1
|
Lin CCA, Chica-Parrado MR, Unni N, Jaeger E, Fang YV, Guo L, Napolitano F, Luna P, Harris M, Chao C, Xu L, Arteaga CL, Hanker AB. ESR1 Y537S and D538G Mutations Drive Resistance to CDK4/6 Inhibitors in Estrogen Receptor-Positive Breast Cancer. Clin Cancer Res 2025; 31:1667-1675. [PMID: 39992682 PMCID: PMC12045714 DOI: 10.1158/1078-0432.ccr-24-2307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/02/2024] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
PURPOSE Breast cancers with ESR1 mutations are resistant to antiestrogen therapy. In this study, we aimed to investigate the association of ESR1 mutations with resistance to CDK4/6 inhibitors (CDK4/6i) using real-world data analysis and experimental validation. EXPERIMENTAL DESIGN A total of 3,958 patients with estrogen receptor-positive metastatic breast cancer with DNA sequencing data were analyzed. Breast tumor DNA and ctDNA were sequenced using the Tempus xT tumor assay and Tempus xF liquid biopsy, respectively. Patients were stratified into either treated with CDK4/6i (tumor tissue: 1,070; ctDNA: 1,885) or CDK4/6i naïve (tumor tissue: 750; ctDNA: 253). Engineered MCF7 cells carrying ESR1Y537S or ESR1D538G knock-in mutations were used to study antitumor efficacy of the CDK4/6i palbociclib in vitro and in vivo. RESULTS In both xF and xT assays, ESR1 mutations were the only somatic alterations significantly more frequent in patients who received CDK4/6i compared with those who did not. Knock-in of ESR1Y537S or ESR1D538G in MCF7 cells resulted in upregulation of cell cycle-related gene signatures upon treatment with CDK4/6i ± antiestrogen compared with cells with nonmutant ESR1. MCF7 xenografts harboring ESR1Y537S and ESR1D538G mutations established in nude mice were resistant to palbociclib. CONCLUSIONS We report herein real-world and preclinical evidence that ESR1 mutations, particularly Y537S and D538G, can drive resistance to CDK4/6i.
Collapse
Affiliation(s)
- Chang-Ching A. Lin
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Nisha Unni
- Division of Hematology-Oncology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Yisheng V. Fang
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lei Guo
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| | - Fabiana Napolitano
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Pamela Luna
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | | | | | - Lin Xu
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| | - Carlos L. Arteaga
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ariella B. Hanker
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
2
|
Young KS, Hancock GR, Fink EC, Zigrossi A, Flowers B, Cooper DA, Nguyen VT, Martinez MC, Mon KS, Bosland M, Zak DR, Runde AP, Sharifi MN, Kastrati I, Minh DDL, Kregel S, Fanning SW. Targeting unique ligand binding domain structural features downregulates DKK1 in Y537S ESR1 mutant breast cancer cells. Breast Cancer Res 2025; 27:10. [PMID: 39825366 PMCID: PMC11742495 DOI: 10.1186/s13058-024-01945-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/08/2024] [Indexed: 01/20/2025] Open
Abstract
Resistance to endocrine therapies remains a major clinical hurdle in breast cancer. Mutations to estrogen receptor alpha (ERα) arise after continued therapeutic pressure. Next generation selective estrogen receptor modulators and degraders/downregulators (SERMs and SERDs) show clinical efficacy, but responses are often non-durable. A tyrosine to serine point mutation at position 537 in the ERα ligand binding domain (LBD) is among the most common and most pathogenic alteration in this setting. It enables endocrine therapy resistance by superceding intrinsic structural-energetic gatekeepers of ER hormone-dependence, it enhances metastatic burden by enabling neomorphic ER-dependent transcriptional programs, and it resists SERM and SERD inhibiton by reducing their binding affinities and abilities to antagonize transcriptional coregulator binding. However, a subset of SERMs and SERDs can achieve efficacy by adopting poses that force the mutation to engage in a new interaction that favors the therapeutic receptor antagonist conformation. We previously described a chemically unconventional SERM, T6I-29, that demonstrates significant anti-proliferative activities in Y537S ERα breast cancer cells. Here, we use a comprehensive suite of structural-biochemical, in vitro, and in vivo approaches to better T6I-29's activities in breast cancer cells harboring Y537S ERα. RNA sequencing in cells treated with T6I-29 reveals a neomorphic downregulation of DKK1, a secreted glycoprotein known to play oncogenic roles in other cancers. Importantly, we find that DKK1 is significantly enriched in ER + breast cancer plasma compared to healthy controls. This study shows how new SERMs and SERDs can identify new therapeutic pathways in endocrine-resistant ER + breast cancers.
Collapse
Affiliation(s)
- K S Young
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 50153, USA
| | - G R Hancock
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 50153, USA
| | - E C Fink
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 50153, USA
| | - A Zigrossi
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 50153, USA
| | - B Flowers
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 50153, USA
| | - D A Cooper
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - V T Nguyen
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - M C Martinez
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 50153, USA
| | - K S Mon
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 50153, USA
| | - M Bosland
- Department of Pathology, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - D R Zak
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 50153, USA
| | - A P Runde
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 50153, USA
| | - M N Sharifi
- Department of Medicine, University of Wisconsin, Madison, WI, 53705, USA
| | - I Kastrati
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 50153, USA
| | - D D L Minh
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - S Kregel
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 50153, USA
| | - Sean W Fanning
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 50153, USA.
| |
Collapse
|
3
|
McSwiggen DT, Liu H, Tan R, Agramunt Puig S, Akella LB, Berman R, Bretan M, Chen H, Darzacq X, Ford K, Godbey R, Gonzalez E, Hanuka A, Heckert A, Ho JJ, Johnson SL, Kelso R, Klammer A, Krishnamurthy R, Li J, Lin K, Margolin B, McNamara P, Meyer L, Pierce SE, Sule A, Stashko C, Tang Y, Anderson DJ, Beck HP. A high-throughput platform for single-molecule tracking identifies drug interaction and cellular mechanisms. eLife 2025; 12:RP93183. [PMID: 39786807 PMCID: PMC11717362 DOI: 10.7554/elife.93183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
The regulation of cell physiology depends largely upon interactions of functionally distinct proteins and cellular components. These interactions may be transient or long-lived, but often affect protein motion. Measurement of protein dynamics within a cellular environment, particularly while perturbing protein function with small molecules, may enable dissection of key interactions and facilitate drug discovery; however, current approaches are limited by throughput with respect to data acquisition and analysis. As a result, studies using super-resolution imaging are typically drawing conclusions from tens of cells and a few experimental conditions tested. We addressed these limitations by developing a high-throughput single-molecule tracking (htSMT) platform for pharmacologic dissection of protein dynamics in living cells at an unprecedented scale (capable of imaging >106 cells/day and screening >104 compounds). We applied htSMT to measure the cellular dynamics of fluorescently tagged estrogen receptor (ER) and screened a diverse library to identify small molecules that perturbed ER function in real time. With this one experimental modality, we determined the potency, pathway selectivity, target engagement, and mechanism of action for identified hits. Kinetic htSMT experiments were capable of distinguishing between on-target and on-pathway modulators of ER signaling. Integrated pathway analysis recapitulated the network of known ER interaction partners and suggested potentially novel, kinase-mediated regulatory mechanisms. The sensitivity of htSMT revealed a new correlation between ER dynamics and the ability of ER antagonists to suppress cancer cell growth. Therefore, measuring protein motion at scale is a powerful method to investigate dynamic interactions among proteins and may facilitate the identification and characterization of novel therapeutics.
Collapse
Affiliation(s)
| | - Helen Liu
- Eikon Therapeutics IncHaywardUnited States
| | | | | | | | | | | | | | - Xavier Darzacq
- Eikon Therapeutics IncHaywardUnited States
- University of California, BerkeleyBerkeleyUnited States
| | | | | | | | - Adi Hanuka
- Eikon Therapeutics IncHaywardUnited States
| | | | | | | | - Reed Kelso
- Eikon Therapeutics IncHaywardUnited States
| | | | | | - Jifu Li
- Eikon Therapeutics IncHaywardUnited States
| | - Kevin Lin
- Eikon Therapeutics IncHaywardUnited States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Pathak N, Oliveira M. New Oral Selective Estrogen Receptor Degraders Redefine Management of Estrogen Receptor-Positive Breast Cancer. Annu Rev Med 2025; 76:243-255. [PMID: 39869433 DOI: 10.1146/annurev-med-052423-122001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Oral selective estrogen receptor degraders (SERDs) are pure estrogen receptor antagonists that have the potential to overcome common resistance mechanisms to endocrine therapy in estrogen receptor-positive breast cancer. There are currently five oral SERDs in published and ongoing clinical trials-elacestrant, camizestrant, giredestrant, imlunestrant, and amcenestrant-with more in development. They offer a reasonably well-tolerated oral therapy option with low discontinuation rates in studies. This review summarizes the currently available literature on this new class of drugs.
Collapse
Affiliation(s)
- Neha Pathak
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Center, University of Toronto, Toronto, Ontario, Canada
| | - Mafalda Oliveira
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus and Breast Cancer Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain;
| |
Collapse
|
5
|
Chen A, Kim BJ, Mitra A, Vollert CT, Lei JT, Fandino D, Anurag M, Holt MV, Gou X, Pilcher JB, Goetz MP, Northfelt DW, Hilsenbeck SG, Marshall CG, Hyer ML, Papp R, Yin SY, De Angelis C, Schiff R, Fuqua SAW, Ma CX, Foulds CE, Ellis MJ. PKMYT1 Is a Marker of Treatment Response and a Therapeutic Target for CDK4/6 Inhibitor-Resistance in ER+ Breast Cancer. Mol Cancer Ther 2024; 23:1494-1510. [PMID: 38781103 PMCID: PMC11443213 DOI: 10.1158/1535-7163.mct-23-0564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/25/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Endocrine therapies (ET) with cyclin-dependent kinase 4/6 (CDK4/6) inhibition are the standard treatment for estrogen receptor-α-positive (ER+) breast cancer, however drug resistance is common. In this study, proteogenomic analyses of patient-derived xenografts (PDXs) from patients with 22 ER+ breast cancer demonstrated that protein kinase, membrane-associated tyrosine/threonine one (PKMYT1), a WEE1 homolog, is estradiol (E2) regulated in E2-dependent PDXs and constitutively expressed when growth is E2-independent. In clinical samples, high PKMYT1 mRNA levels associated with resistance to both ET and CDK4/6 inhibition. The PKMYT1 inhibitor lunresertib (RP-6306) with gemcitabine selectively and synergistically reduced the viability of ET and palbociclib-resistant ER+ breast cancer cells without functional p53. In vitro the combination increased DNA damage and apoptosis. In palbociclib-resistant, TP53 mutant PDX-derived organoids and PDXs, RP-6306 with low-dose gemcitabine induced greater tumor volume reduction compared to treatment with either single agent. Our study demonstrates the clinical potential of RP-6306 in combination with gemcitabine for ET and CDK4/6 inhibitor resistant TP53 mutant ER+ breast cancer.
Collapse
Affiliation(s)
- Anran Chen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, Houston, Texas
- Repare Therapeutics, Cambridge, Massachusetts
| | - Beom-Jun Kim
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Aparna Mitra
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Craig T Vollert
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Employee of Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana
| | - Jonathan T Lei
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Diana Fandino
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Meenakshi Anurag
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Matthew V Holt
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Xuxu Gou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Jacob B Pilcher
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | | | - Donald W Northfelt
- Division of Hematology and Medical Oncology at Mayo Clinic, Phoenix, Arizona
| | - Susan G Hilsenbeck
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | | | - Marc L Hyer
- Repare Therapeutics, Cambridge, Massachusetts
| | - Robert Papp
- Repare Therapeutics, Saint-Laurent, Quebec, Canada
| | - Shou-Yun Yin
- Repare Therapeutics, Saint-Laurent, Quebec, Canada
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Rachel Schiff
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Suzanne A W Fuqua
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Cynthia X Ma
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Charles E Foulds
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
6
|
Gough SM, Flanagan JJ, Teh J, Andreoli M, Rousseau E, Pannone M, Bookbinder M, Willard R, Davenport K, Bortolon E, Cadelina G, Gordon D, Pizzano J, Macaluso J, Soto L, Corradi J, Digianantonio K, Drulyte I, Morgan A, Quinn C, Békés M, Ferraro C, Chen X, Wang G, Dong H, Wang J, Langley DR, Houston J, Gedrich R, Taylor IC. Oral Estrogen Receptor PROTAC Vepdegestrant (ARV-471) Is Highly Efficacious as Monotherapy and in Combination with CDK4/6 or PI3K/mTOR Pathway Inhibitors in Preclinical ER+ Breast Cancer Models. Clin Cancer Res 2024; 30:3549-3563. [PMID: 38819400 PMCID: PMC11325148 DOI: 10.1158/1078-0432.ccr-23-3465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/11/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
PURPOSE Estrogen receptor (ER) alpha signaling is a known driver of ER-positive (ER+)/human epidermal growth factor receptor 2 negative (HER2-) breast cancer. Combining endocrine therapy (ET) such as fulvestrant with CDK4/6, mTOR, or PI3K inhibitors has become a central strategy in the treatment of ER+ advanced breast cancer. However, suboptimal ER inhibition and resistance resulting from the ESR1 mutation dictates that new therapies are needed. EXPERIMENTAL DESIGN A medicinal chemistry campaign identified vepdegestrant (ARV-471), a selective, orally bioavailable, and potent small molecule PROteolysis-TArgeting Chimera (PROTAC) degrader of ER. We used biochemical and intracellular target engagement assays to demonstrate the mechanism of action of vepdegestrant, and ESR1 wild-type (WT) and mutant ER+ preclinical breast cancer models to demonstrate ER degradation-mediated tumor growth inhibition (TGI). RESULTS Vepdegestrant induced ≥90% degradation of wild-type and mutant ER, inhibited ER-dependent breast cancer cell line proliferation in vitro, and achieved substantial TGI (87%-123%) in MCF7 orthotopic xenograft models, better than those of the ET agent fulvestrant (31%-80% TGI). In the hormone independent (HI) mutant ER Y537S patient-derived xenograft (PDX) breast cancer model ST941/HI, vepdegestrant achieved tumor regression and was similarly efficacious in the ST941/HI/PBR palbociclib-resistant model (102% TGI). Vepdegestrant-induced robust tumor regressions in combination with each of the CDK4/6 inhibitors palbociclib, abemaciclib, and ribociclib; the mTOR inhibitor everolimus; and the PI3K inhibitors alpelisib and inavolisib. CONCLUSIONS Vepdegestrant achieved greater ER degradation in vivo compared with fulvestrant, which correlated with improved TGI, suggesting vepdegestrant could be a more effective backbone ET for patients with ER+/HER2- breast cancer.
