1
|
Samareh B, Klimenkova O, Aghaallaei N, Cheng L, Zikic A, Loghmani H, Müller P, Suttorp M, Welte K, Skokowa J, Morishima T. NAMPT-mediated deacetylation of HCLS1 protein promotes clonogenic growth of pediatric CML cells. Exp Hematol 2025:104801. [PMID: 40349748 DOI: 10.1016/j.exphem.2025.104801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 04/21/2025] [Accepted: 04/30/2025] [Indexed: 05/14/2025]
Abstract
Pediatric chronic myeloid leukemia (CML) is a rare hematological malignancy with biological features that differ from that of adult patients. In pediatric CML patients the burden of tumor cells is higher resulting in a delayed achievement of deep molecular response (DMR) upon treatment with tyrosine kinase inhibitors (TKIs, e.g. imatinib) than what has been reported in adults. Therefore, the probability to develop resistance to TKIs in children with CML is higher than in adults due to much longer exposure to TKIs. Moreover, in children with CML, long-term treatment with imatinib causes hematologic and non-hematologic toxicities. Improvements of CML therapy in pediatric patients based on the targeting of hematopoiesis-specific BCR::ABL1 downstream effectors are needed. Here, we report elevated levels of the Nicotinamide phosphoribosyltransferase (NAMPT) in mononuclear cells of chronic phase CML (CP-CML) pediatric patients and in blastic phase CML cell lines. NAMPT inhibition abrogated in vitro clonogenic capacity and proliferation of CML cells. NAMPT deacetylates and activates the hematopoietic-specific lyn-substrate 1 (HCLS1) protein, which is essential for the proliferation of CML cells. Moreover, IL1RAP - a marker of myeloid leukemia initiating cells - and LEF-1 - a transcription factor of Wnt signaling - are downstream targets of NAMPT/HCLS1 pathway. Together, our results reveal new treatment avenues of pediatric CML patients by targeting NAMPT-mediated deacetylation of the hematopoietic-specific HCLS1 protein. Teaser Abstract Pediatric chronic myeloid leukemia (CML) patients need long-term tyrosine kinase inhibitor treatment which causes toxicities. Therefore, improvements of CML therapy in pediatric patients are needed. Here, we report elevated levels of the Nicotinamide phosphoribosyltransferase (NAMPT) in chronic phase pediatric CML cells. NAMPT inhibition abrogated in vitro clonogenic capacity and proliferation of CML cells. NAMPT deacetylates and activates the hematopoietic-specific lyn-substrate 1 (HCLS1) protein. Moreover, IL1RAP - a marker of myeloid leukemia initiating cells - is a downstream target of NAMPT/HCLS1 pathway. Together, our results reveal new treatment avenues of pediatric CML patients.
Collapse
Affiliation(s)
- Bardia Samareh
- Department of Hematology, Oncology, Immunology, Rheumatology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Olga Klimenkova
- Department of Hematology, Oncology, Immunology, Rheumatology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Narges Aghaallaei
- Department of Hematology, Oncology, Immunology, Rheumatology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Lijuan Cheng
- Department of Hematology, Oncology, Immunology, Rheumatology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Andrew Zikic
- Faculty of Medicine, University of Toronto, 1 King´s College Cir, Toronto, ON M5S 1A8, Canada
| | - Houra Loghmani
- Department of Hematology, Oncology, Immunology, Rheumatology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Patrick Müller
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Meinolf Suttorp
- Pediatric Hematology and Oncology, Medical Faculty, Technical University Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Karl Welte
- Department of Hematology, Oncology, Immunology, Rheumatology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany; Department of Pediatric Hematology, Oncology and Bone Marrow Transplantation, University Hospital Tübingen, Hoppe-Seyler-Strasse 1, 72076 Tübingen, Germany
| | - Julia Skokowa
- Department of Hematology, Oncology, Immunology, Rheumatology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Tatsuya Morishima
- Department of Hematology, Oncology, Immunology, Rheumatology and Pulmonology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany.
| |
Collapse
|
2
|
Fard SS, Kundu N, Torres AS, Faltas CL, Di Martino JS, Holz MK. Inhibition of NAMPT as a therapeutic strategy to suppress tumor growth in lymphangioleiomyomatosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119986. [PMID: 40348345 DOI: 10.1016/j.bbamcr.2025.119986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/22/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Lymphangioleiomyomatosis (LAM) is a rare, progressive lung disease driven by mutations in the TSC1 or TSC2 genes, leading to constitutive mTORC1 activation and uncontrolled cell proliferation. Current therapies, like rapamycin effectively stabilize disease progression but mainly exert cytostatic effects and promote autophagy, a survival mechanism in LAM cells. These limitations highlight the need for the development of innovative therapies to achieve more effective and lasting results. To explore alternative therapeutic targets, we investigated the role of nicotinamide phosphoribosyltransferase (NAMPT), a key regulator of NAD+ biosynthesis, in LAM and TSC2-deficient cells using a potent inhibitor, FK866. Our study demonstrates that FK866 depletes NAD+ levels in these cells, exerting a dual effect by activating AMPK and subsequently inhibiting mTORC1 signaling while suppressing autophagy. Unlike rapamycin, FK866 does not induce compensatory Akt activation, significantly inhibits LAM cell proliferation and induces apoptosis. Additionally, using an in vivo chicken egg chorioallantoic membrane (CAM) model, we showed that FK866 treatment significantly reduces LAM tumor growth compared to controls suggesting that NAMPT inhibition disrupts metabolic and survival pathways critical for TSC2-deficient cell viability and tumor progression. Our results establish NAMPT as a promising therapeutic target for LAM, offering a two-prong strategy to suppress tumor growth and enhance apoptosis, providing an alternative to current mTOR-based therapies.
Collapse
Affiliation(s)
- Shahrzad S Fard
- Department of Cell Biology and Anatomy, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, New York, United States of America
| | - Nandini Kundu
- Department of Cell Biology and Anatomy, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, New York, United States of America
| | - Alek S Torres
- Department of Cell Biology and Anatomy, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, New York, United States of America
| | - Christina L Faltas
- Department of Cell Biology and Anatomy, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, New York, United States of America
| | - Julie S Di Martino
- Department of Cell Biology and Anatomy, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, New York, United States of America
| | - Marina K Holz
- Department of Cell Biology and Anatomy, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, New York, United States of America; Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, New York, United States of America.
| |
Collapse
|
3
|
Kollmar J, Xu J, Gonzalves D, Baur JA, Li LZ, Tchou J, Xu HN. Differential Mitochondrial Redox Responses to the Inhibition of NAD + Salvage Pathway of Triple Negative Breast Cancer Cells. Cancers (Basel) 2024; 17:7. [PMID: 39796638 PMCID: PMC11718843 DOI: 10.3390/cancers17010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Cancer cells rely on metabolic reprogramming that is supported by altered mitochondrial redox status and an increased demand for NAD+. Over expression of Nampt, the rate-limiting enzyme of the NAD+ biosynthesis salvage pathway, is common in breast cancer cells, and more so in triple negative breast cancer (TNBC) cells. Targeting the salvage pathway has been pursued for cancer therapy. However, TNBC cells have heterogeneous responses to Nampt inhibition, which contributes to the diverse outcomes. There is a lack of imaging biomarkers to differentiate among TNBC cells under metabolic stress and identify which are responsive. We aimed to characterize and differentiate among a panel of TNBC cell lines under NAD-deficient stress and identify which subtypes are more dependent on the NAD salvage pathway. Methods: Optical redox imaging (ORI), a label-free live cell imaging microscopy technique was utilized to acquire intrinsic fluorescence intensities of NADH and FAD-containing flavoproteins (Fp) thus the mitochondrial redox ratio Fp/(NADH + Fp) in a panel of TNBC cell lines. Various fluorescence probes were then added to the cultures to image the mitochondrial ROS, mitochondrial membrane potential, mitochondrial mass, and cell number. Results: Various TNBC subtypes are sensitive to Nampt inhibition in a dose- and time-dependent manner, they have differential mitochondrial redox responses; furthermore, the mitochondrial redox indices linearly correlated with mitochondrial ROS induced by various doses of a Nampt inhibitor. Moreover, the changes in the redox indices correlated with growth inhibition. Additionally, the redox state was found fully recovered after removing the Nampt inhibitor. Conclusions: This study supports the utility of ORI in rapid metabolic phenotyping of TNBC cells under NAD-deficient stress to identify responsive cells and biomarkers of treatment response, facilitating combination therapy strategies.
Collapse
Affiliation(s)
- Jack Kollmar
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.); (D.G.); (J.T.)
| | - Junmei Xu
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.X.); (L.Z.L.)
| | - Diego Gonzalves
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.); (D.G.); (J.T.)
| | - Joseph A. Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Lin Z. Li
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.X.); (L.Z.L.)
| | - Julia Tchou
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.); (D.G.); (J.T.)
| | - He N. Xu
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.X.); (L.Z.L.)
| |
Collapse
|
4
|
Ding M, Shen Q, Lu W, Zhu S. Synthesis, and biological evaluation of EGFR/HER2-NAMPT conjugates for tumor treatment. Mol Divers 2024; 28:2617-2636. [PMID: 37481750 DOI: 10.1007/s11030-023-10701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
Throughout the reported applications of EGFR inhibitors, it is usually employed with HDAC or other targets to design multi-target inhibitors for cancer treatment. In this paper, we designed a drug conjugate that targeted EGFR&HER2 and had inhibitory activity of NAMPT simultaneously. Compound 20c significantly inhibited the EGFR&HER2 and NAMPT enzyme activities, and had comparable or even higher anti-proliferative activity than lapatinib in various cancer cells with over-expressed EGFR and HER2. Importantly, 20c was expected to increase sensitivity to EGFR inhibitor-resistant cells. In Osimertinib-resistant cells (NCI-1975 cells with the L858R/T790M/C797S triple mutation and Ba/F3 cells with the Del19/T790M/C797S triple mutation), the anti-proliferative activity of compound 20c was increased by more than twofold compared with Osimertinib, so as to obtain better curative effect. This strategy is a promising method of embedding multiple pharmacophores into a single molecule, which lays a good foundation for the design and synthesis of small molecule drug conjugates with strong targeting ability and high cytotoxicity.
Collapse
Affiliation(s)
- Mengyuan Ding
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Qianqian Shen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Wei Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, People's Republic of China.
| | - Shulei Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, People's Republic of China.
| |
Collapse
|
5
|
Piergentili R, Sechi S. Non-Coding RNAs of Mitochondrial Origin: Roles in Cell Division and Implications in Cancer. Int J Mol Sci 2024; 25:7498. [PMID: 39000605 PMCID: PMC11242419 DOI: 10.3390/ijms25137498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are a heterogeneous group, in terms of structure and sequence length, consisting of RNA molecules that do not code for proteins. These ncRNAs have a central role in the regulation of gene expression and are virtually involved in every process analyzed, ensuring cellular homeostasis. Although, over the years, much research has focused on the characterization of non-coding transcripts of nuclear origin, improved bioinformatic tools and next-generation sequencing (NGS) platforms have allowed the identification of hundreds of ncRNAs transcribed from the mitochondrial genome (mt-ncRNA), including long non-coding RNA (lncRNA), circular RNA (circRNA), and microRNA (miR). Mt-ncRNAs have been described in diverse cellular processes such as mitochondrial proteome homeostasis and retrograde signaling; however, the function of the majority of mt-ncRNAs remains unknown. This review focuses on a subgroup of human mt-ncRNAs whose dysfunction is associated with both failures in cell cycle regulation, leading to defects in cell growth, cell proliferation, and apoptosis, and the development of tumor hallmarks, such as cell migration and metastasis formation, thus contributing to carcinogenesis and tumor development. Here we provide an overview of the mt-ncRNAs/cancer relationship that could help the future development of new biomedical applications in the field of oncology.
Collapse
Affiliation(s)
| | - Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
6
|
Messana VG, Fascì A, Vitale N, Micillo M, Rovere M, Pesce NA, Martines C, Efremov DG, Vaisitti T, Deaglio S. A molecular circuit linking the BCR to the NAD biosynthetic enzyme NAMPT is an actionable target in Richter syndrome. Blood Adv 2024; 8:1920-1933. [PMID: 38359376 PMCID: PMC11021907 DOI: 10.1182/bloodadvances.2023011690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/05/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024] Open
Abstract
ABSTRACT This works defines, to the best of our knowledge, for the first time a molecular circuit connecting nicotinamide mononucleoside phosphoribosyl transferase (NAMPT) activity to the B-cell receptor (BCR) pathway. Using 4 distinct xenograft models derived from patients with Richter syndrome (RS-PDX), we show that BCR cross-linking results in transcriptional activation of the nicotinamide adenine dinucleotide (NAD) biosynthetic enzyme NAMPT, with increased protein expression, in turn, positively affecting global cellular NAD levels and sirtuins activity. NAMPT blockade, by using the novel OT-82 inhibitor in combination with either BTK or PI3K inhibitors (BTKi or PI3Ki), induces rapid and potent apoptotic responses in all 4 models, independently of their mutational profile and the expression of the other NAD biosynthetic enzymes, including nicotinate phosphoribosyltransferase. The connecting link in the circuit is represented by AKT that is both tyrosine- and serine-phosphorylated by PI3K and deacetylated by sirtuin 1 and 2 to obtain full kinase activation. Acetylation (ie, inhibition) of AKT after OT-82 administration was shown by 2-dimensional gel electrophoresis and immunoprecipitation. Consistently, pharmacological inhibition or silencing of sirtuin 1 and 2 impairs AKT activation and induces apoptosis of RS cells in combination with PI3Ki or BTKi. Lastly, treatment of RS-PDX mice with the combination of PI3Ki and OT-82 results in significant inhibition of tumor growth, with evidence of in vivo activation of apoptosis. Collectively, these data highlight a novel application for NAMPT inhibitors in combination with BTKi or PI3Ki in aggressive lymphomas.
