst size (≤10 mm). Forty-seven patients were enrolled for further analysis. A final diagnosis was available in 27 cases including 8 negative controls. In 43/47 (91.5%) of patients a KRAS- and/or GNAS-mutation was diagnosed by NGS. 27.0% of the KRAS-mutated and 10.0% of the GNAS-mutated lesions harbored multiple mutations. KRAS/GNAS-testing by NGS, cytology, and CEA had a sensitivity and specificity of 94.7/100%, 38.1/100%, and 42.1/75.0%, respectively. KRAS/GNAS-testing was significantly superior to CEA (P = .0209) and cytology (P = .0016). In conclusion, KRAS/GNAS-testing by deep targeted NGS is a suitable method to distinguish mucinous from non-mucinous pancreatic lesions, suggesting its usage as a single diagnostic test. Results must be confirmed in a larger cohort.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Chromogranins/genetics
- Endoscopic Ultrasound-Guided Fine Needle Aspiration/methods
- Endoscopic Ultrasound-Guided Fine Needle Aspiration/standards
- Female
- GTP-Binding Protein alpha Subunits, Gs/genetics
- Genetic Testing/methods
- Genetic Testing/standards
- High-Throughput Nucleotide Sequencing/methods
- High-Throughput Nucleotide Sequencing/standards
- Humans
- Male
- Middle Aged
- Neoplasms, Cystic, Mucinous, and Serous/diagnostic imaging
- Neoplasms, Cystic, Mucinous, and Serous/genetics
- Neoplasms, Cystic, Mucinous, and Serous/pathology
- Pancreatic Cyst/diagnostic imaging
- Pancreatic Cyst/genetics
- Pancreatic Cyst/pathology
- Pancreatic Neoplasms/diagnostic imaging
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Proto-Oncogene Proteins p21(ras)/genetics
- Sensitivity and Specificity
- Sequence Analysis, DNA/methods
- Sequence Analysis, DNA/standards
Collapse
Affiliation(s)
- Daniel Schmitz
- Department of Gastroenterology, Oncology and Diabetology, Theresienkrankenhaus and St. Hedwigsklinik, University of Heidelberg, Heidelberg, Germany
| | - Daniel Kazdal
- Institute of Pathology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Michael Allgäuer
- Institute of Pathology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Marcus Trunk
- Institute of Pathology, SYNLAB GmbH Mannheim, Mannheim, Germany
| | - Sylke Vornhusen
- Institute of Pathology, SYNLAB GmbH Mannheim, Mannheim, Germany
| | - Anna-Maria Nahm
- Department of Gastroenterology, Oncology and Diabetology, Theresienkrankenhaus and St. Hedwigsklinik, University of Heidelberg, Heidelberg, Germany
| | - Matthias Doll
- Department of Gastroenterology, Oncology and Diabetology, Theresienkrankenhaus and St. Hedwigsklinik, University of Heidelberg, Heidelberg, Germany
| | - Simon Weingärtner
- Department of Gastroenterology, Oncology and Diabetology, Theresienkrankenhaus and St. Hedwigsklinik, University of Heidelberg, Heidelberg, Germany
| | - Volker Endris
- Institute of Pathology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Roland Penzel
- Institute of Pathology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Martina Kirchner
- Institute of Pathology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Regine Brandt
- Institute of Pathology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Olaf Neumann
- Institute of Pathology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Holger Sültmann
- German Cancer Consortium (DKTK), Partner Site Heidelberg, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Budczies
- Institute of Pathology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Peter Kienle
- Department of General and Visceral Surgery, Theresienkrankenhaus and St. Hedwigsklinik, University of Heidelberg, Mannheim, Germany
| | - Richard Magdeburg
- Department of General and Visceral Surgery, Theresienkrankenhaus and St. Hedwigsklinik, University of Heidelberg, Mannheim, Germany
| | - Svetlana Hetjens
- Medical Statistics, Biomathematics and Information Processing of Mannheim University Hospital, University Hospital of Heidelberg, Mannheim, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital of Heidelberg, Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Heidelberg, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Bergmann
- Institute of Pathology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Jochen Rudi
- Department of Gastroenterology, Oncology and Diabetology, Theresienkrankenhaus and St. Hedwigsklinik, University of Heidelberg, Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital of Heidelberg, Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Heidelberg, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna-Lena Volckmar
- Institute of Pathology, University Hospital of Heidelberg, Heidelberg, Germany
| |
Collapse
|
12
|
Turk AT, Garcia-Carracedo D, Kent DT, Philipone E, Garcia-Pedrero JM, Caruana SM, Close LG, Su GH. Stathmin as a surrogate marker of phosphatidylinositol-3-kinase pathway activity: Towards precision medicine in HPV-negative head & neck squamous cell carcinoma. Genes Dis 2020; 9:820-825. [PMID: 35782981 PMCID: PMC9243320 DOI: 10.1016/j.gendis.2020.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/06/2020] [Indexed: 11/16/2022] Open
Abstract
In order to assess Stathmin as an immunohistochemical (IHC) indicator of phosphatidylinositol 3-kinase (PI3K) pathway activity in HPV-negative head & neck squamous cell carcinoma (HNSCC), we compared Stathmin IHC to expression of other pathway components. We also evaluated the relationship between Stathmin IHC and the mutational status of four key pathway genes. Finally, we ascertained whether Stathmin IHC correlates with tumor grade or primary site. Correlation exists between high Stathmin expression and high pAKT1 expression, indicating a role for Stathmin IHC as a marker of pathway activity. Our analysis did not show correlation between Stathmin IHC and mutation of the four genes evaluated. We also observed an association between high Stathmin expression and oropharyngeal primary site. Our results suggest utility of Stathmin IHC as an indicator of PI3K pathway activity, and thereby demonstrate potential relevance of Stathmin IHC in the context of HNSCC.
Collapse
Affiliation(s)
- Andrew T. Turk
- Department of Pathology and Cell Biology, and Columbia University, New York, NY 10032, USA
- Corresponding author.
| | | | - David T. Kent
- Department of Otolaryngology, Vanderbilt University, Nashville, TN 37232, USA
| | - Elizabeth Philipone
- Department of Pathology and Cell Biology, and Columbia University, New York, NY 10032, USA
| | - Juana Maria Garcia-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología Del Principado de Asturias, Oviedo 33006, Spain
| | | | - Lanny G. Close
- Department of Otolaryngology, Columbia University, New York, NY 10032, USA
| | - Gloria H. Su
- Department of Otolaryngology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
13
|
Tabibzadeh A, Tameshkel FS, Moradi Y, Soltani S, Moradi-Lakeh M, Ashrafi GH, Motamed N, Zamani F, Motevalian SA, Panahi M, Esghaei M, Ajdarkosh H, Mousavi-Jarrahi A, Niya MHK. Signal transduction pathway mutations in gastrointestinal (GI) cancers: a systematic review and meta-analysis. Sci Rep 2020; 10:18713. [PMID: 33127962 PMCID: PMC7599243 DOI: 10.1038/s41598-020-73770-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
The present study was conducted to evaluate the prevalence of the signaling pathways mutation rate in the Gastrointestinal (GI) tract cancers in a systematic review and meta-analysis study. The study was performed based on the PRISMA criteria. Random models by confidence interval (CI: 95%) were used to calculate the pooled estimate of prevalence via Metaprop command. The pooled prevalence indices of signal transduction pathway mutations in gastric cancer, liver cancer, colorectal cancer, and pancreatic cancer were 5% (95% CI: 3-8%), 12% (95% CI: 8-18%), 17% (95% CI: 14-20%), and 20% (95% CI: 5-41%), respectively. Also, the mutation rates for Wnt pathway and MAPK pathway were calculated to be 23% (95% CI, 14-33%) and 20% (95% CI, 17-24%), respectively. Moreover, the most popular genes were APC (in Wnt pathway), KRAS (in MAPK pathway) and PIK3CA (in PI3K pathway) in the colorectal cancer, pancreatic cancer, and gastric cancer while they were beta-catenin and CTNNB1 in liver cancer. The most altered pathway was Wnt pathway followed by the MAPK pathway. In addition, pancreatic cancer was found to be higher under the pressure of mutation compared with others based on pooled prevalence analysis. Finally, APC mutations in colorectal cancer, KRAS in gastric cancer, and pancreatic cancer were mostly associated gene alterations.
Collapse
Affiliation(s)
- Alireza Tabibzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Safarnezhad Tameshkel
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Gastrointestinal and Liver Disease Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Yousef Moradi
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Saber Soltani
- Department of Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Maziar Moradi-Lakeh
- Gastrointestinal and Liver Disease Research Center, Iran University of Medical Sciences, Tehran, Iran
- Preventive Medicine and Public Health Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - G Hossein Ashrafi
- Cancer Theme SEC Faculty, Kingston University, Penrhyn Road, London, KT1 2EE, UK
| | - Nima Motamed
- Department of Social Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Disease Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Abbas Motevalian
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Panahi
- Gastrointestinal and Liver Disease Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Esghaei
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Ajdarkosh
- Gastrointestinal and Liver Disease Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
14
|
Non-coding RNA biomarkers in pancreatic ductal adenocarcinoma. Semin Cancer Biol 2020; 75:153-168. [PMID: 33049362 DOI: 10.1016/j.semcancer.2020.10.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/20/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, which is usually diagnosed at an advanced stage. The late disease diagnosis, the limited availability of effective therapeutic interventions and lack of robust diagnostic biomarkers, are some of the primary reasons for the dismal 5-year survival rates (∼8%) in patients with PDAC. The pancreatic cancer develops through accumulation of a series of genomic and epigenomic alterations which lead to the transformation of normal pancreatic epithelium into an invasive carcinoma - a process that can take up to 15-20 years to develop, from the occurrence of first initiating mutational event. These facts highlight a unique window of opportunity for the earlier detection of PDAC, which could allow timely disease interception and improvement in the overall survival outcomes in patients suffering from this fatal malignancy. Non-coding RNAs (ncRNAs) have been recognized to play a central role in PDAC pathogenesis and are emerging as attractive candidates for biomarker development in various cancers, including PDAC. More specifically, the ncRNAs play a pivotal role in PDAC biology as they affect tumor growth, migration, and invasion by regulating cellular processes including cell cycle, apoptosis, and epithelial-mesenchymal transition. In this review, we focus on three types of well-established ncRNAs - microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) - and discuss their potential as diagnostic, prognostic and predictive biomarkers in PDAC.
Collapse
|
15
|
Chen Y, Huang L, Dong Y, Tao C, Zhang R, Shao H, Shen H. Effect of AKT1 (p. E17K) Hotspot Mutation on Malignant Tumorigenesis and Prognosis. Front Cell Dev Biol 2020; 8:573599. [PMID: 33123537 PMCID: PMC7573235 DOI: 10.3389/fcell.2020.573599] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
The substitution of the seventeenth amino acid glutamate by lysine in the homologous structural domain of the Akt1 gene pleckstrin is a somatic cellular mutation found in breast, colorectal, and ovarian cancers, named p. Glu17Lys or E17K. In recent years, a growing number of studies have suggested that this mutation may play a unique role in the development of tumors. In this review article, we describe how AKT1(E17K) mutations stimulate downstream signals that cause cells to emerge transformed; we explore the differential regulation and function of E17K in different physiological and pathological settings; and we also describe the phenomenon that E17K impedes tumor growth by interfering with growth-promoting and chemotherapy-resistant AKT1lowQCC generation, an intriguing finding that mutants may prolong tumor patient survival by activating feedback mechanisms and disrupting transcription. This review is intended to provide a better understanding of the role of AKT1(E17K) in cancer and to inform the development of AKT1(E17K)-based antitumor strategies.