Collapse
Affiliation(s)
| | | | - Jessica Teh
- Arvinas Operations, Inc., New Haven, Connecticut.
| | | | | | | | | | - Ryan Willard
- Arvinas Operations, Inc., New Haven, Connecticut.
| | | | | | | | | | | | | | - Leofal Soto
- Arvinas Operations, Inc., New Haven, Connecticut.
| | - John Corradi
- Arvinas Operations, Inc., New Haven, Connecticut.
| | | | - Ieva Drulyte
- Thermo Fisher Scientific, Materials and Structural Analysis, Eindhoven, Netherlands.
| | | | - Connor Quinn
- Arvinas Operations, Inc., New Haven, Connecticut.
| | - Miklós Békés
- Arvinas Operations, Inc., New Haven, Connecticut.
| | | | - Xin Chen
- Arvinas Operations, Inc., New Haven, Connecticut.
| | - Gan Wang
- Arvinas Operations, Inc., New Haven, Connecticut.
| | - Hanqing Dong
- Arvinas Operations, Inc., New Haven, Connecticut.
| | - Jing Wang
- Arvinas Operations, Inc., New Haven, Connecticut.
| | | | - John Houston
- Arvinas Operations, Inc., New Haven, Connecticut.
| | | | | |
Collapse
|
7
|
Zhang H, Lin J, Zheng S, Ma L, Pang Z, Yin H, Meng C, Wang Y, Han Q, Zhang X, Li Z, Cao L, Liu L, Fei T, Gao D, Yang L, Peng X, Ding C, Wang S, Sheng R. CDKL3 is a targetable regulator of cell cycle progression in cancers. J Clin Invest 2024; 134:e178428. [PMID: 38963708 PMCID: PMC11324297 DOI: 10.1172/jci178428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
Cell cycle regulation is largely abnormal in cancers. Molecular understanding and therapeutic targeting of the aberrant cell cycle are essential. Here, we identified that an underappreciated serine/threonine kinase, cyclin-dependent kinase-like 3 (CDKL3), crucially drives rapid cell cycle progression and cell growth in cancers. With regard to mechanism, CDKL3 localizes in the nucleus and associates with specific cyclin to directly phosphorylate retinoblastoma (Rb) for quiescence exit. In parallel, CDKL3 prevents the ubiquitin-proteasomal degradation of cyclin-dependent kinase 4 (CDK4) by direct phosphorylation on T172 to sustain G1 phase advancement. The crucial function of CDKL3 in cancers was demonstrated both in vitro and in vivo. We also designed, synthesized, and characterized a first-in-class CDKL3-specific inhibitor, HZ1. HZ1 exhibits greater potency than CDK4/6 inhibitor in pan-cancer treatment by causing cell cycle arrest and overcomes acquired resistance to CDK4/6 inhibitor. In particular, CDKL3 has significant clinical relevance in colon cancer, and the effectiveness of HZ1 was demonstrated by murine and patient-derived cancer models. Collectively, this work presents an integrated paradigm of cancer cell cycle regulation and suggests CDKL3 targeting as a feasible approach in cancer treatment.
Collapse
Affiliation(s)
- Haijiao Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Jiahui Lin
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shaoqin Zheng
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Lanjing Ma
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zhongqiu Pang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Hongyi Yin
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Chengcheng Meng
- Department of Pathology, the Fourth People’s Hospital of Shenyang, Shenyang, China
| | - Yinuo Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Qing Han
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xi Zhang
- College of Sciences, Northeastern University, Shenyang, China
| | - Zexu Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Liu Cao
- College of Basic Medical Science, China Medical University, Shenyang, China
| | - Lijun Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Teng Fei
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Daming Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Liang Yang
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Xueqiang Peng
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shixue Wang
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Ren Sheng
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
8
|
Young K, Hancock G, Fink E, Zigrossi A, Flowers B, Cooper D, Nguyen V, Martinez M, Mon K, Bosland M, Zak D, Runde A, Sharifi M, Kastrati I, Minh D, Kregel S, Fanning S. Targeting Unique Ligand Binding Domain Structural Features Downregulates DKK1 in Y537S ESR1 Mutant Breast Cancer Cells. RESEARCH SQUARE 2024:rs.3.rs-4542467. [PMID: 38978585 PMCID: PMC11230492 DOI: 10.21203/rs.3.rs-4542467/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Resistance to endocrine therapies remains a major clinical hurdle in breast cancer. Mutations to estrogen receptor alpha (ERα) arise after continued therapeutic pressure. Next generation selective estrogen receptor modulators and degraders/downregulators (SERMs and SERDs) show clinical efficacy, but responses are often non-durable. A tyrosine to serine point mutation at position 537 in the ERα ligand binding domain (LBD) is among the most common and most pathogenic alteration in this setting. It enables endocrine therapy resistance by superceding intrinsic structural-energetic gatekeepers of ER hormone-dependence, it enhances metastatic burden by enabling neomorphic ER-dependent transcriptional programs, and it resists SERM and SERD inhibiton by reducing their binding affinities and abilities to antagonize transcriptional coregulator binding. However, a subset of SERMs and SERDs can achieve efficacy by adopting poses that force the mutation to engage in a new interaction that favors the therapeutic receptor antagonist conformation. We previously described a chemically unconventional SERM, T6I-29, that demonstrates significant anti-proliferative activities in Y537S ERα breast cancer cells. Here, we use a comprehensive suite of structural-biochemical, in vitro, and in vivo approaches to better T6I-29's activities in breast cancer cells harboring Y537S ERα. RNA sequencing in cells treated with T6I-29 reveals a neomorphic downregulation of DKK1, a secreted glycoprotein known to play oncogenic roles in other cancers. Importantly, we find that DKK1 is significantly enriched in ER+ breast cancer plasma compared to healthy controls. This study shows how new SERMs and SERDs can identify new therapeutic pathways in endocrine-resistant ER+ breast cancers.
Collapse
Affiliation(s)
- K.S. Young
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - G.R. Hancock
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - E. Fink
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - A. Zigrossi
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - B. Flowers
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - D.A. Cooper
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616
| | - V.T. Nguyen
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616
| | - M. Martinez
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - K.S. Mon
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - M. Bosland
- Department of Pathology, University of Illinois Chicago, Chicago, IL 60607
| | - D. Zak
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - A. Runde
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - M.N. Sharifi
- Department of Medicine, University of Wisconsin, Madison, WI 53705
| | - I. Kastrati
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - D.D.L. Minh
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616
| | - S. Kregel
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - S.W. Fanning
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| |
Collapse
|
9
|
Young K, Hancock G, Fink E, Zigrossi A, Flowers B, Cooper D, Nguyen V, Martinez M, Mon K, Bosland M, Zak D, Runde A, Sharifi M, Kastrati I, Minh D, Kregel S, Fanning S. Targeting Unique Ligand Binding Domain Structural Features Downregulates DKK1 in Y537S ESR1 Mutant Breast Cancer Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596307. [PMID: 38854123 PMCID: PMC11160638 DOI: 10.1101/2024.05.28.596307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Resistance to endocrine therapies remains a major clinical hurdle in breast cancer. Mutations to estrogen receptor alpha (ERα) arise after continued therapeutic pressure. Next generation selective estrogen receptor modulators and degraders/downregulators (SERMs and SERDs) show clinical efficacy, but responses are often non-durable. A tyrosine to serine point mutation at position 537 in the ERα ligand binding domain (LBD) is among the most common and most pathogenic alteration in this setting. It enables endocrine therapy resistance by superceding intrinsic structural-energetic gatekeepers of ER hormone-dependence, it enhances metastatic burden by enabling neomorphic ER-dependent transcriptional programs, and it resists SERM and SERD inhibiton by reducing their binding affinities and abilities to antagonize transcriptional coregulator binding. However, a subset of SERMs and SERDs can achieve efficacy by adopting poses that force the mutation to engage in a new interaction that favors the therapeutic receptor antagonist conformation. We previously described a chemically unconventional SERM, T6I-29, that demonstrates significant anti-proliferative activities in Y537S ERα breast cancer cells. Here, we use a comprehensive suite of structural-biochemical, in vitro, and in vivo approaches to better T6I-29's activities in breast cancer cells harboring Y537S ERα. RNA sequencing in cells treated with T6I-29 reveals a neomorphic downregulation of DKK1, a secreted glycoprotein known to play oncogenic roles in other cancers. Importantly, we find that DKK1 is significantly enriched in ER+ breast cancer plasma compared to healthy controls. This study shows how new SERMs and SERDs can identify new therapeutic pathways in endocrine-resistant ER+ breast cancers.
Collapse
Affiliation(s)
- K.S. Young
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - G.R. Hancock
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - E. Fink
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - A. Zigrossi
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - B. Flowers
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - D.A. Cooper
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616
| | - V.T. Nguyen
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616
| | - M. Martinez
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - K.S. Mon
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - M. Bosland
- Department of Pathology, University of Illinois Chicago, Chicago, IL 60607
| | - D. Zak
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - A. Runde
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - M.N. Sharifi
- Department of Medicine, University of Wisconsin, Madison, WI 53705
| | - I. Kastrati
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - D.D.L. Minh
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616
| | - S. Kregel
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| | - S.W. Fanning
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 50153
| |
Collapse
|
10
|
Keenan JC, Medford AJ, Dai CS, Wander SA, Spring LM, Bardia A. Novel oral selective estrogen receptor degraders (SERDs) to target hormone receptor positive breast cancer: elacestrant as the poster-child. Expert Rev Anticancer Ther 2024; 24:397-405. [PMID: 38642015 DOI: 10.1080/14737140.2024.2346188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
INTRODUCTION Estrogen receptor positive (ER+) breast cancer is the most common breast cancer subtype, and therapeutic management relies primarily on inhibiting ER signaling. In the metastatic setting, ER signaling is typically targeted by selective estrogen receptor degraders (SERDs) or aromatase inhibitors (AIs), the latter of which prevent estrogen production. Activating ESR1 mutations are among the most common emergent breast cancer mutations and confer resistance to AIs. AREAS COVERED Until 2023, fulvestrant was the only approved SERD; fulvestrant is administered intramuscularly, and in some cases may also have limited efficacy in the setting of certain ESR1 mutations. In 2023, the first oral SERD, elacestrant, was approved for use in ESR1-mutated, ER+/HER2- advanced breast cancer and represents a new class of therapeutic options. While the initial approval was as monotherapy, ongoing studies are evaluating elacestrant (as well as other oral SERDs) in combination with other therapies including CDK4/6 inhibitors and PI3K inhibitors, which parallels the current combination uses of fulvestrant. EXPERT OPINION Elacestrant's recent approval sheds light on the use of biomarkers such as ESR1 to gauge a tumor's endocrine sensitivity. Ongoing therapeutic and correlative biomarker studies will offer new insight and expanding treatment options for patients with advanced breast cancer.
Collapse
Affiliation(s)
- Jennifer C Keenan
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Arielle J Medford
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Charles S Dai
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Seth A Wander
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Laura M Spring
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Aditya Bardia
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| |
Collapse
|
11
|
Xiong S, Song K, Xiang H, Luo G. Dual-target inhibitors based on ERα: Novel therapeutic approaches for endocrine resistant breast cancer. Eur J Med Chem 2024; 270:116393. [PMID: 38588626 DOI: 10.1016/j.ejmech.2024.116393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
Estrogen receptor alpha (ERα), a nuclear transcription factor, is a well-validated therapeutic target for more than 70% of all breast cancers (BCs). Antagonizing ERα either by selective estrogen receptor modulators (SERMs) or selective estrogen receptor degraders (SERDs) forms the foundation of endocrine therapy and has achieved great success in the treatment of ERα positive (ERα+) BCs. Unfortunately, despite initial effectiveness, endocrine resistance eventually emerges in up to 30% of ERα+ BC patients and remains a significant medical challenge. Several mechanisms implicated in endocrine resistance have been extensively studied, including aberrantly activated growth factor receptors and downstream signaling pathways. Hence, the crosstalk between ERα and another oncogenic signaling has led to surge of interest to develop combination therapies and dual-target single agents. This review briefly introduces the synergisms between ERα and another anticancer target and summarizes the recent advances of ERα-based dual-targeting inhibitors from a medicinal chemistry perspective. Accordingly, their rational design strategies, structure-activity relationships (SARs) and biological activities are also dissected to provide some perspectives on future directions for ERα-based dual target drug discovery in BC therapy.
Collapse
Affiliation(s)
- Shuangshuang Xiong
- Jiangsu Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ke Song
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hua Xiang
- Jiangsu Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Guoshun Luo
- Jiangsu Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
12
|
Raheem F, Karikalan SA, Batalini F, El Masry A, Mina L. Metastatic ER+ Breast Cancer: Mechanisms of Resistance and Future Therapeutic Approaches. Int J Mol Sci 2023; 24:16198. [PMID: 38003387 PMCID: PMC10671474 DOI: 10.3390/ijms242216198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Endocrine therapy is the main treatment for hormone receptor-positive (HR+) breast cancer. However, advanced tumors develop resistance to endocrine therapy, rendering it ineffective as the disease progresses. There are several molecular mechanisms of primary and secondary endocrine resistance. Resistance can develop due to either alteration of the estrogen receptor pathway (e.g., ESR1 mutations) or upstream growth factors signaling pathways (e.g., PI3K/Akt/mTOR pathway). Despite progress in the development of molecularly targeted anticancer therapies, the emergence of resistance remains a major limitation and an area of unmet need. In this article, we review the mechanisms of acquired endocrine resistance in HR+ advanced breast cancer and discuss current and future investigational therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | - Aya El Masry
- Phoenix Country Day School, Paradise Valley, AZ 85253, USA
| | - Lida Mina
- Mayo Clinic, Phoenix, AZ 85054, USA; (F.R.)
| |
Collapse
|
13
|
Gou X, Kim BJ, Anurag M, Lei JT, Young MN, Holt MV, Fandino D, Vollert CT, Singh P, Alzubi MA, Malovannaya A, Dobrolecki LE, Lewis MT, Li S, Foulds CE, Ellis MJ. Kinome Reprogramming Is a Targetable Vulnerability in ESR1 Fusion-Driven Breast Cancer. Cancer Res 2023; 83:3237-3251. [PMID: 37071495 PMCID: PMC10543968 DOI: 10.1158/0008-5472.can-22-3484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/20/2023] [Accepted: 04/12/2023] [Indexed: 04/19/2023]
Abstract
Transcriptionally active ESR1 fusions (ESR1-TAF) are a potent cause of breast cancer endocrine therapy (ET) resistance. ESR1-TAFs are not directly druggable because the C-terminal estrogen/anti-estrogen-binding domain is replaced with translocated in-frame partner gene sequences that confer constitutive transactivation. To discover alternative treatments, a mass spectrometry (MS)-based kinase inhibitor pulldown assay (KIPA) was deployed to identify druggable kinases that are upregulated by diverse ESR1-TAFs. Subsequent explorations of drug sensitivity validated RET kinase as a common therapeutic vulnerability despite remarkable ESR1-TAF C-terminal sequence and structural diversity. Organoids and xenografts from a pan-ET-resistant patient-derived xenograft model that harbors the ESR1-e6>YAP1 TAF were concordantly inhibited by the selective RET inhibitor pralsetinib to a similar extent as the CDK4/6 inhibitor palbociclib. Together, these findings provide preclinical rationale for clinical evaluation of RET inhibition for the treatment of ESR1-TAF-driven ET-resistant breast cancer. SIGNIFICANCE Kinome analysis of ESR1 translocated and mutated breast tumors using drug bead-based mass spectrometry followed by drug-sensitivity studies nominates RET as a therapeutic target. See related commentary by Wu and Subbiah, p. 3159.