Collapse
Affiliation(s)
- Vincenzo G. Messana
- Laboratory of Functional Genomics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Amelia Fascì
- Laboratory of Functional Genomics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Nicoletta Vitale
- Department of Molecular Biotechnologies and Health Science, University of Turin, Turin, Italy
| | - Matilde Micillo
- Laboratory of Functional Genomics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Matteo Rovere
- Laboratory of Functional Genomics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Noemi A. Pesce
- Laboratory of Functional Genomics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Claudio Martines
- Molecular Hematology Unit, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Dimitar G. Efremov
- Molecular Hematology Unit, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Tiziana Vaisitti
- Laboratory of Functional Genomics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Deaglio
- Laboratory of Functional Genomics, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
7
|
Zhang Q, Basappa J, Wang HY, Nunez-Cruz S, Lobello C, Wang S, Liu X, Chekol S, Guo L, Ziober A, Nejati R, Shestov A, Feldman M, Glickson JD, Turner SD, Blair IA, Van Dang C, Wasik MA. Chimeric kinase ALK induces expression of NAMPT and selectively depends on this metabolic enzyme to sustain its own oncogenic function. Leukemia 2023; 37:2436-2447. [PMID: 37773266 PMCID: PMC11152057 DOI: 10.1038/s41375-023-02038-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023]
Abstract
As we show in this study, NAMPT, the key rate-limiting enzyme in the salvage pathway, one of the three known pathways involved in NAD synthesis, is selectively over-expressed in anaplastic T-cell lymphoma carrying oncogenic kinase NPM1::ALK (ALK + ALCL). NPM1::ALK induces expression of the NAMPT-encoding gene with STAT3 acting as transcriptional activator of the gene. Inhibition of NAMPT affects ALK + ALCL cells expression of numerous genes, many from the cell-signaling, metabolic, and apoptotic pathways. NAMPT inhibition also functionally impairs the key metabolic and signaling pathways, strikingly including enzymatic activity and, hence, oncogenic function of NPM1::ALK itself. Consequently, NAMPT inhibition induces cell death in vitro and suppresses ALK + ALCL tumor growth in vivo. These results indicate that NAMPT is a novel therapeutic target in ALK + ALCL and, possibly, other similar malignancies. Targeting metabolic pathways selectively activated by oncogenic kinases to which malignant cells become "addicted" may become a novel therapeutic approach to cancer, alternative or, more likely, complementary to direct inhibition of the kinase enzymatic domain. This potential therapy to simultaneously inhibit and metabolically "starve" oncogenic kinases may not only lead to higher response rates but also delay, or even prevent, development of drug resistance, frequently seen when kinase inhibitors are used as single agents.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Johnvesly Basappa
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Hong Y Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Selene Nunez-Cruz
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cosimo Lobello
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Shengchun Wang
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Xiaobin Liu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Seble Chekol
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lili Guo
- Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy Ziober
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Reza Nejati
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alex Shestov
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Feldman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jerry D Glickson
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ian A Blair
- Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Chi Van Dang
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Wistar Institute, Philadelphia, PA, USA
| | - Mariusz A Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
8
|
McKay-Corkum GB, Collins VJ, Yeung C, Ito T, Issaq SH, Holland D, Vulikh K, Zhang Y, Lee U, Lei H, Mendoza A, Shern JF, Yohe ME, Yamamoto K, Wilson K, Ji J, Karim BO, Thomas CJ, Krishna MC, Neckers LM, Heske CM. Inhibition of NAD+-Dependent Metabolic Processes Induces Cellular Necrosis and Tumor Regression in Rhabdomyosarcoma Models. Clin Cancer Res 2023; 29:4479-4491. [PMID: 37616468 PMCID: PMC10841338 DOI: 10.1158/1078-0432.ccr-23-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/23/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
PURPOSE Deregulated metabolism in cancer cells represents a vulnerability that may be therapeutically exploited to benefit patients. One such target is nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD+ salvage pathway. NAMPT is necessary for efficient NAD+ production and may be exploited in cells with increased metabolic demands. We have identified NAMPT as a dependency in rhabdomyosarcoma (RMS), a malignancy for which novel therapies are critically needed. Here we describe the effect of NAMPT inhibition on RMS proliferation and metabolism in vitro and in vivo. EXPERIMENTAL DESIGN Assays of proliferation and cell death were used to determine the effects of pharmacologic NAMPT inhibition in a panel of ten molecularly diverse RMS cell lines. Mechanism of the clinical NAMPTi OT-82 was determined using measures of NAD+ and downstream NAD+-dependent functions, including energy metabolism. We used orthotopic xenograft models to examine tolerability, efficacy, and drug mechanism in vivo. RESULTS Across all ten RMS cell lines, OT-82 depleted NAD+ and inhibited cell growth at concentrations ≤1 nmol/L. Significant impairment of glycolysis was a universal finding, with some cell lines also exhibiting diminished oxidative phosphorylation. Most cell lines experienced profound depletion of ATP with subsequent irreversible necrotic cell death. Importantly, loss of NAD and glycolytic activity were confirmed in orthotopic in vivo models, which exhibited complete tumor regressions with OT-82 treatment delivered on the clinical schedule. CONCLUSIONS RMS is highly vulnerable to NAMPT inhibition. These findings underscore the need for further clinical study of this class of agents for this malignancy.
Collapse
Affiliation(s)
- Grace B. McKay-Corkum
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Victor J. Collins
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Choh Yeung
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Takeshi Ito
- Urologic Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Sameer H. Issaq
- Urologic Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - David Holland
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health (NIH)
| | - Ksenia Vulikh
- Molecular Histopathology Lab, Frederick National Laboratory for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Yiping Zhang
- National Clinical Target Validation Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Unsun Lee
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Haiyan Lei
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Arnulfo Mendoza
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Jack F. Shern
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Marielle E. Yohe
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Kelli Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health (NIH)
| | - Jiuping Ji
- National Clinical Target Validation Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Baktiar O. Karim
- Molecular Histopathology Lab, Frederick National Laboratory for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Craig J. Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health (NIH)
| | - Murali C. Krishna
- Radiation Biology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Leonard M. Neckers
- Urologic Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| | - Christine M. Heske
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)
| |
Collapse
|
9
|
Zhuang Y, Haugrud AB, Schaefer MA, Messerli SM, Miskimins WK. Ability of metformin to deplete NAD+ contributes to cancer cell susceptibility to metformin cytotoxicity and is dependent on NAMPT expression. Front Oncol 2023; 13:1225220. [PMID: 37583931 PMCID: PMC10424729 DOI: 10.3389/fonc.2023.1225220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/07/2023] [Indexed: 08/17/2023] Open
Abstract
Background Nicotinamide adenine dinucleotide (NAD+) is vital for not only energy metabolism but also signaling pathways. A major source of NAD+ depletion is the activation of poly (ADP-ribose) polymerase (PARP) in response to DNA damage. We have previously demonstrated that metformin can cause both caspase-dependent cell death and PARP-dependent cell death in the MCF7 breast cancer cells but not in the MDA-MB-231 (231) breast cancer cells while in high-glucose media. We hypothesize that depletion of NAD+ in MCF7 cells via activation of PARP contributes to the cell death caused by metformin. Nicotinamide phosphoribosyltransferase (NAMPT), a key rate-limiting step in converting nicotinamide (vitamin B3) into NAD+, is essential for regenerating NAD+ for normal cellular processes. Evidence shows that overexpression of NAMPT is associated with tumorigenesis. We hypothesize that NAMPT expression may determine the extent to which cancer cells are sensitive to metformin. Results In this study, we found that metformin significantly decreases NAD+ levels over time, and that this could be delayed by PARP inhibitors. Pretreatment with NAD+ in MCF7 cells also prevents cell death and the enlargement of mitochondria and protects mitochondria from losing membrane potential caused by metformin. This leads to MCF7 cell resistance to metformin cytotoxicity in a manner similar to 231 cells. By studying the differences in NAD+ regulation in these two breast cancer cell lines, we demonstrate that NAMPT is expressed at higher levels in 231 cells than in MCF7 cells. When NAMPT is genetically repressed in 231 cells, they become much more sensitive to metformin-induced cell death. Conversely, overexpressing NAMPT in HEK-293 (293) cells causes the cells to be more resistant to metformin's growth inhibitory effects. The addition of a NAMPT activator also decreased the sensitivity of MCF7 cells to metformin, while the NAMPT activator, P7C3, protects against metformin-induced cytotoxicity. Conclusions Depletion of cellular NAD+ is a key aspect of sensitivity of cancer cells to the cytotoxic effects of metformin. NAMPT plays a key role in maintaining sufficient levels of NAD+, and cells that express elevated levels of NAMPT are resistant to killing by metformin.
Collapse
Affiliation(s)
- Yongxian Zhuang
- Cancer Biology and Immunotherapies, Sanford Research, Sioux Falls, SD, United States
| | - Allison B. Haugrud
- Cancer Biology and Immunotherapies, Sanford Research, Sioux Falls, SD, United States
| | - Meg A. Schaefer
- Cancer Biology and Immunotherapies, Sanford Research, Sioux Falls, SD, United States
- Sanford Program for Undergraduate Research (SPUR) Program, Sanford Research, Sioux Falls, SD, United States
| | - Shanta M. Messerli
- Cancer Biology and Immunotherapies, Sanford Research, Sioux Falls, SD, United States
| | - W. Keith Miskimins
- Cancer Biology and Immunotherapies, Sanford Research, Sioux Falls, SD, United States
| |
Collapse
|
10
|
Podyacheva E, Toropova Y. The Role of NAD+, SIRTs Interactions in Stimulating and Counteracting Carcinogenesis. Int J Mol Sci 2023; 24:ijms24097925. [PMID: 37175631 PMCID: PMC10178434 DOI: 10.3390/ijms24097925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The World Health Organization has identified oncological diseases as one of the most serious health concerns of the current century. Current research on oncogenesis is focused on the molecular mechanisms of energy-biochemical reprogramming in cancer cell metabolism, including processes contributing to the Warburg effect and the pro-oncogenic and anti-oncogenic roles of sirtuins (SIRTs) and poly-(ADP-ribose) polymerases (PARPs). However, a clear understanding of the interaction between NAD+, SIRTs in cancer development, as well as their effects on carcinogenesis, has not been established, and literature data vary greatly. This work aims to provide a summary and structure of the available information on NAD+, SIRTs interactions in both stimulating and countering carcinogenesis, and to discuss potential approaches for pharmacological modulation of these interactions to achieve an anticancer effect.
Collapse
Affiliation(s)
- Ekaterina Podyacheva
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| | - Yana Toropova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| |
Collapse
|
11
|
Yin JY, Lu XT, Hou ML, Cao T, Tian Z. Sirtuin1-p53: a potential axis for cancer therapy. Biochem Pharmacol 2023; 212:115543. [PMID: 37037265 DOI: 10.1016/j.bcp.2023.115543] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/12/2023]
Abstract
Sirtuin1 (SIRT1) is a conserved nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase that plays key roles in a range of cellular events, including the maintenance of genome stability, gene regulation, cell proliferation, and apoptosis. P53 is one of the most studied tumor suppressors and the first identified non-histone target of SIRT1. SIRT1 deacetylates p53 in a NAD+-dependent manner and inhibits its transcriptional activity, thus exerting action on a series of pathways related to tissue homeostasis and various pathological states. The SIRT1-p53 axis is thought to play a central role in tumorigenesis. Although SIRT1 was initially identified as a tumor promoter, evidence now indicates that SIRT1 may also act as a tumor suppressor. This seemingly contradictory evidence indicates that the functionality of SIRT1 may be dictated by different cell types and intracellular localization patterns. In this review, we summarize recent evidence relating to the interactions between SIRT1 and p53 and discuss the relative roles of these two molecules with regards to cancer-associated cellular events. We also provide an overview of current knowledge of SIRT1-p53 signaling in tumorigenesis. Given the vital role of the SIRT1-p53 pathway, targeting this axis may provide promising strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Jia-Yi Yin
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xin-Tong Lu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Meng-Ling Hou
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Ting Cao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Zhen Tian
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
12
|
Matsumoto S, Biniecka P, Bellotti A, Duchosal MA, Nahimana A. Nicotinaldehyde, a Novel Precursor of NAD Biosynthesis, Abrogates the Anti-Cancer Activity of an NAD-Lowering Agent in Leukemia. Cancers (Basel) 2023; 15:cancers15030787. [PMID: 36765744 PMCID: PMC9913462 DOI: 10.3390/cancers15030787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/14/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Targeting NAD depletion in cancer cells has emerged as an attractive therapeutic strategy for cancer treatment, based on the higher reliance of malignant vs. healthy cells on NAD to sustain their aberrant proliferation and altered metabolism. NAD depletion is exquisitely observed when NAMPT, a key enzyme for the biosynthesis of NAD, is inhibited. Growing evidence suggests that alternative NAD sources present in a tumor environment can bypass NAMPT and render its inhibition ineffective. Here, we report the identification of nicotinaldehyde as a novel precursor that can be used for NAD biosynthesis by human leukemia cells. Nicotinaldehyde supplementation replenishes the intracellular NAD level in leukemia cells treated with NAMPT inhibitor APO866 and prevents APO866-induced oxidative stress, mitochondrial dysfunction and ATP depletion. We show here that NAD biosynthesis from nicotinaldehyde depends on NAPRT and occurs via the Preiss-Handler pathway. The availability of nicotinaldehyde in a tumor environment fully blunts the antitumor activity of APO866 in vitro and in vivo. This is the first study to report the role of nicotinaldehyde in the NAD-targeted anti-cancer treatment, highlighting the importance of the tumor metabolic environment in modulating the efficacy of NAD-lowering cancer therapy.
Collapse
Affiliation(s)
- Saki Matsumoto
- Central Laboratory of Hematology, Department of Medical Laboratory and Pathology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 27, 1011 Lausanne, Switzerland
| | - Paulina Biniecka
- Central Laboratory of Hematology, Department of Medical Laboratory and Pathology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 27, 1011 Lausanne, Switzerland
| | - Axel Bellotti
- Central Laboratory of Hematology, Department of Medical Laboratory and Pathology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 27, 1011 Lausanne, Switzerland
| | - Michel A Duchosal
- Central Laboratory of Hematology, Department of Medical Laboratory and Pathology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 27, 1011 Lausanne, Switzerland
- Service of Hematology, Department of Oncology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Aimable Nahimana
- Central Laboratory of Hematology, Department of Medical Laboratory and Pathology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 27, 1011 Lausanne, Switzerland
| |
Collapse
|
13
|
Gogola-Mruk J, Tworzydło W, Krawczyk K, Marynowicz W, Ptak A. Visfatin induces ovarian cancer resistance to anoikis by regulating mitochondrial activity. Endocrine 2023; 80:448-458. [PMID: 36658296 PMCID: PMC10140008 DOI: 10.1007/s12020-023-03305-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023]
Abstract
PURPOSE Ovarian cancer is characterized by recurrent peritoneal and distant metastasis. To survive in a non-adherent state, floating ovarian cancer spheroids develop mechanisms to resist anoikis. Moreover, ascitic fluid from ovarian cancer patients contains high levels of visfatin with anti-apoptotic properties. However, the mechanism by which visfatin induces anoikis resistance in ovarian cancer spheroids remains unknown. Here, we aimed to assess wheather visfatin which possess anti-apoptotic properties can induce resistance of anoikis in ovarian cancer spheroids. METHODS Visfatin synthesis were examined using a commercial human visfatin ELISA Kit. Spheroid were exposed to visfatin and cell viability and caspase 3/7 activity were measured using CellTiter-Glo 3D cell viability assay and Caspase-Glo® 3/7 Assay System. mRNA and protein expression were analyzed by Real-time PCR and Western Blot analysis, respectively. Analysis of mitochondrial activity was estimated by JC-1 staining. RESULTS First, our results suggested higher expression and secretion of visfatin by epithelial than by granulosa ovarian cells, and in non-cancer tissues versus cancer tissues. Interestingly, visfatin increased the proliferation/apoptosis ratio in ovarian cancer spheroids. Specifically, both the intrinsic and extrinsic pathways of anoikis were regulated by visfatin. Moreover, the effect of the visfatin inhibitor (FK866) was opposite to that of visfatin. Furthermore, both NAMPT and FK866 affected mitochondrial activity in ovarian cancer cells. CONCLUSION In conclusion, visfatin acts as an anti-apoptotic factor by regulating mitochondrial activity, leading to anoikis resistance in ovarian cancer spheroids. The finding suggest visfatin as a potential novel therapeutic target for the treatment of ovarian carcinoma with peritoneal dissemination.