Collapse
Affiliation(s)
- Ying Chen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lan Huang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongjian Dong
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Changli Tao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Rongxin Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongwei Shao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Han Shen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
16
|
Michalopoulou E, Auciello FR, Bulusu V, Strachan D, Campbell AD, Tait-Mulder J, Karim SA, Morton JP, Sansom OJ, Kamphorst JJ. Macropinocytosis Renders a Subset of Pancreatic Tumor Cells Resistant to mTOR Inhibition. Cell Rep 2020; 30:2729-2742.e4. [PMID: 32101748 PMCID: PMC7043007 DOI: 10.1016/j.celrep.2020.01.080] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 10/14/2019] [Accepted: 01/21/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) features a near-universal mutation in KRAS. Additionally, the tumor suppressor PTEN is lost in ∼10% of patients, and in mouse models, this dramatically accelerates tumor progression. While oncogenic KRAS and phosphatidylinositol 3-kinase (PI3K) cause divergent metabolic phenotypes individually, how they synergize to promote tumor metabolic alterations and dependencies remains unknown. We show that in KRAS-driven murine PDAC cells, loss of Pten strongly enhances both mTOR signaling and macropinocytosis. Protein scavenging alleviates sensitivity to mTOR inhibition by rescuing AKT phosphorylation at serine 473 and consequently cell proliferation. Combined inhibition of mTOR and lysosomal processing of internalized protein eliminates the macropinocytosis-mediated resistance. Our results indicate that mTORC2, rather than mTORC1, is an important regulator of protein scavenging and that protein-mediated resistance could explain the lack of effectiveness of mTOR inhibitors in certain genetic backgrounds. Concurrent inhibition of mTOR and protein scavenging might be a valuable therapeutic approach.
Collapse
Affiliation(s)
- Evdokia Michalopoulou
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Francesca R Auciello
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Vinay Bulusu
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - David Strachan
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Andrew D Campbell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Jacqueline Tait-Mulder
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Saadia A Karim
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Jurre J Kamphorst
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK.
| |
Collapse
|
17
|
Pulido R, Mingo J, Gaafar A, Nunes-Xavier CE, Luna S, Torices L, Angulo JC, López JI. Precise Immunodetection of PTEN Protein in Human Neoplasia. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a036293. [PMID: 31501265 DOI: 10.1101/cshperspect.a036293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PTEN is a major tumor-suppressor protein whose expression and biological activity are frequently diminished in sporadic or inherited cancers. PTEN gene deletion or loss-of-function mutations favor tumor cell growth and are commonly found in clinical practice. In addition, diminished PTEN protein expression is also frequently observed in tumor samples from cancer patients in the absence of PTEN gene alterations. This makes PTEN protein levels a potential biomarker parameter in clinical oncology, which can guide therapeutic decisions. The specific detection of PTEN protein can be achieved by using highly defined anti-PTEN monoclonal antibodies (mAbs), characterized with precision in terms of sensitivity for the detection technique, specificity for PTEN binding, and constraints of epitope recognition. This is especially relevant taking into consideration that PTEN is highly targeted by mutations and posttranslational modifications, and different PTEN protein isoforms exist. The precise characterization of anti-PTEN mAb reactivity is an important step in the validation of these reagents as diagnostic and prognostic tools in clinical oncology, including their routine use in analytical immunohistochemistry (IHC). Here, we review the current status on the use of well-defined anti-PTEN mAbs for PTEN immunodetection in the clinical context and discuss their potential usefulness and limitations for a more precise cancer diagnosis and patient benefit.
Collapse
Affiliation(s)
- Rafael Pulido
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao 48011, Spain
| | - Janire Mingo
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Ayman Gaafar
- Department of Pathology, Cruces University Hospital, Barakaldo 48903, Spain
| | - Caroline E Nunes-Xavier
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain.,Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo N-0310, Norway
| | - Sandra Luna
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Leire Torices
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Javier C Angulo
- Department of Urology, University Hospital of Getafe, Getafe, Madrid 28904, Spain.,Clinical Department, European University of Madrid, Laureate Universities, Madrid 28904, Spain
| | - José I López
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain.,Department of Pathology, Cruces University Hospital, Barakaldo 48903, Spain.,University of the Basque Country, Leioa 48940, Spain
| |
Collapse
|
18
|
van Huijgevoort NCM, Del Chiaro M, Wolfgang CL, van Hooft JE, Besselink MG. Diagnosis and management of pancreatic cystic neoplasms: current evidence and guidelines. Nat Rev Gastroenterol Hepatol 2019; 16:676-689. [PMID: 31527862 DOI: 10.1038/s41575-019-0195-x] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
Pancreatic cystic neoplasms (PCN) are a heterogeneous group of pancreatic cysts that include intraductal papillary mucinous neoplasms, mucinous cystic neoplasms, serous cystic neoplasms and other rare cystic lesions, all with different biological behaviours and variable risk of progression to malignancy. As more pancreatic cysts are incidentally discovered on routine cross-sectional imaging, optimal surveillance for patients with PCN is becoming an increasingly common clinical problem, highlighting the need to balance cancer prevention with the risk of (surgical) overtreatment. This Review summarizes the latest developments in the diagnosis and management of PCN, including the quality of available evidence. Also discussed are the most important differences between the PCN guidelines from the American Gastroenterological Association, the International Association of Pancreatology and the European Study Group on Cystic Tumours of the Pancreas, including diagnostic and follow-up strategies and indications for surgery. Finally, new developments in the management of patients with PCN are addressed.
Collapse
Affiliation(s)
- Nadine C M van Huijgevoort
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marco Del Chiaro
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christopher L Wolfgang
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeanin E van Hooft
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marc G Besselink
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
19
|
Fischer CG, Wood LD. From somatic mutation to early detection: insights from molecular characterization of pancreatic cancer precursor lesions. J Pathol 2019; 246:395-404. [PMID: 30105857 DOI: 10.1002/path.5154] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/02/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer arises from noninvasive precursor lesions, including pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasm (IPMN), and mucinous cystic neoplasm (MCN), which are curable if detected early enough. Recently, these types of precursor lesions have been extensively characterized at the molecular level, defining the timing of critical genetic alterations in tumorigenesis pathways. The results of these studies deepen our understanding of tumorigenesis in the pancreas, providing novel insights into tumor initiation and progression. Perhaps more importantly, they also provide a rational foundation for early detection approaches that could allow clinical intervention prior to malignant transformation. In this review, we summarize the results of comprehensive molecular characterization of PanINs, IPMNs, and MCNs and discuss the implications for cancer biology as well as early detection. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Catherine G Fischer
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Pancreatic cystic lesions (PCLs) are increasingly identified on abdominal imaging. Given the malignant potential of certain cyst subtypes and the poor survival rates of pancreatic cancer, accurate diagnosis and appropriate management of these cysts are critical. RECENT FINDINGS Advances in endoscopic ultrasound (EUS)-guided diagnostics have increased the accuracy of differentiating PCLs. These include cyst fluid molecular analysis, EUS-guided needle-based confocal laser endomicroscopy, and EUS-guided through the needle microforceps biopsy. This review encapsulates recent advances in the endoscopic management of PCLs with a specific focus on EUS-guided diagnosis. SUMMARY It is important to accurately diagnose pancreatic cystic lesions with malignant potential where the definitive management is surgical resection. Misdiagnosis can result in inadvertent surgery of an otherwise benign lesion or malignant progression of a precancerous cyst. Moreover, pancreatic surgery is associated with significant morbidity and mortality. Recent advances in EUS-guided tissue acquisition, imaging, and molecular biomarkers have resulted in improved diagnostic accuracy of pancreatic cystic lesions. Future studies need to define efficient and accurate diagnostic algorithms for improved management of pancreatic cysts.
Collapse
Affiliation(s)
| | - Somashekar G Krishna
- Sections of Pancreatic disorders and Advanced Endoscopy, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center
- The Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
21
|
Novel Methylated DNA Markers Discriminate Advanced Neoplasia in Pancreatic Cysts: Marker Discovery, Tissue Validation, and Cyst Fluid Testing. Am J Gastroenterol 2019; 114:1539-1549. [PMID: 31306149 PMCID: PMC7294458 DOI: 10.14309/ajg.0000000000000284] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Pancreatic cystic lesions (PCLs) may be precancerous. Those likely to harbor high-grade dysplasia (HGD) or pancreatic cancer (PC) are targets for surgical resection. Current algorithms to predict advanced neoplasia (HGD/PC) in PCLs lack diagnostic accuracy. In pancreatic tissue and cyst fluid (CF) from PCLs, we sought to identify and validate novel methylated DNA markers (MDMs) that discriminate HGD/PC from low-grade dysplasia (LGD) or no dysplasia (ND). METHODS From an unbiased whole-methylome discovery approach using predefined selection criteria followed by multistep validation on case (HGD or PC) and control (ND or LGD) tissues, we identified discriminant MDMs. Top candidate MDMs were then assayed by quantitative methylation-specific polymerase chain reaction on archival CF from surgically resected PCLs. RESULTS Of 25 discriminant MDMs identified in tissue, 13 were selected for validation in 134 CF samples (21 cases [8 HGD, 13 PC], 113 controls [45 ND, 68 LGD]). A tree-based algorithm using 2 CF-MDMs (TBX15, BMP3) achieved sensitivity and specificity above 90%. Discrimination was significantly better by this CF-MDM panel than by mutant KRAS or carcinoembryonic antigen, with areas under the receiver operating characteristic curve of 0.93 (95% confidence interval: 0.86-0.99), 0.71 (0.57-0.85), and 0.72 (0.60-0.84), respectively. Cutoffs for the MDM panel applied to an independent CF validation set (31 cases, 56 controls) yielded similarly high discrimination, areas under the receiver operating characteristic curve = 0.86 (95% confidence interval: 0.77-0.94, P = 0.2). DISCUSSION Novel MDMs discovered and validated in tissue accurately identify PCLs harboring HGD/PC. A panel of 2 MDMs assayed in CF yielded results with potential to enhance current risk prediction algorithms. Prospective studies are indicated to optimize and further evaluate CF-MDMs for clinical use.
Collapse
|
22
|
Durkin C, Krishna SG. Advanced diagnostics for pancreatic cysts: Confocal endomicroscopy and molecular analysis. World J Gastroenterol 2019; 25:2734-2742. [PMID: 31235996 PMCID: PMC6580353 DOI: 10.3748/wjg.v25.i22.2734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/29/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
Technological advances and the widespread use of medical imaging have led to an increase in the identification of pancreatic cysts in patients who undergo cross-sectional imaging. Current methods for the diagnosis and risk-stratification of pancreatic cysts are suboptimal, resulting in both unnecessary surgical resection and overlooked cases of neoplasia. Accurate diagnosis is crucial for guiding how a pancreatic cyst is managed, whether with surveillance for low-risk lesions or surgical resection for high-risk lesions. This review aims to summarize the current literature on confocal endomicroscopy and cyst fluid molecular analysis for the evaluation of pancreatic cysts. These recent technologies are promising adjuncts to existing approaches with the potential to improve diagnostic accuracy and ultimately patient outcomes.
