1
|
Li T, Yang XH, Shao MJ, Dong YX, Li LY, Lin CZ. Effectiveness and mechanism of cisplatin combined with PDT on human lung adenocarcinoma A549 cells transplanted tumor in nude mice. Sci Rep 2025; 15:10062. [PMID: 40128581 PMCID: PMC11933342 DOI: 10.1038/s41598-025-94990-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/18/2025] [Indexed: 03/26/2025] Open
Abstract
This study aims to investigate the effect and mechanism of photodynamic therapy (PDT) combined with cisplatin on human lung adenocarcinoma A549 cells transplanted tumors in nude mice, and to provide a theoretical basis for clinical PDT. Construction of a nude mouse lung cancer transplantation tumor model using the human lung adenocarcinoma A549 cell line, and the mice were randomly divided into four groups: the control group, the cisplatin alone group, the PDT alone group, and the cisplatin combined PDT group. The apoptosis of tumor cells in the four groups was observed and compared by the TUNEL method, and the mRNA expression levels of apoptosis-related genes Bax, caspase-3 and Survivin, as well as the expression levels of the corresponding proteins, were detected by the real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) and the protein immunoblotting technique (Western blot) respectively. The results showed that photodynamic force combined with cisplatin was effective in inhibiting tumor growth, and its effect was superior to that of cisplatin or PDT alone. This may be related to the promotion of apoptosis, specifically through the up-regulation of Bax and caspase-3, and the down-regulation of Survivin gene expression, thus inhibiting cell proliferation.
Collapse
Affiliation(s)
- Tong Li
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xiao-Hui Yang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Ming-Ju Shao
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yu-Xia Dong
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Lin-Yu Li
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Cun-Zhi Lin
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
2
|
Rohrbach DJ, Carter KA, Luo D, Shao S, Aygun-Sunar S, Lovell JF, Sunar U. Fluence Rate-Dependent Kinetics of Light-Triggered Liposomal Doxorubicin Assessed by Quantitative Fluorescence-Based Endoscopic Probe. Int J Mol Sci 2025; 26:1212. [PMID: 39940981 PMCID: PMC11818813 DOI: 10.3390/ijms26031212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Liposomal doxorubicin (Dox), a treatment option for recurrent ovarian cancer, often suffers from suboptimal biodistribution and efficacy, which might be addressed with precision drug delivery systems. Here, we introduce a catheter-based endoscopic probe designed for multispectral, quantitative monitoring of light-triggered drug release. This tool utilizes red-light photosensitive porphyrin-phospholipid (PoP), which is encapsulated in liposome bilayers to enhance targeted drug delivery. By integrating diffuse reflectance and fluorescence spectroscopy, our approach not only corrects for the effects of tissue optical properties but also ensures accurate drug delivery to deep-seated tumors. Preliminary results validate the probe's effectiveness in controlled settings, highlighting its potential for future clinical adaptation. This study sets the stage for in vivo applications, enabling the exploration of next-generation treatment paradigms for the management of cancer that involve optimizing chemotherapy administration for precision and control.
Collapse
Affiliation(s)
| | - Kevin A. Carter
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14260, USA (D.L.)
| | - Dandan Luo
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14260, USA (D.L.)
| | - Shuai Shao
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14260, USA (D.L.)
| | - Semra Aygun-Sunar
- Department of Biomedical, Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14260, USA (D.L.)
| | - Ulas Sunar
- Department of Biomedical, Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
3
|
Rohrbach DJ, Carter KA, Luo D, Shao S, Aygun-Sunar S, Lovell JF, Sunar U. Fluence rate-dependent kinetics of light-triggered liposomal doxorubicin assessed by quantitative fluorescence-based endoscopic probe. RESEARCH SQUARE 2025:rs.3.rs-5727534. [PMID: 39801514 PMCID: PMC11722554 DOI: 10.21203/rs.3.rs-5727534/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Liposomal doxorubicin (Dox), a treatment option for recurrent ovarian cancer, often suffers from suboptimal biodistribution and efficacy, which might be addressed with precision drug delivery systems. Here, we introduce a catheter-based endoscopic probe designed for multispectral, quantitative monitoring of light-triggered drug release. This tool utilizes red-light photosensitive porphyrin-phospholipid (PoP), which is encapsulated in liposome bilayers to enhance targeted drug delivery. By integrating diffuse reflectance and fluorescence spectroscopy, our approach not only corrects the effects of tissue optical properties but also ensures accurate drug delivery to deep-seated tumors. Preliminary results validate the probe effectiveness in controlled settings, highlighting its potential for future clinical adaptation. This study sets the stage for in vivo applications, enabling the exploration of next-generation treatment paradigms for the management of cancer by optimizing chemotherapy administration with precision and control.
Collapse
|
4
|
Rohrbach DJ, Carter KA, Luo D, Shao S, Aygun-Sunar S, Lovell JF, Sunar U. Fluence rate-dependent kinetics of light-triggered liposomal doxorubicin assessed by quantitative fluorescence-based endoscopic probe. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.29.630668. [PMID: 39763811 PMCID: PMC11703176 DOI: 10.1101/2024.12.29.630668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Liposomal doxorubicin (Dox), a treatment option for recurrent ovarian cancer, often suffers from suboptimal biodistribution and efficacy, which might be addressed with precision drug delivery systems. Here, we introduce a catheter-based endoscopic probe designed for multispectral, quantitative monitoring of light-triggered drug release. This tool utilizes red-light photosensitive porphyrin-phospholipid (PoP), which is encapsulated in liposome bilayers to enhance targeted drug delivery. By integrating diffuse reflectance and fluorescence spectroscopy, our approach not only corrects the effects of tissue optical properties but also ensures accurate drug delivery to deep-seated tumors. Preliminary results validate the probe effectiveness in controlled settings, highlighting its potential for future clinical adaptation. This study sets the stage for in vivo applications, enabling the exploration of next-generation treatment paradigms for the management of cancer by optimizing chemotherapy administration with precision and control.
Collapse
Affiliation(s)
| | - Kevin A. Carter
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Dandan Luo
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Shuai Shao
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Semra Aygun-Sunar
- Department of Biomedical, Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Ulas Sunar
- Department of Biomedical, Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
5
|
Kazemi KS, Kazemi P, Mivehchi H, Nasiri K, Eshagh Hoseini SS, Nejati ST, Pour Bahrami P, Golestani S, Nabi Afjadi M. Photodynamic Therapy: A Novel Approach for Head and Neck Cancer Treatment with Focusing on Oral Cavity. Biol Proced Online 2024; 26:25. [PMID: 39154015 PMCID: PMC11330087 DOI: 10.1186/s12575-024-00252-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024] Open
Abstract
Oral cancers, specifically oral squamous cell carcinoma (OSCC), pose a significant global health challenge, with high incidence and mortality rates. Conventional treatments such as surgery, radiotherapy, and chemotherapy have limited effectiveness and can result in adverse reactions. However, as an alternative, photodynamic therapy (PDT) has emerged as a promising option for treating oral cancers. PDT involves using photosensitizing agents in conjunction with specific light to target and destroy cancer cells selectively. The photosensitizers accumulate in the cancer cells and generate reactive oxygen species (ROS) upon exposure to the activating light, leading to cellular damage and ultimately cell death. PDT offers several advantages, including its non-invasive nature, absence of known long-term side effects when administered correctly, and cost-effectiveness. It can be employed as a primary treatment for early-stage oral cancers or in combination with other therapies for more advanced cases. Nonetheless, it is important to note that PDT is most effective for superficial or localized cancers and may not be suitable for larger or deeply infiltrating tumors. Light sensitivity and temporary side effects may occur but can be managed with appropriate care. Ongoing research endeavors aim to expand the applications of PDT and develop novel photosensitizers to further enhance its efficacy in oral cancer treatment. This review aims to evaluate the effectiveness of PDT in treating oral cancers by analyzing a combination of preclinical and clinical studies.
Collapse
Affiliation(s)
- Kimia Sadat Kazemi
- Faculty of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Kazemi
- Faculty of Dentistry, Ilam University of Medical Sciences, Ilam, Iran
| | - Hassan Mivehchi
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Kamyar Nasiri
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | | | | | | | - Shayan Golestani
- Department of Oral and Maxillofacial Surgery, Dental School, Islamic Azad University, Isfahan, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Cardoso M, Marto CM, Paula A, Coelho AS, Amaro I, Pineiro M, Pinho E Melo TMVD, Marques Ferreira M, Botelho MF, Carrilho E, Laranjo M. Effectiveness of photodynamic therapy on treatment response and survival in patients with recurrent oral squamous cell carcinoma: A systematic review. Photodiagnosis Photodyn Ther 2024; 48:104242. [PMID: 38857775 DOI: 10.1016/j.pdpdt.2024.104242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/06/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND This systematic review assessed the effectiveness of photodynamic therapy (PDT) in patients with recurrent oral squamous cell carcinoma (OSCC). METHODS Clinical studies on recurrent OSCC treated with PDT alone were included. Combined treatment strategies were excluded. The search was performed on Medline/Pubmed, Cochrane Library, Embase, Web of Science and ClinicalTrials.gov, manual search, and grey literature. RESULTS The eleven included studies were observational. The risk of bias and methodological quality were evaluated using the Newcastle-Ottawa Quality Assessment Scale. The studies reported the use of hematoporphyrin derivative, PhotofrinⓇ, FoscanⓇ and 5-aminolevulinic acid. Data on treatment response and survival was collected. Secondarily, postoperative courses and patient's quality of life/acceptance were reported whenever available. PhotofrinⓇ and FoscanⓇ were the most used photosensitisers, with more complete responses. Lesions responding less favourably were on posterior regions or deep-seated in the tissue. CONCLUSIONS Although treatment response differs between treatment protocols, PDT stands as a viable treatment option to be considered, as it can achieve therapeutic results and disease-free, long-lasting periods. Partial treatment responses may be of interest when achieving eligibility for other treatment strategies. Despite this study's limitations, which considered four photosensitisers, PhotofrinⓇ was the most used but more recent photosensitisers like FoscanⓇ have greater chemical stability, tissue penetration, and may be more efficacious on recurrent OSCC.
Collapse
Affiliation(s)
- Miguel Cardoso
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, 3000-548, Portugal; Univ Coimbra, Institute of Biophysics, Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, 3000-548, Portugal; Univ Coimbra, Coimbra Chemistry Centre - Institute of Molecular Sciences and Department of Chemistry, Rua Larga, Coimbra, 3004-535, Portugal.