Collapse
Affiliation(s)
- Justyna Gogola-Mruk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.
| | - Wacław Tworzydło
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Kinga Krawczyk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Weronika Marynowicz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Anna Ptak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| |
Collapse
|
14
|
Khan HY, Uddin MH, Balasubramanian SK, Sulaiman N, Iqbal M, Chaker M, Aboukameel A, Li Y, Senapedis W, Baloglu E, Mohammad RM, Zonder J, Azmi AS. PAK4 and NAMPT as Novel Therapeutic Targets in Diffuse Large B-Cell Lymphoma, Follicular Lymphoma, and Mantle Cell Lymphoma. Cancers (Basel) 2021; 14:160. [PMID: 35008323 PMCID: PMC8750170 DOI: 10.3390/cancers14010160] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL), grade 3b follicular lymphoma (FL), and mantle cell lymphoma (MCL) are aggressive non-Hodgkin's lymphomas (NHL). Cure rates are suboptimal and novel treatment strategies are needed to improve outcomes. Here, we show that p21-activated kinase 4 (PAK4) and nicotinamide phosphoribosyl transferase (NAMPT) is critical for lymphoma subsistence. Dual targeting of PAK4-NAMPT by the Phase I small molecule KPT-9274 suppressed cell proliferation in DLBCL, FL, and MCL. Growth inhibition was concurrent with apoptosis induction alongside activation of pro-apoptotic proteins and reduced pro-survival markers. We observed NAD suppression, ATP reduction, and consequent cellular metabolic collapse in lymphoma cells due to KPT-9274 treatment. KPT-9274 in combination with standard-of-care chemotherapeutics led to superior inhibition of cell proliferation. In vivo, KPT-9274 could markedly suppress the growth of WSU-DLCL2 (DLBCL), Z-138, and JeKo-1 (MCL) sub-cutaneous xenografts, and a remarkable increase in host life span was shown, with a 50% cure of a systemic WSU-FSCCL (FL) model. Residual tumor analysis confirmed a reduction in total and phosphorylated PAK4 and activation of the pro-apoptotic cascade. This study, using various preclinical experimental models, demonstrates the therapeutic potential of targeting PAK4-NAMPT in DLBCL, FL, and MCL. The orally bioavailable, safe, and efficacious PAK4-NAMPT dual inhibitor KPT-9274 warrants further clinical investigation.
Collapse
Affiliation(s)
- Husain Yar Khan
- Departments of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.Y.K.); (M.H.U.); (S.K.B.); (N.S.); (M.I.); (M.C.); (A.A.); (Y.L.); (R.M.M.); (J.Z.)
| | - Md. Hafiz Uddin
- Departments of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.Y.K.); (M.H.U.); (S.K.B.); (N.S.); (M.I.); (M.C.); (A.A.); (Y.L.); (R.M.M.); (J.Z.)
| | - Suresh Kumar Balasubramanian
- Departments of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.Y.K.); (M.H.U.); (S.K.B.); (N.S.); (M.I.); (M.C.); (A.A.); (Y.L.); (R.M.M.); (J.Z.)
| | - Noor Sulaiman
- Departments of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.Y.K.); (M.H.U.); (S.K.B.); (N.S.); (M.I.); (M.C.); (A.A.); (Y.L.); (R.M.M.); (J.Z.)
| | - Marium Iqbal
- Departments of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.Y.K.); (M.H.U.); (S.K.B.); (N.S.); (M.I.); (M.C.); (A.A.); (Y.L.); (R.M.M.); (J.Z.)
| | - Mahmoud Chaker
- Departments of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.Y.K.); (M.H.U.); (S.K.B.); (N.S.); (M.I.); (M.C.); (A.A.); (Y.L.); (R.M.M.); (J.Z.)
| | - Amro Aboukameel
- Departments of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.Y.K.); (M.H.U.); (S.K.B.); (N.S.); (M.I.); (M.C.); (A.A.); (Y.L.); (R.M.M.); (J.Z.)
| | - Yiwei Li
- Departments of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.Y.K.); (M.H.U.); (S.K.B.); (N.S.); (M.I.); (M.C.); (A.A.); (Y.L.); (R.M.M.); (J.Z.)
| | | | | | - Ramzi M. Mohammad
- Departments of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.Y.K.); (M.H.U.); (S.K.B.); (N.S.); (M.I.); (M.C.); (A.A.); (Y.L.); (R.M.M.); (J.Z.)
| | - Jeffrey Zonder
- Departments of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.Y.K.); (M.H.U.); (S.K.B.); (N.S.); (M.I.); (M.C.); (A.A.); (Y.L.); (R.M.M.); (J.Z.)
| | - Asfar S. Azmi
- Departments of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (H.Y.K.); (M.H.U.); (S.K.B.); (N.S.); (M.I.); (M.C.); (A.A.); (Y.L.); (R.M.M.); (J.Z.)
| |
Collapse
|
15
|
Akcabag E, Bayram Z, Kucukcetin IO, Uzun G, Ozdem S, Ozdem SS. Functional effects of visfatin in isolated rat mesenteric small resistance arteries. Eur J Pharmacol 2021; 908:174333. [PMID: 34280396 DOI: 10.1016/j.ejphar.2021.174333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/27/2021] [Accepted: 07/11/2021] [Indexed: 01/22/2023]
Abstract
A new adipocytokine, visfatin is expressed in perivascular adipose tissue (PVAT) and exerts effects on vascular system in addition to its relationship with various pathological conditions. The present study aimed to investigate the functional effects of visfatin and the possible underlying mechanism(s) of the effects of visfatin in isolated rat mesenteric small resistance arteries. The study was conducted in small resistance arterial rings isolated from rat mesenteric vascular beds. While visfatin incubation did not produce significant alterations in contractile responses of mesenteric arterial rings to noradrenaline, relaxation responses to acetylcholine but not to sodium nitroprusside (SNP) were significantly reduced in endothelium-intact rings. The inhibitory effect of visfatin on responses to acetylcholine was not observed in endothelium-denuded preparations. Incubation of tissues with nicotinamide phosphoribosyl transferase (NAMPT) inhibitor FK866 or superoxide dismutase (SOD) reversed the inhibitory effects of visfatin on relaxation responses to acetylcholine. Co-incubation of visfatin with Nω-nitro-L-arginine methylester (L-NAME) did not produce a significant alteration in vascular responses to acetylcholine compared to L-NAME incubation alone. Mesenteric PVAT visfatin levels were significantly higher than and correlated positively with plasma visfatin levels. The results of our study indicated that visfatin-induced reductions in endothelium-dependent relaxations of rat isolated small resistance arteries are mediated by oxygen free radicals and a reduction in nitric oxide (NO) bioavailability. It was suggested that increment in systemic and/or local visfatin levels due to various pathologies including obesity and excessive weight gain may play a substantial role in initiation and/or propagation of vascular dysfunctions.
Collapse
Affiliation(s)
- Esra Akcabag
- Akdeniz University, Medical Faculty, Department of Medical Pharmacology, Antalya, Turkey.
| | - Zeliha Bayram
- Akdeniz University, Medical Faculty, Department of Medical Pharmacology, Antalya, Turkey
| | - Ikbal Ozen Kucukcetin
- Akdeniz University, Medical Faculty, Department of Medical Biochemistry, Antalya, Turkey
| | - Gulbahar Uzun
- Akdeniz University, Medical Faculty, Department of Medical Biochemistry, Antalya, Turkey
| | - Sebahat Ozdem
- Akdeniz University, Medical Faculty, Department of Medical Biochemistry, Antalya, Turkey
| | - Sadi S Ozdem
- Akdeniz University, Medical Faculty, Department of Medical Pharmacology, Antalya, Turkey
| |
Collapse
|
16
|
Sharma P, Xu J, Williams K, Easley M, Elder JB, Lonser R, Lang FF, Lapalombella R, Sampath D, Puduvalli VK. Inhibition of nicotinamide phosphoribosyltransferase, the rate-limiting enzyme of the nicotinamide adenine dinucleotide salvage pathway, to target glioma heterogeneity through mitochondrial oxidative stress. Neuro Oncol 2021; 24:229-244. [PMID: 34260721 PMCID: PMC8804900 DOI: 10.1093/neuonc/noab175] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Tumor-specific metabolic processes essential for cell survival are promising targets to potentially circumvent intratumoral heterogeneity, a major resistance factor in gliomas. Tumor cells preferentially using nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the salvage pathway for synthesis of NAD, a critical cofactor for diverse biological processes including cellular redox reactions, energy metabolism and biosynthesis. NAMPT is overexpressed in most malignancies, including gliomas, and can serve as a tumor-specific target. METHODS Effects of pharmacological inhibition of NAMPT on cellular oxygen consumption rate, extracellular acidification, mitochondrial respiration, cell proliferation, invasion and survival were assessed through in vitro and ex vivo studies on genetically heterogeneous glioma cell lines, glioma stem-like cells (GSCs) and mouse and human ex vivo organotypic glioma slice culture models. RESULTS Pharmacological inhibition of the NAD salvage biosynthesis pathway using a highly specific inhibitor, KPT-9274, resulted in reduction of NAD levels and related downstream metabolites, inhibited proliferation, and induced apoptosis in vitro in cell lines and ex vivo in human glioma tissue. These effects were mediated by mitochondrial dysfunction, DNA damage and increased oxidative stress leading to apoptosis in GSCs independent of genotype, IDH status or MGMT promoter methylation status. Conversely, NAMPT inhibition had minimal in vitro effects on normal human astrocytes (NHA) and no apparent in vivo toxicity in non-tumor-bearing mice. CONCLUSIONS Pharmacological NAMPT inhibition by KPT9274 potently targeted genetically heterogeneous gliomas by activating mitochondrial dysfunction. Our preclinical results provide a rationale for targeting the NAMPT-dependent alternative NAD biosynthesis pathway as a novel clinical strategy against gliomas.
Collapse
Affiliation(s)
- Pratibha Sharma
- Division of Neurooncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jihong Xu
- Division of Neurooncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katie Williams
- Division of Hematology Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Michelle Easley
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - J Brad Elder
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Russell Lonser
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rosa Lapalombella
- Division of Hematology Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Deepa Sampath
- Division of Hematology Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vinay K Puduvalli
- Division of Neurooncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
17
|
Katayoshi T, Nakajo T, Tsuji-Naito K. Restoring NAD + by NAMPT is essential for the SIRT1/p53-mediated survival of UVA- and UVB-irradiated epidermal keratinocytes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 221:112238. [PMID: 34130091 DOI: 10.1016/j.jphotobiol.2021.112238] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/06/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a crucial coenzyme in energy production. The imbalance of NAD+ synthesis has been found to trigger age-related diseases, such as metabolic disorders, cancer, and neurodegenerative diseases. Also, UV irradiation induces NAD+ depletion in the skin. In mammals, nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the NAD+ salvage pathway and essential for NAD+ homeostasis. However, but few studies have focused on the role of NAMPT in response to UV irradiation. Here, we show that NAMPT prevents NAD+ depletion in epidermal keratinocytes to protect against the mild-dose UVA and UVB (UVA/B)-induced proliferation defects. We showed that poly(ADP-ribose) polymerase (PARP) inhibitor rescued the NAD+ depletion in UVA/B-irradiated human keratinocytes, confirming that PAPR transiently exhausts cellular NAD+ to repair DNA damage. Notably, the treatment with a NAMPT inhibitor exacerbated the UVA/B-induced loss of energy production and cell viability. Moreover, the NAMPT inhibitor abrogated the sirtuin-1 (SIRT1)-mediated deacetylation of p53 and significantly inhibited the proliferation of UVA/B-irradiated cells, suggesting that the NAMPT-NAD+-SIRT1 axis regulates p53 functions upon UVA/B stress. The supplementation with NAD+ intermediates, nicotinamide mononucleotide and nicotinamide riboside, rescued the UVA/B-induced phenotypes in the absence of NAMPT activity. Therefore, NAD+ homeostasis is likely essential for the protection of keratinocytes from UV stress in mild doses. Since the skin is continuously exposed to UVA/B irradiation, understanding the protective role of NAMPT in UV stress will help prevent and treat skin photoaging.
Collapse
Affiliation(s)
- Takeshi Katayoshi
- DHC Corporation Laboratories, Division 2, 2-42 Hamada, Mihama-ku, Chiba 261-0025, Japan.
| | - Takahisa Nakajo
- DHC Corporation Laboratories, Division 2, 2-42 Hamada, Mihama-ku, Chiba 261-0025, Japan
| | - Kentaro Tsuji-Naito
- DHC Corporation Laboratories, Division 2, 2-42 Hamada, Mihama-ku, Chiba 261-0025, Japan
| |
Collapse
|
18
|
Ghanem MS, Monacelli F, Nencioni A. Advances in NAD-Lowering Agents for Cancer Treatment. Nutrients 2021; 13:1665. [PMID: 34068917 PMCID: PMC8156468 DOI: 10.3390/nu13051665] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential redox cofactor, but it also acts as a substrate for NAD-consuming enzymes, regulating cellular events such as DNA repair and gene expression. Since such processes are fundamental to support cancer cell survival and proliferation, sustained NAD production is a hallmark of many types of neoplasms. Depleting intratumor NAD levels, mainly through interference with the NAD-biosynthetic machinery, has emerged as a promising anti-cancer strategy. NAD can be generated from tryptophan or nicotinic acid. In addition, the "salvage pathway" of NAD production, which uses nicotinamide, a byproduct of NAD degradation, as a substrate, is also widely active in mammalian cells and appears to be highly exploited by a subset of human cancers. In fact, research has mainly focused on inhibiting the key enzyme of the latter NAD production route, nicotinamide phosphoribosyltransferase (NAMPT), leading to the identification of numerous inhibitors, including FK866 and CHS-828. Unfortunately, the clinical activity of these agents proved limited, suggesting that the approaches for targeting NAD production in tumors need to be refined. In this contribution, we highlight the recent advancements in this field, including an overview of the NAD-lowering compounds that have been reported so far and the related in vitro and in vivo studies. We also describe the key NAD-producing pathways and their regulation in cancer cells. Finally, we summarize the approaches that have been explored to optimize the therapeutic response to NAMPT inhibitors in cancer.