Collapse
Affiliation(s)
- Claire Durkin
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University College of Medicine, Columbus, OH 43210, United States
| | - Somashekar G Krishna
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University College of Medicine, Columbus, OH 43210, United States
| |
Collapse
|
23
|
Singhi AD, Koay EJ, Chari ST, Maitra A. Early Detection of Pancreatic Cancer: Opportunities and Challenges. Gastroenterology 2019; 156:2024-2040. [PMID: 30721664 PMCID: PMC6486851 DOI: 10.1053/j.gastro.2019.01.259] [Citation(s) in RCA: 488] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/08/2019] [Accepted: 01/15/2019] [Indexed: 12/17/2022]
Abstract
Most patients with pancreatic ductal adenocarcinoma (PDAC) present with symptomatic, surgically unresectable disease. Although the goal of early detection of PDAC is laudable and likely to result in significant improvement in overall survival, the relatively low prevalence of PDAC renders general population screening infeasible. The challenges of early detection include identification of at-risk individuals in the general population who would benefit from longitudinal surveillance programs and appropriate biomarker and imaging-based modalities used for PDAC surveillance in such cohorts. In recent years, various subgroups at higher-than-average risk for PDAC have been identified, including those with familial risk due to germline mutations, a history of pancreatitis, patients with mucinous pancreatic cysts, and elderly patients with new-onset diabetes. The last 2 categories are discussed at length in terms of the opportunities and challenges they present for PDAC early detection. We also discuss current and emerging imaging modalities that are critical to identifying early, potentially curable PDAC in high-risk cohorts on surveillance.
Collapse
Affiliation(s)
- Aatur D Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Eugene J Koay
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas; Sheikh Ahmed Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Suresh T Chari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| | - Anirban Maitra
- Sheikh Ahmed Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
24
|
Singhi AD, McGrath K, Brand RE, Khalid A, Zeh HJ, Chennat JS, Fasanella KE, Papachristou GI, Slivka A, Bartlett DL, Dasyam AK, Hogg M, Lee KK, Marsh JW, Monaco SE, Ohori NP, Pingpank JF, Tsung A, Zureikat AH, Wald AI, Nikiforova MN. Preoperative next-generation sequencing of pancreatic cyst fluid is highly accurate in cyst classification and detection of advanced neoplasia. Gut 2018; 67:2131-2141. [PMID: 28970292 PMCID: PMC6241612 DOI: 10.1136/gutjnl-2016-313586] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 08/29/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE DNA-based testing of pancreatic cyst fluid (PCF) is a useful adjunct to the evaluation of pancreatic cysts (PCs). Mutations in KRAS/GNAS are highly specific for intraductal papillary mucinous neoplasms (IPMNs) and mucinous cystic neoplasms (MCNs), while TP53/PIK3CA/PTEN alterations are associated with advanced neoplasia. A prospective study was performed to evaluate preoperative PCF DNA testing. DESIGN Over 43-months, 626 PCF specimens from 595 patients were obtained by endoscopic ultrasound (EUS)-fine needle aspiration and assessed by targeted next-generation sequencing (NGS). Molecular results were correlated with EUS findings, ancillary studies and follow-up. A separate cohort of 159 PCF specimens was also evaluated for KRAS/GNAS mutations by Sanger sequencing. RESULTS KRAS/GNAS mutations were identified in 308 (49%) PCs, while alterations in TP53/PIK3CA/PTEN were present in 35 (6%) cases. Based on 102 (17%) patients with surgical follow-up, KRAS/GNAS mutations were detected in 56 (100%) IPMNs and 3 (30%) MCNs, and associated with 89% sensitivity and 100% specificity for a mucinous PC. In comparison, KRAS/GNAS mutations by Sanger sequencing had a 65% sensitivity and 100% specificity. By NGS, the combination of KRAS/GNAS mutations and alterations in TP53/PIK3CA/PTEN had an 89% sensitivity and 100% specificity for advanced neoplasia. Ductal dilatation, a mural nodule and malignant cytopathology had lower sensitivities (42%, 32% and 32%, respectively) and specificities (74%, 94% and 98%, respectively). CONCLUSIONS In contrast to Sanger sequencing, preoperative NGS of PCF for KRAS/GNAS mutations is highly sensitive for IPMNs and specific for mucinous PCs. In addition, the combination of TP53/PIK3CA/PTEN alterations is a useful preoperative marker for advanced neoplasia.
Collapse
Affiliation(s)
- Aatur D Singhi
- Department of Pathology, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
| | - Kevin McGrath
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Randall E Brand
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Asif Khalid
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jennifer S Chennat
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kenneth E Fasanella
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Adam Slivka
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David L Bartlett
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Anil K Dasyam
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Melissa Hogg
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Kenneth K Lee
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - James Wallis Marsh
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Sara E Monaco
- Department of Pathology, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
| | - N Paul Ohori
- Department of Pathology, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
| | - James F Pingpank
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Amer H Zureikat
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Abigail I Wald
- Department of Pathology, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
| | - Marina N Nikiforova
- Department of Pathology, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
25
|
Volckmar AL, Endris V, Gaida MM, Leichsenring J, Stögbauer F, Allgäuer M, von Winterfeld M, Penzel R, Kirchner M, Brandt R, Neumann O, Sültmann H, Schirmacher P, Rudi J, Schmitz D, Stenzinger A. Next generation sequencing of the cellular and liquid fraction of pancreatic cyst fluid supports discrimination of IPMN from pseudocysts and reveals cases with multiple mutated driver clones: First findings from the prospective ZYSTEUS biomarker study. Genes Chromosomes Cancer 2018; 58:3-11. [PMID: 30230086 DOI: 10.1002/gcc.22682] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 12/15/2022] Open
Abstract
Approximately half of all pancreatic cysts are neoplastic, mainly comprising intraductal papillary mucinous neoplasms (IPMN), which can progress to invasive carcinoma. Current Fukuoka guidelines have limited sensitivity and specificity in predicting progression of asymptomatic pancreatic cysts. We present first results of the prospective ZYSTEUS biomarker study investigating (i) whether detection of driver mutations in IPMN by liquid biopsy is technically feasible, (ii) which compartment of IPMN is most suitable for analysis, and (iii) implications for clinical diagnostics. Twenty-two patients with clinical inclusion criteria were enrolled in ZYSTEUS. Fifteen cases underwent endoscopic ultrasound (EUS)-guided fine-needle aspiration and cytological diagnostics. Cellular and liquid fraction of the cysts of each case were separated and subjected to deep targeted next generation sequencing (NGS). Clinical parameters, imaging findings (EUS and MRI), and follow-up data were collected continuously. All IPMN cases (n = 12) showed at least one mutation in either KRAS (n = 11) or GNAS (n = 4). Three cases showed both KRAS and GNAS mutations. Six cases harbored multiple KRAS/GNAS mutations. In the three cases with pseudocysts, no KRAS or GNAS mutations were detected. DNA yields were higher and showed higher mutation diversity in the cellular fraction. In conclusion, mutation detection in pancreatic cyst fluid is technically feasible with more robust results in the cellular than in the liquid fraction. Current results suggest that, together with imaging, targeted sequencing supports discrimination of IPMN from pseudocysts. The prospective design of ZYSTEUS will provide insight into diagnostic value of NGS in preoperative risk stratification. Our data provide evidence for an oligoclonal nature of IPMN.
Collapse
Affiliation(s)
- Anna-Lena Volckmar
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Volker Endris
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias M Gaida
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jonas Leichsenring
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Fabian Stögbauer
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Allgäuer
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Roland Penzel
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Martina Kirchner
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Regine Brandt
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Olaf Neumann
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jochen Rudi
- Department of Gastroenterology, Oncology and Diabetology, Theresienkrankenhaus und St. Hedwigsklinik, Academic Teaching Hospital, Mannheim, Germany
| | - Daniel Schmitz
- Department of Gastroenterology, Oncology and Diabetology, Theresienkrankenhaus und St. Hedwigsklinik, Academic Teaching Hospital, Mannheim, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Heidelberg, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
26
|
Current concepts in molecular genetics and management guidelines for pancreatic cystic neoplasms: an essential update for radiologists. Abdom Radiol (NY) 2018; 43:2351-2368. [PMID: 29404638 DOI: 10.1007/s00261-017-1452-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cystic neoplasms in the pancreas are encountered frequently on imaging, often detected incidentally during evaluation for other conditions. They can have a variety of clinical and imaging presentations, and similarly, wide-ranging prognostic and treatment implications. In the majority, imaging helps in diagnosis of pancreatic cystic neoplasms (PCNs) and guides management decisions. But, a significant minority of the PCNs remain indeterminate. There have been multiple recent advances in biomarkers and molecular genetics which will likely prove helpful in risk stratification of PCNs. Several prominent national and international societies, as well as consensus groups have put forth recommendations to help guide management of PCNs. The purpose of this article is to discuss the role of imaging in evaluation of PCNs, review the recent advances in molecular genetics and pancreatic cyst fluid analysis, and analyze the pros and cons of major evidence-based and consensus guidelines for management of PCNs.
Collapse
|
27
|
Li L, Zhao SL, Yue GGL, Wong TP, Pu JX, Sun HD, Fung KP, Leung PC, Han QB, Lau CBS, Leung PS. Isodon eriocalyx and its bioactive component Eriocalyxin B enhance cytotoxic and apoptotic effects of gemcitabine in pancreatic cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 44:56-64. [PMID: 29895493 DOI: 10.1016/j.phymed.2018.03.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/23/2018] [Accepted: 03/19/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND Pancreatic cancer, associated with poor prognosis and low survival rate, has been the fourth leading cause of cancer-related death in the US. Although gemcitabine (Gem) is the first-line chemotherapeutic drug in the management of pancreatic cancer, the median survival extension is only 1.5 months, indicating unsatisfactory clinical results. Therefore, exploring agents that can enhance the anti-cancer activity of Gem would be an attractive strategy. PURPOSE Our previous studies have demonstrated that eriocalyxin b (EriB), an ent‑kaurane diterpenoid isolated from Isodon eriocalyx (Dunn.) Hara, possesses anti-pancreatic cancer effects, thus acting as a potential therapeutic agent. In this study, we further investigated whether EriB or the ethanol extract of I. eriocalyx (Isodon) could potentiate the cytotoxic activity of Gem in human pancreatic adenocarcinoma cells. In addition, the mechanism associated with their effects was also studied. METHODS The anti-proliferation effect was assessed by MTT assay and Ki-67 immunostaining. The combination effect (addition, synergism and antagonism) of various agents was calculated by the Calcusyn software (Biosoft), utilizing the T.C. Chou Method. Apoptosis was detected using Annexin V and PI double staining followed by quantitative flow cytometry. Protein expression regulated by various treatments was analyzed by western blotting. RESULTS The combination index revealed that Gem and EriB (or Isodon extract) had synergistic anti-proliferative effect. Both cellular apoptotic and anti-proliferative effects of Gem were significantly increased after combination with EriB (or Isodon extract). The underlying mechanisms involved in the combination effects were elucidated, which include: (1) increased activation of the caspase cascade; (2) reduction of PDK1 and AKT phosphorylation; (3) induction of JNK phosphorylation by Isodon and Gem combination. CONCLUSION Gem and EriB (or Isodon extract) taken together in combination regulated PDK1/AKT1/caspase and JNK signaling and promoted apoptosis synergistically, which may contribute to the much increased anti-proliferative activity compared to either agent alone.