| | - Carlos Miguel Marto
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, 3000-548, Portugal; Univ Coimbra, Institute of Biophysics, Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, 3000-548, Portugal; Univ Coimbra, Institute of Experimental Pathology, Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, 3000-548, Portugal; Univ Coimbra, Institute of Integrated Clinical Practice and Laboratory for Evidence-based Science and Precision Dentistry, Faculty of Medicine, Av. Bissaya Barreto, Bloco de Celas, 3000-075 Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Rua Larga, Coimbra, 3004-504, Portugal; Clinical Academic Center of Coimbra (CACC), Praceta Professor Mota Pinto, Coimbra, 3004-561, Portugal; Univ Coimbra, CEMMPRE, ARISE, Pinhal de Marrocos, 3030-788 Coimbra, Portugal
| | - Anabela Paula
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, 3000-548, Portugal; Univ Coimbra, Institute of Integrated Clinical Practice and Laboratory for Evidence-based Science and Precision Dentistry, Faculty of Medicine, Av. Bissaya Barreto, Bloco de Celas, 3000-075 Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Rua Larga, Coimbra, 3004-504, Portugal; Clinical Academic Center of Coimbra (CACC), Praceta Professor Mota Pinto, Coimbra, 3004-561, Portugal; Univ Coimbra, CEMMPRE, ARISE, Pinhal de Marrocos, 3030-788 Coimbra, Portugal
| | - Ana Sofia Coelho
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, 3000-548, Portugal; Univ Coimbra, Institute of Integrated Clinical Practice and Laboratory for Evidence-based Science and Precision Dentistry, Faculty of Medicine, Av. Bissaya Barreto, Bloco de Celas, 3000-075 Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Rua Larga, Coimbra, 3004-504, Portugal; Clinical Academic Center of Coimbra (CACC), Praceta Professor Mota Pinto, Coimbra, 3004-561, Portugal; Univ Coimbra, CEMMPRE, ARISE, Pinhal de Marrocos, 3030-788 Coimbra, Portugal
| | - Inês Amaro
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, 3000-548, Portugal; Univ Coimbra, Institute of Integrated Clinical Practice and Laboratory for Evidence-based Science and Precision Dentistry, Faculty of Medicine, Av. Bissaya Barreto, Bloco de Celas, 3000-075 Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Rua Larga, Coimbra, 3004-504, Portugal; Clinical Academic Center of Coimbra (CACC), Praceta Professor Mota Pinto, Coimbra, 3004-561, Portugal; Univ Coimbra, CEMMPRE, ARISE, Pinhal de Marrocos, 3030-788 Coimbra, Portugal
| | - Marta Pineiro
- Univ Coimbra, Coimbra Chemistry Centre - Institute of Molecular Sciences and Department of Chemistry, Rua Larga, Coimbra, 3004-535, Portugal
| | - Teresa M V D Pinho E Melo
- Univ Coimbra, Coimbra Chemistry Centre - Institute of Molecular Sciences and Department of Chemistry, Rua Larga, Coimbra, 3004-535, Portugal
| | - Manuel Marques Ferreira
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, 3000-548, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Rua Larga, Coimbra, 3004-504, Portugal; Clinical Academic Center of Coimbra (CACC), Praceta Professor Mota Pinto, Coimbra, 3004-561, Portugal; Univ Coimbra, CEMMPRE, ARISE, Pinhal de Marrocos, 3030-788 Coimbra, Portugal; Univ Coimbra, Institute of Endodontics, Faculty of Medicine, Av. Bissaya Barreto, Bloco de Celas, 3000-075 Coimbra, Portugal
| | - Maria Filomena Botelho
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, 3000-548, Portugal; Univ Coimbra, Institute of Biophysics, Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, 3000-548, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Rua Larga, Coimbra, 3004-504, Portugal; Clinical Academic Center of Coimbra (CACC), Praceta Professor Mota Pinto, Coimbra, 3004-561, Portugal
| | - Eunice Carrilho
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, 3000-548, Portugal; Univ Coimbra, Institute of Integrated Clinical Practice and Laboratory for Evidence-based Science and Precision Dentistry, Faculty of Medicine, Av. Bissaya Barreto, Bloco de Celas, 3000-075 Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Rua Larga, Coimbra, 3004-504, Portugal; Clinical Academic Center of Coimbra (CACC), Praceta Professor Mota Pinto, Coimbra, 3004-561, Portugal; Univ Coimbra, CEMMPRE, ARISE, Pinhal de Marrocos, 3030-788 Coimbra, Portugal
| | - Mafalda Laranjo
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, 3000-548, Portugal; Univ Coimbra, Institute of Biophysics, Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, Coimbra, 3000-548, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Rua Larga, Coimbra, 3004-504, Portugal; Clinical Academic Center of Coimbra (CACC), Praceta Professor Mota Pinto, Coimbra, 3004-561, Portugal.
| |
Collapse
|
7
|
Wang Y, Chang L, Gao H, Yu C, Gao Y, Peng Q. Nanomaterials-based advanced systems for photothermal / photodynamic therapy of oral cancer. Eur J Med Chem 2024; 272:116508. [PMID: 38761583 DOI: 10.1016/j.ejmech.2024.116508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
The traditional clinical approaches for oral cancer consist of surgery, chemotherapy, radiotherapy, immunotherapy, and so on. However, these treatments often induce side effects and exhibit limited efficacy. Photothermal therapy (PTT) emerges as a promising adjuvant treatment, utilizing photothermal agents (PTAs) to convert light energy into heat for tumor ablation. Another innovative approach, photodynamic therapy (PDT), leverages photosensitizers (PSs) and specific wavelength laser irradiation to generate reactive oxygen species (ROS), offering an effective and non-toxic alternative. The relevant combination therapies have been reported in the field of oral cancer. Simultaneously, the advancement of nanomaterials has propelled the clinical application of PTT and PDT. Therefore, a comprehensive understanding of PTT and PDT is required for better application in oral cancer treatment. Here, we review the use of PTT and PDT in oral cancer, including noble metal materials (e.g., Au nanoparticles), carbon materials (e.g., graphene oxide), organic dye molecules (e.g., indocyanine green), organic molecule-based agents (e.g., porphyrin-analog phthalocyanine) and other inorganic materials (e.g., MXenes), exemplify the advantages and disadvantages of common PTAs and PSs, and summarize the combination therapies of PTT with PDT, PTT/PDT with chemotherapy, PTT with radiotherapy, PTT/PDT with immunotherapy, and PTT/PDT with gene therapy in the treatment of oral cancer. The challenges related to the PTT/PDT combination therapy and potential solutions are also discussed.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lili Chang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hongyu Gao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chenhao Yu
- Department of Periodontology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Yujie Gao
- Department of Stomatology, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610500, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Aebisher D, Rogóż K, Myśliwiec A, Dynarowicz K, Wiench R, Cieślar G, Kawczyk-Krupka A, Bartusik-Aebisher D. The use of photodynamic therapy in medical practice. Front Oncol 2024; 14:1373263. [PMID: 38803535 PMCID: PMC11129581 DOI: 10.3389/fonc.2024.1373263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Cancer therapy, especially for tumors near sensitive areas, demands precise treatment. This review explores photodynamic therapy (PDT), a method leveraging photosensitizers (PS), specific wavelength light, and oxygen to target cancer effectively. Recent advancements affirm PDT's efficacy, utilizing ROS generation to induce cancer cell death. With a history spanning over decades, PDT's dynamic evolution has expanded its application across dermatology, oncology, and dentistry. This review aims to dissect PDT's principles, from its inception to contemporary medical applications, highlighting its role in modern cancer treatment strategies.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, Rzeszów, Poland
| | - Kacper Rogóż
- English Division Science Club, Medical College of The Rzeszów University, Rzeszów, Poland
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, Rzeszów, Poland
| | - Rafał Wiench
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Zabrze, Poland
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Bytom, Poland
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Bytom, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, Rzeszów, Poland
| |
Collapse
|
9
|
Domka W, Bartusik-Aebisher D, Mytych W, Myśliwiec A, Dynarowicz K, Cieślar G, Kawczyk-Krupka A, Aebisher D. Photodynamic Therapy for Eye, Ear, Laryngeal Area, and Nasal and Oral Cavity Diseases: A Review. Cancers (Basel) 2024; 16:645. [PMID: 38339396 PMCID: PMC10854993 DOI: 10.3390/cancers16030645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Photodynamic therapy (PDT) has emerged as a promising modality for the treatment of various diseases. This non-invasive approach utilizes photosensitizing agents and light to selectively target and destroy abnormal cells, providing a valuable alternative to traditional treatments. Research studies have explored the application of PDT in different areas of the head. Research is focusing on a growing number of new developments and treatments for cancer. One of these methods is PDT. Photodynamic therapy is now a revolutionary, progressive method of cancer therapy. A very important feature of PDT is that cells cannot become immune to singlet oxygen. With this therapy, patients can avoid lengthy and costly surgeries. PDT therapy is referred to as a safe and highly selective therapy. These studies collectively highlight the potential of PDT as a valuable therapeutic option in treating the head area. As research in this field progresses, PDT may become increasingly integrated into the clinical management of these conditions, offering a balance between effectiveness and minimal invasiveness.
Collapse
Affiliation(s)
- Wojciech Domka
- Department of Otolaryngology, Medical College of The University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Wiktoria Mytych
- Students English Division Science Club, Medical College of The University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, 35-310 Rzeszów, Poland; (A.M.); (K.D.)
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, 35-310 Rzeszów, Poland; (A.M.); (K.D.)
| | - Grzegorz Cieślar
- Department of Internal Diseases, Angiology and Physical Medicine, Centre for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15, 41-902 Bytom, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Diseases, Angiology and Physical Medicine, Centre for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15, 41-902 Bytom, Poland;
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| |
Collapse
|
10
|
Li Q, Ming R, Huang L, Zhang R. Versatile Peptide-Based Nanosystems for Photodynamic Therapy. Pharmaceutics 2024; 16:218. [PMID: 38399272 PMCID: PMC10892956 DOI: 10.3390/pharmaceutics16020218] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Photodynamic therapy (PDT) has become an important therapeutic strategy because it is highly controllable, effective, and does not cause drug resistance. Moreover, precise delivery of photosensitizers to tumor lesions can greatly reduce the amount of drug administered and optimize therapeutic outcomes. As alternatives to protein antibodies, peptides have been applied as useful targeting ligands for targeted biomedical imaging, drug delivery and PDT. In addition, other functionalities of peptides such as stimuli responsiveness, self-assembly, and therapeutic activity can be integrated with photosensitizers to yield versatile peptide-based nanosystems for PDT. In this article, we start with a brief introduction to PDT and peptide-based nanosystems, followed by more detailed descriptions about the structure, property, and architecture of peptides as background information. Finally, the most recent advances in peptide-based nanosystems for PDT are emphasized and summarized according to the functionalities of peptide in the system to reveal the design and development principle in different therapeutic circumstances. We hope this review could provide useful insights and valuable reference for the development of peptide-based nanosystems for PDT.
Collapse
Affiliation(s)
- Qiuyan Li
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ruiqi Ming
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Lili Huang
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ruoyu Zhang
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
11
|
Huang F, Li Y, Zhang XJ, Lin MY, Han GY, Lin HY, Lin HY, Miao Z, Li BH, Sheng CQ, Yao JZ. Novel chlorin e 6-based conjugates of tyrosine kinase inhibitors: Synthesis and photobiological evaluation as potent photosensitizers for photodynamic therapy. Eur J Med Chem 2023; 261:115787. [PMID: 37690263 DOI: 10.1016/j.ejmech.2023.115787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/03/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Since tyrosine kinase inhibitor (TKI) could reverse ABCG2-mediated drug-resistance, novel chlorin e6-based conjugates of Dasatinib and Imatinib as photosensitizer (PS) were designed and synthesized. The results demonstrated that conjugate 10b showed strongest phototoxicity against HepG2 and B16-F10 cells, which was more phototoxic than chlorin e6 and Talaporfin. It could reduce efflux of intracellular PS by inhibiting ABCG2 in HepG2 cells, and localize in mitochondria, lysosomes, golgi and ER, resulting in higher cell apoptosis rate and ROS production than Talaporfin. Moreover, it could induce cell autophagy and block cell cycle in S phase, and significantly inhibit tumor growth and prolong survival time on BALB/c nude mice bearing HepG2 xenograft tumor to a greater extent than chlorin e6. Consequently, compound 10b could be applied as a promising candidate PS due to its good water-solubility and stability, low drug-resistance, high quantum yield of 1O2 and excellent antitumor efficacy in vitro and in vivo.
Collapse
Affiliation(s)
- Fei Huang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yu Li
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Xing-Jie Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Mei-Yu Lin
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Gui-Yan Han
- Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao, 266000, China
| | - Hui-Ying Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Hui-Yun Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Zhenyuan Miao
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Bu-Hong Li
- School of Science, Hainan University, 58 Renmin Avenue, Haikou, 570228, China.
| | - Chun-Quan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Jian-Zhong Yao
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
12
|
Zenga J, Awan M, Hadi Razeghi Kondelaji M, Hansen C, Shafiee S, Frei A, Foeckler J, Kuehn R, Bruening J, Massey B, Wong S, Joshi A, Himburg HA. Photoactivated HPPH-Liposomal therapy for the treatment of HPV-Negative head and neck cancer. Oral Oncol 2023; 144:106487. [PMID: 37423200 PMCID: PMC10413333 DOI: 10.1016/j.oraloncology.2023.106487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/31/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVES Human Papillomavirus (HPV)-negative head and neck cancer (HNC) is an aggressive malignancy with a poor prognosis. To improve outcomes, we developed a novel liposomal targeting system embedded with 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH), a chlorin-based photosensitizer. Upon exposure to 660 nm light, HPPH phototriggering generates reactive oxygen species. The objective of this study was to evaluate biodistribution and test efficacy of HPPH-liposomal therapy in a patient-derived xenograft (PDX) model of chemoradioresistant HNC. MATERIALS AND METHODS PDX models were developed from two surgically resected HNCs (P033 and P038) recurrent after chemoradiation. HPPH-liposomes were created including trace amounts of DiR (Ex/Em 785/830 nm), a near infrared lipid probe. Liposomes were injected via tail vein into PDX models. Biodistribution was assessed at serial timepoints in tumor and end-organs through in vivo DiR fluorescence. To evaluate efficacy, tumors were treated with a cw-diode 660 nm laser (90 mW/cm2, 5 min). This experimental arm was compared to appropriate controls, including HPPH-liposomes without laser or vehicle with laser alone. RESULTS HPPH-liposomes delivered via tail vein exhibited selective tumor penetration, with a peak concentration at 4 h. No systemic toxicity was observed. Treatment with combined HPPH-liposomes and laser resulted in improved tumor control relative to either vehicle or laser alone. Histologically, this manifested as both increased cellular necrosis and decreased Ki-67 staining in the tumors treated with combined therapy. CONCLUSIONS These data demonstrate tumor-specific anti-neoplastic efficacy of HPPH-liposomal treatment for HNC. Importantly, this platform can be leveraged in future studies for targeted delivery of immunotherapies which can be packaged within HPPH-liposomes.