Collapse
Affiliation(s)
- Moustafa S. Ghanem
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
19
|
Xue C, Chen W, Yuan A, Chen C, Li S, Chen K, Zhao Y, Xiao T, Shao G, Zou Y, Zheng D. Dezocine, An Opioid Analgesic, Exerts Antitumor Effects in Triple-Negative Breast Cancer by Targeting Nicotinamide Phosphoribosyltransferase. Front Pharmacol 2021; 12:600296. [PMID: 33912035 PMCID: PMC8072669 DOI: 10.3389/fphar.2021.600296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/22/2021] [Indexed: 01/15/2023] Open
Abstract
Opioids are a potential adjuvant treatment for certain cancers; while they are primarily used to relieve chronic pain, these drugs may also affect cancer progression and recurrence. Dezocine is one opioid commonly used in China, but its effects on cancer cells are unknown. Here, we demonstrated the inhibitory effect of dezocine on triple-negative breast cancer (TNBC) cells, and determined the underlying molecular mechanism. We found that dezocine suppressed cell proliferation, migration and invasion, and induced apoptosis in TNBC cells. Xenograft models demonstrated the inhibitory effects of dezocine treatment on TNBC tumor growth in vivo. The anticancer effects of dezocine were independent of opioid receptors, which are not highly expressed by normal breast or breast cancer tissues. A pull-down assay and LC-MS/MS analysis indicated that dezocine directly targets NAMPT: computer modeling verified that the free energy of dezocine kinetically bound into the pocket of NAMPT was −17.4 kcal/mol. Consequently, dezocine treatment inhibited NAMPT enzyme activity, resulting in cellular NAD abolishment. We confirmed the dezocine-induced inhibition of cell proliferation by both NAMPT knockdown and upon treatment with the inhibitor FK866. Our results suggest that both dezocine and NAMPT might represent novel therapeutic targets for TNBC.
Collapse
Affiliation(s)
- Chenyang Xue
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, School of Pharmaceutical Sciences, Health Science Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, School of Pharmaceutical Sciences, Health Science Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Aiwu Yuan
- Department of Anesthesiology, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, China
| | - Cheng Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, School of Pharmaceutical Sciences, Health Science Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Shuaihu Li
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, School of Pharmaceutical Sciences, Health Science Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Yang Zhao
- Department of Anesthesiology, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, China
| | - Tian Xiao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, School of Pharmaceutical Sciences, Health Science Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Genze Shao
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yongdong Zou
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, School of Pharmaceutical Sciences, Health Science Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Duo Zheng
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, School of Pharmaceutical Sciences, Health Science Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
20
|
Guo HJ, Li HY, Chen ZH, Zhou WJ, Li JJ, Zhang JY, Wang J, Luo XY, Zeng T, Shi Z, Mo CF. NAMPT promotes hepatitis B virus replication and liver cancer cell proliferation through the regulation of aerobic glycolysis. Oncol Lett 2021; 21:390. [PMID: 33777213 PMCID: PMC7988713 DOI: 10.3892/ol.2021.12651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a critical rate-limiting enzyme involved in NAD synthesis that has been shown to contribute to the progression of liver cancer. However, the potential role and mechanism of NAMPT in hepatitis B virus (HBV)-associated liver cancer remain unclear. The present study assessed the expression of NAMPT in HBV-positive and -negative liver cancer cells, and investigated whether HBV-induced NAMPT expression is dependent on HBV X protein (HBx). In addition, the role of NAMPT in HBV replication and transcription, and in HBV-mediated liver cancer cell growth was explored. The effects of NAMPT on the glycolytic pathway were also evaluated. Reverse transcription-quantitative PCR and western blotting results revealed that NAMPT expression levels were significantly higher in HBV-positive liver cancer cells than in HBV-negative liver cancer cells, and this effect was HBx-dependent. Moreover, the activation of NAMPT was demonstrated to be required for HBV replication and transcription. The NAMPT inhibitor FK866 repressed cell survival and promoted cell death in HBV-expressing liver cancer cells, and these effects were attenuated by nicotinamide mononucleotide. Furthermore, the inhibition of NAMPT was associated with decreased glucose uptake, decreased lactate production and decreased ATP levels in HBV-expressing liver cancer cells, indicating that NAMPT may promote the aerobic glycolysis. Collectively, these findings reveal a positive feedback loop in which HBV enhances NAMPT expression and the activation of NAMPT promotes HBV replication and HBV-mediated malignant cell growth in liver cancer. The present study highlights the important role of NAMPT in the regulation of aerobic glycolysis in HBV-mediated liver cancer, and suggests that NAMPT may be a promising treatment target for patients with HBV-associated liver cancer.
Collapse
Affiliation(s)
- Hui-Jie Guo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Hong-Yu Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Zi-Hao Chen
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Wen-Jing Zhou
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Jia-Jie Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Jia-Yi Zhang
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Jing Wang
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Xing-Yan Luo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Ting Zeng
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Zhao Shi
- Department of Anatomy, Histology and Embryology, Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Chun-Fen Mo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| |
Collapse
|
21
|
Zhang J, Duan D, Song ZL, Liu T, Hou Y, Fang J. Small molecules regulating reactive oxygen species homeostasis for cancer therapy. Med Res Rev 2021; 41:342-394. [PMID: 32981100 DOI: 10.1002/med.21734] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/27/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
Abstract
Elevated intracellular reactive oxygen species (ROS) and antioxidant defense systems have been recognized as one of the hallmarks of cancer cells. Compared with normal cells, cancer cells exhibit increased ROS to maintain their malignant phenotypes and are more dependent on the "redox adaptation" mechanism. Thus, there are two apparently contradictory but virtually complementary therapeutic strategies for the regulation of ROS to prevent or treat cancer. The first strategy, that is, chemoprevention, is to prevent or reduce intracellular ROS either by suppressing ROS production pathways or by employing antioxidants to enhance ROS clearance, which protects normal cells from malignant transformation and inhibits the early stage of tumorigenesis. The second strategy is the ROS-mediated anticancer therapy, which stimulates intracellular ROS to a toxicity threshold to activate ROS-induced cell death pathways. Therefore, targeting the regulation of intracellular ROS-related pathways by small-molecule candidates is considered to be a promising treatment for tumors. We herein first briefly introduce the source and regulation of ROS, and then focus on small molecules that regulate ROS-related pathways and show efficacy in cancer therapy from the perspective of pharmacophores. Finally, we discuss several challenges in developing cancer therapeutic agents based on ROS regulation and propose the direction of future development.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Dongzhu Duan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
- Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji, China
| | - Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Tianyu Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yanan Hou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
22
|
Pascale RM, Calvisi DF, Simile MM, Feo CF, Feo F. The Warburg Effect 97 Years after Its Discovery. Cancers (Basel) 2020; 12:2819. [PMID: 33008042 PMCID: PMC7599761 DOI: 10.3390/cancers12102819] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
The deregulation of the oxidative metabolism in cancer, as shown by the increased aerobic glycolysis and impaired oxidative phosphorylation (Warburg effect), is coordinated by genetic changes leading to the activation of oncogenes and the loss of oncosuppressor genes. The understanding of the metabolic deregulation of cancer cells is necessary to prevent and cure cancer. In this review, we illustrate and comment the principal metabolic and molecular variations of cancer cells, involved in their anomalous behavior, that include modifications of oxidative metabolism, the activation of oncogenes that promote glycolysis and a decrease of oxygen consumption in cancer cells, the genetic susceptibility to cancer, the molecular correlations involved in the metabolic deregulation in cancer, the defective cancer mitochondria, the relationships between the Warburg effect and tumor therapy, and recent studies that reevaluate the Warburg effect. Taken together, these observations indicate that the Warburg effect is an epiphenomenon of the transformation process essential for the development of malignancy.
Collapse
Affiliation(s)
- Rosa Maria Pascale
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Diego Francesco Calvisi
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Maria Maddalena Simile
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Claudio Francesco Feo
- Department of Clinical, Surgery and Experimental Sciences, Division of Surgery, University of Sassari, 07100 Sassari, Italy;
| | - Francesco Feo
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| |
Collapse
|
23
|
Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) with OT-82 induces DNA damage, cell death, and suppression of tumor growth in preclinical models of Ewing sarcoma. Oncogenesis 2020; 9:80. [PMID: 32908120 PMCID: PMC7481307 DOI: 10.1038/s41389-020-00264-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/29/2022] Open
Abstract
NAMPT mediates the rate-limiting step of the NAD salvage pathway, which maintains cellular bioenergetics and provides a necessary substrate for functions essential to rapidly proliferating cancer cells. In this study, we evaluated the efficacy and mechanisms of action of OT-82, a novel, high-potency NAMPT inhibitor with a favorable toxicity profile, in preclinical models of Ewing sarcoma (EWS), an aggressive pediatric malignancy with previously reported selective sensitivity to NAMPT inhibition. We show that OT-82 decreased NAD concentration and impaired proliferation of EWS cells in a dose-dependent manner, with IC50 values in the single-digit nanomolar range. Notably, genetic depletion of NAMPT phenocopied pharmacological inhibition. On-target activity of OT-82 was confirmed with the addition of NMN, the product of NAMPT, which rescued NAD concentration and EWS cellular viability. Mechanistically, OT-82 treatment resulted in impaired DNA damage repair through loss of PARP activity, G2 cell-cycle arrest, and apoptosis in EWS cells. Additional consequences of OT-82 treatment included reduction of glycolytic and mitochondrial activity. In vivo, OT-82 impaired tumor growth and prolonged survival in mice bearing EWS xenografts. Importantly, antitumor effect correlated with pharmacodynamic markers of target engagement. Furthermore, combining low-dose OT-82 with low doses of agents augmenting DNA damage demonstrated enhanced antitumor activity in vitro and in vivo. Thus, OT-82 treatment represents a potential novel targeted approach for the clinical treatment of EWS.
Collapse
|
24
|
Tan Z, Chen L, Ren Y, Jiang X, Gao W. Neuroprotective effects of FK866 against traumatic brain injury: Involvement of p38/ERK pathway. Ann Clin Transl Neurol 2020; 7:742-756. [PMID: 32302063 PMCID: PMC7261767 DOI: 10.1002/acn3.51044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/20/2020] [Accepted: 03/20/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE FK866 is an inhibitor of nicotinamide phosphoribosyltransferase (NAMPT), which exhibits neuroprotective effects in ischemic brain injury. However, in traumatic brain injury (TBI), the role and mechanism of FK866 remain unclear. The present research was aimed to investigate whether FK866 could attenuate TBI and clarified the underlying mechanisms. METHODS A controlled cortical impact model was established, and FK866 at a dose of 5 mg/kg was administered intraperitoneally at 1 h and 6 h, then twice per day post-TBI until sacrifice. Brain water content, Evans blue dye extravasation, modified neurological severity scores (mNSS), Morris water maze test, enzyme-linked immunosorbent assay (ELISA), immunofluorescence staining, and western blot were performed. RESULTS The results demonstrated that FK866 significantly mitigated the brain edema, blood-brain barrier (BBB) disruption, and ameliorated the neurological function post-TBI. Moreover, FK866 decreased the number of Iba-1-positive cells, GFAP-positive astrocytes, and AQP4-positive cells. FK866 reduced the protein levels of proinflammatory cytokines and inhibited NF-κB from translocation to the nucleus. FK866 upregulated the expression of Bcl-2, diminished the expression of Bax and caspase 3, and the number of apoptotic cells. Moreover, p38 MAPK and ERK activation were significantly inhibited by FK866. INTERPRETATION FK866 attenuated TBI-induced neuroinflammation and apoptosis, at least in part, through p38/ERK MAPKs signaling pathway.
Collapse
Affiliation(s)
- Zhongju Tan
- Department of GeriatricsThe First Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Lili Chen
- Department of NeurologyXiasha CampusSir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Yucheng Ren
- Department of NeurosurgeryThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Xiaohang Jiang
- Department of NeurosurgeryThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Wei Gao
- Department of NeurologyChangxing People’s HospitalThe Second Affiliated Hospital of Zhejiang University Changxing CampusChangxingZhejiangChina
| |
Collapse
|
25
|
Wu Z, Sun H, Wang C, Liu W, Liu M, Zhu Y, Xu W, Jin H, Li J. Mitochondrial Genome-Derived circRNA mc-COX2 Functions as an Oncogene in Chronic Lymphocytic Leukemia. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 20:801-811. [PMID: 32438315 PMCID: PMC7240210 DOI: 10.1016/j.omtn.2020.04.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/15/2020] [Accepted: 04/28/2020] [Indexed: 11/19/2022]
Abstract
Circular RNAs (circRNAs), a novel family of non-coding RNAs, play crucial roles in cancer progression. While the existing research focuses on nuclear genome-derived (nu)-circRNAs, the biological and clinical characteristics of mitochondrial genome-derived (mt)-circRNAs remain largely unknown, especially in chronic lymphocytic leukemia (CLL). In this study, we attempted to identify the novel characteristics of mc-COX2 (mitochondrial genome-derived circRNAs [mc]), one of the mt-circRNAs that can be involved in CLL progression. mt-circRNAs were found to be highly expressed in the plasma exosomes of CLL patients. The endogenous reduction of mc-COX2 can affect mitochondrial functions, suppress cell proliferation, and induce cell apoptosis. The upregulation of mc-COX2 was positively associated with leukemogenesis and worsening survival of CLL patients. Notably, functional analysis revealed that mc-COX2, as differing from conventional nu-circRNAs, was less stable and may function through novel mechanisms other than acting as the competing endogenous RNA. We also screened and tested several chemical compounds and small-molecule inhibitors that can decrease the generation of mc-COX2. It was found that the silencing of mc-COX2 in CLL cells strengthened the anti-tumor effects of drugs used in coordination. Our findings prove that mc-COX2, a critical mt-circRNA highly expressed in plasma, derived from CLL cells and delivered by exosomes, is associated with the progression and prognosis of CLL.