Collapse
Affiliation(s)
- L Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - S L Zhao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - G G L Yue
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong, China
| | - T P Wong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - J X Pu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, CAS, Yunnan, China
| | - H D Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, CAS, Yunnan, China
| | - K P Fung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong, China
| | - P C Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong, China
| | - Q B Han
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - C B S Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong, China
| | - P S Leung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
28
|
Kopp JL, Dubois CL, Schaeffer DF, Samani A, Taghizadeh F, Cowan RW, Rhim AD, Stiles BL, Valasek M, Sander M. Loss of Pten and Activation of Kras Synergistically Induce Formation of Intraductal Papillary Mucinous Neoplasia From Pancreatic Ductal Cells in Mice. Gastroenterology 2018; 154:1509-1523.e5. [PMID: 29273451 PMCID: PMC5880733 DOI: 10.1053/j.gastro.2017.12.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 11/15/2017] [Accepted: 12/14/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS Intraductal papillary mucinous neoplasias (IPMNs) are precancerous cystic lesions that can develop into pancreatic ductal adenocarcinomas (PDACs). These large macroscopic lesions are frequently detected during medical imaging, but it is unclear how they form or progress to PDAC. We aimed to identify cells that form IPMNs and mutations that promote IPMN development and progression. METHODS We generated mice with disruption of Pten specifically in ductal cells (Sox9CreERT2;Ptenflox/flox;R26RYFP or PtenΔDuct/ΔDuct mice) and used PtenΔDuct/+ and Pten+/+ mice as controls. We also generated KrasG12D;PtenΔDuct/ΔDuct and KrasG12D;PtenΔDuct/+ mice. Pancreata were collected when mice were 28 weeks to 14.5 months old and analyzed by histology, immunohistochemistry, and electron microscopy. We performed multiplexed droplet digital polymerase chain reaction to detect spontaneous Kras mutations in PtenΔDuct/ΔDuct mice and study the effects of Ras pathway activation on initiation and progression of IPMNs. We obtained 2 pancreatic sections from a patient with an invasive pancreatobiliary IPMN and analyzed the regions with and without the invasive IPMN (control tissue) by immunohistochemistry. RESULTS Mice with ductal cell-specific disruption of Pten but not control mice developed sporadic, macroscopic, intraductal papillary lesions with histologic and molecular features of human IPMNs. PtenΔDuct/ΔDuct mice developed IPMNs of several subtypes. In PtenΔDuct/ΔDuct mice, 31.5% of IPMNs became invasive; invasion was associated with spontaneous mutations in Kras. KrasG12D;PtenΔDuct/ΔDuct mice all developed invasive IPMNs within 1 month. In KrasG12D;PtenΔDuct/+ mice, 70% developed IPMN, predominately of the pancreatobiliary subtype, and 63.3% developed PDAC. In all models, IPMNs and PDAC expressed the duct-specific lineage tracing marker yellow fluorescent protein. In immunohistochemical analyses, we found that the invasive human pancreatobiliary IPMN tissue had lower levels of PTEN and increased levels of phosphorylated (activated) ERK compared with healthy pancreatic tissue. CONCLUSIONS In analyses of mice with ductal cell-specific disruption of Pten, with or without activated Kras, we found evidence for a ductal cell origin of IPMNs. We also showed that PTEN loss and activated Kras have synergistic effects in promoting development of IPMN and progression to PDAC.
Collapse
Affiliation(s)
- Janel L. Kopp
- Departments of Pediatrics and Cellular & Molecular Medicine, University of California-San Diego, La Jolla, CA 92093-0695,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3
| | - Claire L. Dubois
- Departments of Pediatrics and Cellular & Molecular Medicine, University of California-San Diego, La Jolla, CA 92093-0695
| | - David F. Schaeffer
- Department of Pathology and Laboratory and Medicine, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Atefeh Samani
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3
| | - Farnaz Taghizadeh
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3
| | - Robert W. Cowan
- Ahmed Center for Pancreatic Cancer Research and Department of Gastroenterology, Hepatology and Nutrition, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew D. Rhim
- Ahmed Center for Pancreatic Cancer Research and Department of Gastroenterology, Hepatology and Nutrition, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Bangyan L. Stiles
- Department of Pharmaceutical Sciences, School of Pharmacy, Keck School of Medicine, University of Southern California, and the Norris Comprehensive Cancer Center, Los Angeles, CA 90033
| | - Mark Valasek
- Department of Pathology, University of California-San Diego, La Jolla, CA 92093-0695
| | - Maike Sander
- Departments of Pediatrics and Cellular and Molecular Medicine, University of California-San Diego, La Jolla, California.
| |
Collapse
|
29
|
Li F, Malli A, Cruz-Monserrate Z, Conwell DL, Krishna SG. Confocal endomicroscopy and cyst fluid molecular analysis: Comprehensive evaluation of pancreatic cysts. World J Gastrointest Endosc 2018; 10:1-9. [PMID: 29375735 PMCID: PMC5768997 DOI: 10.4253/wjge.v10.i1.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/11/2017] [Accepted: 12/29/2017] [Indexed: 02/06/2023] Open
Abstract
Increases in the quality as well as utilization of cross-sectional imaging have led to rising diagnoses of pancreatic cystic lesions (PCL). Accurate presurgical diagnosis enables appropriate triage of PCLs. Unfortunately, current diagnostic approaches have suboptimal accuracy and may lead to unnecessary surgical resections or missed diagnoses of advanced neoplasia. Additionally, early detection represents an opportunity for intervention to prevent the progression to pancreatic adenocarcinoma. Our aim for this review is to systematically review the current literature on confocal endomicroscopy and molecular biomarkers in the evaluation of PCLs. Confocal laser endomicroscopy is a novel technology that allows for real-time in vivo microscopic imaging with multiple clinical trials identifying characteristic endomicroscopy findings of various pancreatic cystic lesions. DNA-based molecular markers have also emerged as another diagnostic modality as the pattern of genetic alternations present in cyst fluid can provide both diagnostic and prognostic data. We propose that both techniques can be utilized to improve patient outcomes.
Collapse
Affiliation(s)
- Feng Li
- Division of Gastroenterology, Hepatology, and Nutrition, Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Ahmad Malli
- Division of Gastroenterology, Hepatology, and Nutrition, Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition, Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Darwin L Conwell
- Division of Gastroenterology, Hepatology, and Nutrition, Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Somashekar G Krishna
- Division of Gastroenterology, Hepatology, and Nutrition, Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| |
Collapse
|
30
|
García-Carracedo D, Villaronga MÁ, Álvarez-Teijeiro S, Hermida-Prado F, Santamaría I, Allonca E, Suárez-Fernández L, Gonzalez MV, Balbín M, Astudillo A, Martínez-Camblor P, Su GH, Rodrigo JP, García-Pedrero JM. Impact of PI3K/AKT/mTOR pathway activation on the prognosis of patients with head and neck squamous cell carcinomas. Oncotarget 2018; 7:29780-93. [PMID: 27119232 PMCID: PMC5045433 DOI: 10.18632/oncotarget.8957] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 03/28/2016] [Indexed: 12/12/2022] Open
Abstract
The PI3K/AKT/mTOR signaling pathway has emerged as one of the most frequently deregulated in head and neck squamous cell carcinomas (HNSCC). Numerous alterations of various upstream and downstream components have been described; however, their prognostic significance and impact on HNSCC patient survival remains to be established. This was addressed using an unbiased cohort of 93 consecutive and homogeneous surgically treated HNSCC patients and results confirmed in 432 HNSCC patients. Our findings reveal the high prevalence of S6 phosphorylation, a surrogate marker of mTORC1 activation, in HNSCC specimens (>70%) and, more importantly, demonstrate its relevance on clinical outcome. Phosphorylation of ribosomal protein S6 on either Ser235/236 or Ser240/244 was consistently and significantly correlated with favorable prognosis, although with differences depending on the tumor site. Thus, p-S6 expression was significantly correlated with better disease-specific survival specifically in the subgroup of laryngeal carcinoma patients (P< 0.001). In addition, multivariate regression models revealed p-S6 to be an inverse and independent predictor of lymph-node metastasis (P= 0.004) and distant metastasis (P= 0.006). Taken together, this study unveils an unprecedented correlation of mTOR activation with improved clinical outcome in patients with laryngeal carcinomas and uncovers the potential of p-S6 expression as a good prognostic biomarker and an inverse predictor of lymph node and distant metastases. These results should be of broad interest as immunohistochemical detection of p-S6 may help to stratify patients and guide treatment decisions.
Collapse
Affiliation(s)
- Darío García-Carracedo
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Maria Ángeles Villaronga
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Saúl Álvarez-Teijeiro
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Francisco Hermida-Prado
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Iñigo Santamaría
- Department of Molecular Oncology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Eva Allonca
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Laura Suárez-Fernández
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Maria Victoria Gonzalez
- Department of Pathology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Milagros Balbín
- Department of Molecular Oncology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Aurora Astudillo
- Department of Pathology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | | | - Gloria H Su
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA.,Departments of Pathology, Columbia University Medical Center, New York, NY, USA.,Departments of Otolaryngology/Head and Neck Surgery, Columbia University Medical Center, New York, NY, USA
| | - Juan Pablo Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Juana María García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
31
|
Chang YR, Park T, Park SH, Kim YK, Lee KB, Kim SW, Jang JY. Prognostic significance of E-cadherin and ZEB1 expression in intraductal papillary mucinous neoplasm. Oncotarget 2017; 9:306-320. [PMID: 29416615 PMCID: PMC5787467 DOI: 10.18632/oncotarget.23012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/15/2017] [Indexed: 02/07/2023] Open
Abstract
There is an urgent need to investigate the genetic changes that occur in intraductal papillary mucinous neoplasm (IPMN), which is a well-known precursor of pancreatic cancer. In this study, gene expression profiling was performed by removing unwanted variation to determine the differentially expressed genes (DEGs) associated with malignant progression of IPMN. Among the identified DEGs, zinc finger E-box binding homeobox 1 (ZEB1) and E-cadherin, a crucial regulator of epithelial-to-mesenchymal transition (EMT), was validated among identified DEGs. A total of 76 fresh-frozen tissues were used for gene expression profiling and formalin-fixed, paraffin-embedded blocks from 87 patients were obtained for immunohistochemical analysis. Loss of E-cadherin expression (p = 0.023, odd ratio [OR] = 4.923) and expression of ZEB1 in stromal cells (stromal ZEB1, p < 0.001, OR = 26.800) were significantly correlated with degree of dysplasia. The hazard of death was significantly increased in patients with loss of E-cadherin expression (hazard ratio [HR] = 13.718, p = 0.004), expression of epithelial ZEB1 (HR = 19.117, p = 0.001), and stromal ZEB1 (HR = 6.373, p = 0.043). Based on the results of this study, loss of E-cadherin and expression of stromal ZEB1 are associated with increased risk of malignant progression. Epithelial and stromal ZEB1, as well as E-cadherin may be strong predictors of survival in patients with IPMN. Our finding suggests that these EMT markers may be utilized as potential prognosticators and may be used to improve and personalize treatment of IPMN.