Collapse
Affiliation(s)
- Joseph Zenga
- Department of Otolaryngology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Musaddiq Awan
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mir Hadi Razeghi Kondelaji
- Joint Department of Biomedical Engineering, Marquette University/Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christopher Hansen
- Joint Department of Biomedical Engineering, Marquette University/Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shayan Shafiee
- Joint Department of Biomedical Engineering, Marquette University/Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anne Frei
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jamie Foeckler
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rachel Kuehn
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jennifer Bruening
- Department of Otolaryngology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Becky Massey
- Department of Otolaryngology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Stuart Wong
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amit Joshi
- Joint Department of Biomedical Engineering, Marquette University/Medical College of Wisconsin, Milwaukee, WI, USA
| | - Heather A Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
13
|
Kim TE, Chang JE. Recent Studies in Photodynamic Therapy for Cancer Treatment: From Basic Research to Clinical Trials. Pharmaceutics 2023; 15:2257. [PMID: 37765226 PMCID: PMC10535460 DOI: 10.3390/pharmaceutics15092257] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Photodynamic therapy (PDT) is an emerging and less invasive treatment modality for various types of cancer. This review provides an overview of recent trends in PDT research, ranging from basic research to ongoing clinical trials, focusing on different cancer types. Lung cancer, head and neck cancer, non-melanoma skin cancer, prostate cancer, and breast cancer are discussed in this context. In lung cancer, porfimer sodium, chlorin e6, and verteporfin have shown promising results in preclinical studies and clinical trials. For head and neck cancer, PDT has demonstrated effectiveness as an adjuvant treatment after surgery. PDT with temoporfin, redaporfin, photochlor, and IR700 shows potential in early stage larynx cancer and recurrent head and neck carcinoma. Non-melanoma skin cancer has been effectively treated with PDT using methyl aminolevulinate and 5-aminolevulinic acid. In prostate cancer and breast cancer, PDT research is focused on developing targeted photosensitizers to improve tumor-specific uptake and treatment response. In conclusion, PDT continues to evolve as a promising cancer treatment strategy, with ongoing research spanning from fundamental investigations to clinical trials, exploring various photosensitizers and treatment combinations. This review sheds light on the recent advancements in PDT for cancer therapy and highlights its potential for personalized and targeted treatments.
Collapse
Affiliation(s)
| | - Ji-Eun Chang
- College of Pharmacy, Dongduk Women’s University, Seoul 02748, Republic of Korea
| |
Collapse
|
14
|
Cacaccio J, Durrani FA, Kumar I, Dukh M, Camacho S, Fayazi Z, Sumlin A, Kauffman E, Guru K, Pandey RK. Excitation of a Single Compound by Light and Ultrasound Enhanced the Long-Term Cure of Mice Bearing Prostate Tumors. Int J Mol Sci 2023; 24:10624. [PMID: 37445799 DOI: 10.3390/ijms241310624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Current treatment for prostate cancer is dependent on the stages of the cancer, recurrence, and genetic factors. Treatment varies from active surveillance or watchful waiting to prostatectomy, chemotherapy, and radiation therapy in combination or alone. Although radical prostate cancer therapy reduces the advancement of the disease and its mortality, the increased disease treatment associated morbidity, erectile dysfunction, and incontinence affect the quality of life of cancer survivors. To overcome these problems, photodynamic therapy (PDT) has previously been investigated using PhotofrinTM as a photosensitizer (PS). However, Photofrin-PDT has shown limitations in treating prostate cancer due to its limited tumor-specificity and the depth of light penetration at 630 nm (the longest wavelength absorption of PhotofrinTM). The results presented herein show that this limitation can be solved by using a near infrared (NIR) compound as a photosensitizer (PS) for PDT and the same agent also acts as a sonosensitizer for SDT (using ultrasound to activate the compound). Compared to light, ultrasound has a stronger penetration ability in biological tissues. Exposing the PS (or sonosensitizer) to ultrasound (US) initiates an electron-transfer process with a biological substrate to form radicals and radical ions (type I reaction). In contrast, exposure of the PS to light (PDT) generates singlet oxygen (type II reaction). Therefore, the reactive oxygen species (ROS) produced by SDT and PDT follow two distinct pathways, i.e., type I (oxygen independent) and type II (oxygen dependent), respectively, and results in significantly enhanced destruction of tumor cells. The preliminary in vitro and in vivo results in a PC3 cell line and tumor model indicate that the tumor specificality of the therapeutic agent(s) can be increased by targeting galectin-1 and galectin-3, known for their overexpression in prostate cancer.
Collapse
Affiliation(s)
- Joseph Cacaccio
- PDT Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Farukh A Durrani
- PDT Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Ishaan Kumar
- PDT Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mykhaylo Dukh
- PDT Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Susan Camacho
- PDT Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Zahra Fayazi
- PDT Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Adam Sumlin
- PDT Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Eric Kauffman
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Khurshid Guru
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Ravindra K Pandey
- PDT Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
15
|
Sun J, Zhao H, Fu L, Cui J, Yang Y. Global Trends and Research Progress of Photodynamic Therapy in Skin Cancer: A Bibliometric Analysis and Literature Review. Clin Cosmet Investig Dermatol 2023; 16:479-498. [PMID: 36851952 PMCID: PMC9961166 DOI: 10.2147/ccid.s401206] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Background Based on photochemical reactions through the combined use of light and photosensitizers, photodynamic therapy (PDT) is gaining popularity for the treatment of skin cancer. Various photosensitizers and treatment regimens are continuously being developed for enhancing the efficacy of PDT on skin cancer. Reviewing the development history of PDT on skin cancer, and summarizing its development direction and research status, is conducive to the further research. Methods To evaluate the research trends and map knowledge structure, all publications covering PDT on skin cancer were retrieved and extracted from Web of Science database. We applied VOSviewer and CiteSpace softwares to evaluate and visualize the countries, institutes, authors, keywords and research trends. Literature review was performed for the analysis of the research status of PDT on skin cancer. Results A total of 2662 publications were identified. The elements, mechanism, pros and cons, representative molecular photosensitizers, current challenges and research progress of PDT on skin cancer were reviewed and summarized. Conclusion This study provides a comprehensive display of the field of PDT on skin cancer, which will help researchers further explore the mechanism and application of PDT more effectively and intuitively.
Collapse
Affiliation(s)
- Jiachen Sun
- Department of Dermatology, Fourth Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Hongqing Zhao
- Department of Dermatology, Fourth Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Lin Fu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jing Cui
- Navy Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei, People's Republic of China
| | - Yuguang Yang
- Department of Dermatology, Fourth Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
16
|
Mosaddad SA, Namanloo RA, Aghili SS, Maskani P, Alam M, Abbasi K, Nouri F, Tahmasebi E, Yazdanian M, Tebyaniyan H. Photodynamic therapy in oral cancer: a review of clinical studies. Med Oncol 2023; 40:91. [PMID: 36749489 DOI: 10.1007/s12032-023-01949-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/08/2023] [Indexed: 02/08/2023]
Abstract
A significant mortality rate is associated with oral cancer, particularly in cases of late-stage diagnosis. Since the last decades, oral cancer survival rates have only gradually improved despite advances in treatment. This poor success rate is mainly due to the development of secondary tumors, local recurrence, and regional failure. Invasive treatments frequently have a negative impact on the aesthetic and functional outcomes of survivors. Novel approaches are thus needed to manage this deadly disease in light of these statistics. In photodynamic therapy (PDT), a light-sensitive medication called a photosensitizer is given first, followed by exposure to light of the proper wavelength that matches the absorbance band of the photosensitizer. The tissue oxygen-induced cytotoxic free radicals kill tumor cells directly, harm the microvascular structure, and cause inflammatory reactions at the targeted sites. In the case of early lesions, PDT can be used as a stand-alone therapy, and in the case of advanced lesions, it can be used as adjuvant therapy. The current review article discussed the uses of PDT in oral cancer therapy based on recent advances in this field.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Seyedeh Sara Aghili
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Poorya Maskani
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Nouri
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran.
| |
Collapse
|
17
|
Recent Clinical and Preclinical Advances in External Stimuli-Responsive Therapies for Head and Neck Squamous Cell Carcinoma. J Clin Med 2022; 12:jcm12010173. [PMID: 36614974 PMCID: PMC9821160 DOI: 10.3390/jcm12010173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) has long been one of the most prevalent cancers worldwide; even though treatments such as surgery, chemotherapy, radiotherapy and immunotherapy have been proven to benefit the patients and prolong their survival time, the overall five-year survival rate is still below 50%. Hence, the development of new therapies for better patient management is an urgent need. External stimuli-responsive therapies are emerging therapies with promising antitumor effects; therapies such as photodynamic (PDT) and photothermal therapies (PTT) have been tested clinically in late-stage HNSCC patients and have achieved promising outcomes, while the clinical translation of sonodynamic therapy (SDT), radiodynamic therapy (RDT), microwave dynamic/thermodynamic therapy, and magnetothermal/magnetodynamic therapy (MDT/MTT) still lag behind. In terms of preclinical studies, PDT and PTT are also the most extensively studied therapies. The designing of nanoparticles and combinatorial therapies of PDT and PTT can be referenced in designing other stimuli-responsive therapies in order to achieve better antitumor effects as well as less toxicity. In this review, we consolidate the advancements and limitations of various external stimuli-responsive therapies, as well as critically discuss the prospects of this type of therapies in HNSCC treatments.
Collapse
|
18
|
Li Y, He G, Fu LH, Younis MR, He T, Chen Y, Lin J, Li Z, Huang P. A Microneedle Patch with Self-Oxygenation and Glutathione Depletion for Repeatable Photodynamic Therapy. ACS NANO 2022; 16:17298-17312. [PMID: 36166667 DOI: 10.1021/acsnano.2c08098] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Photodynamic therapy (PDT) has attained extensive attention as a noninvasive tumor treatment modality. However, the hypoxia in solid tumors, skin phototoxicity of "always on" photosensitizers (PSs), and abundant supply of glutathione (GSH) in cancer cells severely hampered the clinical applications of PDT. Herein, a self-oxygenation nanoplatform (denoted as CZCH) with GSH depletion ability was encapsulated into the hyaluronic acid microneedle patch (MN-CZCH) to simultaneously improve the biosafety and therapeutic efficacy of PDT. The Cu2+-doped porous zeolitic imidazolate framework incorporated with catalase (CAT) is capable of efficiently loading PS 2-(1-hexyloxyethyl)-2-divinylpyropheophorbic-a (HPPH). The CZCH intermingled MN patch (MN-CZCH) could effectively penetrate the stratum corneum, topically transport HPPH to the target tumor site, achieve a long tumor retention time, and enhance the efficacy of PDT via the simultaneously synergistic effect of CAT-catalyzed self-supplying O2 and Cu2+-mediated GSH depletion. Using traceable fluorescence (FL) imaging of the released HPPH from CZCH, the FL imaging-guided repeatable PDT can be achieved for enhanced antitumor efficacy. As a result, the MN-CZCH patch exhibited excellent therapeutic efficacy against melanoma with minimal toxicity, which has promising potential for cancer theranostics.
Collapse
Affiliation(s)
- Yashi Li
- Department of Dermatology and Venereology, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Gang He
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Lian-Hua Fu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Rizwan Younis
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Ting He
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yunzhi Chen
- Department of Dermatology and Venereology, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jing Lin
- Department of Dermatology and Venereology, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Zhiming Li
- Department of Dermatology and Venereology, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Peng Huang
- Department of Dermatology and Venereology, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
19
|
Tracy EC, Bowman MJ, Pandey RK, Baumann H. Tumor cell-specific retention of photosensitizers determines the outcome of photodynamic therapy for head and neck cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112513. [PMID: 35841739 DOI: 10.1016/j.jphotobiol.2022.112513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 12/25/2022]
Abstract
Pheophorbide-based photosensitizers have demonstrated tumor cell-specific retention. The lead compound 3-[1'-hexyloxyethyl]-2-devinylpyropheophorbide-a (HPPH) in a clinical trial for photodynamic therapy of head and neck cancer lesions indicated a complete response in 80% of patients. The question arises whether the partial response in 20% of patients is due to inefficient retention of photosensitizers by tumor cells and, if so, can the photosensitizer preference of individual cancer cases be identified prior to photodynamic therapy. This study determined the specificity of head and neck cancer cells and tumor tissues for the uptake and retention of diffusible pheophorbides differing in peripheral groups on the macrocycle that contribute to cellular binding. The relationship between photosensitizer level and light-mediated photoreaction was characterized to identify markers for predicting the effectiveness of photodynamic therapy in situ. The experimental models were stromal and epithelial cells isolated from head and neck tumor samples and integrated into monotypic tissue cultures, reconstituted three-dimensional co-cultures, and xenografts. Tumor cell-specific photosensitizer retention patterns were identified, and a procedure was developed to allow the diagnostic evaluation of HPPH binding by tumor cells in individual cancer cases. The findings of this study may assist in designing conditions for photosensitizer application and photodynamic therapy of head and neck cancer lesions optimized for each patient's case.