Collapse
Affiliation(s)
- Zijuan Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Handong Sun
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chunling Wang
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Department of Hematology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an 223300, China
| | - Wenjie Liu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Ming Liu
- Guangzhou Geneseed Biotech, Guangzhou 510000, China
| | - Yanhui Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Hui Jin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China.
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China.
| |
Collapse
|
26
|
Therapeutic Strategies and Biomarkers to Modulate PARP Activity for Targeted Cancer Therapy. Cancers (Basel) 2020; 12:cancers12040972. [PMID: 32295316 PMCID: PMC7226473 DOI: 10.3390/cancers12040972] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022] Open
Abstract
Poly-(ADP-ribose) polymerase 1 (PARP1) is commonly known for its vital role in DNA damage response and repair. However, its enzymatic activity has been linked to a plethora of physiological and pathophysiological transactions ranging from cellular proliferation, survival and death. For instance, malignancies with BRCA1/2 mutations heavily rely on PARP activity for survival. Thus, the use of PARP inhibitors is a well-established intervention in these types of tumors. However, recent studies indicate that the therapeutic potential of attenuating PARP1 activity in recalcitrant tumors, especially where PARP1 is aberrantly overexpressed and hyperactivated, may extend its therapeutic utility in wider cancer types beyond BRCA-deficiency. Here, we discuss treatment strategies to expand the tumor-selective therapeutic application of PARP inhibitors and novel approaches with predictive biomarkers to perturb NAD+ levels and hyperPARylation that inactivate PARP in recalcitrant tumors. We also provide an overview of genetic alterations that transform non-BRCA mutant cancers to a state of "BRCAness" as potential biomarkers for synthetic lethality with PARP inhibitors. Finally, we discuss a paradigm shift for the use of novel PARP inhibitors outside of cancer treatment, where it has the potential to rescue normal cells from severe oxidative damage during ischemia-reperfusion injury induced by surgery and radiotherapy.
Collapse
|
27
|
Guia RM, Hassing AS, Skov LJ, Ratner C, Plucińska K, Madsen S, Diep TA, Dela Cruz GV, Trammell SA, Sustarsic EG, Emanuelli B, Gillum MP, Gerhart‐Hines Z, Holst B, Treebak JT. Fasting- and ghrelin-induced food intake is regulated by NAMPT in the hypothalamus. Acta Physiol (Oxf) 2020; 228:e13437. [PMID: 31900990 DOI: 10.1111/apha.13437] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 11/18/2019] [Accepted: 12/29/2019] [Indexed: 12/13/2022]
Abstract
AIM Neurons in the arcuate nucleus of the hypothalamus are involved in regulation of food intake and energy expenditure, and dysregulation of signalling in these neurons promotes development of obesity. The role of the rate-limiting enzyme in the NAD+ salvage pathway, nicotinamide phosphoribosyltransferase (NAMPT), for regulation energy homeostasis by the hypothalamus has not been extensively studied. METHODS We determined whether Nampt mRNA or protein levels in the hypothalamus of mice were affected by diet-induced obesity, by fasting and re-feeding, and by leptin and ghrelin treatment. Primary hypothalamic neurons were treated with FK866, a selective inhibitor of NAMPT, or rAAV carrying shRNA directed against Nampt, and levels of reactive oxygen species (ROS) and mitochondrial respiration were assessed. Fasting and ghrelin-induced food intake was measured in mice in metabolic cages after intracerebroventricular (ICV)-mediated FK866 administration. RESULTS NAMPT levels in the hypothalamus were elevated by administration of ghrelin and leptin. In diet-induced obese mice, both protein and mRNA levels of NAMPT decreased in the hypothalamus. NAMPT inhibition in primary hypothalamic neurons significantly reduced levels of NAD+ , increased levels of ROS, and affected the expression of Agrp, Pomc and genes related to mitochondrial function. Finally, ICV-induced NAMPT inhibition by FK866 did not cause malaise or anhedonia, but completely ablated fasting- and ghrelin-induced increases in food intake. CONCLUSION Our findings indicate that regulation of NAMPT levels in hypothalamic neurons is important for the control of fasting- and ghrelin-induced food intake.
Collapse
Affiliation(s)
- Roldan M. Guia
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Anna S. Hassing
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Louise J. Skov
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Cecilia Ratner
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Kaja Plucińska
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Søren Madsen
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Thi A. Diep
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Gelo V. Dela Cruz
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Stem Cell Biology University of Copenhagen Copenhagen Denmark
| | - Samuel A.J. Trammell
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Elahu G. Sustarsic
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Brice Emanuelli
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Matthew P. Gillum
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Zach Gerhart‐Hines
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Birgitte Holst
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| | - Jonas T. Treebak
- Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark
| |
Collapse
|
28
|
Roy Chowdhury S, Bouchard EDJ, Saleh R, Nugent Z, Peltier C, Mejia E, Hou S, McFall C, Squires M, Hewitt D, Davidson L, Shen GX, Johnston JB, Doucette C, Hatch GM, Fernyhough P, Marshall A, Gibson SB, Dawe DE, Banerji V. Mitochondrial Respiration Correlates with Prognostic Markers in Chronic Lymphocytic Leukemia and Is Normalized by Ibrutinib Treatment. Cancers (Basel) 2020; 12:cancers12030650. [PMID: 32168755 PMCID: PMC7139649 DOI: 10.3390/cancers12030650] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/28/2020] [Accepted: 03/06/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial bioenergetics profiling, a measure of oxygen consumption rates, correlates with prognostic markers and can be used to assess response to therapy in chronic lymphocytic leukemia (CLL) cells. In this study, we measured mitochondrial respiration rates in primary CLL cells using respirometry to evaluate mitochondrial function. We found significant increases in mitochondrial respiration rates in CLL versus control B lymphocytes. We also observed amongst CLL patients that advanced age, female sex, zeta-chain-associated protein of 70 kD (ZAP-70+), cluster of differentiation 38 (CD38+), and elevated β2-microglobulin (β2-M) predicted increased maximal respiration rates. ZAP-70+ CLL cells exhibited significantly higher bioenergetics than B lymphocytes or ZAP-70− CLL cells and were more sensitive to the uncoupler, carbonyl cyanide-p-trifluoro-methoxyphenylhydrazone (FCCP). Univariable and multivariable linear regression analysis demonstrated that ZAP-70+ predicted increased maximal respiration. ZAP-70+ is a surrogate for B cell receptor (BCR) activation and can be targeted by ibrutinib, which is a clinically approved Bruton’s tyrosine kinase (BTK) inhibitor. Therefore, we evaluated the oxygen consumption rates (OCR) of CLL cells and plasma chemokine (C-C motif) ligands 3 and 4 (CCL3/CCL4) levels from ibrutinib-treated patients and demonstrated decreased OCR similar to control B lymphocytes, suggesting that ibrutinib treatment resets the mitochondrial bioenergetics, while diminished CCL3/CCL4 levels indicate the down regulation of the BCR signaling pathway in CLL. Our data support evaluation of mitochondrial respiration as a preclinical tool for the response assessment of CLL cells.
Collapse
Affiliation(s)
- Subir Roy Chowdhury
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3V 0V9, Canada; (S.R.C.); (E.D.J.B.); (R.S.); (Z.N.); (C.P.); (C.M.); (M.S.); (D.H.); (L.D.); (J.B.J.); (S.B.G.); (D.E.D.)
| | - Eric D. J. Bouchard
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3V 0V9, Canada; (S.R.C.); (E.D.J.B.); (R.S.); (Z.N.); (C.P.); (C.M.); (M.S.); (D.H.); (L.D.); (J.B.J.); (S.B.G.); (D.E.D.)
| | - Ryan Saleh
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3V 0V9, Canada; (S.R.C.); (E.D.J.B.); (R.S.); (Z.N.); (C.P.); (C.M.); (M.S.); (D.H.); (L.D.); (J.B.J.); (S.B.G.); (D.E.D.)
| | - Zoann Nugent
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3V 0V9, Canada; (S.R.C.); (E.D.J.B.); (R.S.); (Z.N.); (C.P.); (C.M.); (M.S.); (D.H.); (L.D.); (J.B.J.); (S.B.G.); (D.E.D.)
| | - Cheryl Peltier
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3V 0V9, Canada; (S.R.C.); (E.D.J.B.); (R.S.); (Z.N.); (C.P.); (C.M.); (M.S.); (D.H.); (L.D.); (J.B.J.); (S.B.G.); (D.E.D.)
| | - Edgard Mejia
- Departments of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (E.M.); (S.H.); (A.M.)
| | - Sen Hou
- Departments of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (E.M.); (S.H.); (A.M.)
| | - Carly McFall
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3V 0V9, Canada; (S.R.C.); (E.D.J.B.); (R.S.); (Z.N.); (C.P.); (C.M.); (M.S.); (D.H.); (L.D.); (J.B.J.); (S.B.G.); (D.E.D.)
| | - Mandy Squires
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3V 0V9, Canada; (S.R.C.); (E.D.J.B.); (R.S.); (Z.N.); (C.P.); (C.M.); (M.S.); (D.H.); (L.D.); (J.B.J.); (S.B.G.); (D.E.D.)
| | - Donna Hewitt
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3V 0V9, Canada; (S.R.C.); (E.D.J.B.); (R.S.); (Z.N.); (C.P.); (C.M.); (M.S.); (D.H.); (L.D.); (J.B.J.); (S.B.G.); (D.E.D.)
| | - Linda Davidson
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3V 0V9, Canada; (S.R.C.); (E.D.J.B.); (R.S.); (Z.N.); (C.P.); (C.M.); (M.S.); (D.H.); (L.D.); (J.B.J.); (S.B.G.); (D.E.D.)
| | - Garry X. Shen
- Departments of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada;
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; (C.D.); (G.M.H.)
| | - James B. Johnston
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3V 0V9, Canada; (S.R.C.); (E.D.J.B.); (R.S.); (Z.N.); (C.P.); (C.M.); (M.S.); (D.H.); (L.D.); (J.B.J.); (S.B.G.); (D.E.D.)
- Departments of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada;
- Department of Medical Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Christine Doucette
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; (C.D.); (G.M.H.)
- Departments of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Grant M. Hatch
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; (C.D.); (G.M.H.)
- St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Paul Fernyhough
- Departments of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada;
- Departments of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3N4, Canada
| | - Aaron Marshall
- Departments of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (E.M.); (S.H.); (A.M.)
- Departments of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada;
| | - Spencer B. Gibson
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3V 0V9, Canada; (S.R.C.); (E.D.J.B.); (R.S.); (Z.N.); (C.P.); (C.M.); (M.S.); (D.H.); (L.D.); (J.B.J.); (S.B.G.); (D.E.D.)
- Departments of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (E.M.); (S.H.); (A.M.)
- Departments of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada;
| | - David E. Dawe
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3V 0V9, Canada; (S.R.C.); (E.D.J.B.); (R.S.); (Z.N.); (C.P.); (C.M.); (M.S.); (D.H.); (L.D.); (J.B.J.); (S.B.G.); (D.E.D.)
- Departments of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada;
- Department of Medical Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Versha Banerji
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3V 0V9, Canada; (S.R.C.); (E.D.J.B.); (R.S.); (Z.N.); (C.P.); (C.M.); (M.S.); (D.H.); (L.D.); (J.B.J.); (S.B.G.); (D.E.D.)
- Departments of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada;
- Department of Medical Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
- Departments of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada;
- Correspondence: ; Tel.: +1-204-7871-884; Fax: +1-204-7870-196
| |
Collapse
|
29
|
Gerner RR, Macheiner S, Reider S, Siegmund K, Grabherr F, Mayr L, Texler B, Moser P, Effenberger M, Schwaighofer H, Moschen AR, Kircher B, Oberacher H, Zeiser R, Tilg H, Nachbaur D. Targeting NAD immunometabolism limits severe graft-versus-host disease and has potent antileukemic activity. Leukemia 2020; 34:1885-1897. [PMID: 31974433 DOI: 10.1038/s41375-020-0709-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 12/06/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
Acute graft-versus-host disease (aGVHD) and tumor relapse remain major complications after allogeneic hematopoietic stem cell transplantation. Alloreactive T cells and cancer cells share a similar metabolic phenotype to meet the bioenergetic demands necessary for cellular proliferation and effector functions. Nicotinamide adenine dinucleotide (NAD) is an essential co-factor in energy metabolism and is constantly replenished by nicotinamide phosphoribosyl-transferase (Nampt), the rate-limiting enzyme in the NAD salvage pathway. Here we show, that Nampt blockage strongly ameliorates aGVHD and limits leukemic expansion. Nampt was highly elevated in serum of patients with gastrointestinal GVHD and was particularly abundant in human and mouse intestinal T cells. Therapeutic application of the Nampt small-molecule inhibitor, Fk866, strongly attenuated experimental GVHD and caused NAD depletion in T-cell subsets, which displayed differential susceptibility to NAD shortage. Fk866 robustly inhibited expansion of alloreactive but not memory T cells and promoted FoxP3-mediated lineage stability in regulatory T cells. Furthermore, Fk866 strongly reduced the tumor burden in mouse leukemia and graft-versus-leukemia models. Ex vivo studies using lymphocytes from GVHD patients demonstrated potent antiproliferative properties of Fk866, suggesting potential clinical utility. Thus, targeting NAD immunometabolism represents a novel approach to selectively inhibit alloreactive T cells during aGVHD with additional antileukemic efficacy.