Collapse
Affiliation(s)
- Xuxu Gou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston Texas
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Beom-Jun Kim
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Meenakshi Anurag
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Jonathan T. Lei
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Meggie N. Young
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Matthew V. Holt
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Diana Fandino
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Craig T. Vollert
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Employee of Adrienne Helis Malvin Medical Research Foundation, New Orleans, Los Angeles
| | - Purba Singh
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Mohammad A. Alzubi
- Employee of Adrienne Helis Malvin Medical Research Foundation, New Orleans, Los Angeles
| | - Anna Malovannaya
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Lacey E. Dobrolecki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Michael T. Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Radiology, Baylor College of Medicine, Houston, Texas
| | - Shunqiang Li
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Charles E. Foulds
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Matthew J. Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
14
|
Yao J, Tao Y, Hu Z, Li J, Xue Z, Zhang Y, Lei Y. Optimization of small molecule degraders and antagonists for targeting estrogen receptor based on breast cancer: current status and future. Front Pharmacol 2023; 14:1225951. [PMID: 37808197 PMCID: PMC10551544 DOI: 10.3389/fphar.2023.1225951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
The estrogen receptor (ER) is a classical receptor protein that plays a crucial role in mediating multiple signaling pathways in various target organs. It has been shown that ER-targeting therapies inhibit breast cancer cell proliferation, enhance neuronal protection, and promote osteoclast formation. Several drugs have been designed to specifically target ER in ER-positive (ER+) breast cancer, including selective estrogen receptor modulators (SERM) such as Tamoxifen. However, the emergence of drug resistance in ER+ breast cancer and the potential side effects on the endometrium which has high ER expression has posed significant challenges in clinical practice. Recently, novel ER-targeted drugs, namely, selective estrogen receptor degrader (SERD) and selective estrogen receptor covalent antagonist (SERCA) have shown promise in addressing these concerns. This paper provides a comprehensive review of the structural functions of ER and highlights recent advancements in SERD and SERCA-related small molecule drugs, especially focusing on their structural optimization strategies and future optimization directions. Additionally, the therapeutic potential and challenges of novel SERDs and SERCAs in breast cancer and other ER-related diseases have been discussed.
Collapse
Affiliation(s)
- Jiaqi Yao
- General Practice Ward/International Medical Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Yiran Tao
- West China-California Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zelin Hu
- General Practice Ward/International Medical Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Junjie Li
- Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ziyi Xue
- Department of Statistics, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Champaign, IL, United States
| | - Ya Zhang
- West China-California Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Lei
- General Practice Ward/International Medical Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Shastry M, Hamilton E. Novel Estrogen Receptor-Targeted Agents for Breast Cancer. Curr Treat Options Oncol 2023; 24:821-844. [PMID: 37129836 DOI: 10.1007/s11864-023-01079-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2023] [Indexed: 05/03/2023]
Abstract
OPINION STATEMENT It has become clear that patients whose cancers have progressed post-CDK4/6 inhibitor therapy (CDK4/6i) are not deriving the same magnitude of benefit to subsequent standard endocrine therapy as historical studies would suggest. For example, anticipated duration of benefit to fulvestrant prior to CDK4/6i historically was ~ 5-6 months, and data from the VERONICA and EMERALD trials report less than 2 months. This has magnified our need for novel endocrine agents. Some have argued that patients post-CDK4/6i may just have more endocrine-resistant tumors and perhaps should just receive chemotherapy. While this may be appropriate for some, we do not currently have an assay that reliably predicts whose cancers remain endocrine sensitive and whose are endocrine resistant. ESR1 mutations can enrich for patients whose tumors are more likely to be heavily dependent on estrogen, but this is certainly not the whole answer and many patients without ESR1 mutations continue to derive benefit from subsequent endocrine agents. Most patients would strongly prefer the side effect profile of endocrine agents compared to chemotherapy, and thus, premature use of cytotoxic agents when subsequent ER targeting can control disease is not preferred. These novel ER targeting agents (PROTAC, SERD, SERCA, CERAN) hold great promise to not only outperform standard agents like fulvestrant, but also offer the promise of agents with a different side effect profile that may be more advantageous when compared to menopausal symptoms, hot flashes, arthralgias, and sexual side effects so commonly seen with AIs. We also are likely to see these novel agents move to earlier lines, whether that be 1st line in combination with CDK4/6i or even adjuvant disease.
Collapse
Affiliation(s)
| | - Erika Hamilton
- Sarah Cannon Research Institute, Nashville, TN, USA.
- Tennessee Oncology, 335 24th Ave North, Suite 300, Nashville, TN, 37203, USA.
| |
Collapse
|
16
|
Sun G, Wei Y, Zhou B, Wang M, Luan R, Bai Y, Li H, Wang S, Zheng D, Wang C, Wang S, Zeng K, Liu S, Lin L, He M, Zhang Q, Zhao Y. BAP18 facilitates CTCF-mediated chromatin accessible to regulate enhancer activity in breast cancer. Cell Death Differ 2023; 30:1260-1278. [PMID: 36828916 PMCID: PMC10154423 DOI: 10.1038/s41418-023-01135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/26/2023] Open
Abstract
The estrogen receptor alpha (ERα) signaling pathway is a crucial target for ERα-positive breast cancer therapeutic strategies. Co-regulators and other transcription factors cooperate for effective ERα-related enhancer activation. Recent studies demonstrate that the transcription factor CTCF is essential to participate in ERα/E2-induced enhancer transactivation. However, the mechanism of how CTCF is achieved remains unknown. Here, we provided evidence that BAP18 is required for CTCF recruitment on ERα-enriched enhancers, facilitating CTCF-mediated chromatin accessibility to promote enhancer RNAs transcription. Consistently, GRO-seq demonstrates that the enhancer activity is positively correlated with BAP18 enrichment. Furthermore, BAP18 interacts with SMARCA1/BPTF to accelerate the recruitment of CTCF to ERα-related enhancers. Interestingly, BAP18 is involved in chromatin accessibility within enhancer regions, thereby increasing enhancer transactivation and enhancer-promoter looping. BAP18 depletion increases the sensitivity of anti-estrogen and anti-enhancer treatment in MCF7 cells. Collectively, our study indicates that BAP18 coordinates with CTCF to enlarge the transactivation of ERα-related enhancers, providing a better understanding of BAP18/CTCF coupling chromatin remodeling and E-P looping in the regulation of enhancer transcription.
Collapse
Affiliation(s)
- Ge Sun
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Yuntao Wei
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang City, 110042, Liaoning Province, China
| | - Baosheng Zhou
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Manlin Wang
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Ruina Luan
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Yu Bai
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Hao Li
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Shan Wang
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Dantong Zheng
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Chunyu Wang
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Shengli Wang
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Kai Zeng
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Shuchang Liu
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Lin Lin
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Mingcong He
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Qiang Zhang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang City, 110042, Liaoning Province, China
| | - Yue Zhao
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China.
| |
Collapse
|
17
|
Crucitta S, Ruglioni M, Lorenzini G, Bargagna I, Luculli GI, Albanese I, Bilancio D, Patanè F, Fontana A, Danesi R, Del Re M. CDK4/6 Inhibitors Overcome Endocrine ESR1 Mutation-Related Resistance in Metastatic Breast Cancer Patients. Cancers (Basel) 2023; 15:cancers15041306. [PMID: 36831647 PMCID: PMC9954458 DOI: 10.3390/cancers15041306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
ESR1 mutations contribute to endocrine resistance and occur in a high percentage of hormone-receptor-positive (HR+) metastatic breast cancer (mBC) cases. Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) changed the treatment landscape of HR+ mBC, as they are able to overcome estrogen resistance. The present retrospective study investigates the clinical benefit of CDK4/6i in ESR1 mutant HR+ mBC patients treated with a CDK4/6i as first- or second-line therapy. Plasma was collected at baseline prior to CDK4/6i plus hormone therapy as a first- or second-line treatment. Circulating free DNA (cfDNA) was extracted from plasma, and ESR1 mutation analysis was performed on a ddPCR. Statistical analyses were performed to investigate the predictive power of ESR1 mutations and any association with clinical factors. A total of 42 patients with mBC treated with CDK4/6i plus endocrine therapy as first- (n = 35) or second-line (n = 7) were enrolled. Twenty-eight patients received hormonal therapy (AI or tamoxifen) in the adjuvant setting. ESR1 mutation status in blood was associated with shorter median disease-free survival (DFS) (30 vs. 110 months; p = 0.006). Multivariate analysis confirmed ESR1 mutations as independent factors of resistance in adjuvant hormone therapy. On the contrary, no difference in progression-free survival (PFS) was observed in the presence or absence of an ESR1 mutation in patients treated with CDK4/6i as first-line treatment (p = 0.29). No statistically significant correlation between the best response to CDK4/6i and ESR1 mutation was found (p = 0.46). This study indicates that the ESR1 mutation detected in cfDNA is an independent predictive factor of clinical recurrence in the adjuvant setting and that CDK4/6i can overcome ESR1-dependent resistance.
Collapse
Affiliation(s)
- Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Martina Ruglioni
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Giulia Lorenzini
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
| | - Irene Bargagna
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
| | - Giovanna Irene Luculli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Irene Albanese
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
| | - Diana Bilancio
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
| | - Francesca Patanè
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
| | - Andrea Fontana
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Correspondence:
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
18
|
Tsuji J, Li T, Grinshpun A, Coorens T, Russo D, Anderson L, Rees R, Nardone A, Patterson C, Lennon NJ, Cibulskis C, Leshchiner I, Tayob N, Tolaney SM, Tung N, McDonnell DP, Krop IE, Winer EP, Stewart C, Getz G, Jeselsohn R. Clinical Efficacy and Whole-Exome Sequencing of Liquid Biopsies in a Phase IB/II Study of Bazedoxifene and Palbociclib in Advanced Hormone Receptor-Positive Breast Cancer. Clin Cancer Res 2022; 28:5066-5078. [PMID: 36215125 PMCID: PMC9722539 DOI: 10.1158/1078-0432.ccr-22-2305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/10/2022] [Accepted: 10/06/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Sensitivity to endocrine therapy (ET) is critical for the clinical benefit from the combination of palbociclib plus ET in hormone receptor-positive/HER2-negative (HR+/HER2-) advanced breast cancer. Bazedoxifene is a third-generation selective estrogen receptor (ER) modulator and selective ER degrader with activity in preclinical models of endocrine-resistant breast cancer, including models harboring ESR1 mutations. Clinical trials in healthy women showed that bazedoxifene is well tolerated. PATIENTS AND METHODS We conducted a phase Ib/II study of bazedoxifene plus palbociclib in patients with HR+/HER2- advanced breast cancer who progressed on prior ET (N = 36; NCT02448771). RESULTS The study met its primary endpoint, with a clinical benefit rate of 33.3%, and the safety profile was consistent with what has previously been seen with palbociclib monotherapy. The median progression-free survival (PFS) was 3.6 months [95% confidence interval (CI), 2.0-7.2]. An activating PIK3CA mutation at baseline was associated with a shorter PFS (HR = 4.4; 95% CI, 1.5-13; P = 0.0026), but activating ESR1 mutations did not impact the PFS. Longitudinal plasma circulating tumor DNA whole-exome sequencing (WES; N = 68 plasma samples) provided an overview of the tumor heterogeneity and the subclonal genetic evolution, and identified actionable mutations acquired during treatment. CONCLUSIONS The combination of palbociclib and bazedoxifene has clinical efficacy and an acceptable safety profile in a heavily pretreated patient population with advanced HR+/HER2- breast cancer. These results merit continued investigation of bazedoxifene in breast cancer.
Collapse
Affiliation(s)
- Junko Tsuji
- Broad Institute of MIT and Harvard; Cambridge, Massachusetts, USA
| | - Tianyu Li
- Department of Data Science, Dana-Farber Cancer Institute; Boston, Massachusetts, USA
| | - Albert Grinshpun
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Tim Coorens
- Broad Institute of MIT and Harvard; Cambridge, Massachusetts, USA
| | - Douglas Russo
- Department of Data Science, Dana-Farber Cancer Institute; Boston, Massachusetts, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute; Boston, Massachusetts, USA
| | - Leilani Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, Massachusetts, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center; Boston, Massachusetts, USA
| | - Rebecca Rees
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, Massachusetts, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center; Boston, Massachusetts, USA
| | - Agostina Nardone
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, Massachusetts, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute; Boston, Massachusetts, USA
| | | | - Niall J. Lennon
- Broad Institute of MIT and Harvard; Cambridge, Massachusetts, USA
| | - Carrie Cibulskis
- Broad Institute of MIT and Harvard; Cambridge, Massachusetts, USA
| | | | - Nabihah Tayob
- Department of Data Science, Dana-Farber Cancer Institute; Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Sara M. Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center; Boston, Massachusetts, USA
| | - Nadine Tung
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Oncology, Beth Israel Deaconess Medical Center; Boston, Massachusetts, USA
| | - Donald P. McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine; Durham, NC, USA
| | - Ian E. Krop
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center; Boston, Massachusetts, USA
| | - Eric P. Winer
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center; Boston, Massachusetts, USA
| | - Chip Stewart
- Broad Institute of MIT and Harvard; Cambridge, Massachusetts, USA
| | - Gad Getz
- Broad Institute of MIT and Harvard; Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Massachusetts General Hospital Cancer Center and Department of Pathology, Massachusetts General Hospital; Boston, Massachusetts, USA
| | - Rinath Jeselsohn
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute; Boston, Massachusetts, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center; Boston, Massachusetts, USA
| |
Collapse
|
19
|
Pagliuca M, Donato M, D’Amato AL, Rosanova M, Russo AOM, Scafetta R, De Angelis C, Trivedi MV, André F, Arpino G, Del Mastro L, De Laurentiis M, Puglisi F, Giuliano M. New steps on an old path: Novel estrogen receptor inhibitors in breast cancer. Crit Rev Oncol Hematol 2022; 180:103861. [DOI: 10.1016/j.critrevonc.2022.103861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
|
20
|
Elacestrant demonstrates strong anti-estrogenic activity in PDX models of estrogen-receptor positive endocrine-resistant and fulvestrant-resistant breast cancer. NPJ Breast Cancer 2022; 8:125. [PMID: 36446866 PMCID: PMC9709100 DOI: 10.1038/s41523-022-00483-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/07/2022] [Indexed: 12/02/2022] Open
Abstract
The selective oestrogen receptor (ER) degrader (SERD), fulvestrant, is limited in its use for the treatment of breast cancer (BC) by its poor oral bioavailability. Comparison of the orally bioavailable investigational SERD elacestrant, versus fulvestrant, demonstrates both drugs impact tumour growth of ER+ patient-derived xenograft models harbouring several ESR1 mutations but that elacestrant is active after acquired resistance to fulvestrant. In cell line models of endocrine sensitive and resistant breast cancer both drugs impact the ER-cistrome, ER-interactome and transcription of oestrogen-regulated genes similarly, confirming the anti-oestrogenic activity of elacestrant. The addition of elacestrant to CDK4/6 inhibitors enhances the antiproliferative effect compared to monotherapy. Furthermore, elacestrant inhibits the growth of palbociclib-resistant cells. Lastly, resistance to elacestrant involves Type-I and Type-II receptor tyrosine kinases which are amenable to therapeutic targeting. Our data support the wider clinical testing of elacestrant.