Collapse
Affiliation(s)
- Erin C Tracy
- Department of Molecular Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States of America
| | - Mary-Jo Bowman
- Department of Molecular Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States of America.
| | - Ravindra K Pandey
- Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States of America.
| | - Heinz Baumann
- Department of Molecular Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States of America.
| |
Collapse
|
20
|
Dukh M, Cacaccio J, Durrani FA, Kumar I, Watson R, Tabaczynski WA, Joshi P, Missert JR, Baumann H, Pandey RK. Impact of mono- and di-β-galactose moieties in in vitro / in vivo anticancer efficacy of pyropheophorbide-carbohydrate conjugates by photodynamic therapy. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY REPORTS 2022; 5:100047. [PMID: 36568335 PMCID: PMC9776133 DOI: 10.1016/j.ejmcr.2022.100047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To investigate the impact of mono- and di-β-galactose moieties in tumor uptake and photodynamic therapy (PDT) efficacy, HPPH [3-(1'-hexyloxy)ethyl-3-devinylpyropheophorobide-a], the meso pyropheophorbide-a [3-ethyl-3-devinyl-pyropheophorbide-a], and the corresponding 20-benzoic acid analogs were used as starting materials. Reaction of the intermediates containing one or two carboxylic acid functionalities with 1-aminogalactose afforded the desired 172- or 20(4')- mono- and 172, 20(4')-di galactose conjugated photosensitizers (PSs) with and without a carboxylic acid group. The overall lipophilicity caused by the presence of galactose in combination with either an ethyl or (1'-hexyloxy)ethyl side chain at position-3 of the macrocycle made a significant difference in in vitro uptake by tumor cells and photoreaction upon light exposure. Interestingly, among the PSs investigated, compared to HPPH 1 the carbohydrate conjugates 2 and 11 in which β-galactose moieties are conjugated at positions 172 and 20(4') of meso-pyro pheophorbide-a showed similar in vitro efficacy in FaDu cell lines, but in SCID mice bearing FaDu tumors (head & neck) Ps 11 gave significantly improved long-term tumor cure.
Collapse
Affiliation(s)
- Mykhaylo Dukh
- PDT Center, Cell Stress Biology, Buffalo, NY, 14263, USA
| | | | | | - Ishaan Kumar
- PDT Center, Cell Stress Biology, Buffalo, NY, 14263, USA
| | - Ramona Watson
- PDT Center, Cell Stress Biology, Buffalo, NY, 14263, USA
| | | | - Penny Joshi
- PDT Center, Cell Stress Biology, Buffalo, NY, 14263, USA
| | | | - Heinz Baumann
- Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Ravindra K. Pandey
- PDT Center, Cell Stress Biology, Buffalo, NY, 14263, USA,Corresponding author. (R.K. Pandey)
| |
Collapse
|
21
|
Cheruku RR, Turowski SG, Durrani FA, Tabaczynski WA, Cacaccio J, Missert JR, Curtin L, Sexton S, Alberico R, Hendler CM, Spernyak JA, Grossman Z, Pandey RK. Tumor-Avid 3-(1'-Hexyloxy)ethyl-3-devinylpyrpyropheophorbide-a (HPPH)-3Gd(III)tetraxetan (DOTA) Conjugate Defines Primary Tumors and Metastases. J Med Chem 2022; 65:9267-9280. [PMID: 35763292 DOI: 10.1021/acs.jmedchem.2c00547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
3-(1'-Hexyloxyethyl)-3-devinylpyropheophorbide-a (HPPH or Photochlor), a tumor-avid chlorophyll a derivative currently undergoing human clinical trials, was conjugated with mono-, di-, and tri-Gd(III)tetraxetan (DOTA) moieties. The T1/T2 relaxivity and in vitro PDT efficacy of these conjugates were determined. The tumor specificity of the most promising conjugate was also investigated at various time points in mice and rats bearing colon tumors, as well as rabbits bearing widespread metastases from VX2 systemic arterial disseminated metastases. All the conjugates showed significant T1 and T2 relaxivities. However, the conjugate containing 3-Gd(III)-aminoethylamido-DOTA at position 17 of HPPH demonstrated great potential for tumor imaging by both MR and fluorescence while maintaining its PDT efficacy. At an MR imaging dose (10 μmol/kg), HPPH-3Gd(III)DOTA did not cause any significant organ toxicity in mice, indicating its potential as a cancer imaging (MR and fluorescence) agent with an option to treat cancer by photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Ravindra R Cheruku
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Steven G Turowski
- Translational Imaging Shared Resource, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Farukh A Durrani
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Walter A Tabaczynski
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Joseph Cacaccio
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Joseph R Missert
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Leslie Curtin
- Department of Laboratory Animal Resources (DLAR), Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Sandra Sexton
- Department of Laboratory Animal Resources (DLAR), Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Ronald Alberico
- Department of Radiology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Craig M Hendler
- Department of Radiology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Joseph A Spernyak
- Translational Imaging Shared Resource, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Zachary Grossman
- Department of Radiology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Ravindra K Pandey
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| |
Collapse
|
22
|
VİTHANAGE V, C.D. J, M.D.P. DE. C, RAJENDRAM S. Photodynamic Therapy : An Overview and Insights into a Prospective Mainstream Anticancer Therapy. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1000980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Photodynamic therapy (PDT) procedure has minimum invasiveness in contrast to conventional anticancer surgical procedures. Although clinically approved a few decades ago, it is not commonly used due to its poor efficacy, mainly due to poor light penetration into deeper tissues. PDT uses a photosensitizer (PS), which is photoactivated on illumination by light of appropriate wavelength and oxygen in the tissue, leading to a series of photochemical reactions producing reactive oxygen species (ROS) triggering various mechanisms resulting in lethal effects on tumor cells. This review looks into the fundamental aspects of PDT, such as photochemistry, photobiological effects, and the current clinical applications in the light of improving PDT to become a mainstream therapeutic procedure against a broad spectrum of cancers and malignant lesions. The side effects of PDT, both early and late-onset, are elaborated on in detail to highlight the available options to minimize side effects without compromising therapeutic efficacy. This paper summarizes the benefits, drawbacks, and limitations of photodynamic therapy along with the recent attempts to achieve improved therapeutic efficacy via monitoring various cellular and molecular processes through fluorescent imagery aided by suitable biomarkers, prospective nanotechnology-based targeted delivery methods, the use of scintillating nanoparticles to deliver light to remote locations and also combining PDT with conventional anticancer therapies have opened up new dimensions for PDT in treating cancers. This review inquires and critically analyses prospective avenues in which a breakthrough would finally enable PDT to be integrated into mainstream anticancer therapy.
Collapse
|
23
|
Xavierselvan M, Cook J, Duong J, Diaz N, Homan K, Mallidi S. Photoacoustic nanodroplets for oxygen enhanced photodynamic therapy of cancer. PHOTOACOUSTICS 2022; 25:100306. [PMID: 34917471 PMCID: PMC8666552 DOI: 10.1016/j.pacs.2021.100306] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 05/20/2023]
Abstract
Photodynamic therapy (PDT) is a well-known cancer therapy that utilizes light to excite a photosensitizer and generate cytotoxic reactive oxygen species (ROS). The efficacy of PDT primarily depends on the photosensitizer and oxygen concentration in the tumor. Hypoxia in solid tumors promotes treatment resistance, resulting in poor PDT outcomes. Hence, there is a need to combat hypoxia while delivering sufficient photosensitizer to the tumor for ROS generation. Here we showcase our unique theranostic perfluorocarbon nanodroplets as a triple agent carrier for oxygen, photosensitizer, and indocyanine green that enables light triggered spatiotemporal delivery of oxygen to the tumors. We evaluated the characteristics of the nanodroplets and validated their ability to deliver oxygen via photoacoustic monitoring of blood oxygen saturation and subsequent PDT efficacy in a murine subcutaneous tumor model. The imaging results were validated with an oxygen sensing probe, which showed a 9.1 fold increase in oxygen content inside the tumor, following systemic administration of the nanodroplets. These results were also confirmed with immunofluorescence. In vivo studies showed that nanodroplets held higher rates of treatment efficacy than a clinically available benzoporphyrin derivative formulation. Histological analysis showed higher necrotic area within the tumor with perfluoropentane nanodroplets. Overall, the photoacoustic nanodroplets can significantly enhance image-guided PDT and has demonstrated substantial potential as a valid theranostic option for patient-specific photodynamic therapy-based treatments.
Collapse
Key Words
- 1O2, singlet oxygen
- BPD, benzoporphyrin derivative
- DLS, dynamic light scattering
- DPPC, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
- DSPE-mPEG, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]
- H&E, hematoxylin and eosin
- HbT, total hemoglobin
- Hypoxia
- ICG, indocyanine green
- IF, immunofluorescence
- Image guided PDT
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- NIR, near infrared radiation
- PA, photoacoustic
- PBS, phosphate buffered saline
- PDT, photodynamic therapy
- PFC, perfluorocarbon
- PFP, perfluoropentane
- PS, photosensitizer
- Perfluorocarbon nanodroplets
- Photoacoustic imaging
- Photodynamic therapy
- ROS, reactive oxygen species
- SOSG, singlet oxygen sensor green
- StO2, oxygen saturation
- TBAI, tertbutylammonium iodide
- pO2, partial pressure of oxygen
Collapse
Affiliation(s)
- Marvin Xavierselvan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | | | - Jeanne Duong
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Nashielli Diaz
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | | | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
24
|
Otvagin VF, Kuzmina NS, Kudriashova ES, Nyuchev AV, Gavryushin AE, Fedorov AY. Conjugates of Porphyrinoid-Based Photosensitizers with Cytotoxic Drugs: Current Progress and Future Directions toward Selective Photodynamic Therapy. J Med Chem 2022; 65:1695-1734. [DOI: 10.1021/acs.jmedchem.1c01953] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Vasilii F. Otvagin
- Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russian Federation
| | - Natalia S. Kuzmina
- Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russian Federation
| | - Ekaterina S. Kudriashova
- Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russian Federation
| | - Alexander V. Nyuchev
- Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russian Federation
| | | | - Alexey Yu. Fedorov
- Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russian Federation
| |
Collapse
|
25
|
Binnal DA, Tadakamadla DJ, Rajesh DG, Tadakamadla DSK. Photodynamic therapy for oral potentially malignant disorders: A Systematic Review and Meta-analysis. Photodiagnosis Photodyn Ther 2022; 37:102713. [PMID: 34999271 DOI: 10.1016/j.pdpdt.2022.102713] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To evaluate the effectiveness of Photodynamic Therapy (PDT) in the treatment of Oral Potentially Malignant Disorders (OPMDs) patients. METHODOLOGY An electronic search was conducted to retrieve articles published until September 2021. Meta-analyses were conducted for the outcomes of complete response (CR) and any response (AR) after treatment with PDT using data from single-arm studies, case series and non-randomised controlled trials (NRCTs). RESULTS In total, 49 articles were included. RCTs revealed insignificant mean difference (MD) in efficacy index between PDT and comparison groups (MD: 1.32; 95% CI:-28.10-30.72, p=0.930). The likelihood of CR (OR:0.84; 95% CI: 0.42-1.71, p=0.637) or AR (OR:2.10; 95% CI: 0.31-14.25, p=0.448) was not different in PDT group when compared with any comparison treatments in NRCTs. CR/AR among single arm studies was 60.6% (95% CI: 50.5-70.7, P<0.001) and 93.7% (95% CI:91.5-95.8, P<0.001) respectively. Higher prevalence of CR and AR was observed for dysplasia or carcinoma insitu (CIS) (CR: 81%, 95% CI: 70.8-91.3, P<0.001; AR: 94.3%; 95% CI: 89-99.6, P<0.001) and actinic cheilitis (AC) (CR: 73.9%, 95% CI: 65.9-81.9, P<0.001; AR:97%; 95% CI:94.9-99, P<0.001). CONCLUSIONS More than half of the patients receiving PDT showed CR, with more than 90% responding to the treatment. PDT was most effective on oral dysplasias, followed by AC.