Collapse
Affiliation(s)
- Romana R Gerner
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University Innsbruck, Innsbruck, Austria. .,Christian Doppler Laboratory for Mucosal Immunology, Medical University Innsbruck, Innsbruck, Austria. .,Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, 92037, La Jolla, CA, USA.
| | - Sophie Macheiner
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Mucosal Immunology, Medical University Innsbruck, Innsbruck, Austria
| | - Simon Reider
- Christian Doppler Laboratory for Mucosal Immunology, Medical University Innsbruck, Innsbruck, Austria
| | - Kerstin Siegmund
- Department for Pharmacology and Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University Innsbruck, Innsbruck, Austria
| | - Lisa Mayr
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University Innsbruck, Innsbruck, Austria
| | - Bernhard Texler
- Christian Doppler Laboratory for Mucosal Immunology, Medical University Innsbruck, Innsbruck, Austria
| | - Patrizia Moser
- Department of Pathology, Medical University Innsbruck, Innsbruck, Austria
| | - Maria Effenberger
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University Innsbruck, Innsbruck, Austria
| | - Hubert Schwaighofer
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University Innsbruck, Innsbruck, Austria
| | - Alexander R Moschen
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Mucosal Immunology, Medical University Innsbruck, Innsbruck, Austria
| | - Brigitte Kircher
- Department of Internal Medicine V, Hematology & Oncology, Medical University Innsbruck, Innsbruck, Austria
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University Innsbruck, Innsbruck, Austria
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University Innsbruck, Innsbruck, Austria
| | - David Nachbaur
- Department of Internal Medicine V, Hematology & Oncology, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
30
|
Heske CM. Beyond Energy Metabolism: Exploiting the Additional Roles of NAMPT for Cancer Therapy. Front Oncol 2020; 9:1514. [PMID: 32010616 PMCID: PMC6978772 DOI: 10.3389/fonc.2019.01514] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor cells have increased requirements for NAD+. Thus, many cancers exhibit an increased reliance on NAD+ production pathways. This dependence may be exploited therapeutically through pharmacological targeting of NAMPT, the rate-limiting enzyme in the NAD+ salvage pathway. Despite promising preclinical data using NAMPT inhibitors in cancer models, early NAMPT inhibitors showed limited efficacy in several early phase clinical trials, necessitating the identification of strategies, such as drug combinations, to enhance their efficacy. While the effect of NAMPT inhibitors on impairment of energy metabolism in cancer cells has been well-described, more recent insights have uncovered a number of additional targetable cellular processes that are impacted by inhibition of NAMPT. These include sirtuin function, DNA repair machinery, redox homeostasis, molecular signaling, cellular stemness, and immune processes. This review highlights the recent findings describing the effects of NAMPT inhibitors on the non-metabolic functions of malignant cells, with a focus on how this information can be leveraged clinically. Combining NAMPT inhibitors with other therapies that target NAD+-dependent processes or selecting tumors with specific vulnerabilities that can be co-targeted with NAMPT inhibitors may represent opportunities to exploit the multiple functions of this enzyme for greater therapeutic benefit.
Collapse
Affiliation(s)
- Christine M Heske
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
31
|
Li Y, Ma X, Li J, Yang L, Zhao X, Qi X, Zhang X, Zhou Q, Shi W. Corneal Denervation Causes Epithelial Apoptosis Through Inhibiting NAD+ Biosynthesis. Invest Ophthalmol Vis Sci 2019; 60:3538-3546. [PMID: 31415077 DOI: 10.1167/iovs.19-26909] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To determine if trigeminal innervations of the corneal epithelium maintains its integrity and homeostasis through controlling the nicotinamide adenine dinucleotide (NAD) content of this tissue. Methods Corneal denervation of C57BL/6 mice was induced by squeezing the nerve bundles that derive from the trigeminal ganglion and was confirmed by whole-mount corneal nerve staining and the sensation test. The apoptosis of the corneal epithelium was examined by TUNEL assay and annexin V/propidium iodide staining. NAD biosynthesis-related enzymes were analyzed by quantitative PCR, immunofluorescence staining, and Western blotting. FK866, an inhibitor of nicotinamide phosphoribosyltransferase (NAMPT), exogenous nicotinamide mononucleotide (NMN), and NAD+ were used to evaluate the effect of NAD+ on the apoptosis of cultured corneal epithelial cells and epithelial detachment in denervated mice. Protein expression that related to apoptosis and phosphorylation were analyzed by Western blotting. Results The denervated mice showed spontaneous corneal epithelial detachment and cell apoptosis accompanied with impaired epithelial NAD+ contents due to low levels of NAMPT. Similarly, inhibition of NAMPT recapitulated epithelial detachment as in denervated mice and induced apoptosis in cultured corneal epithelial cells. The replenishment of NMN or NAD+ partially slowed down corneal nerve fiber degeneration, reduced the epithelial defect in denervated mice, and improved apoptosis induction in FK866-treated cells by restoring the activation levels of SIRT1, AKT, and CREB. Conclusions Corneal denervation lowered epithelial NAD+ contents through reducing the expression of NAMPT and caused cell apoptosis and epithelial defects, suggesting that corneal innervations contribute to epithelial homeostasis by regulating NAD+ biosynthesis.
Collapse
Affiliation(s)
- Ya Li
- Medical College, Qingdao University, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Xiubin Ma
- Medical College, Qingdao University, Qingdao, China
| | - Jing Li
- Medical College, University of Jinan, Jinan, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Xiaowen Zhao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Xia Qi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | | | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Weiyun Shi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| |
Collapse
|
32
|
Effective targeting of NAMPT in patient-derived xenograft models of high-risk pediatric acute lymphoblastic leukemia. Leukemia 2019; 34:1524-1539. [PMID: 31848452 DOI: 10.1038/s41375-019-0683-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/21/2019] [Accepted: 12/05/2019] [Indexed: 11/09/2022]
Abstract
The prognosis for children diagnosed with high-risk acute lymphoblastic leukemia (ALL) remains suboptimal, and more potent and less toxic treatments are urgently needed. We investigated the efficacy of a novel nicotinamide phosphoribosyltransferase inhibitor, OT-82, against a panel of patient-derived xenografts (PDXs) established from high-risk and poor outcome pediatric ALL cases. OT-82 was well-tolerated and demonstrated impressive single agent in vivo efficacy, achieving significant leukemia growth delay in 95% (20/21) and disease regression in 86% (18/21) of PDXs. In addition, OT-82 enhanced the efficacy of the established drugs cytarabine and dasatinib and, as a single agent, showed similar efficacy as an induction-type regimen combining three drugs used to treat pediatric ALL. OT-82 exerted its antileukemic action by depleting NAD+ and ATP, inhibiting the NAD+-requiring DNA damage repair enzyme PARP-1, increasing mitochondrial ROS levels and inducing DNA damage, culminating in apoptosis induction. OT-82 sensitivity was associated with the occurrence of mutations in major DNA damage response genes, while OT-82 resistance was characterized by high expression levels of CD38. In conclusion, our study provides evidence that OT-82, as a single agent, and in combination with established drugs, is a promising new therapeutic strategy for a broad spectrum of high-risk pediatric ALL for which improved therapies are urgently needed.
Collapse
|
33
|
Transcriptional Modulation by Idelalisib Synergizes with Bendamustine in Chronic Lymphocytic Leukemia. Cancers (Basel) 2019; 11:cancers11101519. [PMID: 31601046 PMCID: PMC6826782 DOI: 10.3390/cancers11101519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/19/2019] [Accepted: 10/02/2019] [Indexed: 11/17/2022] Open
Abstract
The phosphatidyl-inositol 3 kinase (PI3K) δ inhibitor, idelalisib (IDE), is a potent inhibitor of the B-cell receptor pathway and a novel and highly effective agent for the treatment of chronic lymphocytic leukemia (CLL). We evaluated the activities of IDE in comparison to bendamusine (BEN), a commonly used alkylating agent, in primary CLL cells ex vivo. In contrast to BEN, IDE was cytotoxic to cells from extensively-treated patients, including those with a deletion (del)17p. Cross-resistance was not observed between BEN and IDE, confirming their different modes of cytotoxicity. Marked synergy was seen between BEN and IDE, even in cases that were resistant to BEN or IDE individually, and those with deletion (del) 17p. CD40L/interleukin 4 (IL4) co-treatment mimicking the CLL microenvironment increased resistance to IDE, but synergy was retained. PI3Kδ-deficient murine splenic B cells were more resistant to IDE and showed reduced synergy with BEN, thus confirming the importance of functional PI3Kδ protein. Although IDE was observed to induce γH2AX, IDE did not enhance activation of the DNA damage response nor DNA repair activity. Interestingly, IDE decreased global RNA synthesis and was antagonistic with 5,6-Dichlorobenzimidazole 1-b-D-ribofuranoside (DRB), an inhibitor of transcription. These findings add to the increasingly complex cellular effects of IDE, and B cell receptor (BCR) inhibitors in general, in CLL.
Collapse
|
34
|
Brandl L, Zhang Y, Kirstein N, Sendelhofert A, Boos SL, Jung P, Greten F, Rad R, Menssen A. Targeting c-MYC through Interference with NAMPT and SIRT1 and Their Association to Oncogenic Drivers in Murine Serrated Intestinal Tumorigenesis. Neoplasia 2019; 21:974-988. [PMID: 31442917 PMCID: PMC6710297 DOI: 10.1016/j.neo.2019.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022] Open
Abstract
We recently described a positive feedback loop connecting c-MYC, NAMPT, DBC1 and SIRT1 that contributes to unrestricted cancer cell proliferation. Here we determine the relevance of the loop for serrated route intestinal tumorigenesis using genetically well-defined BrafV600E and K-rasG12D mouse models. In both models we show that c-MYC and SIRT1 protein expression increased through progression from hyperplasia to invasive carcinomas and metastases. It correlated with high NAMPT expression and was directly associated to activation of the oncogenic drivers. Assessing functional and molecular consequences of pharmacological interference with factors of the loop, we found that inhibition of NAMPT resulted in apoptosis and reduced clonogenic growth in human BRAF-mutant colorectal cancer cell lines and patient-derived tumoroids. Blocking SIRT1 activity was only effective when combined with a PI3K inhibitor, whereas the latter antagonized the effects of NAMPT inhibition. Interfering with the positive feedback loop was associated with down-regulation of c-MYC and temporary de-repression of TP53, explaining the anti-proliferative and pro-apoptotic effects. In conclusion we show that the c-MYC-NAMPT-DBC1-SIRT1 positive feedback loop contributes to murine serrated tumor progression. Targeting the feedback loop exerted a unique, dual therapeutic effect of oncoprotein inhibition and tumor suppressor activation. It may therefore represent a promissing target for serrated colorectal cancer, and presumably for other cancer types with deregulated c-MYC.
Collapse
Affiliation(s)
- Lydia Brandl
- Institute of Pathology, Ludwig-Maximilians University (LMU), Thalkirchnerstraße 36, 80337 Munich, Germany.
| | - Yina Zhang
- Institute of Pathology, Ludwig-Maximilians University (LMU), Thalkirchnerstraße 36, 80337 Munich, Germany; Research group "Signaling pathways in colorectal cancer"; German Cancer Consortium (DKTK), and German Cancer Research Center DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Nina Kirstein
- Institute of Pathology, Ludwig-Maximilians University (LMU), Thalkirchnerstraße 36, 80337 Munich, Germany; Research group "Signaling pathways in colorectal cancer".
| | - Andrea Sendelhofert
- Institute of Pathology, Ludwig-Maximilians University (LMU), Thalkirchnerstraße 36, 80337 Munich, Germany.
| | - Sophie Luise Boos
- Institute of Pathology, Ludwig-Maximilians University (LMU), Thalkirchnerstraße 36, 80337 Munich, Germany; German Cancer Consortium (DKTK), and German Cancer Research Center DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Peter Jung
- Institute of Pathology, Ludwig-Maximilians University (LMU), Thalkirchnerstraße 36, 80337 Munich, Germany; German Cancer Consortium (DKTK), and German Cancer Research Center DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Florian Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596 Frankfurt/Main, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, 60596 Frankfurt/Main, Germany;and German Cancer Consortium (DKTK) and German Cancer Research Center DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany; Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Germany; Department of Medicine II, School of Medicine, Technical University of Munich, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Antje Menssen
- Institute of Pathology, Ludwig-Maximilians University (LMU), Thalkirchnerstraße 36, 80337 Munich, Germany; Research group "Signaling pathways in colorectal cancer"; German Cancer Consortium (DKTK), and German Cancer Research Center DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
35
|
Zhu Y, Liu J, Park J, Rai P, Zhai RG. Subcellular compartmentalization of NAD + and its role in cancer: A sereNADe of metabolic melodies. Pharmacol Ther 2019; 200:27-41. [PMID: 30974124 PMCID: PMC7010080 DOI: 10.1016/j.pharmthera.2019.04.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential biomolecule involved in many critical processes. Its role as both a driver of energy production and a signaling molecule underscores its importance in health and disease. NAD+ signaling impacts multiple processes that are dysregulated in cancer, including DNA repair, cell proliferation, differentiation, redox regulation, and oxidative stress. Distribution of NAD+ is highly compartmentalized, with each subcellular NAD+ pool differentially regulated and preferentially involved in distinct NAD+-dependent signaling or metabolic events. Emerging evidence suggests that targeting NAD+ metabolism is likely to repress many specific mechanisms underlying tumor development and progression, including proliferation, survival, metabolic adaptations, invasive capabilities, heterotypic interactions with the tumor microenvironment, and stress response including notably DNA maintenance and repair. Here we provide a comprehensive overview of how compartmentalized NAD+ metabolism in mitochondria, nucleus, cytosol, and extracellular space impacts cancer formation and progression, along with a discussion of the therapeutic potential of NAD+-targeting drugs in cancer.
Collapse
Affiliation(s)
- Yi Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, China; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jiaqi Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, China
| | - Joun Park
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Priyamvada Rai
- Department of Medicine/Medical Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rong G Zhai
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, China.
| |
Collapse
|
36
|
Singh M, Benencia F. Inflammatory processes in obesity: focus on endothelial dysfunction and the role of adipokines as inflammatory mediators. Int Rev Immunol 2019; 38:157-171. [DOI: 10.1080/08830185.2019.1638921] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Manindra Singh
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
| | - Fabian Benencia
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
| |
Collapse
|
37
|
Lucena-Cacace A, Umeda M, Navas LE, Carnero A. NAMPT as a Dedifferentiation-Inducer Gene: NAD + as Core Axis for Glioma Cancer Stem-Like Cells Maintenance. Front Oncol 2019; 9:292. [PMID: 31119097 PMCID: PMC6507617 DOI: 10.3389/fonc.2019.00292] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/29/2019] [Indexed: 12/27/2022] Open
Abstract
Glioma Cancer Stem-Like Cells (GSCs) are a small subset of CD133+ cells with self-renewal properties and capable of initiating new tumors contributing to Glioma progression, maintenance, hierarchy, and complexity. GSCs are highly resistant to chemo and radiotherapy. These cells are believed to be responsible for tumor relapses and patients' fatal outcome after developing a recurrent Glioblastoma (GBM) or High Grade Glioma (HGG). GSCs are cells under replicative stress with high demands on NAD+ supply to repair DNA, maintain self-renewal capacity and to induce tumor plasticity. NAD+ feeds Poly-ADP polymerases (PARP) and NAD+-dependent deacetylases (SIRTUINS) contributing to GSC phenotype. This energetic core axis is mainly controlled by the rate-limiting enzyme nicotinamide phosphoribosyltransferase (NAMPT), an important oncogene contributing to tumor dedifferentiation. Targeting GSCs depicts a new frontier in Glioma therapy; hence NAMPT could represent a key regulator for GSCs maintenance. Its inhibition may attenuate GSCs properties by decreasing NAD+ supply, consequently contributing to a better outcome together with current therapies for Glioma control.