Collapse
|
21
|
Molecular characterization of ESR1 variants in breast cancer. Breast Cancer Res Treat 2022; 196:279-289. [PMID: 36125660 DOI: 10.1007/s10549-022-06740-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 09/04/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Estrogen receptor 1 (ESR1) mutations and fusions typically arise in patients with hormone receptor-positive breast cancer after aromatase inhibitor therapy, whereby ESR1 is constitutively activated in a ligand-independent manner. These variants can impact treatment response. Herein, we characterize ESR1 variants among molecularly profiled advanced breast cancers. METHODS DNA next-generation sequencing (592-gene panel) data from 9860 breast cancer samples were retrospectively reviewed. Gene fusions were detected using the ArcherDx fusion assay or whole transcriptome sequencing (n = 344 and n = 4305, respectively). Statistical analyses included Chi-square and Fisher's exact tests. RESULTS An ESR1 ligand-binding domain (LBD) mutation was detected in 8.6% of tumors evaluated and a pathogenic ESR1 fusion was detected in 1.6%. Most ESR1 LBD mutations/fusions were from estrogen receptor (ER)-positive samples (20.1% and 4.9%, respectively). The most common ESR1 LBD mutations included D538G (3.3%), Y537S (2.3%), and E380Q (1.1%) mutations. Among biopsy sites, ESR1 LBD mutations were most observed in liver metastases. Pathogenic ESR1 fusions were identified in 76 samples (1.6%) with 40 unique fusion partners. Evaluating co-alterations, ESR1 variant (mutation/fusion) samples more frequently expressed androgen receptor (78.0% vs 58.6, P < 0.0001) and less frequently immune checkpoint proteins than ESR1 wild-type (PD-1 20.0% vs 53.4, P < 0.05; immune cell PD-L1 10.0% vs 30.2, P < 0.0001). CONCLUSION We have described one of the largest series of ESR1 fusions reported. ESR1 LBD mutations were commonly identified in ER-positive disease. Limited data exists regarding the clinical impact of ESR1 fusions, which could be an area for future therapeutic exploration.
Collapse
|
22
|
Ferraro E, Walsh EM, Tao JJ, Chandarlapaty S, Jhaveri K. Accelerating drug development in breast cancer: New frontiers for ER inhibition. Cancer Treat Rev 2022; 109:102432. [PMID: 35839531 DOI: 10.1016/j.ctrv.2022.102432] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/13/2022]
Abstract
The estrogen receptor (ER) is an important driver in the proliferation, tumorigenesis, and progression of breast cancers, and targeting ER signaling at different levels is a successful strategy in the control of hormone receptor positive (HR+) breast cancer. Endocrine therapy has been the treatment of choice for HR+ breast cancer in the early and advanced stages with multiple agents, including selective estrogen receptor modulators (SERMS), selective estrogen receptor degraders (SERDs), and aromatase inhibitors (AIs), which vary in their mechanisms of action and pharmacokinetics. Combination strategies also employ cyclin dependent kinase 4 and 6 and phosphatidylinositol 3-kinase to maximize the benefits of endocrine therapy. This paper reviews the clinical development of SERDs and other novel ER inhibitors, as well as combination strategies to overcome mechanisms of ER pathway escape. It also assesses the advantages of newer oral ER inhibitors with increased bioavailability, improved therapeutic index, better administration, and increased efficacy, as well as discussing future directions in the field.
Collapse
Affiliation(s)
- Emanuela Ferraro
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elaine M Walsh
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Jacqueline J Tao
- Graduate Medical Education, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarat Chandarlapaty
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Komal Jhaveri
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA; Early Drug Development Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
23
|
Messier TL, Boyd JR, Gordon JAR, Tye CE, Page NA, Toor RH, Zaidi SK, Komm BS, Frietze S, Stein JL, Lian JB, Stein GS. Epigenetic and transcriptome responsiveness to ER modulation by tissue selective estrogen complexes in breast epithelial and breast cancer cells. PLoS One 2022; 17:e0271725. [PMID: 35862394 PMCID: PMC9302754 DOI: 10.1371/journal.pone.0271725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/06/2022] [Indexed: 01/07/2023] Open
Abstract
Selective estrogen receptor modulators (SERMs), including the SERM/SERD bazedoxifene (BZA), are used to treat postmenopausal osteoporosis and may reduce breast cancer (BCa) risk. One of the most persistent unresolved questions regarding menopausal hormone therapy is compromised control of proliferation and phenotype because of short- or long-term administration of mixed-function estrogen receptor (ER) ligands. To gain insight into epigenetic effectors of the transcriptomes of hormone and BZA-treated BCa cells, we evaluated a panel of histone modifications. The impact of short-term hormone treatment and BZA on gene expression and genome-wide epigenetic profiles was examined in ERαneg mammary epithelial cells (MCF10A) and ERα+ luminal breast cancer cells (MCF7). We tested individual components and combinations of 17β-estradiol (E2), estrogen compounds (EC10) and BZA. RNA-seq for gene expression and ChIP-seq for active (H3K4me3, H3K4ac, H3K27ac) and repressive (H3K27me3) histone modifications were performed. Our results show that the combination of BZA with E2 or EC10 reduces estrogen-mediated patterns of histone modifications and gene expression in MCF-7ERα+ cells. In contrast, BZA has minimal effects on these parameters in MCF10A mammary epithelial cells. BZA-induced changes in histone modifications in MCF7 cells are characterized by altered H3K4ac patterns, with changes at distal enhancers of ERα-target genes and at promoters of non-ERα bound proliferation-related genes. Notably, the ERα target gene GREB1 is the most sensitive to BZA treatment. Our findings provide direct mechanistic-based evidence that BZA induces epigenetic changes in E2 and EC10 mediated control of ERα regulatory programs to target distinctive proliferation gene pathways that restrain the potential for breast cancer development.
Collapse
Affiliation(s)
- Terri L. Messier
- Department of Biochemistry, University of Vermont Larner College of Medicine, Burlington, VT, United States of America
- University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, United States of America
| | - Joseph R. Boyd
- Department of Biochemistry, University of Vermont Larner College of Medicine, Burlington, VT, United States of America
| | - Jonathan A. R. Gordon
- Department of Biochemistry, University of Vermont Larner College of Medicine, Burlington, VT, United States of America
- University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, United States of America
| | - Coralee E. Tye
- Department of Biochemistry, University of Vermont Larner College of Medicine, Burlington, VT, United States of America
- University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, United States of America
| | - Natalie A. Page
- Department of Biochemistry, University of Vermont Larner College of Medicine, Burlington, VT, United States of America
| | - Rabail H. Toor
- Department of Biochemistry, University of Vermont Larner College of Medicine, Burlington, VT, United States of America
| | - Sayyed K. Zaidi
- Department of Biochemistry, University of Vermont Larner College of Medicine, Burlington, VT, United States of America
- University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, United States of America
| | - Barry S. Komm
- Komm Pharma Consulting LLC, San Francisco, CA, United States of America
| | - Seth Frietze
- University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, United States of America
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States of America
| | - Janet L. Stein
- Department of Biochemistry, University of Vermont Larner College of Medicine, Burlington, VT, United States of America
- University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, United States of America
| | - Jane B. Lian
- Department of Biochemistry, University of Vermont Larner College of Medicine, Burlington, VT, United States of America
- University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, United States of America
| | - Gary S. Stein
- Department of Biochemistry, University of Vermont Larner College of Medicine, Burlington, VT, United States of America
- University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, United States of America
- Department of Surgery, University of Vermont, Burlington, VT, United States of America
| |
Collapse
|
24
|
Sanchez KG, Nangia JR, Schiff R, Rimawi MF. Elacestrant and the Promise of Oral SERDs. J Clin Oncol 2022; 40:3227-3229. [PMID: 35737918 DOI: 10.1200/jco.22.00841] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Katherine G Sanchez
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX.,Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Julie R Nangia
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX.,Department of Medicine, Baylor College of Medicine, Houston, TX.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX
| | - Rachel Schiff
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX.,Department of Medicine, Baylor College of Medicine, Houston, TX.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Mothaffar F Rimawi
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX.,Department of Medicine, Baylor College of Medicine, Houston, TX.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX
| |
Collapse
|
25
|
Abstract
Cyclin-dependent kinase 4 (CDK4) and CDK6 are critical mediators of cellular transition into S phase and are important for the initiation, growth and survival of many cancer types. Pharmacological inhibitors of CDK4/6 have rapidly become a new standard of care for patients with advanced hormone receptor-positive breast cancer. As expected, CDK4/6 inhibitors arrest sensitive tumour cells in the G1 phase of the cell cycle. However, the effects of CDK4/6 inhibition are far more wide-reaching. New insights into their mechanisms of action have triggered identification of new therapeutic opportunities, including the development of novel combination regimens, expanded application to a broader range of cancers and use as supportive care to ameliorate the toxic effects of other therapies. Exploring these new opportunities in the clinic is an urgent priority, which in many cases has not been adequately addressed. Here, we provide a framework for conceptualizing the activity of CDK4/6 inhibitors in cancer and explain how this framework might shape the future clinical development of these agents. We also discuss the biological underpinnings of CDK4/6 inhibitor resistance, an increasingly common challenge in clinical oncology.
Collapse
Affiliation(s)
- Shom Goel
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.
| | - Johann S Bergholz
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jean J Zhao
- Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
26
|
Benot-Dominguez R, Cimini A, Barone D, Giordano A, Pentimalli F. The Emerging Role of Cyclin-Dependent Kinase Inhibitors in Treating Diet-Induced Obesity: New Opportunities for Breast and Ovarian Cancers? Cancers (Basel) 2022; 14:2709. [PMID: 35681689 PMCID: PMC9179653 DOI: 10.3390/cancers14112709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
Overweight and obesity constitute the most impactful lifestyle-dependent risk factors for cancer and have been tightly linked to a higher number of tumor-related deaths nowadays. The excessive accumulation of energy can lead to an imbalance in the level of essential cellular biomolecules that may result in inflammation and cell-cycle dysregulation. Nutritional strategies and phytochemicals are gaining interest in the management of obesity-related cancers, with several ongoing and completed clinical studies that support their effectiveness. At the same time, cyclin-dependent kinases (CDKs) are becoming an important target in breast and ovarian cancer treatment, with various FDA-approved CDK4/6 inhibitors that have recently received more attention for their potential role in diet-induced obesity (DIO). Here we provide an overview of the most recent studies involving nutraceuticals and other dietary strategies affecting cell-cycle pathways, which might impact the management of breast and ovarian cancers, as well as the repurposing of already commercialized chemotherapeutic options to treat DIO.
Collapse
Affiliation(s)
- Reyes Benot-Dominguez
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (R.B.-D.); (A.G.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Daniela Barone
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, 80131 Napoli, Italy;
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (R.B.-D.); (A.G.)
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | | |
Collapse
|
27
|
Hosfield DJ, Weber S, Li NS, Suavage M, Joiner CF, Hancock GR, Sullivan EA, Ndukwe E, Han R, Cush S, Lainé M, Mader SC, Greene GL, Fanning SW. Stereospecific lasofoxifene derivatives reveal the interplay between estrogen receptor alpha stability and antagonistic activity in ESR1 mutant breast cancer cells. eLife 2022; 11:72512. [PMID: 35575456 PMCID: PMC9177151 DOI: 10.7554/elife.72512] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
Chemical manipulation of estrogen receptor alpha ligand binding domain structural mobility tunes receptor lifetime and influences breast cancer therapeutic activities. Selective estrogen receptor modulators (SERMs) extend estrogen receptor alpha (ERα) cellular lifetime/accumulation. They are antagonists in the breast but agonists in the uterine epithelium and/or in bone. Selective estrogen receptor degraders/downregulators (SERDs) reduce ERα cellular lifetime/accumulation and are pure antagonists. Activating somatic ESR1 mutations Y537S and D538G enable resistance to first-line endocrine therapies. SERDs have shown significant activities in ESR1 mutant setting while few SERMs have been studied. To understand whether chemical manipulation of ERα cellular lifetime and accumulation influences antagonistic activity, we studied a series of methylpyrollidine lasofoxifene (Laso) derivatives that maintained the drug’s antagonistic activities while uniquely tuning ERα cellular accumulation. These molecules were examined alongside a panel of antiestrogens in live cell assays of ERα cellular accumulation, lifetime, SUMOylation, and transcriptional antagonism. High-resolution x-ray crystal structures of WT and Y537S ERα ligand binding domain in complex with the methylated Laso derivatives or representative SERMs and SERDs show that molecules that favor a highly buried helix 12 antagonist conformation achieve the greatest transcriptional suppression activities in breast cancer cells harboring WT/Y537S ESR1. Together these results show that chemical reduction of ERα cellular lifetime is not necessarily the most crucial parameter for transcriptional antagonism in ESR1 mutated breast cancer cells. Importantly, our studies show how small chemical differences within a scaffold series can provide compounds with similar antagonistic activities, but with greatly different effects of the cellular lifetime of the ERα, which is crucial for achieving desired SERM or SERD profiles.