Collapse
Affiliation(s)
- Dr Almas Binnal
- Associate Professor, Department of Oral Medicine and Radiology, Manipal College of Dental Sciences, Mangalore - 575001, Manipal Academy of Higher Education, Manipal, Karnataka, India-576104.
| | | | - Dr Gururaghavendran Rajesh
- Professor and Head, Department of Public Health Dentistry, Manipal College of Dental Sciences, Mangalore - 575001, Manipal Academy of Higher Education, Manipal, Karnataka, India-576104.
| | - Dr Santosh Kumar Tadakamadla
- Senior Research Fellow, National Health and Medical Research Council Early Career Fellow, School of Medicine and Dentistry, Menzies Health Institute Queensland, Griffith University, Australia.
| |
Collapse
|
26
|
Xie Q, Li Z, Liu Y, Zhang D, Su M, Niitsu H, Lu Y, Coffey RJ, Bai M. Translocator protein-targeted photodynamic therapy for direct and abscopal immunogenic cell death in colorectal cancer. Acta Biomater 2021; 134:716-729. [PMID: 34329783 DOI: 10.1016/j.actbio.2021.07.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023]
Abstract
Abscopal effect is an attractive cancer therapeutic effect referring to tumor regression at a location distant from the primary treatment site. Immunogenic cell death (ICD) offers a mechanistic link between the primary and remote therapeutic effects by activating favorable anti-tumor immune responses. In this study, we induced ICD in colorectal cancer (CRC) cell lines in vitro and in vivo by targeting the 18 kDa translocator protein (TSPO), a mitochondrial receptor overexpressed in CRC. Photodynamic therapy (PDT) using a TSPO-targeted photosensitizer, IR700DX-6T, caused effective apoptotic cell death in fourteen CRC cell lines. In a syngeneic immunocompetent CRC mouse model, the growth of tumors subjected to TSPO-PDT was greatly suppressed. Remarkably, untreated tumors in the opposing flank also showed marked growth suppression. Dendritic and CD8+ T cells were activated after TSPO-PDT treatment, accompanied by decreased Treg cells in both treated and non-treated tumors. In addition, a cancer vaccine developed from TSPO-PDT produced a significant tumor inhibition effect. These results indicate that TSPO-PDT could not only directly suppress tumor growth but also dramatically provoke host anti-tumor immunity, highlighting the potential of TSPO-PDT as a successful therapeutic for CRC that exhibits systemic effects. STATEMENT OF SIGNIFICANCE: Abscopal effect is an attractive cancer therapeutic effect referring to tumor regression at a location distant from the primary treatment site. Immunogenic cell death (ICD) offers a mechanistic link between the primary and remote therapeutic effects by activating favorable anti-tumor immune responses. In this study, we report a new therapeutic approach that can reduce the growth of multiple CRC cell lines by inducing ICD. Notably, a direct and abscopal effect was observed in mouse tumor-derived MC38 cells when injected into syngeneic immunocompetent mice. If comparable effects could be achieved in humans, it would establish a novel paradigm for treating micro- and macro-metastasis.
Collapse
|
27
|
Komolibus K, Fisher C, Swartling J, Svanberg S, Svanberg K, Andersson-Engels S. Perspectives on interstitial photodynamic therapy for malignant tumors. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210111-PERR. [PMID: 34302323 PMCID: PMC8299827 DOI: 10.1117/1.jbo.26.7.070604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/08/2021] [Indexed: 05/17/2023]
Abstract
SIGNIFICANCE Despite remarkable advances in the core modalities used in combating cancer, malignant diseases remain the second largest cause of death globally. Interstitial photodynamic therapy (IPDT) has emerged as an alternative approach for the treatment of solid tumors. AIM The aim of our study is to outline the advancements in IPDT in recent years and provide our vision for the inclusion of IPDT in standard-of-care (SoC) treatment guidelines of specific malignant diseases. APPROACH First, the SoC treatment for solid tumors is described, and the attractive properties of IPDT are presented. Second, the application of IPDT for selected types of tumors is discussed. Finally, future opportunities are considered. RESULTS Strong research efforts in academic, clinical, and industrial settings have led to significant improvements in the current implementation of IPDT, and these studies have demonstrated the unique advantages of this modality for the treatment of solid tumors. It is envisioned that further randomized prospective clinical trials and treatment optimization will enable a wide acceptance of IPDT in the clinical community and inclusion in SoC guidelines for well-defined clinical indications. CONCLUSIONS The minimally invasive nature of this treatment modality combined with the relatively mild side effects makes IPDT a compelling alternative option for treatment in a number of clinical applications. The adaptability of this technique provides many opportunities to both optimize and personalize the treatment.
Collapse
Affiliation(s)
- Katarzyna Komolibus
- Tyndall National Institute, Biophotonics@Tyndall, IPIC, Cork, Ireland
- Address all correspondence to Katarzyna Komolibus,
| | - Carl Fisher
- Tyndall National Institute, Biophotonics@Tyndall, IPIC, Cork, Ireland
| | | | - Sune Svanberg
- Lund University, Department of Physics, Lund, Sweden
- South China Normal University, South China Academy of Advanced Optoelectronics, Guangzhou, China
| | - Katarina Svanberg
- South China Normal University, South China Academy of Advanced Optoelectronics, Guangzhou, China
- Lund University Hospital, Department of Clinical Sciences, Lund, Sweden
| | - Stefan Andersson-Engels
- Tyndall National Institute, Biophotonics@Tyndall, IPIC, Cork, Ireland
- University College Cork, Department of Physics, Cork, Ireland
| |
Collapse
|
28
|
Cheruku RR, Tracy EC, Tabaczynski W, Missert JR, Baumann H, Pandey RK. Chiral Alkyl Groups at Position 3(1') of Pyropheophorbide-a Specify Uptake and Retention by Tumor Cells and Are Essential for Effective Photodynamic Therapy. J Med Chem 2021; 64:4787-4809. [PMID: 33822622 DOI: 10.1021/acs.jmedchem.0c02090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To investigate the importance of the chirality and precise structure at position 3(1') of pyropheophorbide-a for tumor cell specificity and photodynamic therapy (PDT), a series of photosensitizers (PSs) was synthesized: (a) with and without chirality at position 3(1'), (b) alkyl ether chain with a variable number of chiral centers, (c) hexyl ether versus thioether side chain, and (d) methyl ester versus carboxylic acid group at position 172. The cellular uptake and specificity were defined in human lung and head/neck cancer cells. PSs without a chiral center and with an alkyl chain or thioether functionalities showed limited uptake and PDT efficacy. Replacing the methyl group at the chiral center with a propyl group or introducing an additional chiral center improved cellular retention and tumor cell specificity. Replacing the carboxylic acid with methyl ester at position 172 lowered cellular uptake and PDT efficacy. A direct correlation between the PS uptake in vitro and in vivo was identified.
Collapse
Affiliation(s)
- Ravindra R Cheruku
- PDT Center and Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Erin C Tracy
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Walter Tabaczynski
- PDT Center and Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Joseph R Missert
- PDT Center and Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Heinz Baumann
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Ravindra K Pandey
- PDT Center and Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| |
Collapse
|
29
|
Lambert A, Nees L, Nuyts S, Clement P, Meulemans J, Delaere P, Vander Poorten V. Photodynamic Therapy as an Alternative Therapeutic Tool in Functionally Inoperable Oral and Oropharyngeal Carcinoma: A Single Tertiary Center Retrospective Cohort Analysis. Front Oncol 2021; 11:626394. [PMID: 33747943 PMCID: PMC7970031 DOI: 10.3389/fonc.2021.626394] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/08/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Head and neck cancer is typically treated with surgery, radiotherapy, chemoradiation, or a combination of these treatments. This study aims to retrospectively analyse oncological outcomes, adverse events and toxicity of treatment with temoporfin-mediated photodynamic therapy at a single tertiary referral center. More specifically, in a selected group of patients with otherwise (functionally) inoperable oral or oropharyngeal head and neck squamous cell carcinoma. Methods: Twenty-six consecutive patients who received photodynamic therapy for oral or oropharyngeal squamous cell carcinoma from January 2002 until July 2019 at the University Hospitals Leuven were included. These were (1) patients with an accessible recurrent or new primary tumor in an extensively treated area of the head and neck, not suitable for standard treatment, or (2) patients that were judged medically unfit to undergo standard treatment modalities. Results: Complete tumor response immediately after PDT was obtained in 76.9% of cases. During follow-up, a proportion of CR patients did recur, to reach recurrence-free rates at six months, one year and two years of 60.6%, 48.5% and 32.3%. Local control at the PDT treated area was 42.3% with a median recurrence free interval time of 9 months. Recurrence-free interval was statistically more favorable for oropharyngeal squamous cell carcinoma (with or without oral cavity extension) in comparison to oral cavity squamous cell carcinoma alone (p < 0.001). During a median follow-up period of 27 months, we report new tumor activity in 80.8% of patients. Median overall and disease-specific survival time was 31 and 34 months, respectively. Most reported adverse events were pain after treatment and facial edema. At the end of follow-up, swallowing and upper airway functionality were preserved in 76.9 and 95.7% of patients, respectively. Conclusion: Photodynamic therapy is a valuable treatment option in highly selected patients with oral and/or oropharyngeal (functionally) inoperable head and neck squamous cell carcinoma. Treatment with this alternative modality can induce durable local control in an important fraction of treated patients, with an acceptable toxicity profile.
Collapse
Affiliation(s)
- Arnaud Lambert
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium.,Department of Oncology-Section Head and Neck Oncology, KU Leuven, Leuven, Belgium
| | - Lotte Nees
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Sandra Nuyts
- Department of Oncology-Section Experimental Radiotherapy, KU Leuven, Leuven, Belgium.,Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Paul Clement
- Department of Oncology-Section Experimental Oncology, KU Leuven, Leuven, Belgium
| | - Jeroen Meulemans
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Pierre Delaere
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Vincent Vander Poorten
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium.,Department of Oncology-Section Head and Neck Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
30
|
Photodynamic Therapy for Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF PHOTOENERGY 2021. [DOI: 10.1155/2021/6641358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To assess the efficacy of photodynamic therapy (PDT) for oral squamous cell carcinoma (OSCC), literature on this topic from Embase, PubMed, and Web of Science were obtained and analyzed. The response and recurrence rates with 95% confidence intervals (CI) were calculated using the DerSimonia–Laird method. The pooled complete response (CR) rate from the included studies was 0.799 (95% CI: 0.708–0.867), while the overall response (OR) rate was 0.967 (95% CI: 0.902–0.989). The recurrence rate (RR) was 0.158 (95% CI: 0.090–0.264). A subgroup analysis of lesion site, photosensitizer, laser type, radiant exposure, and power density revealed no statistically significant differences. In general, PDT is effective for the treatment of early OSCC. Investigations on the influence of PDT on the survival of OSCC patients, optimization of the treatment regimen, and evaluation of response after treatment are still needed.
Collapse
|
31
|
Cheruku RR, Cacaccio J, Durrani FA, Tabaczynski WA, Watson R, Siters K, Missert JR, Tracy EC, Guru K, Koya RC, Kalinski P, Baumann H, Pandey RK. Synthesis, Tumor Specificity, and Photosensitizing Efficacy of Erlotinib-Conjugated Chlorins and Bacteriochlorins: Identification of a Highly Effective Candidate for Photodynamic Therapy of Cancer. J Med Chem 2021; 64:741-767. [PMID: 33400524 PMCID: PMC9125565 DOI: 10.1021/acs.jmedchem.0c01735] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Erlotinib was covalently linked to 3-(1'-hexyloxy)ethyl-3-devinylpyropheophorbide-a (HPPH) and structurally related chlorins and bacteriochlorins at different positions of the tetrapyrrole ring. The functional consequence of each modification was determined by quantifying the uptake and subcellular deposition of the erlotinib conjugates, cellular response to therapeutic light treatment in tissue cultures, and in eliminating of corresponding tumors grown as a xenograft in SCID mice. The experimental human cancer models the established cell lines UMUC3 (bladder), FaDu (hypopharynx), and primary cultures of head and neck tumor cells. The effectiveness of the compounds was compared to that of HPPH. Furthermore, specific functional contribution of the carboxylic acid side group at position 172 and the chiral methyl group at 3(1') to the overall activity of the chimeric compounds was assessed. Among the conjugates investigated, the PS 10 was identified as the most effective candidate for achieving tumor cell-specific accumulation and yielding improved long-term tumor control.