Collapse
Affiliation(s)
- Antonio Lucena-Cacace
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Masayuki Umeda
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Lola E Navas
- CIBERONC, ISCIII, Madrid, Spain.,Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Amancio Carnero
- CIBERONC, ISCIII, Madrid, Spain.,Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CSIC, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
38
|
Yaku K, Okabe K, Hikosaka K, Nakagawa T. NAD Metabolism in Cancer Therapeutics. Front Oncol 2018; 8:622. [PMID: 30631755 PMCID: PMC6315198 DOI: 10.3389/fonc.2018.00622] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 11/30/2018] [Indexed: 12/15/2022] Open
Abstract
Cancer cells have a unique energy metabolism for sustaining rapid proliferation. The preference for anaerobic glycolysis under normal oxygen conditions is a unique trait of cancer metabolism and is designated as the Warburg effect. Enhanced glycolysis also supports the generation of nucleotides, amino acids, lipids, and folic acid as the building blocks for cancer cell division. Nicotinamide adenine dinucleotide (NAD) is a co-enzyme that mediates redox reactions in a number of metabolic pathways, including glycolysis. Increased NAD levels enhance glycolysis and fuel cancer cells. In fact, nicotinamide phosphoribosyltransferase (Nampt), a rate-limiting enzyme for NAD synthesis in mammalian cells, is frequently amplified in several cancer cells. In addition, Nampt-specific inhibitors significantly deplete NAD levels and subsequently suppress cancer cell proliferation through inhibition of energy production pathways, such as glycolysis, tricarboxylic acid (TCA) cycle, and oxidative phosphorylation. NAD also serves as a substrate for poly(ADP-ribose) polymerase (PARP), sirtuin, and NAD gylycohydrolase (CD38 and CD157); thus, NAD regulates DNA repair, gene expression, and stress response through these enzymes. Thus, NAD metabolism is implicated in cancer pathogenesis beyond energy metabolism and considered a promising therapeutic target for cancer treatment. In this review, we present recent findings with respect to NAD metabolism and cancer pathogenesis. We also discuss the current and future perspectives regarding the therapeutics that target NAD metabolic pathways.
Collapse
Affiliation(s)
- Keisuke Yaku
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Keisuke Okabe
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan.,First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Keisuke Hikosaka
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Takashi Nakagawa
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan.,Institute of Natural Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
39
|
Dalamaga M, Christodoulatos GS, Mantzoros CS. The role of extracellular and intracellular Nicotinamide phosphoribosyl-transferase in cancer: Diagnostic and therapeutic perspectives and challenges. Metabolism 2018; 82:72-87. [PMID: 29330025 DOI: 10.1016/j.metabol.2018.01.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/23/2017] [Accepted: 01/04/2018] [Indexed: 02/07/2023]
Abstract
Nicotinamide phosphoribosyl-transferase (Nampt) or pre-B cell colony-enhancing factor or visfatin represents a pleiotropic molecule acting as an enzyme, a cytokine and a growth factor. Intracellular Nampt plays an important role in cellular bioenergetics and metabolism, particularly NAD biosynthesis. NAD biosynthesis is critical in DNA repair, oncogenic signal transduction, transcription, genomic integrity and apoptosis. Although its insulin-mimetic function remains a controversial issue, extracellular Nampt presents proliferative, anti-apoptotic, pro-inflammatory, pro-angiogenic and metastatic properties. Nampt is upregulated in many malignancies, including obesity-associated cancers, and is associated with worse prognosis. Serum Nampt may be a potential diagnostic and prognostic biomarker in cancer. Pharmacologic agents that neutralize Nampt or medications that decrease Nampt levels or downregulate signaling pathways downstream of Nampt may prove to be useful anti-cancer treatments. In particular, Nampt inhibitors as monotherapy or in combination therapy have displayed anti-cancer activity in vivo and in vitro. The aim of this review is to explore the role of Nampt in cancer pathophysiology as well as to synopsize the mechanisms underlying the association between extracellular and intracellular Nampt, and malignancy. Exploring the interplay of cellular bioenergetics, inflammation and adiposopathy is expected to be of importance in the development of preventive and therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece.
| | - Gerasimos Socrates Christodoulatos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece; Department of Microbiology, KAT Hospital, Nikis 2, Kifisia, 14561 Athens, Greece
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Grohmann T, Penke M, Petzold-Quinque S, Schuster S, Richter S, Kiess W, Garten A. Inhibition of NAMPT sensitizes MOLT4 leukemia cells for etoposide treatment through the SIRT2-p53 pathway. Leuk Res 2018; 69:39-46. [PMID: 29653431 DOI: 10.1016/j.leukres.2018.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 03/31/2018] [Accepted: 04/04/2018] [Indexed: 10/17/2022]
Abstract
NAMPT (Nicotinamide phosphoribosyltransferase) catalyses the rate-limiting step in the NAD biosynthesis from nicotinamide and thereby regulates the activity of NAD-dependent enzymes. Cancer cells are highly dependent on NAD for energy and DNA repair processes and are assumed to be more susceptible to an inhibition of NAD synthesis than non-transformed cells. We aimed to investigate whether or not inhibition of NAMPT with its specific inhibitor FK866 can sensitize leukemia cells for chemotherapeutic agents. NAMPT protein abundance, enzymatic activity and NAD concentrations were significantly higher in Jurkat and Molt-4 leukemia cell lines compared to normal peripheral blood mononuclear cells. Combination of etoposide and FK866 caused increased cell death in leukemia cell lines compared to etoposide alone. Etoposide decreased protein abundance of NAD-dependent deacetylases SIRTUIN1. After combining etoposide and FK866 treatment SIRTUIN2 was further decreased and accumulation and acetylation of the downstream target p53 was further enhanced in MOLT4 cells. Concomitantly, protein abundance of p21 and cleaved BAX was increased. Targeting NAMPT could be a novel therapeutic strategy to enhance the efficacy of chemotherapeutic agents such as etoposide against leukemia.
Collapse
Affiliation(s)
- Theresa Grohmann
- Hospital for Children & Adolescents, Center for Pediatric Research Leipzig, University of Leipzig, Germany
| | - Melanie Penke
- Hospital for Children & Adolescents, Center for Pediatric Research Leipzig, University of Leipzig, Germany
| | - Stefanie Petzold-Quinque
- Hospital for Children & Adolescents, Center for Pediatric Research Leipzig, University of Leipzig, Germany
| | - Susanne Schuster
- Hospital for Children & Adolescents, Center for Pediatric Research Leipzig, University of Leipzig, Germany
| | - Sandy Richter
- Hospital for Children & Adolescents, Center for Pediatric Research Leipzig, University of Leipzig, Germany
| | - Wieland Kiess
- Hospital for Children & Adolescents, Center for Pediatric Research Leipzig, University of Leipzig, Germany
| | - Antje Garten
- Hospital for Children & Adolescents, Center for Pediatric Research Leipzig, University of Leipzig, Germany; University of Birmingham, Institute of Metabolism and Systems Research (IMSR), Birmingham, UK.
| |
Collapse
|
41
|
Yamamoto M, Inohara H, Nakagawa T. Targeting metabolic pathways for head and neck cancers therapeutics. Cancer Metastasis Rev 2018; 36:503-514. [PMID: 28819926 DOI: 10.1007/s10555-017-9691-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cancer cells have distinctive energy metabolism pathways that support their rapid cell division. The preference for anaerobic glycolysis under the normal oxygen condition is known as the Warburg effect and has been observed in head and neck cancers. These metabolic changes are controlled by cancer-related transcription factors, such as tumor suppressor gene and hypoxia inducible factor 1α. In addition, various metabolic enzymes also actively regulate cancer-specific metabolism including the switch between aerobic and anaerobic glycolysis. For a long time, these metabolic changes in cancer cells have been considered a consequence of transformation required to maintain the high rate of tumor cell replication. However, recent studies indicate that alteration of metabolism is sufficient to initiate tumor transformation. Indeed, oncogenic mutations in the metabolic enzymes, isocitrate dehydrogenase and succinate dehydrogenase, have been increasingly found in various cancers, including head and neck cancers. In the present review, we introduce recent findings regarding the cancer metabolism, including the molecular mechanisms of how they affect cancer pathogenesis and maintenance. We also discuss the current and future perspectives on therapeutics that target metabolic pathways, with an emphasis on head and neck cancer.
Collapse
Affiliation(s)
- Masashi Yamamoto
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.,Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Takashi Nakagawa
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan. .,Institute of Natural Medicine, University of Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
42
|
Mutz CN, Schwentner R, Aryee DNT, Bouchard EDJ, Mejia EM, Hatch GM, Kauer MO, Katschnig AM, Ban J, Garten A, Alonso J, Banerji V, Kovar H. EWS-FLI1 confers exquisite sensitivity to NAMPT inhibition in Ewing sarcoma cells. Oncotarget 2018; 8:24679-24693. [PMID: 28160567 PMCID: PMC5421879 DOI: 10.18632/oncotarget.14976] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 01/16/2017] [Indexed: 01/26/2023] Open
Abstract
Ewing sarcoma (EwS) is the second most common bone cancer in children and adolescents with a high metastatic potential. EwS development is driven by a specific chromosomal translocation resulting in the generation of a chimeric EWS-ETS transcription factor, most frequently EWS-FLI1. Nicotinamide adenine dinucleotide (NAD) is a key metabolite of energy metabolism involved in cellular redox reactions, DNA repair, and in the maintenance of genomic stability. This study describes targeting nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of NAD synthesis, by FK866 in EwS cells. Here we report that blocking NAMPT leads to exhaustive NAD depletion in EwS cells, followed by a metabolic collapse and cell death. Using conditional EWS-FLI1 knockdown by doxycycline-inducible shRNA revealed that EWS-FLI1 depletion significantly reduces the sensitivity of EwS cells to NAMPT inhibition. Consistent with this finding, a comparison of 7 EwS cell lines of different genotypes with 5 Non-EwS cell lines and mesenchymal stem cells revealed significantly higher FK866 sensitivity of EWS-ETS positive EwS cells, with IC50 values mostly below 1nM. Taken together, our data reveal evidence of an important role of the NAMPT-mediated NAD salvage pathway in the energy homeostasis of EwS cells and suggest NAMPT inhibition as a potential new treatment approach for Ewing sarcoma.
Collapse
Affiliation(s)
- Cornelia N Mutz
- Children's Cancer Research Institute Vienna, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Raphaela Schwentner
- Children's Cancer Research Institute Vienna, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Dave N T Aryee
- Children's Cancer Research Institute Vienna, St. Anna Kinderkrebsforschung, Vienna, Austria.,Department of Pediatrics, Medical University Vienna, Vienna, Austria
| | - Eric D J Bouchard
- Department of Biochemistry and Medical Genetics, University of Manitoba, Research Institute in Oncology and Hematology (RIOH), CancerCare Manitoba, Winnipeg, Canada
| | - Edgard M Mejia
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Grant M Hatch
- Department of Biochemistry and Medical Genetics, Center for Research and Treatment of Atherosclerosis, University of Manitoba, DREAM Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Maximilian O Kauer
- Children's Cancer Research Institute Vienna, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Anna M Katschnig
- Children's Cancer Research Institute Vienna, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Jozef Ban
- Children's Cancer Research Institute Vienna, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Antje Garten
- Center for Pediatric Research Leipzig, Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras, ISCIII, Ctra, Madrid, Spain
| | - Versha Banerji
- Department of Biochemistry and Medical Genetics, University of Manitoba, Research Institute in Oncology and Hematology (RIOH), CancerCare Manitoba, Winnipeg, Canada
| | - Heinrich Kovar
- Children's Cancer Research Institute Vienna, St. Anna Kinderkrebsforschung, Vienna, Austria.,Department of Pediatrics, Medical University Vienna, Vienna, Austria
| |
Collapse
|
43
|
Targeting Mitochondrial Bioenergetics as a Therapeutic Strategy for Chronic Lymphocytic Leukemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2426712. [PMID: 29682155 PMCID: PMC5851432 DOI: 10.1155/2018/2426712] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022]
Abstract
Altered cellular metabolism is considered a hallmark of cancer and is fast becoming an avenue for therapeutic intervention. Mitochondria have recently been viewed as an important cellular compartment that fuels the metabolic demands of cancer cells. Mitochondria are the major source of ATP and metabolites necessary to fulfill the bioenergetics and biosynthetic demands of cancer cells. Furthermore, mitochondria are central to cell death and the main source for generation of reactive oxygen species (ROS). Overall, the growing evidence now suggests that mitochondrial bioenergetics, biogenesis, ROS production, and adaptation to intrinsic oxidative stress are elevated in chronic lymphocytic leukemia (CLL). Hence, recent studies have shown that mitochondrial metabolism could be targeted for cancer therapy. This review focuses the recent advancements in targeting mitochondrial metabolism for the treatment of CLL.
Collapse
|
44
|
Targeting the vulnerability to NAD + depletion in B-cell acute lymphoblastic leukemia. Leukemia 2017; 32:616-625. [PMID: 28904384 DOI: 10.1038/leu.2017.281] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 07/30/2017] [Accepted: 08/02/2017] [Indexed: 12/27/2022]
Abstract
Although substantial progress has been made in the treatment of B-cell acute lymphoblastic leukemia (B-ALL), the prognosis of patients with either refractory or relapsed B-ALL remains dismal. Novel therapeutic strategies are needed to improve the outcome of these patients. KPT-9274 is a novel dual inhibitor of p21-activated kinase 4 (PAK4) and nicotinamide phosphoribosyltransferase (NAMPT). PAK4 is a serine/threonine kinase that regulates a variety of fundamental cellular processes. NAMPT is a rate-limiting enzyme in the salvage biosynthesis pathway of nicotinamide adenine dinucleotide (NAD) that plays a vital role in energy metabolism. Here, we show that KPT-9274 strongly inhibits B-ALL cell growth regardless of cytogenetic abnormalities. We also demonstrate the potent in vivo efficacy and tolerability of KPT-9274 in a patient-derived xenograft murine model of B-ALL. Interestingly, although KPT-9274 is a dual PAK4/NAMPT inhibitor, B-ALL cell growth inhibition by KPT-9274 was largely abolished with nicotinic acid supplementation, indicating that the inhibitory effects on B-ALL cells are mainly exerted by NAD+ depletion through NAMPT inhibition. Moreover, we have found that the extreme susceptibility of B-ALL cells to NAMPT inhibition is related to the reduced cellular NAD+ reserve. NAD+ depletion may be a promising alternative approach to treating patients with B-ALL.