Collapse
Affiliation(s)
- David J Hosfield
- Ben May Department for Cancer Research, University of Chicago, Chicago, United States
| | - Sandra Weber
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Nan-Sheng Li
- Ben May Department for Cancer Research, University of Chicago, Chicago, United States
| | - Madline Suavage
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Carstyn F Joiner
- Department of Cancer Biology, Loyola University Chicago, Maywood, United States
| | - Govinda R Hancock
- Department of Cancer Biology, Loyola University Chicago, Maywood, United States
| | - Emily A Sullivan
- Department of Cancer Biology, Loyola University Chicago, Maywood, United States
| | - Estelle Ndukwe
- Ben May Department for Cancer Research, University of Chicago, Chicago, United States
| | - Ross Han
- Ben May Department for Cancer Research, University of Chicago, Chicago, United States
| | - Sydney Cush
- Ben May Department for Cancer Research, University of Chicago, Chicago, United States
| | - Muriel Lainé
- Ben May Department for Cancer Research, University of Chicago, Chicago, United States
| | - Sylvie C Mader
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Geoffrey L Greene
- Ben May Department for Cancer Research, University of Chicago, Chicago, United States
| | - Sean W Fanning
- Department of Cancer Biology, Loyola University Chicago, Maywood, United States
| |
Collapse
|
28
|
Human Estrogen Receptor Alpha Antagonists, Part 3: 3-D Pharmacophore and 3-D QSAR Guided Brefeldin A Hit-to-Lead Optimization toward New Breast Cancer Suppressants. Molecules 2022; 27:molecules27092823. [PMID: 35566172 PMCID: PMC9101642 DOI: 10.3390/molecules27092823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/01/2023] Open
Abstract
The estrogen receptor α (ERα) is an important biological target mediating 17β-estradiol driven breast cancer (BC) development. Aiming to develop innovative drugs against BC, either wild-type or mutated ligand-ERα complexes were used as source data to build structure-based 3-D pharmacophore and 3-D QSAR models, afterward used as tools for the virtual screening of National Cancer Institute datasets and hit-to-lead optimization. The procedure identified Brefeldin A (BFA) as hit, then structurally optimized toward twelve new derivatives whose anticancer activity was confirmed both in vitro and in vivo. Compounds as SERMs showed picomolar to low nanomolar potencies against ERα and were then investigated as antiproliferative agents against BC cell lines, as stimulators of p53 expression, as well as BC cell cycle arrest agents. Most active leads were finally profiled upon administration to female Wistar rats with pre-induced BC, after which 3DPQ-12, 3DPQ-3, 3DPQ-9, 3DPQ-4, 3DPQ-2, and 3DPQ-1 represent potential candidates for BC therapy.
Collapse
|
29
|
Cyclin-dependent kinase 4 and 6 inhibitors in combination with neoadjuvant endocrine therapy in estrogen receptor-positive early breast cancer: a systematic review and meta-analysis. Clin Exp Med 2022; 23:245-254. [PMID: 35304677 DOI: 10.1007/s10238-022-00814-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/22/2022] [Indexed: 11/03/2022]
Abstract
The combination of cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors and endocrine treatment has benefited patients with estrogen receptor-positive/human epidermal growth factor receptor 2-negative (ER + /HER2-) metastatic breast cancer; however, its effects in the neoadjuvant setting for ER + /HER2- early breast cancer (EBC) are unclear. Systematic searches were performed in PubMed, Embase, Cochrane Library, and major oncological meetings for trials of CDK4/6 inhibitors plus neoadjuvant endocrine treatment (NET) vs. NET/neoadjuvant chemotherapy (NACT) alone up to January 30, 2021. We assessed the efficacy of CDK4/6 inhibitors plus NET vs. NET/NACT alone in ER + /HER2- EBC. Six studies that included 803 patients treated with CDK4/6 inhibitors plus NET vs. NET/NACT alone were used. Compared with NET/NACT alone, CDK4/6 inhibitors plus NET increased the complete cell cycle arrest (CCCA) rate (OR, 9.00; 95% CI, 5.42-14.96; P < 0.001). Nonsignificant differences between CDK4/6 inhibitors and NET/NACT alone occurred in the preoperative endocrine prognostic index (PEPI)-0 rate (OR, 1.13; 95% CI, 0.59-2.18; P = 0.71), pathological complete response (pCR) rate (OR, 0.75; 95% CI, 0.13-4.29; P = 0.74), objective response rate (ORR) (OR, 0.70; 95% CI, 0.21-2.29; P = 0.55), and disease control rate (DCR) (OR, 1.16; 95% CI, 0.47-2.89; P = 0.74). CDK4/6 inhibitors plus NET indicated a high risk of neutropenia (OR, 56.43; 95% CI, 15.76-202.11; P < 0.001) as an adverse effect (AE) and elevated alanine aminotransferase (ALT) level (OR, 15.30; 95% CI, 2.02-115.98; P = 0.008) as grade 3/4 AEs. Compared with NET/NACT alone, CDK4/6 inhibitors plus NET increased CCCA rate in ER + /HER2- EBC patients. CDK4/6 inhibitors plus NET did not substantially improve the PEPI-0 rate, pCR rate, ORR, or DCR. The combination increased the risk of neutropenia and elevated ALT levels. In the neoadjuvant setting, addition of CDK4/6 inhibitors to NET may be an option for treating ER + /HER2- EBC.
Collapse
|
30
|
Cetin B, Wabl CA, Gumusay O. CDK4/6 inhibitors: mechanisms of resistance and potential biomarkers of responsiveness in breast cancer. Future Oncol 2022; 18:1143-1157. [PMID: 35137602 DOI: 10.2217/fon-2021-0842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hormone receptor (HR)-positive, HER2-negative tumors represent the most common form of metastatic breast cancer (MBC), and endocrine therapy has been the mainstay treatment for several decades. Recently, a novel drug class called CDK4/6 inhibitors in combination with endocrine therapy have remarkably improved the outcome of patients with HR-positive, HER2-negative MBC by targeting the cell cycle machinery and overcoming aspects of endocrine resistance. Several potential cell-cycle-specific and nonspecific mechanisms of resistance to CDK4/6 inhibitors have been reported in recent studies. This review discusses potential resistance mechanisms to CDK4/6 inhibitors, the use of biomarkers to guide treatment for HR-positive, HER2-negative MBC and possible approaches to overcome resistance to CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Bulent Cetin
- Department of Internal Medicine, Division of Medical Oncology, Suleyman Demirel University Faculty of Medicine, Isparta, 32260, Turkey
| | - Chiara A Wabl
- University of California, San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - Ozge Gumusay
- University of California Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94143, USA
| |
Collapse
|
31
|
Lloyd MR, Wander SA, Hamilton E, Razavi P, Bardia A. Next-generation selective estrogen receptor degraders and other novel endocrine therapies for management of metastatic hormone receptor-positive breast cancer: current and emerging role. Ther Adv Med Oncol 2022; 14:17588359221113694. [PMID: 35923930 PMCID: PMC9340905 DOI: 10.1177/17588359221113694] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Endocrine therapy (ET) is a pivotal strategy to manage early- and advanced-stage estrogen receptor-positive (ER+) breast cancer. In patients with metastatic breast cancer (MBC), progression of disease inevitably occurs due to the presence of acquired or intrinsic resistance mechanisms. ET resistance can be driven by ligand-independent, ER-mediated signaling that promotes tumor proliferation in the absence of hormone, or ER-independent oncogenic signaling that circumvents endocrine regulated transcription pathways. Estrogen receptor 1 (ESR1) mutations induce constitutive ER activity and upregulate ER-dependent gene transcription, provoking resistance to estrogen deprivation and aromatase inhibitor therapy. The role ESR1 mutations play in regulating response to other therapies, such as the selective estrogen receptor degrader (SERD) fulvestrant and the available CDK4/6 inhibitors, is less clear. Novel oral SERDs and other next-generation ETs are in clinical development for ER+ breast cancer as single agents and in combination with established targeted therapies. Recent results from the phase III EMERALD trial demonstrated improved outcomes with the oral SERD elacestrant compared to standard anti-estrogen therapies in ER+ MBC after prior progression on ET, and other agents have shown promise in both the laboratory and early-phase clinical trials. In this review, we will discuss the emerging data related to oral SERDs and other novel ET in managing ER+ breast cancer. As clinical data continue to mature on these next-generation ETs, important questions will emerge related to the optimal sequence of therapeutic options and the genomic and molecular landscape of resistance to these agents.
Collapse
Affiliation(s)
- Maxwell R. Lloyd
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Seth A. Wander
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Erika Hamilton
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, USA
| | - Pedram Razavi
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aditya Bardia
- Massachusetts General Hospital Cancer Center, 10 North Grove Street, Harvard Medical School, Boston, MA 02114-2621, USA
| |
Collapse
|
32
|
Knudsen ES, Schultz E, Hamilton D, Attwood K, Edge S, O’Connor T, Levine E, Witkiewicz AK. OUP accepted manuscript. Oncologist 2022; 27:646-654. [PMID: 35666660 PMCID: PMC9355808 DOI: 10.1093/oncolo/oyac089] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/18/2022] [Indexed: 11/25/2022] Open
Abstract
Background A study was initiated at Roswell Park Comprehensive Cancer Center to capture the real-world experience related to the use of CDK4/6 inhibitors (Ciclibs) for the treatment of metastatic hormone receptor-positive and HER2-negative breast cancer (HR+/HER2-). Patients and Methods A total of 222 patients were evaluated who received CDK4/6 inhibitors in the period from 2015 to 2021. Detailed clinical and demographic information was obtained on each patient and used to define clinical and demographic features associated with progression-free survival on CDK4/6 inhibitor-based therapies. Results In this real-world analysis, the majority of patients received palbociclib as the CDK4/6 inhibitor with letrozole or fulvestrant as the predominant endocrine therapies. The median progression-free survival (PFS) in the letrozole (27.6 months) and fulvestrant (17.2 months) groups were comparable to that observed in clinical trials. As expected, age at start of the treatment and menopausal status influenced endocrine therapy utilization but were not associated with PFS. Patients with recurrent disease had shorter PFS (P = .0024) than those presenting with de novo metastasis. The presence of visceral metastasis trended toward shorter PFS (P = .051). Similarly, prior endocrine therapy (P = .003) or chemotherapy (P = .036) was associated with shorter PFS. Body mass index was not associated with PFS or with dose interruption and/or modification. While the number of minorities in this analysis is limited (n = 26), these patients as a group had statistically shorter PFS on treatment (P = .002). Conclusions The real-world progression-free survival with CDK4/6 inhibitors mimics that observed in the clinical trial. A number of clinical and demographic features were associated with PFS on CDK4/6 inhibitor-based therapy. Further studies are ongoing to validate these findings incorporating additional cancer centers.
Collapse
Affiliation(s)
- Erik S Knudsen
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Emily Schultz
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Deanna Hamilton
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kris Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Stephen Edge
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Tracey O’Connor
- Department of Medical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Ellis Levine
- Department of Medical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Agnieszka K Witkiewicz
- Corresponding author: Agnieszka K. Witkiewicz, MD, Roswell Park Comprehensive Cancer Center, Elm and Carlton St, Buffalo, NY 14203, USA.
| |
Collapse
|
33
|
Mihović N, Tomašević N, Matić S, Mitrović MM, Kostić DA, Sabatino M, Antonini L, Ragno R, Mladenović M. Human Estrogen Receptor α Antagonists. Part 1: 3-D QSAR-Driven Rational Design of Innovative Coumarin-Related Antiestrogens as Breast Cancer Suppressants through Structure-Based and Ligand-Based Studies. J Chem Inf Model 2021; 61:5028-5053. [PMID: 34648283 DOI: 10.1021/acs.jcim.1c00530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The estrogen receptor α (ERα) represents a 17β-estradiol-inducible transcriptional regulator that initiates the RNA polymerase II-dependent transcriptional machinery, pointed for breast cancer (BC) development via either genomic direct or genomic indirect (i.e., tethered) pathway. To develop innovative ligands, structure-based (SB) three-dimensional (3-D) quantitative structure-activity relationship (QSAR) studies have been undertaken from structural data taken from partial agonists, mixed agonists/antagonists (selective estrogen receptor modulators (SERMs)), and full antagonists (selective ERα downregulators (SERDs)) correlated with either wild-type or mutated ERα receptors. SB and ligand-based (LB) alignments allow us to rule out guidelines for the SB/LB alignment of untested compounds. 3-D QSAR models for ERα ligands, coupled with SB/LB alignment, were revealed to be useful tools to dissect the chemical determinants for ERα-based anticancer activity as well as to predict their potency. The herein developed protocol procedure was verified through the design and potency prediction of 12 new coumarin-based SERMs, namely, 3DQ-1a to 3DQ-1e, that upon synthesis turned to be potent ERα antagonists by means of either in vitro or in vivo assays (described in the second part of this study).
Collapse
Affiliation(s)
- Nezrina Mihović
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia
| | - Nevena Tomašević
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia
| | - Sanja Matić
- Institute for Informational Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Marina M Mitrović
- Department of Biochemistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Danijela A Kostić
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - Manuela Sabatino
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Lorenzo Antonini
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Milan Mladenović
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia
| |
Collapse
|
34
|
Goldner M, Pandolfi N, Maciel D, Lima J, Sanches S, Pondé N. Combined endocrine and targeted therapy in luminal breast cancer. Expert Rev Anticancer Ther 2021; 21:1237-1251. [PMID: 34338570 DOI: 10.1080/14737140.2021.1960160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: For decades, endocrine therapy has been the cornerstone of management for luminal breast cancer. Despite the substantial benefit derived by patients from endocrine therapy, primary and secondary resistances to endocrine therapy are serious clinical issues.Areas covered: Today, in the advanced setting, three distinct classes of targeted agents mTOR, CDK 4/6, and PI3K inhibitors, are approved for use. CDK 4/6 inhibitors have improved outcomes substantially, changing the natural history of advanced luminal breast cancer. Current studies seek to bring CDK 4/6 inhibitors to the early setting. This review will cover all available data on target therapy combinations with endocrine therapy for both the early and advanced settings, including approved drugs and agents in development.Expert opinion: Combined endocrine and target therapy has changed the landscape in advanced disease. In early disease, it is possible to have a large impact, particularly in patients with higher risk of relapse. Trials like ADAPTCYCLE seek to leverage neoadjuvant data to de-escalate treatment, substituting chemotherapy for CDK 4/6 inhibitors. In advanced diseases, studies such as PADA-1 point toward a future in which ctDNA will be used to define management before clinical progression occurs.