Collapse
Affiliation(s)
- Ravindra R. Cheruku
- PDT Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center Buffalo, NY 14263
| | - Joseph Cacaccio
- PDT Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center Buffalo, NY 14263
| | - Farukh A. Durrani
- PDT Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center Buffalo, NY 14263
| | - Walter A. Tabaczynski
- PDT Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center Buffalo, NY 14263
| | - Ramona Watson
- PDT Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center Buffalo, NY 14263
| | - Kevin Siters
- Photolitec, LLC, 73 High Street, Buffalo, NY 14223
| | - Joseph R. Missert
- PDT Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center Buffalo, NY 14263
| | - Erin C. Tracy
- Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center Buffalo, NY 14263
| | - Khurshid Guru
- Department of Urology, Roswell Park Comprehensive Cancer Center Buffalo, NY 14263
| | - Richard C. Koya
- Department of Immunology, Roswell Park Comprehensive Cancer Center Buffalo, NY 14263
| | - Pawel Kalinski
- Department of Immunology, Roswell Park Comprehensive Cancer Center Buffalo, NY 14263
| | - Heinz Baumann
- Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center Buffalo, NY 14263
| | - Ravindra K Pandey
- PDT Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center Buffalo, NY 14263
| |
Collapse
|
32
|
Targeted Nanoparticles for Fluorescence Imaging of Folate Receptor Positive Tumors. Biomolecules 2020; 10:biom10121651. [PMID: 33317162 PMCID: PMC7764199 DOI: 10.3390/biom10121651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
This report presents the synthesis and folate receptor target-specificity of amino-functionalized polyacrylamide nanoparticles (AFPAA NPs) for near-infrared (NIR) fluorescence imaging of cancer. For the synthesis of desired nano-constructs, the AFPAA NPs (hereafter referred to as NPs) were reacted with a NIR cyanine dye (CD) bearing carboxylic acid functionality by following our previously reported approach, and the resulting conjugate (NP-CD) on further reaction with folic acid (FA) resulted in a new nano-construct, FA-NP-CD, which demonstrated significantly higher uptake in folate receptor-positive breast cancer cells (KB+) and in folate receptor over-expressed tumors in vivo. The target-specificity of these nanoparticles was further confirmed by inhibition assay in folate receptor-positive (KB+) and -negative (HT-1080) cell lines. To show the advantages of polyacrylamide (PAA)-based NPs in folate receptor target-specificity, the CD used in preparing the FA-NP-CD construct was also reacted with folic acid alone and the synthetic conjugate (CD-FA) was also investigated for its target-specificity. Interestingly, in contrast to NPs (FA-NP-CD), the CD-FA conjugate did not show any significant in vitro or in vivo specificity toward folate receptors, showing the advantages of PAA-based nanotechnology in delivering the desired agent to tumor cells.
Collapse
|
33
|
Zhang S, Cheruku RR, Dukh M, Tabaczynski W, Patel NJ, White WH, Missert JR, Spernyak JA, Pandey RK. The Structures of Gd(III) Chelates Conjugated at the Periphery of 3-(1'-Hexyloxy)ethyl-3-devinylpyropheophorbide-a (HPPH) Have a Significant Impact on the Imaging and Therapy of Cancer. ChemMedChem 2020; 15:2058-2070. [PMID: 32916033 DOI: 10.1002/cmdc.202000449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/31/2020] [Indexed: 01/03/2023]
Abstract
3-(1'-Hexyloxyethyl)-3-devinyl-pyropheophorbide-a (HPPH or Photochlor), a tumor-avid chlorophyll-a derivative currently undergoing human clinical trials, was conjugated at various peripheral positions (position-17 or 20) of HPPH with either Gd(III)-aminobenzyl-DTPA (Gd(III) DTPA) or Gd(III)-aminoethylamido-DOTA (Gd(III) DOTA). The corresponding conjugates were evaluated for in vitro PDT efficacy, T1 , T2 relaxivities, in vivo fluorescence, and MR imaging under similar treatment parameters. Among these analogs, the water-soluble Gd(III)-aminoethylamido-DOTA linked at position-17 of HPPH, i. e., HPPH-17-Gd(III) DOTA, demonstrated strong potential for tumor imaging by both MR and fluorescence, while maintaining the PDT efficacy in BALB/c mice bearing Colon-26 tumors (7/10 mice were tumor free on day 60). In contrast to Gd(III) DTPA (Magnevist) and Gd(III) DOTA (Dotarem), the HPPH-Gd(III) DOTA retains in the tumor for a long period of time (24 to 48 h) and provides an option of fluorescence-guided cancer therapy. Thus, a single agent can be used for cancer-imaging and therapy. However, further detailed pharmacokinetic, pharmacodynamic, and toxicological studies of the conjugate are required before initiating Phase I human clinical trials.
Collapse
Affiliation(s)
- Shunqing Zhang
- Photodynamic Therapy Center and Cell Stress Biology Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Ravindra R Cheruku
- Photodynamic Therapy Center and Cell Stress Biology Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mykhaylo Dukh
- Photodynamic Therapy Center and Cell Stress Biology Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Walter Tabaczynski
- Photodynamic Therapy Center and Cell Stress Biology Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Nayan J Patel
- Photodynamic Therapy Center and Cell Stress Biology Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - William H White
- Photodynamic Therapy Center and Cell Stress Biology Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Joseph R Missert
- Photodynamic Therapy Center and Cell Stress Biology Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Joseph A Spernyak
- Translational Imaging Shared Resource, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Ravindra K Pandey
- Photodynamic Therapy Center and Cell Stress Biology Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
34
|
Chamberlain S, Bellnier D, Yendamuri S, Lindenmann J, Demmy T, Nwogu C, Ramer M, Tworek L, Oakley E, Mallory M, Carlsen L, Sexton S, Curtin L, Shafirstein G. An Optical Surface Applicator for Intraoperative Photodynamic Therapy. Lasers Surg Med 2020; 52:523-529. [PMID: 31587314 PMCID: PMC7131890 DOI: 10.1002/lsm.23168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVES Intraoperative photodynamic therapy (IO-PDT) is typically administered by a handheld light source. This can result in uncontrolled distribution of light irradiance that impacts tissue and tumor response to photodynamic therapy. The objective of this work was to characterize a novel optical surface applicator (OSA) designed to administer controlled light irradiance in IO-PDT. STUDY DESIGN/MATERIALS AND METHODS An OSA was constructed from a flexible silicone mesh applicator with multiple cylindrically diffusing optical fibers (CDF) placed into channels of the silicone. Light irradiance distribution, at 665 nm, was evaluated on the OSA surface and after passage through solid tissue-mimicking optical phantoms by measurements from a multi-channel dosimetry system. As a proof of concept, the light administration of the OSA was tested in a pilot study by conducting a feasibility and performance test with 665-nm laser light to activate 2-(1'-hexyloxyethyl) pyropheophorbide-a (HPPH) in the thoracic cavity of adult swine. RESULTS At the OSA surface, the irradiance distribution was non-uniform, ranging from 128 to 346 mW/cm2 . However, in the tissue-mimicking phantoms, beam uniformity improved markedly, with irradiance ranges of 39-153, 33-87, and 12-28 mW/cm2 measured at phantom thicknesses of 3, 5, and 10 mm, respectively. The OSA safely delivered the prescribed light dose to the thoracic cavities of four swine. CONCLUSIONS The OSA can provide predictable light irradiances for administering a well-defined and potentially effective therapeutic light in IO-PDT. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sarah Chamberlain
- Photodynamic Therapy Center, Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center (Roswell Park), Buffalo, New York
| | - David Bellnier
- Photodynamic Therapy Center, Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center (Roswell Park), Buffalo, New York
| | - Sai Yendamuri
- Department of Thoracic Surgery, Roswell Park, Buffalo, New York
| | - Joerg Lindenmann
- Division of Thoracic and Hyperbaric Surgery, Medical University Graz, Austria
| | - Todd Demmy
- Department of Thoracic Surgery, Roswell Park, Buffalo, New York
| | | | - Max Ramer
- Photodynamic Therapy Center, Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center (Roswell Park), Buffalo, New York
| | - Larry Tworek
- Photodynamic Therapy Center, Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center (Roswell Park), Buffalo, New York
| | - Emily Oakley
- Photodynamic Therapy Center, Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center (Roswell Park), Buffalo, New York
| | - Matthew Mallory
- Photodynamic Therapy Center, Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center (Roswell Park), Buffalo, New York
| | - Lindsey Carlsen
- Photodynamic Therapy Center, Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center (Roswell Park), Buffalo, New York
| | - Sandra Sexton
- Laboratory Animal Shared Resource, Roswell Park, Buffalo, New York
| | - Leslie Curtin
- Laboratory Animal Shared Resource, Roswell Park, Buffalo, New York
| | - Gal Shafirstein
- Photodynamic Therapy Center, Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center (Roswell Park), Buffalo, New York
| |
Collapse
|
35
|
Platform for ergonomic intraoral photodynamic therapy using low-cost, modular 3D-printed components: Design, comfort and clinical evaluation. Sci Rep 2019; 9:15830. [PMID: 31676807 PMCID: PMC6825190 DOI: 10.1038/s41598-019-51859-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 10/04/2019] [Indexed: 11/13/2022] Open
Abstract
Oral cancer prevalence is increasing at an alarming rate worldwide, especially in developing countries which lack the medical infrastructure to manage it. For example, the oral cancer burden in India has been identified as a public health crisis. The high expense and logistical barriers to obtaining treatment with surgery, radiotherapy and chemotherapy often result in progression to unmanageable late stage disease with high morbidity. Even when curative, these approaches can be cosmetically and functionally disfiguring with extensive side effects. An alternate effective therapy for oral cancer is a light based spatially-targeted cytotoxic therapy called photodynamic therapy (PDT). Despite excellent healing of the oral mucosa in PDT, a lack of robust enabling technology for intraoral light delivery has limited its broader implementation. Leveraging advances in 3D printing, we have developed an intraoral light delivery system consisting of modular 3D printed light applicators with pre-calibrated dosimetry and mouth props that can be utilized to perform PDT in conscious subjects without the need of extensive infrastructure or manual positioning of an optical fiber. To evaluate the stability of the light applicators, we utilized an endoscope in lieu of the optical fiber to monitor motion in the fiducial markers. Here we showcase the stability (less than 2 mm deviation in both horizontal and vertical axis) and ergonomics of our applicators in delivering light precisely to the target location in ten healthy volunteers. We also demonstrate in five subjects with T1N0M0 oral lesions that our applicators coupled with a low-cost fiber coupled LED-based light source served as a complete platform for intraoral light delivery achieving complete tumor response with no residual disease at initial histopathology follow up in these patients. Overall, our approach potentiates PDT as a viable therapeutic option for early stage oral lesions that can be delivered in low resource settings.
Collapse
|
36
|
Lin C, Zhang Y, Wang J, Sui A, Xiu L, Zhu X. The study of effect and mechanism of 630-nm laser on human lung adenocarcinoma cell xenograft model in nude mice mediated by hematoporphyrin derivatives. Lasers Med Sci 2019; 35:1085-1094. [PMID: 31642999 DOI: 10.1007/s10103-019-02892-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/26/2019] [Indexed: 01/10/2023]
Abstract
To investigate the effect and mechanism of 630-nm laser on human lung adenocarcinoma cell xenograft model in nude mice mediated by hematoporphyrin derivatives (HPD) and provide theoretical basis for clinical photodynamic therapy (PDT). Human lung adenocarcinoma cell xenograft model in nude mice was established and randomly divided into four groups: control group, pure photosensitizer group, pure irradiation group, and photodynamic treatment group. The tumor volume growth was compared, and the tumor growth inhibition rate was calculated. HE staining was used for routine pathological observation of tumor sections, and gross conditions of cells, interstitium, and blood vessels in several groups of tumor tissues were observed. TUNEL staining was used to observe and compare the apoptosis induced by photodynamic therapy. Real-time fluorescence quantitative reverse transcription polymerase chain reaction (RT-PCR) was used to detect the expression level of angiogenesis-related factors VEGF, HIF-1α and apoptosis-related factors Bax and Bcl-2 mRNA in the transplanted tumor tissues. Western blot was employed to detect the expression of angiogenesis-related proteins VEGF, HIF-1α and apoptosis-related proteins Bax, Caspase-3, and Bcl-2. Compared with the other three groups, the tumor growth inhibition rate of the photodynamic treatment group was significantly increased and the difference was statistically significant (P < 0.05). HE staining showed that the animal model of lung adenocarcinoma A549 was successfully established. TUNEL staining revealed that more apoptotic cells were found in the photodynamic treatment group, and the apoptosis index was calculated. Compared with the other three groups, the difference was statistically significant (P < 0.05). RT-PCR results showed that compared with the other three groups, the mRNA expressions of VEGF, HIF-1α, and Bcl-2 in the photodynamic treatment group decreased, while the expression of Bax mRNA increased(P < 0.05), and the differences were statistically significant. Western blot results showed that protein expressions of VEGF, HIF-1α, and Bcl-2 decreased in the photodynamic treatment group, while protein expression level of Bax and Caspase-3 increased (P < 0.05), indicating statistically significant differences. The 630-nm laser mediated by hematoporphyrin derivatives can significantly inhibit the growth of human lung adenocarcinoma xenograft tumor in nude mice, the mechanism of which is related to the inhibition of tumor angiogenesis by down-regulating VEGF and HIF-1α gene expression, and the promotion of tumor apoptosis by up-regulating Bax, Caspase-3, and down-regulating Bcl-2 gene expression.