Collapse
Affiliation(s)
- Ye Rim Chang
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Surgery, Dankook University College of Medicine, Cheonan, Korea
| | - Taesung Park
- Department of Statistics, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Sung Hyo Park
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yong Kang Kim
- Department of Statistics, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Kyoung Bun Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Sun-Whe Kim
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jin-Young Jang
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
32
|
Song DD, Zhang Q, Li JH, Hao RM, Ma Y, Wang PY, Xie SY. Single nucleotide polymorphisms rs701848 and rs2735343 in PTEN increases cancer risks in an Asian population. Oncotarget 2017; 8:96290-96300. [PMID: 29221206 PMCID: PMC5707100 DOI: 10.18632/oncotarget.22019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/22/2017] [Indexed: 01/19/2023] Open
Abstract
We performed this meta-analysis to analyze the cancer risk to individuals carrying the rs701848 and rs2735343 single nucleotide polymorphisms (SNPs) in the phosphatase and tensin homolog (PTEN) gene. We searched the PubMed, EMBASE, Cochrane library and the national knowledge infrastructure of China (CNKI) databases and identified 18 eligible case-control studies with 5458 cases and 6003 controls for rs701848 as well as 5490 cases and 6209 controls for rs2735343. Our analyses demonstrated that cancer risk was associated with rs701848 in the recessive model (CC vs. CT+TT, OR=1.169, 95% CI: 1.061-1.288) and with rs2735343 in the dominant model (GC+CC vs. GG, OR=0.758, 95% CI: 0.590-0.972). Subgroup analysis showed that in Asian subjects, carrying the C allele of rs701848 or GG genotype of rs2735343 was associated with increased cancer risk. Moreover, Asian subjects carrying the TC/CC genotype or C allele of rs701848 were associated with increased risk of esophageal squamous cell cancer. This meta-analysis indicates that the PTEN rs701848 (CC) and rs2735343 (GG) polymorphisms are associated with increased cancer risk in Asian subjects.
Collapse
Affiliation(s)
- Dan-Dan Song
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, ShanDong 264003, P.R.China
| | - Qian Zhang
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, ShanDong 264003, P.R.China
| | - Jing-Hua Li
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, ShanDong 264003, P.R.China
- Department of Epidemiology, Binzhou Medical University, Yantai, ShanDong 264003, P.R.China
| | - Rui-Min Hao
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, ShanDong 264003, P.R.China
| | - Ying Ma
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, ShanDong 264003, P.R.China
| | - Ping-Yu Wang
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, ShanDong 264003, P.R.China
- Department of Epidemiology, Binzhou Medical University, Yantai, ShanDong 264003, P.R.China
| | - Shu-Yang Xie
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, ShanDong 264003, P.R.China
| |
Collapse
|
33
|
Xu MM, Yin S, Siddiqui AA, Salem RR, Schrope B, Sethi A, Poneros JM, Gress FG, Genkinger JM, Do C, Brooks CA, Chabot JA, Kluger MD, Kowalski T, Loren DE, Aslanian H, Farrell JJ, Gonda TA. Comparison of the diagnostic accuracy of three current guidelines for the evaluation of asymptomatic pancreatic cystic neoplasms. Medicine (Baltimore) 2017; 96:e7900. [PMID: 28858107 PMCID: PMC5585501 DOI: 10.1097/md.0000000000007900] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Asymptomatic pancreatic cysts are a common clinical problem but only a minority of these cases progress to cancer. Our aim was to compare the accuracy to detect malignancy of the 2015 American Gastroenterological Association (AGA), the 2012 International Consensus/Fukuoka (Fukuoka guidelines [FG]), and the 2010 American College of Radiology (ACR) guidelines.We conducted a retrospective study at 3 referral centers for all patients who underwent resection for an asymptomatic pancreatic cyst between January 2008 and December 2013. We compared the accuracy of 3 guidelines in predicting high-grade dysplasia (HGD) or cancer in resected cysts. We performed logistic regression analyses to examine the association between cyst features and risk of HGD or cancer.A total of 269 patients met inclusion criteria. A total of 228 (84.8%) had a benign diagnosis or low-grade dysplasia on surgical pathology, and 41 patients (15.2%) had either HGD (n = 14) or invasive cancer (n = 27). Of the 41 patients with HGD or cancer on resection, only 3 patients would have met the AGA guideline's indications for resection based on the preoperative cyst characteristics, whereas 30/41 patients would have met the FG criteria for resection and 22/41 patients met the ACR criteria. The sensitivity, specificity, positive predictive value, negative predictive value of HGD, and/or cancer of the AGA guidelines were 7.3%, 88.2%, 10%, and 84.1%, compared to 73.2%, 45.6%, 19.5%, and 90.4% for the FG and 53.7%, 61%, 19.8%, and 88% for the ACR guidelines. In multivariable analysis, cyst size >3 cm, compared to ≤3 cm, (odds ratio [OR] = 2.08, 95% confidence interval [CI] = 1.11, 4.2) and each year increase in age (OR = 1.07, 95% CI = 1.03, 1.11) were positively associated with risk of HGD or cancer on resection.In patients with asymptomatic branch duct-intraductal papillary mucinous neoplasms or mucinous cystic neoplasms who underwent resection, the prevalence rate of HGD or cancer was 15.2%. Using the 2015 AGA criteria for resection would have missed 92.6% of patients with HGD or cancer. The more "inclusive" FG and ACR had a higher sensitivity for HGD or cancer but lower specificity. Given the current deficiencies of these guidelines, it will be important to determine the acceptable rate of false-positives in order to prevent a single true-positive.
Collapse
Affiliation(s)
- Ming-ming Xu
- Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY
| | - Shi Yin
- Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY
| | - Ali A. Siddiqui
- Division of Gastroenterology and Hepatology, Thomas Jefferson University Medical Center, Philadelphia, PA
| | - Ronald R. Salem
- Section of Surgical Oncology, Division of Surgery, Yale University School of Medicine, New Haven, CT
| | | | - Amrita Sethi
- Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY
| | - John M. Poneros
- Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY
| | - Frank G. Gress
- Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY
| | - Jeanine M. Genkinger
- Department of Epidemiology, Mailman School of Public Health
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY
| | - Catherine Do
- Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY
| | - Christian A. Brooks
- Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY
| | | | | | - Thomas Kowalski
- Division of Gastroenterology and Hepatology, Thomas Jefferson University Medical Center, Philadelphia, PA
| | - David E. Loren
- Division of Gastroenterology and Hepatology, Thomas Jefferson University Medical Center, Philadelphia, PA
| | - Harry Aslanian
- Section of Digestive Disease, Yale University School of Medicine, New Haven, CT, USA
| | - James J. Farrell
- Section of Digestive Disease, Yale University School of Medicine, New Haven, CT, USA
| | - Tamas A. Gonda
- Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY
| |
Collapse
|
34
|
Ito C, Nishizuka SS, Ishida K, Uesugi N, Sugai T, Tamura G, Koeda K, Sasaki A. Analysis of PIK3CA mutations and PI3K pathway proteins in advanced gastric cancer. J Surg Res 2017; 212:195-204. [PMID: 28550907 DOI: 10.1016/j.jss.2017.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/09/2017] [Accepted: 01/19/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although surgery and chemotherapy have extended advanced gastric cancer patient survival, some patients still experience relapse and metastasis. We postulated that PI3K pathway proteins could be prognostic biomarkers for the advanced gastric cancer patients. METHODS A retrospective cohort of 160 advanced gastric cancer patients receiving potentially curative surgery with/without chemotherapy was investigated for PIK3CA mutation and PI3K pathway protein level in the context of overall survival and relapse-free survival. RESULTS Thirteen patients (13 of 111, 11.7%) had PIK3CA mutations in codon 545, whereas one patient (1 of 94, 1.1%) had a mutation in PIK3CA codon 1047. PI3K pathway protein immunohistochemistry demonstrated that phosphorylated AKT positive [p-AKT (+)] patients in the surgery-only group had a good prognosis in terms of overall survival and relapse-free survival. No significant association between PIK3CA mutations and PI3K pathway protein level was seen. CONCLUSIONS This study revealed that (1) PIK3CA hotspot mutations occurred with low frequency in gastric cancer; (2) PIK3CA hotspot mutations were not directly associated with PI3K pathway activation; and (3) p-AKT (+) may be a biomarker for better outcomes for gastric cancer patients undergoing gastrectomy regardless of the PIK3CA mutation status.
Collapse
Affiliation(s)
- Chie Ito
- Molecular Therapeutics Laboratory, Iwate Medical University School of Medicine, Iwate, Japan; Department of Surgery, Iwate Medical University School of Medicine, Iwate, Japan
| | - Satoshi S Nishizuka
- Molecular Therapeutics Laboratory, Iwate Medical University School of Medicine, Iwate, Japan; Department of Surgery, Iwate Medical University School of Medicine, Iwate, Japan; Division of Biomedical Research and Development, Institute of Biomedical Science, Iwate Medical University, Iwate, Japan.
| | - Kazuyuki Ishida
- Department of Molecular Diagnostic Pathology, Iwate Medical University School of Medicine, Iwate, Japan
| | - Noriyuki Uesugi
- Department of Molecular Diagnostic Pathology, Iwate Medical University School of Medicine, Iwate, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, Iwate Medical University School of Medicine, Iwate, Japan
| | - Gen Tamura
- Department of Pathology and Laboratory Medicine, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Keisuke Koeda
- Department of Surgery, Iwate Medical University School of Medicine, Iwate, Japan
| | - Akira Sasaki
- Department of Surgery, Iwate Medical University School of Medicine, Iwate, Japan
| |
Collapse
|
35
|
Abstract
Pancreatic neoplasms have a wide range of histologic types with distinct clinical outcomes. Recent advances in high-throughput sequencing technologies have greatly deepened our understanding of pancreatic neoplasms. Now, the exomes of major histologic types of pancreatic neoplasms have been sequenced, and their genetic landscapes have been revealed. This article reviews the molecular changes underlying pancreatic neoplasms, with a special focus on the genetic changes that characterize the histologic types of pancreatic neoplasms. Emphasis is also made on the molecular features of key genes that have the potential for therapeutic targets.