Collapse
Affiliation(s)
- Marcelle Goldner
- Medical Oncology, AC Camargo Cancer Center, Rua Pires Da Mota, São Paulo, Brazil
| | - Natasha Pandolfi
- Medical Oncology, AC Camargo Cancer Center, Rua Pires Da Mota, São Paulo, Brazil
| | - Debora Maciel
- Medical Oncology, AC Camargo Cancer Center, Rua Pires Da Mota, São Paulo, Brazil
| | - Julianne Lima
- Fellow of the European School of Oncology, Milan, Italy
| | - Solange Sanches
- Medical Oncology, AC Camargo Cancer Center, Rua Pires Da Mota, São Paulo, Brazil
| | - Noam Pondé
- Medical Oncology, AC Camargo Cancer Center, Rua Pires Da Mota, São Paulo, Brazil
| |
Collapse
|
35
|
Brett JO, Spring LM, Bardia A, Wander SA. ESR1 mutation as an emerging clinical biomarker in metastatic hormone receptor-positive breast cancer. Breast Cancer Res 2021; 23:85. [PMID: 34392831 PMCID: PMC8365900 DOI: 10.1186/s13058-021-01462-3] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/20/2021] [Indexed: 11/10/2022] Open
Abstract
In metastatic hormone receptor-positive breast cancer, ESR1 mutations are a common cause of acquired resistance to the backbone of therapy, estrogen deprivation by aromatase inhibition. How these mutations affect tumor sensitivity to established and novel therapies are active areas of research. These therapies include estrogen receptor-targeting agents, such as selective estrogen receptor modulators, covalent antagonists, and degraders (including tamoxifen, fulvestrant, and novel agents), and combination therapies, such as endocrine therapy plus CDK4/6, PI3K, or mTORC1 inhibition. In this review, we summarize existing knowledge surrounding the mechanisms of action of ESR1 mutations and roles in resistance to aromatase inhibition. We then analyze the recent literature on how ESR1 mutations affect outcomes in estrogen receptor-targeting and combination therapies. For estrogen receptor-targeting therapies such as tamoxifen and fulvestrant, ESR1 mutations cause relative resistance in vitro but do not clearly lead to resistance in patients, making novel agents in this category promising. Regarding combination therapies, ESR1 mutations nullify any aromatase inhibitor component of the combination. Thus, combinations using endocrine alternatives to aromatase inhibition, or combinations where the non-endocrine component is efficacious as monotherapy, are still effective against ESR1 mutations. These results emphasize the importance of investigating combinatorial resistance, challenging as these efforts are. We also discuss future directions and open questions, such as studying the differences among distinct ESR1 mutations, asking how to adjust clinical decisions based on molecular surveillance testing, and developing novel therapies that are effective against ESR1 mutations.
Collapse
Affiliation(s)
- Jamie O Brett
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Laura M Spring
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA, 02114, USA
| | - Aditya Bardia
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA, 02114, USA
| | - Seth A Wander
- Harvard Medical School, Boston, MA, USA.
- Department of Medical Oncology, Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
36
|
Current and emerging estrogen receptor-targeted therapies for the treatment of breast cancer. Essays Biochem 2021; 65:985-1001. [PMID: 34328178 DOI: 10.1042/ebc20200174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022]
Abstract
Nearly 80% of all breast cancers are estrogen receptor positive (ER+) and require the activity of this transcription factor for tumor growth and survival. Thus, endocrine therapies, which target the estrogen signaling axis, have and will continue to be the cornerstone of therapy for patients diagnosed with ER+ disease. Several inhibitors of ER activity exist, including aromatase inhibitors (AIs), selective estrogen receptor modulators (SERMs), selective estrogen receptor degraders/down-regulators (SERDs), and ER proteolysis-targeting chimeras (ER PROTACs); drugs which differ in the mechanism(s) by which they inhibit this signaling pathway. Notwithstanding their significant impact on the management of this disease, resistance to existing endocrine therapies remains a major impediment to durable clinical responses. Although the mechanisms of resistance are complex and varied, dependence on ER is typically retained after progression on SERMs and AIs, suggesting that ER remains a bona fide therapeutic target. The discovery and development of orally bioavailable drugs that eliminate ER expression (SERDs and ER PROTACs) will likely aid in treating this growing patient population. All of the existing endocrine therapies were developed with the intent of inhibiting the cancer cell intrinsic actions of ER and/or with the objective of achieving extreme estrogen deprivation and most achieve that goal. A longstanding question that remains to be addressed, however, is how actions of existing interventions extrinsic to the cancer cells influence tumor biology. We believe that these issues need to be addressed in the development of strategies to develop the next generation of ER-modulators optimized for positive activities in both cancer cells and other cells within the tumor microenvironment (TME).
Collapse
|
37
|
Hernando C, Ortega-Morillo B, Tapia M, Moragón S, Martínez MT, Eroles P, Garrido-Cano I, Adam-Artigues A, Lluch A, Bermejo B, Cejalvo JM. Oral Selective Estrogen Receptor Degraders (SERDs) as a Novel Breast Cancer Therapy: Present and Future from a Clinical Perspective. Int J Mol Sci 2021; 22:ijms22157812. [PMID: 34360578 PMCID: PMC8345926 DOI: 10.3390/ijms22157812] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 01/21/2023] Open
Abstract
Estrogen receptor-positive (ER+) is the most common subtype of breast cancer. Endocrine therapy is the fundamental treatment against this entity, by directly or indirectly modifying estrogen production. Recent advances in novel compounds, such as cyclin-dependent kinase 4/6 inhibitors (CDK4/6i), or phosphoinositide 3-kinase (PI3K) inhibitors have improved progression-free survival and overall survival in these patients. However, some patients still develop endocrine resistance after or during endocrine treatment. Different underlying mechanisms have been identified as responsible for endocrine treatment resistance, where ESR1 gene mutations are one of the most studied, outstanding from others such as somatic alterations, microenvironment involvement and epigenetic changes. In this scenario, selective estrogen receptor degraders/downregulators (SERD) are one of the weapons currently in research and development against aromatase inhibitor- or tamoxifen-resistance. The first SERD to be developed and approved for ER+ breast cancer was fulvestrant, demonstrating also interesting activity in ESR1 mutated patients in the second line treatment setting. Recent investigational advances have allowed the development of new oral bioavailable SERDs. This review describes the evolution and ongoing studies in SERDs and new molecules against ER, with the hope that these novel drugs may improve our patients’ future landscape.
Collapse
Affiliation(s)
- Cristina Hernando
- Hospital Clínico de València, Instituto de Investigación INCLIVA, 46010 Valencia, Spain; (B.O.-M.); (M.T.); (S.M.); (M.T.M.); (I.G.-C.); (A.A.-A.); (A.L.); (B.B.)
- Correspondence: (C.H.); (J.M.C.)
| | - Belén Ortega-Morillo
- Hospital Clínico de València, Instituto de Investigación INCLIVA, 46010 Valencia, Spain; (B.O.-M.); (M.T.); (S.M.); (M.T.M.); (I.G.-C.); (A.A.-A.); (A.L.); (B.B.)
| | - Marta Tapia
- Hospital Clínico de València, Instituto de Investigación INCLIVA, 46010 Valencia, Spain; (B.O.-M.); (M.T.); (S.M.); (M.T.M.); (I.G.-C.); (A.A.-A.); (A.L.); (B.B.)
| | - Santiago Moragón
- Hospital Clínico de València, Instituto de Investigación INCLIVA, 46010 Valencia, Spain; (B.O.-M.); (M.T.); (S.M.); (M.T.M.); (I.G.-C.); (A.A.-A.); (A.L.); (B.B.)
| | - María Teresa Martínez
- Hospital Clínico de València, Instituto de Investigación INCLIVA, 46010 Valencia, Spain; (B.O.-M.); (M.T.); (S.M.); (M.T.M.); (I.G.-C.); (A.A.-A.); (A.L.); (B.B.)
| | - Pilar Eroles
- Hospital Clínico de València, Instituto de Investigación INCLIVA, 46010 Valencia, Spain; (B.O.-M.); (M.T.); (S.M.); (M.T.M.); (I.G.-C.); (A.A.-A.); (A.L.); (B.B.)
- Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, 28029 Madrid, Spain
- Departamento de Fisiología, Universidad de València, 46010 Valencia, Spain
| | - Iris Garrido-Cano
- Hospital Clínico de València, Instituto de Investigación INCLIVA, 46010 Valencia, Spain; (B.O.-M.); (M.T.); (S.M.); (M.T.M.); (I.G.-C.); (A.A.-A.); (A.L.); (B.B.)
| | - Anna Adam-Artigues
- Hospital Clínico de València, Instituto de Investigación INCLIVA, 46010 Valencia, Spain; (B.O.-M.); (M.T.); (S.M.); (M.T.M.); (I.G.-C.); (A.A.-A.); (A.L.); (B.B.)
| | - Ana Lluch
- Hospital Clínico de València, Instituto de Investigación INCLIVA, 46010 Valencia, Spain; (B.O.-M.); (M.T.); (S.M.); (M.T.M.); (I.G.-C.); (A.A.-A.); (A.L.); (B.B.)
- Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, 28029 Madrid, Spain
| | - Begoña Bermejo
- Hospital Clínico de València, Instituto de Investigación INCLIVA, 46010 Valencia, Spain; (B.O.-M.); (M.T.); (S.M.); (M.T.M.); (I.G.-C.); (A.A.-A.); (A.L.); (B.B.)
- Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, 28029 Madrid, Spain
| | - Juan Miguel Cejalvo
- Hospital Clínico de València, Instituto de Investigación INCLIVA, 46010 Valencia, Spain; (B.O.-M.); (M.T.); (S.M.); (M.T.M.); (I.G.-C.); (A.A.-A.); (A.L.); (B.B.)
- Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, 28029 Madrid, Spain
- Correspondence: (C.H.); (J.M.C.)
| |
Collapse
|
38
|
Punturi NB, Seker S, Devarakonda V, Mazumder A, Kalra R, Chen CH, Li S, Primeau T, Ellis MJ, Kavuri SM, Haricharan S. Mismatch repair deficiency predicts response to HER2 blockade in HER2-negative breast cancer. Nat Commun 2021; 12:2940. [PMID: 34011995 PMCID: PMC8134423 DOI: 10.1038/s41467-021-23271-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/22/2021] [Indexed: 01/02/2023] Open
Abstract
Resistance to endocrine treatment occurs in ~30% of ER+ breast cancer patients resulting in ~40,000 deaths/year in the USA. Preclinical studies strongly implicate activation of growth factor receptor, HER2 in endocrine treatment resistance. However, clinical trials of pan-HER inhibitors in ER+/HER2- patients have disappointed, likely due to a lack of predictive biomarkers. Here we demonstrate that loss of mismatch repair activates HER2 after endocrine treatment in ER+/HER2- breast cancer cells by protecting HER2 from protein trafficking. Additionally, HER2 activation is indispensable for endocrine treatment resistance in MutL- cells. Consequently, inhibiting HER2 restores sensitivity to endocrine treatment. Patient data from multiple clinical datasets supports an association between MutL loss, HER2 upregulation, and sensitivity to HER inhibitors in ER+/HER2- patients. These results provide strong rationale for MutL loss as a first-in-class predictive marker of sensitivity to combinatorial treatment with endocrine intervention and HER inhibitors in endocrine treatment-resistant ER+/HER2- breast cancer patients.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Cell Line, Tumor
- DNA Mismatch Repair/drug effects
- DNA Mismatch Repair/genetics
- Drug Resistance, Neoplasm/genetics
- Female
- Gene Knockdown Techniques
- Humans
- MCF-7 Cells
- Mice
- Mice, Nude
- Mice, SCID
- MutL Protein Homolog 1/genetics
- MutL Protein Homolog 1/metabolism
- MutL Proteins/genetics
- MutL Proteins/metabolism
- Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptors, Estrogen/metabolism
- Signal Transduction
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Nindo B Punturi
- Tumor Microenvironment and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sinem Seker
- Tumor Microenvironment and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Vaishnavi Devarakonda
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Aloran Mazumder
- Tumor Microenvironment and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Rashi Kalra
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Ching Hui Chen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Shunqiang Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Tina Primeau
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Shyam M Kavuri
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Svasti Haricharan
- Tumor Microenvironment and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
39
|
Lainé M, Fanning SW, Chang YF, Green B, Greene ME, Komm B, Kurleto JD, Phung L, Greene GL. Lasofoxifene as a potential treatment for therapy-resistant ER-positive metastatic breast cancer. Breast Cancer Res 2021; 23:54. [PMID: 33980285 PMCID: PMC8117302 DOI: 10.1186/s13058-021-01431-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022] Open
Abstract
Background Endocrine therapy remains the mainstay of treatment for estrogen receptor-positive (ER+) breast cancer. Constitutively active mutations in the ligand binding domain of ERα render tumors resistant to endocrine agents. Breast cancers with the two most common ERα mutations, Y537S and D538G, have low sensitivity to fulvestrant inhibition, a typical second-line endocrine therapy. Lasofoxifene is a selective estrogen receptor modulator with benefits on bone health and breast cancer prevention potential. This study investigated the anti-tumor activity of lasofoxifene in breast cancer xenografts expressing Y537S and D538G ERα mutants. The combination of lasofoxifene with palbociclib, a CDK4/6 inhibitor, was also evaluated. Methods Luciferase-GFP tagged MCF7 cells bearing wild-type, Y537S, or D538G ERα were injected into the mammary ducts of NSG mice (MIND model), which were subsequently treated with lasofoxifene or fulvestrant as single agents or in combination with palbociclib. Tumor growth and metastasis were monitored with in vivo and ex vivo luminescence imaging, terminal tumor weight measurements, and histological analysis. Results As a monotherapy, lasofoxifene was more effective than fulvestrant at inhibiting primary tumor growth and reducing metastases. Adding palbociclib improved the effectiveness of both lasofoxifene and fulvestrant for tumor suppression and metastasis prevention at four distal sites (lung, liver, bone, and brain), with the combination of lasofoxifene/palbociclib being generally more potent than that of fulvestrant/palbociclib. X-ray crystallography of the ERα ligand binding domain (LBD) shows that lasofoxifene stabilizes an antagonist conformation of both wild-type and Y537S LBD. The ability of lasofoxifene to promote an antagonist conformation of Y537S, combined with its long half-life and bioavailability, likely contributes to the observed potent inhibition of primary tumor growth and metastasis of MCF7 Y537S cells. Conclusions We report for the first time the anti-tumor activity of lasofoxifene in mouse models of endocrine therapy-resistant breast cancer. The results demonstrate the potential of using lasofoxifene as an effective therapy for women with advanced or metastatic ER+ breast cancers expressing the most common constitutively active ERα mutations. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-021-01431-w.