Collapse
Affiliation(s)
- Cunzhi Lin
- Department of Respiration, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yuanyuan Zhang
- Department of Respiration, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Jun Wang
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Aihua Sui
- Central laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Lulu Xiu
- Department of Respiration, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xinhong Zhu
- Department of International Medicine, Qingdao Municipal Hospital, Qingdao, 266071, China.
| |
Collapse
|
37
|
Chen L, Ye X, Hu K, Zhai Y, Li W, Wang X, Yang J. Population pharmacokinetic modeling and simulation of HPPH in Chinese patients with esophageal carcinoma. Xenobiotica 2019; 50:170-177. [PMID: 30901299 DOI: 10.1080/00498254.2019.1597315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
1. 2-[1-Hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH), a second-generation photosensitizer, has been widely employed in photodynamic therapy (PDT) for the treatment of malignant lesions. The objective of this study was to characterize the pharmacokinetics of HPPH in Chinese patients using a population pharmacokinetic (PopPK) approach.2. For the first time, a PopPK model of HPPH for Chinese (n = 20) was developed (registration number: CTR20160425). The pharmacokinetics of HPPH was described by a three-compartment model with linear elimination. Through the stepwise addition (p < 0.05) and backward elimination (p < 0.001) approach, fat-free mass (FFM) was identified to be the most significant covariate and V1 increased with FFM. Visual predictive check (VPC) was employed for the evaluation of the final model. Subsequent full covariate analysis indicated that FFM has considerable impact (∼30%) on HPPH exposure and fat mass also has a modest (∼25%) impact.3. The simulations suggested that a dose adjustment of HPPH may be necessary for Chinese and the dose of 3 mg/m2 should be appropriate. HPPH exposure increases with fat mass while being inversely related to FFM. HPPH-PDT for overweight patients should be monitored with more caution and PDT conditions should be optimized if necessary.
Collapse
Affiliation(s)
- Lin Chen
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Xuxiao Ye
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Kuan Hu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Yu Zhai
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Wenping Li
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Xin Wang
- Zhejiang Hisun Pharmaceutical Co., Ltd, Taizhou, China
| | - Jin Yang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
38
|
Photodynamic therapy in head and neck cancer: indications, outcomes, and future prospects. Curr Opin Otolaryngol Head Neck Surg 2019; 27:136-141. [DOI: 10.1097/moo.0000000000000521] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
39
|
Development and application of a physiologically based pharmacokinetic model for HPPH in rats and extrapolate to humans. Eur J Pharm Sci 2019; 129:68-78. [DOI: 10.1016/j.ejps.2018.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/09/2018] [Accepted: 12/21/2018] [Indexed: 01/10/2023]
|
40
|
Tracy EC, Bowman MJ, Pandey RK, Baumann H. Cell-specific Retention and Action of Pheophorbide-based Photosensitizers in Human Lung Cancer Cells. Photochem Photobiol 2018; 95:846-859. [PMID: 30378688 DOI: 10.1111/php.13043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/18/2018] [Indexed: 12/29/2022]
Abstract
This study determined in primary cultures of human lung cancer cells the cell specificity of chlorin-based photosensitizers. Epithelial cells (ECs) preferentially retained 3-[1-hexyloxyethyl]-2-devinylpyropheophorbide-a (HPPH) and related structural variants. Tumor-associated fibroblasts (Fb) differ from EC by a higher efflux rate of HPPH. Immunoblot analyses indicated dimerization of STAT3 as a reliable biomarker of the photoreaction. Compared to mitochondria/ER-localized photoreaction by HPPH, the photoreaction by lysosomally targeted HPPH-lactose showed a trend toward lower STAT3 cross-linking. Lethal consequence of the photoreaction differed between EC and Fb with the latter cells being more resistant. A survey of lung tumor cases indicated a large quantitative range by which EC retains HPPH. The specificity of HPPH retention defined in vitro could be confirmed in vivo in selected cases grown as xenografts. HPPH retention as a function of the tetrapyrrole structure was evaluated by altering side groups on the porphyrin macrocycle. The presence or absence of a carboxylic acid at position 172 proved to be critical. A benzyl group at position 20 enhanced retention in a subset of cancer cells with low HPPH binding. This study indicated experimental tools that are potentially effective in defining the photosensitizer preference and application for individual patient's cancer lesions.
Collapse
Affiliation(s)
- Erin C Tracy
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center (RPCCC), Buffalo, NY
| | - Mary-Jo Bowman
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center (RPCCC), Buffalo, NY
| | - Ravendra K Pandey
- Department of Cell Stress Biology/PDT Center, Roswell Park Comprehensive Cancer Center (RPCCC), Buffalo, NY
| | - Heinz Baumann
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center (RPCCC), Buffalo, NY
| |
Collapse
|
41
|
Doix B, Bastien E, Rambaud A, Pinto A, Louis C, Grégoire V, Riant O, Feron O. Preclinical Evaluation of White Led-Activated Non-porphyrinic Photosensitizer OR141 in 3D Tumor Spheroids and Mouse Skin Lesions. Front Oncol 2018; 8:393. [PMID: 30298119 PMCID: PMC6160539 DOI: 10.3389/fonc.2018.00393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/31/2018] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT) is used to treat malignancies and precancerous lesions. Near-infrared light delivered by lasers was thought for a while to be the most appropriate option to activate photosensitizers, mostly porphyrins, in the depth of the diseased tissues. More recently, however, several advantages including low cost and reduced adverse effects led to consider light emitting diodes (LED) and even daylight as an alternative to use PDT to treat accessible lesions. In this study we examined the capacity of OR141, a recently identified non-porphyrin photosensitizer (PS), to exert significant cytotoxic effects in various models of skin lesions and tumors upon white light activation. Using different cancer cell lines, we first identified LED lamp as a particularly suited source of light to maximize anti-proliferative effects of OR141. We then documented that OR141 diffusion and light penetration into tumor spheroids both reached thresholds compatible with the induction of cell death deep inside these 3D culture models. We further identified Arlasove as a clinically suitable solvent for OR141 that we documented by using Franz cells to support significant absorption of the PS through human skin. Finally, using topical but also systemic administration, we validated growth inhibitory effects of LED-activated OR141 in mouse skin tumor xenograft and precancerous lesions models. Altogether these results open clinical perspectives for the use of OR141 as an attractive PS to treat superficial skin malignant and non-malignant lesions using affordable LED lamp for photoactivation.
Collapse
Affiliation(s)
- Bastien Doix
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Estelle Bastien
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Alix Rambaud
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Adán Pinto
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Caroline Louis
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Vincent Grégoire
- Pole of Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Olivier Riant
- Institute of Condensed Matter and Nanosciences Molecules, Solids and Reactivity (IMCN/MOST), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
42
|
Srivatsan A, Sen A, Cheruku RR, Missert JR, Durrani FA, Guru K, Pandey RK. Whole body and local hyperthermia enhances the photosensitizing efficacy of 3-[(1'-hexyloxy)ethyl]-3-Devinylpyropheophorbide-a (HPPH). Lasers Surg Med 2018; 50:506-512. [PMID: 29737551 DOI: 10.1002/lsm.22932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2018] [Indexed: 11/11/2022]
Abstract
BACKGROUND AND OBJECTIVES In this study, we evaluated the impact of hyperthermia in photosensitizing efficacy of 3-[(1'-hexyloxy)ethyl-3-devinylpyropheophorbide-a (HPPH or Photochlor) for the treatment of cancer by photodynamic therapy (PDT). STUDY DESIGN/MATERIALS AND METHODS The outcome of both whole body hyperthermia (WBH) and local hyperthermia (LH) in combination with HPPH-PDT was determined in BALB/c and nude mice bearing Colon26 and U87 tumors, respectively. LH was performed by using an indigenously designed heating device, that was heated to the required temperature using a circulating water bath. The device which has flexible membrane on one side was placed on skin above the tumor. The temperature of the tumor was monitored using a thermocouple sensor placed on the surface of the tumor capable of measuring the temperature within 0.1°C. Uptake of the photosensitizer in tumors was determined by fluorescence using an IVIS or a Nuance Imaging System. The PDT was performed by exposing the tumors to 665 nm laser loght, (135 J/cm2 , 75 mW/cm2 ) at the maximal uptake time of HPPH. Tumor size was measured daily using vernier calipers. RESULTS The improved PDT efficacy (long-term percentage tumor cure) in combination with hyperthermia is possible due to an increase in tumor-uptake of the photosensitizer (PS), confirmed by in vivo fluorescence imaging and also by increased tumor perfusion and decreased hypoxia as have been reported previously (Sen et al. [2011] Cancer Res. 71:3872-3880 In Vivo. 20:689-695). Interestingly, compared to whole body hyperthermia, the 14 C- HPPH biodistribution data under local hyperthermia showed similar tumor-uptake in BALB/c mice bearing Colon26 tumors, but significantly lower uptake in other organs and in the blood. CONCLUSION Our study demonstrates that both, fever range whole body and local hyperthermia in combination with HPPH-PDT enhances the long-term tumor cure of BALB/c and nude mice implanted with Colon26 and U87 tumors respectively. Lasers Surg. Med. 50:506-512, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Avinash Srivatsan
- PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, 14263
| | - Arindam Sen
- PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, 14263
| | - Ravindra R Cheruku
- PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, 14263
| | - Joseph R Missert
- PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, 14263
| | - Farukh A Durrani
- PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, 14263
| | - Khurshid Guru
- Department of Urology, Roswell Park Cancer Institute, Buffalo, New York, 14263
| | - Ravindra K Pandey
- PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, 14263
| |
Collapse
|
43
|
Kofler B, Romani A, Pritz C, Steinbichler TB, Schartinger VH, Riechelmann H, Dudas J. Photodynamic Effect of Methylene Blue and Low Level Laser Radiation in Head and Neck Squamous Cell Carcinoma Cell Lines. Int J Mol Sci 2018; 19:ijms19041107. [PMID: 29642437 PMCID: PMC5979508 DOI: 10.3390/ijms19041107] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/20/2018] [Accepted: 04/04/2018] [Indexed: 12/29/2022] Open
Abstract
Photodynamic therapy (PDT) is suggested to have an impact on the treatment of early stage head and neck cancers (HNSCC). We investigated the effect of PDT with methylene blue (MB) and a diode laser (660 nm) as the laser source on HNSCC cell lines as an in vitro model of surface oral squamous cell carcinoma. Cell-cultures were exposed to 160 µM MB for 4 min and to laser light for 8 min. Viability was proven via cell viability assay and clonogenic survival via clone counting assay. The combination of MB and diode laser evidenced high efficient loss of cell viability by 5% of the control, while treatment with the same concentration of MB for 4 min alone showed a viability of 46% of the control. In both SCC-25 and Detroit 562 HNSCC cells, MB combined with the laser allowed a significant abrogation of clonogenic growth (p < 0.01), especially in the case of Detroit 562 cells less than 1% of the suspension plated cells were able to grow tumor cell nests. Multiresistant (Detroit 562) HNSCC cells expressing cancer stem cell markers are sensitive to MB/red laser combined PDT.