Collapse
|
36
|
Rooney SL, Shi J. Intraductal Tubulopapillary Neoplasm of the Pancreas: An Update From a Pathologist's Perspective. Arch Pathol Lab Med 2016; 140:1068-1073. [PMID: 27684978 DOI: 10.5858/arpa.2016-0207-ra] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
CONTEXT -Intraductal tubulopapillary neoplasm (ITPN) is a rare intraductal epithelial neoplasm of the pancreas recently recognized as a distinct entity by the World Health Organization classification in 2010. It is defined as an intraductal, grossly visible, tubule-forming epithelial neoplasm with high-grade dysplasia and ductal differentiation without overt production of mucin. The diagnosis can be challenging owing to morphologic overlap with other intraductal lesions and its rarity. While recent advances in molecular genetic studies of ITPN have provided new tools to facilitate clinical diagnosis, the limited number of cases has yielded limited follow-up data to guide management. OBJECTIVE -To provide a clinical, pathologic, and molecular update on ITPN with respect to clinical presentation, imaging findings, histopathologic features, differential diagnosis, biological behavior, molecular characteristics, and treatment options. DATA SOURCES -Analysis of the pertinent literature (PubMed) and authors' research and clinical practice experience based on institutional and consultation materials. CONCLUSIONS -Clinical presentation, imaging findings, histopathology, immunohistochemistry studies, molecular characteristics, prognosis, and treatment options of ITPN are reviewed. Important differential diagnoses with other intraductal neoplasms of the pancreas-especially intraductal papillary mucinous neoplasm-using histopathologic, molecular, and immunohistochemical studies, are discussed. Despite the recent progress, more studies are necessary to assess the biology and genetics of ITPN for a better understanding of the prognostic factors and treatment options.
Collapse
Affiliation(s)
- Sarah L Rooney
- From the Department of Pathology, University of Michigan, Ann Arbor
| | - Jiaqi Shi
- From the Department of Pathology, University of Michigan, Ann Arbor
| |
Collapse
|
37
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease with a high mortality rate. Genetic and biochemical studies have shown that RAS signaling mediated by KRAS plays a pivotal role in disease initiation, progression and drug resistance. RAS signaling affects several cellular processes in PDAC, including cellular proliferation, migration, cellular metabolism and autophagy. 90% of pancreatic cancer patients harbor somatic oncogenic point mutations in KRAS, which lead to constitutive activation of the molecule. Pancreatic cancers lacking KRAS mutations show activation of RAS via upstream signaling through receptor mediated tyrosine kinases, like EGFR, and in a small fraction of patients, oncogenic activation of the downstream B-RAF molecule is detected. RAS-stimulated signaling of RAF/MEK/ERK, PI3K/AKT/mTOR and RalA/B is active in human pancreatic cancers, cancer cell lines and mouse models of PDAC, although activation levels of each signaling arm appear to be variable across different tumors and perhaps within different subclones of single tumors. Recently, several targeted therapies directed towards MEK, ERK, PI3K and mTOR have been assayed in pancreatic cancer cell lines and in mouse models of the disease with promising results for their ability to impede cellular growth or delay tumor formation, and several inhibitors are currently in clinical trials. However, therapy-induced cross activation of RAS effector molecules has elucidated the complexities of targeting RAS signaling. Combinatorial therapies are now being explored as an approach to overcome RAS-induced therapeutic resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Karen M Mann
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joseph Juan
- Molecular Oncology Department, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Nancy A Jenkins
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Neal G Copeland
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
38
|
Ying H, Dey P, Yao W, Kimmelman AC, Draetta GF, Maitra A, DePinho RA. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 2016; 30:355-85. [PMID: 26883357 PMCID: PMC4762423 DOI: 10.1101/gad.275776.115] [Citation(s) in RCA: 391] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ying et al. review pancreatic ductal adenocarcinoma (PDAC) genetics and biology, particularly altered cancer cell metabolism, the complexity of immune regulation in the tumor microenvironment, and impaired DNA repair processes. With 5-year survival rates remaining constant at 6% and rising incidences associated with an epidemic in obesity and metabolic syndrome, pancreatic ductal adenocarcinoma (PDAC) is on track to become the second most common cause of cancer-related deaths by 2030. The high mortality rate of PDAC stems primarily from the lack of early diagnosis and ineffective treatment for advanced tumors. During the past decade, the comprehensive atlas of genomic alterations, the prominence of specific pathways, the preclinical validation of such emerging targets, sophisticated preclinical model systems, and the molecular classification of PDAC into specific disease subtypes have all converged to illuminate drug discovery programs with clearer clinical path hypotheses. A deeper understanding of cancer cell biology, particularly altered cancer cell metabolism and impaired DNA repair processes, is providing novel therapeutic strategies that show strong preclinical activity. Elucidation of tumor biology principles, most notably a deeper understanding of the complexity of immune regulation in the tumor microenvironment, has provided an exciting framework to reawaken the immune system to attack PDAC cancer cells. While the long road of translation lies ahead, the path to meaningful clinical progress has never been clearer to improve PDAC patient survival.
Collapse
Affiliation(s)
- Haoqiang Ying
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Prasenjit Dey
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Wantong Yao
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Alec C Kimmelman
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Giulio F Draetta
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Anirban Maitra
- Department of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; Sheikh Ahmed Pancreatic Cancer Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
39
|
Singhi AD, Zeh HJ, Brand RE, Nikiforova MN, Chennat JS, Fasanella KE, Khalid A, Papachristou GI, Slivka A, Hogg M, Lee KK, Tsung A, Zureikat AH, McGrath K. American Gastroenterological Association guidelines are inaccurate in detecting pancreatic cysts with advanced neoplasia: a clinicopathologic study of 225 patients with supporting molecular data. Gastrointest Endosc 2016; 83:1107-1117.e2. [PMID: 26709110 DOI: 10.1016/j.gie.2015.12.009] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/04/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS The American Gastroenterological Association (AGA) recently reported evidence-based guidelines for the management of asymptomatic neoplastic pancreatic cysts. These guidelines advocate a higher threshold for surgical resection than prior guidelines and imaging surveillance for a considerable number of patients with pancreatic cysts. The aims of this study were to assess the accuracy of the AGA guidelines in detecting advanced neoplasia and present an alternative approach to pancreatic cysts. METHODS The study population consisted of 225 patients who underwent EUS-guided FNA for pancreatic cysts between January 2014 and May 2015. For each patient, clinical findings, EUS features, cytopathology results, carcinoembryonic antigen analysis, and molecular testing of pancreatic cyst fluid were reviewed. Molecular testing included the assessment of hotspot mutations and deletions for KRAS, GNAS, VHL, TP53, PIK3CA, and PTEN. RESULTS Diagnostic pathology results were available for 41 patients (18%), with 13 (6%) harboring advanced neoplasia. Among these cases, the AGA guidelines identified advanced neoplasia with 62% sensitivity, 79% specificity, 57% positive predictive value, and 82% negative predictive value. Moreover, the AGA guidelines missed 45% of intraductal papillary mucinous neoplasms with adenocarcinoma or high-grade dysplasia. For cases without confirmatory pathology, 27 of 184 patients (15%) with serous cystadenomas (SCAs) based on EUS findings and/or VHL alterations would continue magnetic resonance imaging (MRI) surveillance. In comparison, a novel algorithmic pathway using molecular testing of pancreatic cyst fluid detected advanced neoplasias with 100% sensitivity, 90% specificity, 79% positive predictive value, and 100% negative predictive value. CONCLUSIONS The AGA guidelines were inaccurate in detecting pancreatic cysts with advanced neoplasia. Furthermore, because the AGA guidelines manage all neoplastic cysts similarly, patients with SCAs will continue to undergo unnecessary MRI surveillance. The results of an alternative approach with integrative molecular testing are encouraging but require further validation.
Collapse
Affiliation(s)
- Aatur D Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Randall E Brand
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Marina N Nikiforova
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jennifer S Chennat
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Kenneth E Fasanella
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Asif Khalid
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Georgios I Papachristou
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Adam Slivka
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Melissa Hogg
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Kenneth K Lee
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Amer H Zureikat
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Kevin McGrath
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
40
|
Entamoeba histolytica Cysteine Proteinase 5 Evokes Mucin Exocytosis from Colonic Goblet Cells via αvβ3 Integrin. PLoS Pathog 2016; 12:e1005579. [PMID: 27073869 PMCID: PMC4830554 DOI: 10.1371/journal.ppat.1005579] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/27/2016] [Indexed: 12/11/2022] Open
Abstract
Critical to the pathogenesis of intestinal amebiasis, Entamoeba histolytica (Eh) induces mucus hypersecretion and degrades the colonic mucus layer at the site of invasion. The parasite component(s) responsible for hypersecretion are poorly defined, as are regulators of mucin secretion within the host. In this study, we have identified the key virulence factor in live Eh that elicits the fast release of mucin by goblets cells as cysteine protease 5 (EhCP5) whereas, modest mucus secretion occurred with secreted soluble EhCP5 and recombinant CP5. Coupling of EhCP5-αvβ3 integrin on goblet cells facilitated outside-in signaling by activating SRC family kinases (SFK) and focal adhesion kinase that resulted in the activation/phosphorlyation of PI3K at the site of Eh contact and production of PIP3. PKCδ was activated at the EhCP5-αvβ3 integrin contact site that specifically regulated mucin secretion though the trafficking vesicle marker myristoylated alanine-rich C-kinase substrate (MARCKS). This study has identified that EhCP5 coupling with goblet cell αvβ3 receptors can initiate a signal cascade involving PI3K, PKCδ and MARCKS to drive mucin secretion from goblet cells critical in disease pathogenesis. An interesting facet to the protozoan parasite Entamoeba histolytica is the ability to cause disease in a very limited subset of individuals, subject to first overcoming the intestinal mucus barrier within the gastrointestinal tract. Mucins, which are the primary constituent of the mucus layer are secreted basally to maintain the barrier and also in response to a variety of pathogens and noxious threats to protect the sensitive epithelium. Unfortunately, the mechanisms and signal cascades that regulate this secretion event are largely unknown. Here we describe how one such pathogen targets a specific host receptor on mucin-secreted cells to elicit secretion by activating distinct signaling pathways. Further, we have identified the parasite component responsible for this event. Our study provides insight in the pathogenesis of E. histolytica along laying the foundation for a broader understanding of how mucin secretion is regulated. We believe the pathways and mechanisms identified here can be applied to a wide-array of pathogens to understand how pathogens are kept away from the epithelium and how exploitation of this may lead to disease.
Collapse
|
41
|
Du L, Chen X, Cao Y, Lu L, Zhang F, Bornstein S, Li Y, Owens P, Malkoski S, Said S, Jin F, Kulesz-Martin M, Gross N, Wang XJ, Lu SL. Overexpression of PIK3CA in murine head and neck epithelium drives tumor invasion and metastasis through PDK1 and enhanced TGFβ signaling. Oncogene 2016; 35:4641-52. [PMID: 26876212 PMCID: PMC4985507 DOI: 10.1038/onc.2016.1] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 12/12/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) patients have a poor prognosis, with invasion and metastasis as major causes of mortality. The phosphatidylinositol 3-kinase (PI3K) pathway regulates a wide range of cellular processes crucial for tumorigenesis, and PIK3CA amplification and mutation are among the most common genetic alterations in human HNSCC. Compared to the well-documented roles of the PI3K pathway in cell growth and survival, the roles of the PI3K pathway in tumor invasion and metastasis have not been well delineated. We generated a PIK3CA-genetically engineered mouse model (PIK3CA-GEMM) in which wildtype PIK3CA is overexpressed in head and neck epithelium. Although PIK3CA overexpression alone was not sufficient to initiate HNSCC formation, it significantly increased tumor susceptibility in an oral-carcinogenesis mouse model. PIK3CA overexpression in mouse oral epithelium increased tumor invasiveness and metastasis by increasing epithelial-mesenchymal transition and by enriching a cancer stem cell phenotype in tumor epithelial cells. In addition to these epithelial alterations, we also observed marked inflammation in tumor stroma. AKT is a central signaling mediator of the PI3K pathway. However, molecular analysis suggested that progression of PIK3CA-driven HNSCC is facilitated by PDK1 and enhanced TGFβ signaling rather than by AKT. Examination of human HNSCC clinical samples revealed that both PIK3CA and PDK1 protein levels correlated with tumor progression, highlighting the significance of this pathway. In summary, our results offer significant insight into how PIK3CA-overexpression drives HNSCC invasion and metastasis, providing a rationale for targeting PI3K/PDK1 and TGFβ signaling in advanced HNSCC patients with PIK3CA amplification.