Collapse
Affiliation(s)
- Muriel Lainé
- The Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, GCIS W421C, Chicago, IL, 60637, USA
| | - Sean W Fanning
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL, USA
| | - Ya-Fang Chang
- The Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, GCIS W421C, Chicago, IL, 60637, USA
| | - Bradley Green
- The Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, GCIS W421C, Chicago, IL, 60637, USA
| | - Marianne E Greene
- The Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, GCIS W421C, Chicago, IL, 60637, USA
| | - Barry Komm
- Komm-Sandin Pharma Consulting, Newtown Square, PA, USA
| | - Justyna D Kurleto
- The Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, GCIS W421C, Chicago, IL, 60637, USA
| | - Linda Phung
- The Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, GCIS W421C, Chicago, IL, 60637, USA
| | - Geoffrey L Greene
- The Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, GCIS W421C, Chicago, IL, 60637, USA.
| |
Collapse
|
40
|
Jin G, Wang K, Liu Y, Liu X, Zhang X, Zhang H. Proteomic Level Changes on Treatment in MCF-7/DDP Breast Cancer Drug- Resistant Cells. Anticancer Agents Med Chem 2021; 20:687-699. [PMID: 32053082 PMCID: PMC7403652 DOI: 10.2174/1871520620666200213102849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/07/2019] [Accepted: 12/05/2019] [Indexed: 01/23/2023]
Abstract
Background
LCL161, a SMAC’S small molecule mimetic, can bind to a variety of IAPs and activate Caspases. We found that on its own, LCL161induces apoptosis of drug-resistant breast cancer cells by binding to a variety of IAPs and activating Caspases. However, when LCL161 is used in combination with Caspase Inhibitors (CI), its capacity to induce apoptosis of breast cancer cells is enhanced. Objective
To carry out proteomic and bioinformatics analysis of LCL161 in combination with CI. We aim to identify the key proteins and mechanisms of breast cancer drug-resistant apoptosis, thereby aiding in the breast cancer drug resistance treatment and identification of drug targeting markers. Methods
Cell culture experiments were carried out to explore the effect of LCL161 combined with CI on the proliferation of breast cancer drug-resistant cells. Proteomic analysis was carried out to determine the protein expression differences between breast cancer drug-resistant cells and LCL161 combined with CI treated cells. Bioinformatics analysis was carried out to determine its mechanism of action. Validation of proteomics results was done using Parallel Reaction Monitoring (PRM). Results
Cell culture experiments showed that LCL161 in combination with CI can significantly promote the apoptosis of breast cancer drug-resistant cells. Up-regulation of 92 proteins and down-regulation of 114 proteins protein were noted, of which 4 were selected for further validation. Conclusion
Our results show that LCL161 combined with CI can promote the apoptosis of drug-resistant breast cancer cells by down-regulation of RRM2, CDK4, and ITGB1 expression through Cancer pathways, p53 or PI3K-AKT signaling pathway. In addition, the expression of CDK4, RRM2, and CDC20 can be down-regulated by the nuclear receptor pathway to affect DNA transcription and replication, thereby promoting apoptosis of breast cancer drug-resistant cells.
Collapse
Affiliation(s)
- Gongshen Jin
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu, Medical University, 287 Changhuai Road, Bengbu, Anhui 233030, China
| | - Kangwei Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu, Medical University, 287 Changhuai Road, Bengbu, Anhui 233030, China
| | - Yonghong Liu
- First People's Hospital of Yuhang District, Hangzhou 310000, China
| | - Xianhu Liu
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu, Medical University, 287 Changhuai Road, Bengbu, Anhui 233030, China
| | - Xiaojing Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu, Medical University, 287 Changhuai Road, Bengbu, Anhui 233030, China
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu, Medical University, 287 Changhuai Road, Bengbu, Anhui 233030, China
| |
Collapse
|
41
|
Mottamal M, Kang B, Peng X, Wang G. From Pure Antagonists to Pure Degraders of the Estrogen Receptor: Evolving Strategies for the Same Target. ACS OMEGA 2021; 6:9334-9343. [PMID: 33869913 PMCID: PMC8047716 DOI: 10.1021/acsomega.0c06362] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/19/2021] [Indexed: 05/08/2023]
Abstract
Pure antiestrogens, or selective estrogen receptor degraders (SERDs), have proven to be effective in treating breast cancer that has progressed on tamoxifen and/or aromatase inhibitors. However, the only FDA-approved pure antiestrogen, fulvestrant, is limited in efficacy by its low bioavailability. The search for orally bioavailable SERDs has continued for nearly as long as the clinical history of the injection-only fulvestrant. Oral SERDs that have been developed and tested in patients ranged from nonsteroidal ER binders containing an acrylic acid or amino side chain to bifunctional proteolysis-targeting chimera (PROTAC) pure ER degraders. Structural evolution in the development of oral SERD molecules has been closely associated with quantifiable ER-degrading potency, as seen in the structural comparison analysis of acrylic acid and basic amino side-chain-bearing SERDs. Failure to improve on fulvestrant in the clinical trials by numerous acidic SERDs and early basic SERDs is blamed on tolerability and/or insufficient efficacy, which will likely be overcome by the new-generation basic SERD molecules and PROTAC ER degraders with improved oral bioavailability, low toxicity, and superior efficacy of receptor degradation.
Collapse
|
42
|
Beyond Chemotherapies: Recent Strategies in Breast Cancer Treatment. Cancers (Basel) 2020; 12:cancers12092634. [PMID: 32947780 PMCID: PMC7565588 DOI: 10.3390/cancers12092634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022] Open
Abstract
In 2018, about 2.1 million women have been diagnosed with breast cancer worldwide. Treatments include-among others-surgery, chemotherapy, radiotherapy, or endocrine therapy. The current policy of care tends rather at therapeutic de-escalation, and systemic treatment such as chemotherapies alone are not systematically considered as the best option anymore. With recent advances in the understanding of cancer biology, and as a complement to anatomic staging, some biological factors (assessed notably via gene-expression signatures) are taken into account to evaluate the benefit of a chemotherapy regimen. The first aim of this review will be to summarize when chemotherapies can be avoided or used only combined with other treatments. The second aim will focus on molecules that can be used instead of chemotherapeutic drugs or used in combination with chemotherapeutic drugs to improve treatment outcomes. These therapeutic molecules have emerged from the collaboration between fundamental and clinical research, and include molecules, such as tyrosine kinase inhibitors, CDK4/6 inhibitors, and monoclonal antibodies (such as anti-PD-L1). In the fight against cancer, new tools aiding decision making are of the utmost importance: gene-expression signatures have proven to be valuable in the clinic, notably, to know when chemotherapies can be avoided. When substitution treatments are also available, a big step can be made toward personalized medicine for the patient's benefit.
Collapse
|
43
|
Wei Y, Li H, Qu Q. miR-484 suppresses endocrine therapy-resistant cells by inhibiting KLF4-induced cancer stem cells in estrogen receptor-positive cancers. Breast Cancer 2020; 28:175-186. [PMID: 32865695 DOI: 10.1007/s12282-020-01152-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/07/2020] [Indexed: 12/26/2022]
Abstract
Endocrine therapy (mainly anti-estrogen therapy) is the mainstay of treatment for estrogen receptor (ER) positive breast cancer (BCa). However, approximately one-third of BCa patients who receive endocrine therapy may develop resistance. The detailed mechanism is still unclear. MCF7 and T-47D cells were treated with ERα antagonist tamoxifen for 2 months until they became tamoxifen-resistant. qPCR was used to detect the stem markers like CD44, OCT4 and SOX2. Flow cytometry and sphere formation were performed to test the stemness. Cell growth and invasiveness were measured by MTS assay, xenograft mouse model, and invasion assay. We found that tamoxifen resistant BCa cells acquired certain malignant phenotypes, such as higher expression of KLF4, stemness and enhanced invasiveness. Furthermore, miR-484 was found to act as a tumor suppressor and directly downregulated KLF4. KLF4-induced cancer stem cell (CSCs) contributes to anti-ER therapy resistant and is a potential target in endocrine therapy-resistant cancers.
Collapse
Affiliation(s)
- Yulei Wei
- Department of Gynecology and Obstetrics, Tianjin First Central Hospital, 24 Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Hong Li
- Department of Gynecology and Obstetrics, Tianjin First Central Hospital, 24 Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Quanxin Qu
- Department of Gynecology and Obstetrics, Tianjin First Central Hospital, 24 Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China.
| |
Collapse
|
44
|
Damodaran S, Sember QC, Arun BK. Clinical implications of breast cancer tumor genomic testing. Breast J 2020; 26:1565-1571. [PMID: 32696498 DOI: 10.1111/tbj.13966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 11/30/2022]
Abstract
One of the important applications of genetic testing is genetic testing of the tumor to identify non-inherited somatic mutations. The advent of high-throughput genomic and proteomic techniques has enabled characterization of genomic alterations and accelerated development of novel matching therapies for cancer. Consequently, mutational status has increasingly defined treatment selection for patients with solid tumors. The effectiveness of targeted therapy depends on matching with the right target; targets that are differentially expressed in tumor cells and provide growth and survival advantage. Currently, multiple targeted therapies have been approved by the Food and Drug Administration (FDA) for treatment of solid tumors including breast, lung, and melanoma, while many others are being evaluated in clinical trials. In addition to identifying actionable genomic alterations of interest, tumor genome sequencing also has the potential to detect germline mutations that has clinical implications for both the patient and their family. While targeted therapies have transformed our approach to cancer care in solid tumor patients within the past decade, lack of sustained responses and emergence of acquired resistance limit their clinical activity. In this article, we discuss tumor genome sequencing in breast cancers and their clinical implication.
Collapse
Affiliation(s)
- Senthil Damodaran
- Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Quinne C Sember
- University of Texas Health Internal Medicine, Houston, Texas
| | - Banu K Arun
- Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas.,Clinical Cancer Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
45
|
Besret L, d'Heilly S, Aubert C, Bluet G, Gruss-Leleu F, Le-Gall F, Caron A, Andrieu L, Vincent S, Shomali M, Bouaboula M, Voland C, Ming J, Roy S, Rao S, Carrez C, Jouannot E. Translational strategy using multiple nuclear imaging biomarkers to evaluate target engagement and early therapeutic efficacy of SAR439859, a novel selective estrogen receptor degrader. EJNMMI Res 2020; 10:70. [PMID: 32601772 PMCID: PMC7324464 DOI: 10.1186/s13550-020-00646-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 05/13/2020] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Preclinical in vivo nuclear imaging of mice offers an enabling perspective to evaluate drug efficacy at optimal dose and schedule. In this study, we interrogated sufficient estrogen receptor occupancy and degradation for the selective estrogen receptor degrader (SERD) compound SAR439859 using molecular imaging and histological techniques. MATERIAL AND METHODS [18F]FluoroEstradiol positron emission tomography (FES-PET), [18F]FluoroDeoxyGlucose (FDG) PET, and [18F]FluoroThymidine (FLT) PET were investigated as early pharmacodynamic, tumor metabolism, and tumor proliferation imaging biomarkers, respectively, in mice bearing subcutaneous MCF7-Y537S mutant ERα+ breast cancer model treated with the SERD agent SAR439859. ER expression and proliferation index Ki-67 were assessed by immunohistochemistry (IHC). The combination of palbociclib CDK 4/6 inhibitor with SAR439859 was tested for its potential synergistic effect on anti-tumor activity. RESULTS After repeated SAR439859 oral administration over 4 days, FES tumoral uptake (SUVmean) decreases compared to baseline by 35, 57, and 55% for the 25 mg/kg qd, 12.5 mg/kg bid and 5 mg/kg bid treatment groups, respectively. FES tumor uptake following SAR439859 treatment at different doses correlates with immunohistochemical scoring for ERα expression. No significant difference in FDG uptake is observed after SAR439859 treatments over 3 days. FLT accumulation in tumor is significantly decreased when palbociclib is combined to SAR439859 (- 64%) but not different from the group dosed with palbociclib alone (- 46%). The impact on proliferation is corroborated by Ki-67 IHC data for both groups of treatment. CONCLUSIONS In our preclinical studies, dose-dependent inhibition of FES tumoral uptake confirmed target engagement of SAR439859 to ERα. FES-PET thus appears as a relevant imaging biomarker for measuring non-invasively the impact of SAR439859 on tumor estrogen receptor occupancy. This study further validates the use of FLT-PET to directly visualize the anti-proliferative tumor effect of the palbociclib CDK 4/6 inhibitor alone and in combination with SAR439859.
Collapse
Affiliation(s)
- Laurent Besret
- Sanofi Research and Development France, 13 quai Jules Guesde, 94403, Vitry-sur-Seine, France.
| | - Sébastien d'Heilly
- Sanofi Research and Development France, 13 quai Jules Guesde, 94403, Vitry-sur-Seine, France
| | - Cathy Aubert
- Sanofi Research and Development France, 13 quai Jules Guesde, 94403, Vitry-sur-Seine, France
| | - Guillaume Bluet
- Sanofi Research and Development France, 13 quai Jules Guesde, 94403, Vitry-sur-Seine, France
| | - Florence Gruss-Leleu
- Sanofi Research and Development France, 13 quai Jules Guesde, 94403, Vitry-sur-Seine, France
| | - Françoise Le-Gall
- Sanofi Research and Development France, 13 quai Jules Guesde, 94403, Vitry-sur-Seine, France
| | - Anne Caron
- Sanofi Research and Development France, 13 quai Jules Guesde, 94403, Vitry-sur-Seine, France
| | - Laurent Andrieu
- Sanofi Research and Development France, 13 quai Jules Guesde, 94403, Vitry-sur-Seine, France
| | - Sylvie Vincent
- Present address: Takeda Pharmaceuticals, 35 Landsdowne St, Cambridge, MA, 02139, USA
| | - Maysoun Shomali
- Sanofi Research and Development USA, 640 Memorial Drive, Cambridge, MA, 02139, USA
| | - Monsif Bouaboula
- Sanofi Research and Development USA, 640 Memorial Drive, Cambridge, MA, 02139, USA
| | - Carole Voland
- Sanofi Research and Development France, 371, rue du Pr Blayac, 34184, Montpellier Cedex 4, France
| | - Jeffrey Ming
- Sanofi Research and Development USA, 55 Corporate Drive, Bridgewater, NJ, 08807, USA
| | - Sébastien Roy
- Sanofi Research and Development France, 13 quai Jules Guesde, 94403, Vitry-sur-Seine, France
| | - Srinivas Rao
- Sanofi Research and Development USA, 640 Memorial Drive, Cambridge, MA, 02139, USA
| | - Chantal Carrez
- Sanofi Research and Development France, 13 quai Jules Guesde, 94403, Vitry-sur-Seine, France
| | - Erwan Jouannot
- Sanofi Research and Development France, 13 quai Jules Guesde, 94403, Vitry-sur-Seine, France
| |
Collapse
|
46
|
Salvati A, Gigantino V, Nassa G, Mirici Cappa V, Ventola GM, Cracas DGC, Mastrocinque R, Rizzo F, Tarallo R, Weisz A, Giurato G. Global View of Candidate Therapeutic Target Genes in Hormone-Responsive Breast Cancer. Int J Mol Sci 2020; 21:ijms21114068. [PMID: 32517194 PMCID: PMC7312026 DOI: 10.3390/ijms21114068] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022] Open
Abstract
Breast cancer (BC) is a heterogeneous disease characterized by different biopathological features, differential response to therapy and substantial variability in long-term-survival. BC heterogeneity recapitulates genetic and epigenetic alterations affecting transformed cell behavior. The estrogen receptor alpha positive (ERα+) is the most common BC subtype, generally associated with a better prognosis and improved long-term survival, when compared to ERα-tumors. This is mainly due to the efficacy of endocrine therapy, that interfering with estrogen biosynthesis and actions blocks ER-mediated cell proliferation and tumor spread. Acquired resistance to endocrine therapy, however, represents a great challenge in the clinical management of ERα+ BC, causing tumor growth and recurrence irrespective of estrogen blockade. Improving overall survival in such cases requires new and effective anticancer drugs, allowing adjuvant treatments able to overcome resistance to first-line endocrine therapy. To date, several studies focus on the application of loss-of-function genome-wide screenings to identify key (hub) “fitness” genes essential for BC progression and representing candidate drug targets to overcome lack of response, or acquired resistance, to current therapies. Here, we review the biological significance of essential genes and relative functional pathways affected in ERα+ BC, most of which are strictly interconnected with each other and represent potential effective targets for novel molecular therapies.