Collapse
Affiliation(s)
- Barbara Kofler
- Department of Otorhinolaryngology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Angela Romani
- Department of Otorhinolaryngology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Christian Pritz
- Department of Otorhinolaryngology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | | | - Volker Hans Schartinger
- Department of Otorhinolaryngology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Herbert Riechelmann
- Department of Otorhinolaryngology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Jozsef Dudas
- Department of Otorhinolaryngology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
44
|
Civantos FJ, Karakullukcu B, Biel M, Silver CE, Rinaldo A, Saba NF, Takes RP, Vander Poorten V, Ferlito A. A Review of Photodynamic Therapy for Neoplasms of the Head and Neck. Adv Ther 2018; 35:324-340. [PMID: 29417455 DOI: 10.1007/s12325-018-0659-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Indexed: 12/14/2022]
Abstract
Photodynamic therapy (PDT) involves the use of a phototoxic drug which is activated by low powered laser light to destroy neoplastic cells. Multiple photosensitizers have been studied and tumors have been treated in a variety of head and neck sites over the last 30 years. PDT can effectively treat head and neck tumors, particularly those of the superficial spreading type, and the classic application of this technology has been in the patient with a wide field of dysplastic change and superficial carcinomatosis. Interstitial treatment has been used to treat more invasive cancer. Data is available from case series and institutional experiences, but very little randomized data is available. We review the mechanisms of action, historical development, available data, and current knowledge regarding PDT for the various head and neck subsites, and discuss possible future directions, with an emphasis on clinical application.
Collapse
Affiliation(s)
- Francisco J Civantos
- Department of Otolaryngology-Head and Neck Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA.
| | - Barış Karakullukcu
- The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Merrill Biel
- University of Minnesota, Minneapolis, MN, USA
- Ear, Nose and Throat Specialty Care of Minnesota, Minneapolis, MN, USA
| | - Carl E Silver
- Department of Surgery, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | | | - Nabil F Saba
- Department of Hematology and Medical Oncology, The Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Robert P Takes
- Department of Otolaryngology-Head and Neck Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vincent Vander Poorten
- Otorhinolaryngology-Head and Neck Surgery and Department of Oncology, Section Head and Neck Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Alfio Ferlito
- International Head and Neck Scientific Group, Padua, Italy
| |
Collapse
|
45
|
Rahman SU, Mosca RC, Govindool Reddy S, Nunez SC, Andreana S, Mang TS, Arany PR. Learning from clinical phenotypes: Low-dose biophotonics therapies in oral diseases. Oral Dis 2018; 24:261-276. [DOI: 10.1111/odi.12796] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 01/03/2023]
Affiliation(s)
- SU Rahman
- Oral Biology; School of Dental Medicine; University at Buffalo; Buffalo NY USA
| | - RC Mosca
- Oral Biology; School of Dental Medicine; University at Buffalo; Buffalo NY USA
- Energetic and Nuclear Research Institute; Radiation Technology Center; São Paulo Brazil
| | - S Govindool Reddy
- Oral Biology; School of Dental Medicine; University at Buffalo; Buffalo NY USA
| | - SC Nunez
- Biomedical Engineering and Bioengineering; Universidade Brasil; São Paulo Brazil
| | - S Andreana
- Restorative and Implant Dentistry; School of Dental Medicine; University at Buffalo; Buffalo NY USA
| | - TS Mang
- Oral and Maxillofacial Surgery; School of Dental Medicine; University at Buffalo; Buffalo NY USA
| | - PR Arany
- Oral Biology; School of Dental Medicine; University at Buffalo; Buffalo NY USA
| |
Collapse
|
46
|
Saenz C, Cheruku RR, Ohulchanskyy TY, Joshi P, Tabaczynski WA, Missert JR, Chen Y, Pera P, Tracy E, Marko A, Rohrbach D, Sunar U, Baumann H, Pandey RK. Structural and Epimeric Isomers of HPPH [3-Devinyl 3-{1-(1-hexyloxy) ethyl}pyropheophorbide-a]: Effects on Uptake and Photodynamic Therapy of Cancer. ACS Chem Biol 2017; 12:933-946. [PMID: 28165706 DOI: 10.1021/acschembio.7b00023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The tetrapyrrole structure of porphyrins used as photosentizing agents is thought to determine uptake and retention by malignant epithelial cancer cells. To assess the contribution of the oxidized state of individual rings to these cellular processes, bacteriochlorophyll a was converted into the ring "D" reduced 3-devinyl-3-[1-(1-hexyloxy)ethyl]pyropheophorbide-a (HPPH) and the corresponding ring "B" reduced isomer (iso-HPPH). The carboxylic acid analogs of both ring "B" and ring "D" reduced isomers showed several-fold higher accumulation into the mitochondria and endoplasmic reticulum by primary culture of human lung and head and neck cancer cells than the corresponding methyl ester analogs that localize primarily to granular vesicles and to a lesser extent to mitochondria. However, long-term cellular retention of these compounds exhibited an inverse relationship with tumor cells generally retaining better the methyl-ester derivatives. In vivo distribution and tumor uptake was evaluated in the isogenic model of BALB/c mice bearing Colon26 tumors using the respective 14C-labeled analogs. Both carboxylic acid derivatives demonstrated similar intracellular localization and long-term tumor cure with no significant skin phototoxicity. PDT-mediated tumor action involved vascular damage, which was confirmed by a reduction in blood flow and immunohistochemical assessment of damage to the vascular endothelium. The HPPH stereoisomers (epimers) showed identical uptake (in vitro & in vivo), intracellular retention and photoreaction.
Collapse
Affiliation(s)
| | | | - Tymish Y. Ohulchanskyy
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China 518060
- Institute for Lasers, Photonics and Biophotonics, SUNY at Buffalo, Buffalo, New York 14260, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Li L, Wang H, Wang H, Li L, Wang P, Wang X, Liu Q. Interaction and oxidative damage of DVDMS to BSA: a study on the mechanism of photodynamic therapy-induced cell death. Sci Rep 2017; 7:43324. [PMID: 28252029 PMCID: PMC5333107 DOI: 10.1038/srep43324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 01/25/2017] [Indexed: 12/22/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising method for neoplastic and nonneoplastic diseases. In this study, we utilized sinoporphyrin sodium (DVDMS) as a sensitizer combined with light to investigate its cytotoxic effect on different cell lines. For this purpose, we chose bovine serum albumin (BSA) as a model to explore the mechanism of PDT-induced cell death at a molecular level. Our findings indicated that the combined treatment significantly suppressed cell survival. Fluorescence spectroscopy revealed a strong interaction between DVDMS and BSA molecules in aqueous solution, affecting DVDMS’ targeting distribution and metabolism. Spectroscopic analysis and carbonyl content detection indicated that DVDMS-PDT significantly enhanced the damage of BSA at a higher extent than Photofrin II-PDT under similar experimental conditions. Our observations were consistent with the cytotoxicity results. Excessive reactive oxygen species (ROS) were induced by the synergy effect of the sensitizer and light, which played an important role in damaging BSA and tumor cells. These results suggested that the interaction and oxidative damage of protein molecules by DVDMS were the main reasons to cell death and constitute a valuable reference for future DVDMS-PDT investigations.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Huiyu Wang
- Department of Ultrasound, Beijing Shijitan Hospital Affiliated to the Capital Medical University, 100038, Beijing, China
| | - Haiping Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Lijun Li
- Department of Surgical Oncology, Beijing Shijitan Hospital Affiliated to the Capital Medical University, 100038, Beijing, China
| | - Pan Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Quanhong Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| |
Collapse
|
48
|
Conjugation of chlorins with spermine enhances phototoxicity to cancer cells in vitro. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 168:175-184. [DOI: 10.1016/j.jphotobiol.2017.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/14/2017] [Indexed: 11/22/2022]
|
49
|
Chen H, He J, Lanzafame R, Stadler I, Hamidi HE, Liu H, Celli J, Hamblin MR, Huang Y, Oakley E, Shafirstein G, Chung HK, Wu ST, Dong Y. Quantum dot light emitting devices for photomedical applications. JOURNAL OF THE SOCIETY FOR INFORMATION DISPLAY 2017; 25:177-184. [PMID: 28867926 PMCID: PMC5576728 DOI: 10.1002/jsid.543] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
While OLEDs have struggled to find a niche lighting application that can fully take advantage of their unique form factors as thin, flexible, lightweight and uniformly large-area luminaire, photomedical researchers have been in search of low-cost, effective illumination devices with such form factors that could facilitate widespread clinical applications of photodynamic therapy (PDT) or photobiomodulation (PBM). Although existing OLEDs with either fluorescent or phosphorescent emitters cannot achieve the required high power density at the right wavelength windows for photomedicine, the recently developed ultrabright and efficient deep red quantum dot light emitting devices (QLEDs) can nicely fit into this niche. Here, we report for the first time the in-vitro study to demonstrate that this QLED-based photomedical approach could increase cell metabolism over control systems for PBM and kill cancerous cells efficiently for PDT. The perspective of developing wavelength-specific, flexible QLEDs for two critical photomedical fields (wound repair and cancer treatment) will be presented with their potential impacts summarized. The work promises to generate flexible QLED-based light sources that could enable the widespread use and clinical acceptance of photomedical strategies including PDT and PBM.
Collapse
Affiliation(s)
- Hao Chen
- College of Optics and Photonics, University of Central Florida, Orlando, FL, USA., Nanoscience Technology Center, University of Central Florida, Orlando, FL, USA
| | - Juan He
- College of Optics and Photonics, University of Central Florida, Orlando, FL, USA
| | - Raymond Lanzafame
- Raymond J Lanzafame MD PLLC, Rochester, NY, USA., Laser Surgical Research Laboratory, Rochester General Hospital, Rochester, NY, USA
| | - Istvan Stadler
- Laser Surgical Research Laboratory, Rochester General Hospital, Rochester, NY, USA
| | - Hamid El Hamidi
- Department of Physics, University of Massachusetts Boston, Boston, MA, USA
| | - Hui Liu
- Department of Physics, University of Massachusetts Boston, Boston, MA, USA
| | - Jonathan Celli
- Department of Physics, University of Massachusetts Boston, Boston, MA, USA
| | - Michael R Hamblin
- Harvard Medical School, Wellman Center for Photomedicine, Boston, MA, USA
| | - Yingying Huang
- Harvard Medical School, Wellman Center for Photomedicine, Boston, MA, USA
| | - Emily Oakley
- Roswell Park Cancer Institute, Photodynamic Therapy Center, Buffalo, NY, USA
| | - Gal Shafirstein
- Roswell Park Cancer Institute, Photodynamic Therapy Center, Buffalo, NY, USA
| | - Ho-Kyoon Chung
- ITRC AMOLED Research Center, Sungkyunkwan University, Korea
| | - Shin-Tson Wu
- College of Optics and Photonics, University of Central Florida, Orlando, FL, USA
| | - Yajie Dong
- College of Optics and Photonics, University of Central Florida, Orlando, FL, USA., Nanoscience Technology Center, University of Central Florida, Orlando, FL, USA; Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
50
|
van Straten D, Mashayekhi V, de Bruijn HS, Oliveira S, Robinson DJ. Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions. Cancers (Basel) 2017; 9:cancers9020019. [PMID: 28218708 PMCID: PMC5332942 DOI: 10.3390/cancers9020019] [Citation(s) in RCA: 603] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/10/2017] [Accepted: 02/12/2017] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a clinically approved cancer therapy, based on a photochemical reaction between a light activatable molecule or photosensitizer, light, and molecular oxygen. When these three harmless components are present together, reactive oxygen species are formed. These can directly damage cells and/or vasculature, and induce inflammatory and immune responses. PDT is a two-stage procedure, which starts with photosensitizer administration followed by a locally directed light exposure, with the aim of confined tumor destruction. Since its regulatory approval, over 30 years ago, PDT has been the subject of numerous studies and has proven to be an effective form of cancer therapy. This review provides an overview of the clinical trials conducted over the last 10 years, illustrating how PDT is applied in the clinic today. Furthermore, examples from ongoing clinical trials and the most recent preclinical studies are presented, to show the directions, in which PDT is headed, in the near and distant future. Despite the clinical success reported, PDT is still currently underutilized in the clinic. We also discuss the factors that hamper the exploration of this effective therapy and what should be changed to render it a more effective and more widely available option for patients.
Collapse
Affiliation(s)
- Demian van Straten
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands.
| | - Vida Mashayekhi
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands.
| | - Henriette S de Bruijn
- Center for Optical Diagnostics and Therapy, Department of Otolaryngology-Head and Neck Surgery, Erasmus Medical Center, Postbox 204, Rotterdam 3000 CA, The Netherlands.
| | - Sabrina Oliveira
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands.
- Pharmaceutics, Department of Pharmaceutical Sciences, Science Faculty, Utrecht University, Utrecht 3584 CG, The Netherlands.
| | - Dominic J Robinson
- Center for Optical Diagnostics and Therapy, Department of Otolaryngology-Head and Neck Surgery, Erasmus Medical Center, Postbox 204, Rotterdam 3000 CA, The Netherlands.
| |
Collapse
|