Collapse
Affiliation(s)
- L Du
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Otolaryngology, Fourth University Hospital of China Medical University, Shengyang, China
| | - X Chen
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Y Cao
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Surgical Oncology, The First University Hospital of China Medical University, Shengyang, Liaoning, China
| | - L Lu
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - F Zhang
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - S Bornstein
- Department of Otolaryngology, Oregon Health and Science University, Portland, OR, USA
| | - Y Li
- Department of Otolaryngology, Oregon Health and Science University, Portland, OR, USA
| | - P Owens
- Department of Otolaryngology, Oregon Health and Science University, Portland, OR, USA
| | - S Malkoski
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - S Said
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - F Jin
- Department of Surgical Oncology, The First University Hospital of China Medical University, Shengyang, Liaoning, China
| | - M Kulesz-Martin
- Department of Dermatology, Oregon Health and Science University, Portland, OR, USA
| | - N Gross
- Department of Otolaryngology, Oregon Health and Science University, Portland, OR, USA
| | - X-J Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - S-L Lu
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
42
|
Qiu W, Tang SM, Lee S, Turk AT, Sireci AN, Qiu A, Rose C, Xie C, Kitajewski J, Wen HJ, Crawford HC, Sims PA, Hruban RH, Remotti HE, Su GH. Loss of Activin Receptor Type 1B Accelerates Development of Intraductal Papillary Mucinous Neoplasms in Mice With Activated KRAS. Gastroenterology 2016; 150:218-228.e12. [PMID: 26408346 PMCID: PMC4860725 DOI: 10.1053/j.gastro.2015.09.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 08/27/2015] [Accepted: 09/16/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS Activin, a member of the transforming growth factor-β (TGFB) family, might be involved in pancreatic tumorigenesis, similar to other members of the TGFB family. Human pancreatic ductal adenocarcinomas contain somatic mutations in the activin A receptor type IB (ACVR1B) gene, indicating that ACVR1B could be a suppressor of pancreatic tumorigenesis. METHODS We disrupted Acvr1b specifically in pancreata of mice (Acvr1b(flox/flox);Pdx1-Cre mice) and crossed them with LSL-KRAS(G12D) mice, which express an activated form of KRAS and develop spontaneous pancreatic tumors. The resulting Acvr1b(flox/flox);LSL-KRAS(G12D);Pdx1-Cre mice were monitored; pancreatic tissues were collected and analyzed by histology and immunohistochemical analyses. We also analyzed p16(flox/flox);LSL-Kras(G12D);Pdx1-Cre mice and Cre-negative littermates (controls). Genomic DNA, total RNA, and protein were isolated from mouse tissues and primary pancreatic tumor cell lines and analyzed by reverse-transcription polymerase chain reaction, sequencing, and immunoblot analyses. Human intraductal papillary mucinous neoplasm (IPMN) specimens were analyzed by immunohistochemistry. RESULTS Loss of ACVR1B from pancreata of mice increased the proliferation of pancreatic epithelial cells, led to formation of acinar to ductal metaplasia, and induced focal inflammatory changes compared with control mice. Disruption of Acvr1b in LSL-KRAS(G12D);Pdx1-Cre mice accelerated the growth of pancreatic IPMNs compared with LSL-KRAS(G12D);Pdx1-Cre mice, but did not alter growth of pancreatic intraepithelial neoplasias. We associated perinuclear localization of the activated NOTCH4 intracellular domain to the apical cytoplasm of neoplastic cells with the expansion of IPMN lesions in Acvr1b(flox/flox);LSL-KRAS(G12D);Pdx1-Cre mice. Loss of the gene that encodes p16 (Cdkn2a) was required for progression of IPMNs to pancreatic ductal adenocarcinomas in Acvr1b(flox/flox);LSL-Kras(G12D);Pdx1-Cre mice. We also observed progressive loss of p16 in human IPMNs of increasing grades. CONCLUSIONS Loss of ACVR1B accelerates growth of mutant KRAS-induced pancreatic IPMNs in mice; this process appears to involve NOTCH4 and loss of p16. ACVR1B suppresses early stages of pancreatic tumorigenesis; the activin signaling pathway therefore might be a therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Wanglong Qiu
- The Department of Pathology, Columbia University Medical Center, New York, NY 10032,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032
| | - Sophia M. Tang
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032
| | - Sohyae Lee
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032
| | - Andrew T. Turk
- The Department of Pathology, Columbia University Medical Center, New York, NY 10032
| | - Anthony N. Sireci
- The Department of Pathology, Columbia University Medical Center, New York, NY 10032
| | - Anne Qiu
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032
| | | | - Chuangao Xie
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032
| | - Jan Kitajewski
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY 10032
| | - Hui-Ju Wen
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, FL
| | - Howard C. Crawford
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, FL
| | - Peter A. Sims
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032
| | - Ralph H. Hruban
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD 21205
| | - Helen E. Remotti
- The Department of Pathology, Columbia University Medical Center, New York, NY 10032
| | - Gloria H. Su
- The Department of Pathology, Columbia University Medical Center, New York, NY 10032,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032,Department of Otolaryngology and Head and Neck Surgery, Columbia University Medical Center, New York, NY 10032
| |
Collapse
|
43
|
Kong B, Cheng T, Qian C, Wu W, Steiger K, Cao J, Schlitter AM, Regel I, Raulefs S, Friess H, Erkan M, Esposito I, Kleeff J, Michalski CW. Pancreas-specific activation of mTOR and loss of p53 induce tumors reminiscent of acinar cell carcinoma. Mol Cancer 2015; 14:212. [PMID: 26683340 PMCID: PMC4683950 DOI: 10.1186/s12943-015-0483-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 12/10/2015] [Indexed: 12/20/2022] Open
Abstract
Background Pancreatic acinar cell carcinoma (ACC) is a rare tumor entity with an unfavorable prognosis. Recent whole-exome sequencing identified p53 mutations in a subset of human ACC. Activation of the mammalian target of rapamycin (mTOR) pathway is associated with various pancreatic neoplasms. We thus aimed at analyzing whether activation of mTOR with a concomitant loss of p53 may initiate ACC. Methods We generated transgenic mouse models in which mTOR was hyperactivated through pancreas-specific, homozygous tuberous sclerosis 1 (Tsc1) deficiency, with or without deletion of p53 (Tsc1-/- and Tsc1-/-; p53-/-). Activity of mTOR signaling was investigated using mouse tissues and isolated murine cell lines. Human ACC specimens were used to corroborate the findings from the transgenic mouse models. Results Hyperactive mTOR signaling in Tsc1-/- mice was not oncogenic but rather induced a near-complete loss of the pancreatic acinar compartment. Acinar cells were lost as a result of apoptosis which was associated with p53 activation. Concomitantly, ductal cells were enriched. Ablation of p53 in Tsc1-deficient mice prevented acinar cell death but promoted formation of acinar cells with severe nuclear abnormalities. One out of seven Tsc1-/-; p53-/- animals developed pancreatic tumors showing a distinctive tumor morphology, reminiscent of human ACC. Hyperactive mTOR signaling was also detected in a subset of human ACC. Conclusion Hyperactive mTOR signaling combined with loss of p53 in mice induces tumors similar to human ACC. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0483-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bo Kong
- Department of Surgery, Technische Universität München (TUM), Munich, Germany
| | - Tao Cheng
- Department of Surgery, Technische Universität München (TUM), Munich, Germany
| | - Chengjia Qian
- Department of Surgery, Technische Universität München (TUM), Munich, Germany
| | - Weiwei Wu
- Department of Surgery, Technische Universität München (TUM), Munich, Germany
| | | | - Jing Cao
- Department of Surgery, Technische Universität München (TUM), Munich, Germany
| | | | - Ivonne Regel
- Department of Surgery, Technische Universität München (TUM), Munich, Germany
| | - Susanne Raulefs
- Department of Surgery, Technische Universität München (TUM), Munich, Germany
| | - Helmut Friess
- Department of Surgery, Technische Universität München (TUM), Munich, Germany
| | - Mert Erkan
- Department of Surgery, Technische Universität München (TUM), Munich, Germany.,Department of Surgery, Koc School of Medicine, Istanbul, Turkey
| | - Irene Esposito
- Institute of Pathology, TUM, Munich, Germany.,Institute of Pathology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jörg Kleeff
- Department of Surgery, Technische Universität München (TUM), Munich, Germany.,Royal Liverpool and Broadgreen University Hospitals, Liverpool, UK
| | - Christoph W Michalski
- Department of Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.
| |
Collapse
|
44
|
Constitutively active Akt1 cooperates with KRas(G12D) to accelerate in vivo pancreatic tumor onset and progression. Neoplasia 2015; 17:175-82. [PMID: 25748236 PMCID: PMC4351297 DOI: 10.1016/j.neo.2014.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 12/13/2014] [Accepted: 12/17/2014] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND AND AIMS: Pancreatic adenocarcinoma is a deadly disease characterized by metastatic progression and resistance to conventional therapeutics. Mutation of KRAS is the most frequent early event in pancreatic tumor progression. AKT isoforms are frequently activated in pancreatic cancer, and reports have implicated hyperactivation of AKT1, as well as AKT2, in pancreatic tumor formation. The objective here is to delineate the role of AKT in facilitating in vivo pancreatic tumor progression in the context of KRAS mutation and predisposition to pancreatic cancer. METHODS: Mice with Akt1 and KRas mutant alleles expressed using the pancreas Pdx promoter were mated to characterize the incidence and frequency of histologic and genetic alterations known to occur commonly in human pancreatic ductal adenocarcinoma. RESULTS: Active Akt1 (Akt1Myr, containing a myristoylation sequence) cooperated with active mutant KRasG12D to accelerate pancreatic carcinoma onset and progression and increase phosphorylation of downstream effectors in the Akt pathway. Mucin and smooth muscle actin expression was found in and around pancreatic intraepithelial neoplasms (PanINs), and accelerated time to metastasis was found in Akt1Myr/KRasG12D mice. CONCLUSIONS: In contrast to prior reports of pancreatic KRas mutant mice mated with mice deficient for various tumor suppressor genes, which resulted in aggressive disease within a few months of age, Akt1Myr/KRasG12D mice enabled the study of PanINs and spontaneous pancreatic transformation more characteristic of human pancreatic progression in elderly individuals. The Akt1Myr/KRasG12D model holds promise for delineating the tumor biology and biomarkers critical for understanding their cooperation in cancer oncogenesis and future targeting in therapeutic strategies.