Collapse
Affiliation(s)
- Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi (SA), Italy; (A.S.); (V.G.); (G.N.); (V.M.C.); (F.R.); (R.T.)
| | - Valerio Gigantino
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi (SA), Italy; (A.S.); (V.G.); (G.N.); (V.M.C.); (F.R.); (R.T.)
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi (SA), Italy; (A.S.); (V.G.); (G.N.); (V.M.C.); (F.R.); (R.T.)
| | - Valeria Mirici Cappa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi (SA), Italy; (A.S.); (V.G.); (G.N.); (V.M.C.); (F.R.); (R.T.)
| | | | | | | | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi (SA), Italy; (A.S.); (V.G.); (G.N.); (V.M.C.); (F.R.); (R.T.)
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi (SA), Italy; (A.S.); (V.G.); (G.N.); (V.M.C.); (F.R.); (R.T.)
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi (SA), Italy; (A.S.); (V.G.); (G.N.); (V.M.C.); (F.R.); (R.T.)
- CRGS—Genome Research Center for Health, University of Salerno Campus of Medicine, 84081 Baronissi (SA), Italy
- Correspondence: (A.W.); (G.G.); Tel.: +39-089-965043 (A.W.); +39-089-968286 (G.G.)
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi (SA), Italy; (A.S.); (V.G.); (G.N.); (V.M.C.); (F.R.); (R.T.)
- Correspondence: (A.W.); (G.G.); Tel.: +39-089-965043 (A.W.); +39-089-968286 (G.G.)
| |
Collapse
|
47
|
Andreano KJ, Baker JG, Park S, Safi R, Artham S, Oesterreich S, Jeselsohn R, Brown M, Sammons S, Wardell SE, Chang CY, Norris JD, McDonnell DP. The Dysregulated Pharmacology of Clinically Relevant ESR1 Mutants is Normalized by Ligand-activated WT Receptor. Mol Cancer Ther 2020; 19:1395-1405. [PMID: 32381587 DOI: 10.1158/1535-7163.mct-19-1148] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/25/2020] [Accepted: 04/29/2020] [Indexed: 01/21/2023]
Abstract
The estrogen receptor (ER/ESR1) is expressed in a majority of breast cancers and drugs that inhibit ER signaling are the cornerstone of breast cancer pharmacotherapy. Currently, aromatase inhibitors are the frontline endocrine interventions of choice although their durability in metastatic disease is limited by activating point mutations within the ligand-binding domain of ESR1 that permit ligand-independent activation of the receptor. It has been suggested that the most commonly occurring ESR1 mutations would likely compromise the clinical activity of selective estrogen receptor downregulators and selective estrogen receptor modulators (SERMs) when used as second-line therapies. It was unclear, however, how these mutations, which are likely coexpressed in cells with ERWT, may impact response to ER ligands in a clinically meaningful manner. To address this issue, we dissected the molecular mechanism(s) underlying ESR1-mutant pharmacology in models relevant to metastatic disease. These studies revealed that the response of ESR1 mutations to ligands was dictated primarily by the relative coexpression of ERWT in cells. Specifically, dysregulated pharmacology was only evident in cells in which the mutants were overexpressed relative to ligand-activated ERWT; a finding that highlights the role of allelism in determining ER-mutant pharmacology. Importantly, we demonstrated that the antagonist activity of the SERM, lasofoxifene, was not impacted by mutant status; a finding that has led to its clinical evaluation as a treatment for patients with advanced ER-positive breast cancer whose tumors harbor ESR1 mutations.
Collapse
Affiliation(s)
- Kaitlyn J Andreano
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Jennifer G Baker
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Sunghee Park
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Rachid Safi
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Sandeep Artham
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Womens Cancer Research Center, University of Pittsburgh Cancer Institute and Magee-Women Research Institute, Pittsburgh, Pennsylvania
| | - Rinath Jeselsohn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Sarah Sammons
- Department of Medical Oncology, Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Suzanne E Wardell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - John D Norris
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina.
| |
Collapse
|
48
|
Hanker AB, Sudhan DR, Arteaga CL. Overcoming Endocrine Resistance in Breast Cancer. Cancer Cell 2020; 37:496-513. [PMID: 32289273 PMCID: PMC7169993 DOI: 10.1016/j.ccell.2020.03.009] [Citation(s) in RCA: 546] [Impact Index Per Article: 109.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
Estrogen receptor-positive (ER+) breast cancer is the most common breast cancer subtype. Treatment of ER+ breast cancer comprises interventions that suppress estrogen production and/or target the ER directly (overall labeled as endocrine therapy). While endocrine therapy has considerably reduced recurrence and mortality from breast cancer, de novo and acquired resistance to this treatment remains a major challenge. An increasing number of mechanisms of endocrine resistance have been reported, including somatic alterations, epigenetic changes, and changes in the tumor microenvironment. Here, we review recent advances in delineating mechanisms of resistance to endocrine therapies and potential strategies to overcome such resistance.
Collapse
Affiliation(s)
- Ariella B Hanker
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Dhivya R Sudhan
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Carlos L Arteaga
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
49
|
Andreano KJ, Wardell SE, Baker JG, Desautels TK, Baldi R, Chao CA, Heetderks KA, Bae Y, Xiong R, Tonetti DA, Gutgesell LM, Zhao J, Sorrentino JA, Thompson DA, Bisi JE, Strum JC, Thatcher GRJ, Norris JD. G1T48, an oral selective estrogen receptor degrader, and the CDK4/6 inhibitor lerociclib inhibit tumor growth in animal models of endocrine-resistant breast cancer. Breast Cancer Res Treat 2020; 180:635-646. [PMID: 32130619 PMCID: PMC7103015 DOI: 10.1007/s10549-020-05575-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/11/2020] [Indexed: 12/31/2022]
Abstract
Purpose The combination of targeting the CDK4/6 and estrogen receptor (ER) signaling pathways with palbociclib and fulvestrant is a proven therapeutic strategy for the treatment of ER-positive breast cancer. However, the poor physicochemical properties of fulvestrant require monthly intramuscular injections to patients, which limit the pharmacokinetic and pharmacodynamic activity of the compound. Therefore, an orally available compound that more rapidly reaches steady state may lead to a better clinical response in patients. Here, we report the identification of G1T48, a novel orally bioavailable, non-steroidal small molecule antagonist of ER. Methods The pharmacological effects and the antineoplastic mechanism of action of G1T48 on tumors was evaluated using human breast cancer cells (in vitro) and xenograft efficacy models (in vivo). Results G1T48 is a potent and efficacious inhibitor of estrogen-mediated transcription and proliferation in ER-positive breast cancer cells, similar to the pure antiestrogen fulvestrant. In addition, G1T48 can effectively suppress ER activity in multiple models of endocrine therapy resistance including those harboring ER mutations and growth factor activation. In vivo, G1T48 has robust antitumor activity in a model of estrogen-dependent breast cancer (MCF7) and significantly inhibited the growth of tamoxifen-resistant (TamR), long-term estrogen-deprived (LTED) and patient-derived xenograft tumors with an increased response being observed with the combination of G1T48 and the CDK4/6 inhibitor lerociclib. Conclusions These data show that G1T48 has the potential to be an efficacious oral antineoplastic agent in ER-positive breast cancer. Electronic supplementary material The online version of this article (10.1007/s10549-020-05575-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kaitlyn J Andreano
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, 308 Research Drive, Durham, NC, 27710, USA
| | - Suzanne E Wardell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, 308 Research Drive, Durham, NC, 27710, USA
| | - Jennifer G Baker
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, 308 Research Drive, Durham, NC, 27710, USA
| | - Taylor K Desautels
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, 308 Research Drive, Durham, NC, 27710, USA
| | - Robert Baldi
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, 308 Research Drive, Durham, NC, 27710, USA
| | - Christina A Chao
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, 308 Research Drive, Durham, NC, 27710, USA
| | - Kendall A Heetderks
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, 308 Research Drive, Durham, NC, 27710, USA
| | - Yeeun Bae
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, 308 Research Drive, Durham, NC, 27710, USA
| | - Rui Xiong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street (M/C 781), Chicago, IL, 60612, USA
| | - Debra A Tonetti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street (M/C 781), Chicago, IL, 60612, USA
| | - Lauren M Gutgesell
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street (M/C 781), Chicago, IL, 60612, USA
| | - Jiong Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street (M/C 781), Chicago, IL, 60612, USA
| | - Jessica A Sorrentino
- G1 Therapeutics, Inc, 700 Park Offices Drive, Suite 200, Research Triangle Park, NC, 27709, USA
| | - Delita A Thompson
- G1 Therapeutics, Inc, 700 Park Offices Drive, Suite 200, Research Triangle Park, NC, 27709, USA
| | - John E Bisi
- G1 Therapeutics, Inc, 700 Park Offices Drive, Suite 200, Research Triangle Park, NC, 27709, USA
| | - Jay C Strum
- G1 Therapeutics, Inc, 700 Park Offices Drive, Suite 200, Research Triangle Park, NC, 27709, USA
| | - Gregory R J Thatcher
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street (M/C 781), Chicago, IL, 60612, USA
| | - John D Norris
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, 308 Research Drive, Durham, NC, 27710, USA.
| |
Collapse
|
50
|
Gonzalez TL, Hancock M, Sun S, Gersch CL, Larios JM, David W, Hu J, Hayes DF, Wang S, Rae JM. Targeted degradation of activating estrogen receptor α ligand-binding domain mutations in human breast cancer. Breast Cancer Res Treat 2020; 180:611-622. [PMID: 32067153 DOI: 10.1007/s10549-020-05564-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/03/2020] [Indexed: 01/14/2023]
Abstract
PURPOSE Studies have identified several estrogen receptor α (ERα) ligand-binding domain (LBD) somatic mutations in endocrine therapy resistant, metastatic ER-positive breast cancers. The most common mutations, Tyr537Ser (Y537S) and Asp538Gly (D538G), are detected in ~ 30% of endocrine resistant metastatic breast cancer patients. These ESR1 mutations induce the agonist conformation of ERα, confer an estrogen-independent phenotype, and promote drug resistance to antiestrogens. METHODS ER-positive, estrogen-dependent MCF-7 cells were engineered to express either the Y537S or D538G mutants using CRISPR knock-in (cY537S and cD538G). These cells were used to screen several estrogen receptor degrader (ERD) compounds synthesized using the Proteolysis Targeting Chimeras (PROTAC) method to induce degradation of ERα via the ubiquitin-proteasome pathway. RESULTS Wild-type MCF-7 and ERα LBD mutant cells were treated with ERD-148 (10 pM-1 µM) and assayed for cellular proliferation using the PrestoBlue cell viability assay. ERD-148 attenuated ER-dependent growth with IC50 values of 0.8, 10.5, and 6.1 nM in MCF-7, cY537S, and cD538G cells, respectively. Western blot analysis showed that MCF-7 cells treated with 1 nM ERD-148 for 24 h exhibited reduced ERα protein expression as compared to the mutants. The ER-regulated gene, GREB1, demonstrated significant downregulation in parental and mutant cells after 24 h of ERD-148 treatment at 10 nM. Growth of the ER-negative, estrogen-independent MDA-MB-231 breast cancer cells was not inhibited by ERD-148 at the ~ IC90 observed in the ER-positive cells. CONCLUSION ERD-148 inhibits the growth of ER-positive breast cancer cells via downregulating ERα with comparable potency to Fulvestrant with marginal non-specific toxicity.
Collapse
Affiliation(s)
- Thomas L Gonzalez
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Molly Hancock
- The University of Michigan Rogel Cancer Center, Ann Arbor, USA.,Department of Internal Medicine, University of Michigan Medical School, 6310 Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Siqi Sun
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, USA
| | - Christina L Gersch
- The University of Michigan Rogel Cancer Center, Ann Arbor, USA.,Department of Internal Medicine, University of Michigan Medical School, 6310 Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Jose M Larios
- The University of Michigan Rogel Cancer Center, Ann Arbor, USA.,Department of Internal Medicine, University of Michigan Medical School, 6310 Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Wadie David
- The University of Michigan Rogel Cancer Center, Ann Arbor, USA.,Department of Internal Medicine, University of Michigan Medical School, 6310 Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Jiantao Hu
- The University of Michigan Rogel Cancer Center, Ann Arbor, USA.,Department of Internal Medicine, University of Michigan Medical School, 6310 Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Daniel F Hayes
- The University of Michigan Rogel Cancer Center, Ann Arbor, USA.,Department of Internal Medicine, University of Michigan Medical School, 6310 Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Shaomeng Wang
- The University of Michigan Rogel Cancer Center, Ann Arbor, USA.,Department of Internal Medicine, University of Michigan Medical School, 6310 Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA.,Department of Pharmacology, University of Michigan Medical School, Ann Arbor, USA.,Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James M Rae
- The University of Michigan Rogel Cancer Center, Ann Arbor, USA. .,Department of Internal Medicine, University of Michigan Medical School, 6310 Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA. .,Department of Pharmacology, University of Michigan Medical School, Ann Arbor, USA.
| |
Collapse
|