Collapse
|
45
|
NAMPT inhibitor protects ischemic neuronal injury in rat brain via anti-neuroinflammation. Neuroscience 2017; 356:193-206. [DOI: 10.1016/j.neuroscience.2017.05.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 12/27/2022]
|
46
|
Espindola-Netto JM, Chini CCS, Tarragó M, Wang E, Dutta S, Pal K, Mukhopadhyay D, Sola-Penna M, Chini EN. Preclinical efficacy of the novel competitive NAMPT inhibitor STF-118804 in pancreatic cancer. Oncotarget 2017; 8:85054-85067. [PMID: 29156703 PMCID: PMC5689593 DOI: 10.18632/oncotarget.18841] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 06/05/2017] [Indexed: 11/25/2022] Open
Abstract
NAD salvage is one of the pathways used to generate NAD in mammals. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in this pathway, uses nicotinamide (NAM) to generate nicotinamide mononucleotide (NMN). NMN is one of the main precursors of NAD synthesis in cells. Our previous study showed the importance of NAMPT in maintaining NAD levels in pancreatic ductal adenocarcinoma cells (PDAC), and that the NAMPT inhibitor FK866 decreased pancreatic cancer growth. We now tested the effect of STF-118804, a new highly specific NAMPT inhibitor, in models of pancreatic ductal adenocarcinoma. STF-118804 reduced viability and growth of different PDAC lines, as well as the formation of colonies in soft agar. In addition, STF-118804 decreased glucose uptake, lactate excretion, and ATP levels, resulting in metabolic collapse. STF-118804 treatment activated AMPK and inhibited of mTOR pathways in these cells. This effect was significantly potentiated by pharmacological AMPK activation and mTOR inhibition. Exogenous NMN blocked both the activation of the AMPK pathway and the decrease in cell viability. Panc-1 cells expressing GFP-luciferase were orthotopically implanted on mice pancreas to test the in vivo effectiveness of STF-118804. Both STF-118804 and FK866 reduced tumor size after 21 days of treatment. Combinations of STF-118804 with chemotherapeutic agents such as paclitaxel, gemcitabine, and etoposide showed an additive effect in decreasing cell viability and growth. In conclusion, our preclinical study shows that the NAMPT inhibitor STF-118804 reduced the growth of PDAC in vitro and in vivo and had an additive effect in combination with main current chemotherapeutic drugs.
Collapse
Affiliation(s)
- Jair Machado Espindola-Netto
- Laboratory of Signal Transduction and Molecular Nutrition, Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN, U.S.A.,Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Departamento de Biotecnologia Farmacêutica (BioTecFar), Faculdade de Farmacia, Centro de Ciencias da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia C S Chini
- Laboratory of Signal Transduction and Molecular Nutrition, Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN, U.S.A
| | - Mariana Tarragó
- Laboratory of Signal Transduction and Molecular Nutrition, Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN, U.S.A
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN, U.S.A
| | - Shamit Dutta
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN, U.S.A
| | - Krishnendu Pal
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN, U.S.A
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN, U.S.A
| | - Mauro Sola-Penna
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Departamento de Biotecnologia Farmacêutica (BioTecFar), Faculdade de Farmacia, Centro de Ciencias da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo N Chini
- Laboratory of Signal Transduction and Molecular Nutrition, Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN, U.S.A
| |
Collapse
|
47
|
FK866 attenuates acute hepatic failure through c-jun-N-terminal kinase (JNK)-dependent autophagy. Sci Rep 2017; 7:2206. [PMID: 28526886 PMCID: PMC5438370 DOI: 10.1038/s41598-017-02318-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/10/2017] [Indexed: 12/13/2022] Open
Abstract
FK866 exhibits a protective effect on D-galactosamine (GaIN)/lipopolysaccharide (LPS) and concanavalin A (ConA)-induced acute liver failure (ALF), but the mechanism by which FK866 affords this benefit has not yet been elucidated. Autophagy has a protective effect on acute liver injury. However, the contribution of autophagy to FK866-conferred hepatoprotection is still unclear. This study aimed to investigate whether FK866 could attenuate GaIN/LPS and ConA-induced ALF through c-jun-N-terminal kinase (JNK)-dependent autophagy. In vivo, Mice were pretreated with FK866 at 24, 12, and 0.5 h before treatment with GaIN/LPS and ConA. 3-methyladenine (3MA) or rapamycin were used to determine the role of autophagy in FK866-conferred hepatoprotection. In primary hepatocytes, autophagy was inhibited by 3MA or autophagy-related protein 7 (Atg7) small interfering RNA (siRNA). JNK was suppressed by SP600125 or Jnk siRNA. FK866 alleviated hepatotoxicity and increased autophagy while decreased JNK activation. Suppression of autophagy abolished the FK866-conferred protection. Inhibition of JNK increased autophagy and exhibited strongly protective effect. Collectively, FK866 could ameliorate GaIN/LPS and ConA-induced ALF through induction of autophagy while suppression of JNK. These findings suggest that FK866 acts as a simple and applicable preconditioning intervention to protect against ALF; autophagy and JNK may also provide therapeutic targets for ALF treatment.
Collapse
|
48
|
Wang XY, Wang JZ, Gao L, Zhang FY, Wang Q, Liu KJ, Xiang B. Inhibition of nicotinamide phosphoribosyltransferase and depletion of nicotinamide adenine dinucleotide contribute to arsenic trioxide suppression of oral squamous cell carcinoma. Toxicol Appl Pharmacol 2017; 331:54-61. [PMID: 28501332 DOI: 10.1016/j.taap.2017.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 04/27/2017] [Accepted: 05/10/2017] [Indexed: 11/26/2022]
Abstract
Emerging evidence suggests that increased nicotinamide phosphoribosyltransferase (NAMPT) expression is associated with the development and prognosis of many cancers, but it remains unknown regarding its role in oral squamous cell carcinoma (OSCC). In the present study, the results from tissue microarray showed that NAMPT was overexpressed in OSCC patients and its expression level was directly correlated with differential grades of cancer. Interestingly, treatment of OSCC cells with chemotherapy agent arsenic trioxide (ATO) decreased the levels of NAMPT protein and increased cellular death in an ATO dose- and time-dependent manner. Most importantly, combination of low concentration ATO with FK866 (a NAMPT inhibitor) exerted enhanced inhibitive effect on NAMPT protein and mRNA expressions, leading to synergistic cytotoxicity on cancer cells through increasing cell apoptosis and depleting intracellular nicotinamide adenine dinucleotide levels. These findings demonstrate the crucial role of NAMPT in the prognosis of OSCC and reveal inhibition of NAMPT as a novel mechanism of ATO in suppressing cancer cell growth. Our results suggest that ATO can significantly enhance therapeutic efficacy of NAMPT inhibitor, and combined treatment may be a novel and effective therapeutic strategy for OSCC patients.
Collapse
Affiliation(s)
- Xin Yue Wang
- Laboratory of Oral and Maxillofacial Disease, Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, PR China
| | - Jin Zhi Wang
- Department of Oral and Maxillofacial Surgery, Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, PR China
| | - Lu Gao
- Department of Oral Anatomy, School of Stomatology, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Fu Yin Zhang
- Department of Oral and Maxillofacial Surgery, Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, PR China
| | - Qi Wang
- Laboratory of Oral and Maxillofacial Disease, Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, PR China
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Bin Xiang
- Laboratory of Oral and Maxillofacial Disease, Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, PR China.
| |
Collapse
|
49
|
Cea M, Cagnetta A, Acharya C, Acharya P, Tai YT, Yang G, Lovera D, Soncini D, Miglino M, Fraternali-Orcioni G, Mastracci L, Nencioni A, Montecucco F, Ballestrero A, Hideshima T, Chauhan D, Gobbi M, Lemoli RM, Munshi N, Treon SP, Anderson KC. Dual NAMPT and BTK Targeting Leads to Synergistic Killing of Waldenström Macroglobulinemia Cells Regardless of MYD88 and CXCR4 Somatic Mutation Status. Clin Cancer Res 2016; 22:6099-6109. [PMID: 27287071 PMCID: PMC5771267 DOI: 10.1158/1078-0432.ccr-16-0630] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/12/2016] [Accepted: 05/29/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Nicotinamide phosphoribosyltransferase (Nampt) regulates intracellular NAD+ pool and is highly expressed in a number of malignancies. FK866, a selective inhibitor of Nampt, depletes intracellular NAD+ levels, thereby blocking cellular metabolism and triggering sensitization to other drugs and cell death. Here we characterized the antitumor effects of Nampt inhibition in Waldenström macroglobulinemia. EXPERIMENTAL DESIGN We investigated Nampt role in MW cells using both mRNA and protein expression analyses. We have also used loss-of-function approaches to investigate the growth and survival effects of Nampt on MW cells and further tested the anti-MW activity of dual Nampt and BTK inhibition in vitro and in vivo RESULTS: We found that Waldenström macroglobulinemia cells exhibit high levels of Nampt compared with normal B cells. Loss of function studies suggested a potential oncogenic role of Nampt in Waldenström macroglobulinemia cells, and BTK-inhibitor ibrutinib and FK866 resulted in a significant and synergistic anti-Waldenström macroglobulinemia cell death, regardless of MYD88 and CXCR4 mutational status. Cell death was associated with: (i) activation of caspase-3, PARP and downregulation of Mcl-1, (ii) enhanced intracellular ATP and NAD+ depletion, (iii) inhibition of NF-κB signaling, and (iv) inhibition of multiple prosurvival signaling pathways. In a murine xenograft Waldenström macroglobulinemia model, low-dose combination FK866 and ibrutinib is well tolerated, significantly inhibits tumor growth, and prolongs host survival. CONCLUSIONS Our results show intracellular NAD+ level as crucial for proliferation and survival of Waldenström macroglobulinemia cells, and provides the mechanistic preclinical rationale for targeting Nampt, either alone or with Ibrutinib, to overcome drug resistance and improve patient outcome in Waldenström macroglobulinemia. Clin Cancer Res; 22(24); 6099-109. ©2016 AACR.
Collapse
Affiliation(s)
- Michele Cea
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Chair of Hematology, Department of Medicine (DiMI), University of Genoa, AOU, I.R.C.C.S. San Martino -IST. Genova, Italy
| | - Antonia Cagnetta
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Chair of Hematology, Department of Medicine (DiMI), University of Genoa, AOU, I.R.C.C.S. San Martino -IST. Genova, Italy
| | - Chirag Acharya
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Prakrati Acharya
- Mount Auburn Hospital, Harvard Medical School, Cambrige, MA 02138, USA
| | - Yu-Tzu Tai
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Guang Yang
- Bing Center for Waldenstrom's Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Davide Lovera
- Chair of Hematology, Department of Medicine (DiMI), University of Genoa, AOU, I.R.C.C.S. San Martino -IST. Genova, Italy
| | - Debora Soncini
- Chair of Hematology, Department of Medicine (DiMI), University of Genoa, AOU, I.R.C.C.S. San Martino -IST. Genova, Italy
| | - Maurizio Miglino
- Chair of Hematology, Department of Medicine (DiMI), University of Genoa, AOU, I.R.C.C.S. San Martino -IST. Genova, Italy
| | | | - Luca Mastracci
- Department of Surgical and Diagnostic Sciences (DISC), Pathology Unit, University of Genoa and IRCCS AUO S. Martino-IST, Genoa, Italy
| | - Alessio Nencioni
- Chair of Hematology, Department of Medicine (DiMI), University of Genoa, AOU, I.R.C.C.S. San Martino -IST. Genova, Italy
| | - Fabrizio Montecucco
- Chair of Hematology, Department of Medicine (DiMI), University of Genoa, AOU, I.R.C.C.S. San Martino -IST. Genova, Italy
| | - Alberto Ballestrero
- Chair of Hematology, Department of Medicine (DiMI), University of Genoa, AOU, I.R.C.C.S. San Martino -IST. Genova, Italy
| | - Teru Hideshima
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Dharminder Chauhan
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Marco Gobbi
- Chair of Hematology, Department of Medicine (DiMI), University of Genoa, AOU, I.R.C.C.S. San Martino -IST. Genova, Italy
| | - Roberto M. Lemoli
- Chair of Hematology, Department of Medicine (DiMI), University of Genoa, AOU, I.R.C.C.S. San Martino -IST. Genova, Italy
| | - Nikhil Munshi
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Steven P. Treon
- Bing Center for Waldenstrom's Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Kenneth C. Anderson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
50
|
Kennedy BE, Sharif T, Martell E, Dai C, Kim Y, Lee PWK, Gujar SA. NAD + salvage pathway in cancer metabolism and therapy. Pharmacol Res 2016; 114:274-283. [PMID: 27816507 DOI: 10.1016/j.phrs.2016.10.027] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 10/30/2016] [Indexed: 12/22/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential coenzyme for various physiological processes including energy metabolism, DNA repair, cell growth, and cell death. Many of these pathways are typically dysregulated in cancer cells, making NAD+ an intriguing target for cancer therapeutics. NAD+ is mainly synthesized by the NAD+ salvage pathway in cancer cells, and not surprisingly, the pharmacological targeting of the NAD+ salvage pathway causes cancer cell cytotoxicity in vitro and in vivo. Several studies have described the precise consequences of NAD+ depletion on cancer biology, and have demonstrated that NAD+ depletion results in depletion of energy levels through lowered rates of glycolysis, reduced citric acid cycle activity, and decreased oxidative phosphorylation. Additionally, depletion of NAD+ causes sensitization of cancer cells to oxidative damage by disruption of the anti-oxidant defense system, decreased cell proliferation, and initiation of cell death through manipulation of cell signaling pathways (e.g., SIRT1 and p53). Recently, studies have explored the effect of well-known cancer therapeutics in combination with pharmacological depletion of NAD+ levels, and found in many cases a synergistic effect on cancer cell cytotoxicity. In this context, we will discuss the effects of NAD+ salvage pathway inhibition on cancer cell biology and provide insight on this pathway as a novel anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Barry E Kennedy
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Tanveer Sharif
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Emma Martell
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Cathleen Dai
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Youra Kim
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Patrick W K Lee
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Shashi A Gujar
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pathology, Dalhousie University, Halifax, NS, Canada; Centre for Innovative and Collaborative Health Systems Research, IWK Health Centre, Halifax, NS, Canada.
| |
Collapse
|