Collapse
|
45
|
Di Marco M, Astolfi A, Grassi E, Vecchiarelli S, Macchini M, Indio V, Casadei R, Ricci C, D'Ambra M, Taffurelli G, Serra C, Ercolani G, Santini D, D'Errico A, Pinna AD, Minni F, Durante S, Martella LR, Biasco G. Characterization of pancreatic ductal adenocarcinoma using whole transcriptome sequencing and copy number analysis by single-nucleotide polymorphism array. Mol Med Rep 2015; 12:7479-84. [PMID: 26397140 DOI: 10.3892/mmr.2015.4344] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/27/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of the current study was to implement whole transcriptome massively parallel sequencing (RNASeq) and copy number analysis to investigate the molecular biology of pancreatic ductal adenocarcinoma (PDAC). Samples from 16 patients with PDAC were collected by ultrasound‑guided biopsy or from surgical specimens for DNA and RNA extraction. All samples were analyzed by RNASeq performed at 75x2 base pairs on a HiScanSQ Illumina platform. Single‑nucleotide variants (SNVs) were detected with SNVMix and filtered on dbSNP, 1000 Genomes and Cosmic. Non‑synonymous SNVs were analyzed with SNPs&GO and PROVEAN. A total of 13 samples were analyzed by high resolution copy number analysis on an Affymetrix SNP array 6.0. RNAseq resulted in an average of 264 coding non‑synonymous novel SNVs (ranging from 146‑374) and 16 novel insertions or deletions (In/Dels) (ranging from 6‑24) for each sample, of which a mean of 11.2% were disease‑associated and somatic events, while 34.7% were frameshift somatic In/Dels. From this analysis, alterations in the known oncogenes associated with PDAC were observed, including Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations (93.7%) and inactivation of cyclin‑dependent kinase inhibitor 2A (CDKN2A) (50%), mothers against decapentaplegic homolog 4 (SMAD4) (50%), and tumor protein 53 (TP53) (56%). One case that was negative for KRAS exhibited a G13D neuroblastoma RAS viral oncogene homolog mutation. In addition, gene fusions were detected in 10 samples for a total of 23 different intra‑ or inter‑chromosomal rearrangements, however, a recurrent fusion transcript remains to be identified. SNP arrays identified macroscopic and cryptic cytogenetic alterations in 85% of patients. Gains were observed in the chromosome arms 6p, 12p, 18q and 19q which contain KRAS, GATA binding protein 6, protein kinase B and cyclin D3. Deletions were identified on chromosome arms 1p, 9p, 6p, 18q, 10q, 15q, 17p, 21q and 19q which involve TP53, CDKN2A/B, SMAD4, runt‑related transcription factor 2, AT‑rich interactive domain‑containing protein 1A, phosphatase and tensin homolog and serine/threonine kinase 11. In conclusion, genetic alterations in PDCA were observed to involve numerous pathways including cell migration, transforming growth factor‑β signaling, apoptosis, cell proliferation and DNA damage repair. However, signaling alterations were not observed in all tumors and key mutations appeared to differ between PDAC cases.
Collapse
Affiliation(s)
- Mariacristina Di Marco
- Department of Experimental, Diagnostic and Specialty Medicine, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Annalisa Astolfi
- Interdepartmental Center of Cancer Research, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Elisa Grassi
- Department of Experimental, Diagnostic and Specialty Medicine, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Silvia Vecchiarelli
- Department of Experimental, Diagnostic and Specialty Medicine, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Marina Macchini
- Department of Experimental, Diagnostic and Specialty Medicine, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Valentina Indio
- Interdepartmental Center of Cancer Research, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Riccardo Casadei
- Department of Medical and Surgical Sciences, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Claudio Ricci
- Department of Medical and Surgical Sciences, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Marielda D'Ambra
- Department of Medical and Surgical Sciences, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Giovanni Taffurelli
- Department of Medical and Surgical Sciences, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Carla Serra
- Department of Digestive Diseases and Internal Medicine, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Giorgio Ercolani
- Liver and Multiorgan Transplant Unit, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Donatella Santini
- Pathology Unit, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Antonia D'Errico
- Department of Experimental, Diagnostic and Specialty Medicine, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Antonio Daniele Pinna
- Department of Medical and Surgical Sciences, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Francesco Minni
- Department of Medical and Surgical Sciences, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Sandra Durante
- Interdepartmental Center of Cancer Research, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Laura Raffaella Martella
- Department of Experimental, Diagnostic and Specialty Medicine, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| | - Guido Biasco
- Department of Experimental, Diagnostic and Specialty Medicine, Sant'Orsola‑Malpighi Hospital, Bologna I‑40100, Italy
| |
Collapse
|
46
|
Brosens LAA, Hackeng WM, Offerhaus GJ, Hruban RH, Wood LD. Pancreatic adenocarcinoma pathology: changing "landscape". J Gastrointest Oncol 2015; 6:358-74. [PMID: 26261723 DOI: 10.3978/j.issn.2078-6891.2015.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/22/2015] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is a devastating disease. At time of diagnosis the disease is usually advanced and only a minority of patients are eligible for surgical resection. The overall 5-year survival is 6%. However, survival of patients with early stage pancreatic cancer is significantly better. To improve the prognosis of patients with pancreatic cancer, it is essential to diagnose and treat pancreatic cancer in the earliest stage. Prevention of pancreatic cancer by treating noninvasive precursor lesions just before they invade tissues can potentially lead to even better outcomes. Pancreatic carcinogenesis results from a stepwise progression in which accumulating genetic alterations drive neoplastic progression in well-defined precursor lesions, ultimately giving rise to an invasive adenocarcinoma. A thorough understanding of the genetic changes that drive pancreatic carcinogenesis can lead to identification of biomarkers for early detection and targets for therapy. Recent next-generation sequencing (NGS) studies have shed new light on our understanding of the natural history of pancreatic cancer and the precursor lesions that give rise to these cancers. Importantly, there is a significant window of opportunity for early detection and treatment between the first genetic alteration in a cell in the pancreas and development of full-blown pancreatic cancer. The current views on the pathology and genetics of pancreatic carcinogenesis that evolved from studies of pancreatic cancer and its precursor lesions are discussed in this review.
Collapse
Affiliation(s)
- Lodewijk A A Brosens
- 1 Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands ; 2 Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Wenzel M Hackeng
- 1 Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands ; 2 Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - G Johan Offerhaus
- 1 Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands ; 2 Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Ralph H Hruban
- 1 Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands ; 2 Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Laura D Wood
- 1 Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands ; 2 Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
47
|
Abstract
OBJECTIVES We aimed to identify molecular biomarkers for assessing the progression of intraductal papillary mucinous neoplasm of the pancreas (IPMN). METHODS We retrospectively investigated molecular aberrations and their associations with clinicopathological features in 172 IPMNs. RESULTS GNAS and KRAS mutations were detected in 48% and 56% of IPMNs, respectively. No mutations of EGFR, PIK3CA GNAO1, GNAQ, or GNAI2 were observed. Significant associations were observed between IPMN morphological types and GNAS mutations, KRAS mutations, the expression of phosphorylated MAPK (pMAPK), AKT, and phosphorylated AKT (pAKT), nuclear accumulation of β-catenin, SMAD4 loss, and TP53 overexpression; histological grades and the expression of EGFR, pMAPK, AKT, and pAKT, the nuclear β-catenin, SMAD4 loss, and TP53 overexpression; invasive phenotypes and KRAS mutations, the nuclear β-catenin, and SMAD4 loss; and prognosis and SMAD4 loss and TP53 overexpression. Multivariate analysis to compare prognostic impacts of multiple molecular features revealed that TP53 overexpression was an independent prognostic factor (P = 0.030; hazard ratio, 5.533). CONCLUSIONS These results indicate that mutations in GNAS and KRAS, the expression of EGFR and pMAPK, the nuclear β-catenin, SMAD4 loss, and TP53 overexpression may be relevant for assessing the clinical course of IPMN, including its progression into different morphological types, invasion, and prognosis.
Collapse
|
48
|
Fukumoto C, Nakashima D, Kasamatsu A, Unozawa M, Shida-Sakazume T, Higo M, Ogawara K, Yokoe H, Shiiba M, Tanzawa H, Uzawa K. WWP2 is overexpressed in human oral cancer, determining tumor size and poor prognosis in patients: downregulation of WWP2 inhibits the AKT signaling and tumor growth in mice. Oncoscience 2014; 1:807-20. [PMID: 25621296 PMCID: PMC4303889 DOI: 10.18632/oncoscience.101] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/27/2014] [Indexed: 01/14/2023] Open
Abstract
The WW domain containing E3 ubiquitin protein ligase 2 (WWP2) encodes a member of the Nedd4 family of E3 ligases, which catalyzes the final step of the ubiquitination cascade. WWP2 is involved in tumoral growth with degradation of the tumor suppressor phosphatase and tensin homologue deleted on chromosome TEN (PTEN). However, little is known about the mechanisms and roles of WWP2 in human malignancies including oral squamous cell carcinomas (OSCCs). We found frequent WWP2 overexpression in all OSCC-derived cell lines examined that was associated with cellular growth by accelerating the cell cycle in the G1 phase via degradation of PTEN and activation of the PI3K/AKT signaling pathway. Our in vivo data of WWP2 silencing showed dramatic inhibition of tumoral growth with increased expression of PTEN. Our 104 primary OSCCs had significantly higher expression of WWP2 than their normal counterparts. Moreover, among the clinical variables analyzed, enhanced WWP2 expression was correlated with primary tumoral size and poor prognosis. These data suggested that WWP2 overexpression contributes to neoplastic promotion via the PTEN/PI3K/AKT pathway in OSCCs. WWP2 is likely to be a biomarker of tumoral progression and prognosis and a potential therapeutic target for development of anticancer drugs in OSCCs.
Collapse
Affiliation(s)
- Chonji Fukumoto
- Department of Oral Science, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Dai Nakashima
- Department of Oral Science, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Inohana, Chuo-ku, Chiba, Japan
| | - Motoharu Unozawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Tomomi Shida-Sakazume
- Department of Oral Science, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Morihiro Higo
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Inohana, Chuo-ku, Chiba, Japan
| | - Katsunori Ogawara
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Inohana, Chuo-ku, Chiba, Japan
| | - Hidetaka Yokoe
- Department of Oral and Maxillofacial Surgery Research Institute, National Defense Medical College Hospital, Tokorozawa, Japan
| | - Masashi Shiiba
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan ; Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Inohana, Chuo-ku, Chiba, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan ; Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Inohana, Chuo-ku, Chiba, Japan
| |
Collapse
|
49
|
Klöppel G, Basturk O, Schlitter AM, Konukiewitz B, Esposito I. Intraductal neoplasms of the pancreas. Semin Diagn Pathol 2014; 31:452-466. [DOI: 10.1053/j.semdp.2014.08.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Klassifikation und malignes Potenzial der zystischen Pankreastumoren. DER PATHOLOGE 2014; 36:99-112; quiz 113-4. [DOI: 10.1007/s00292-014-1971-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|