1
|
Gupta S, Pal R, Schmidt EJ, Krishnamoorthy M, Leporati A, Kumar AT, Bogdanov A. Miniaturized Fab' imaging probe derived from a clinical antibody: Characterization and imaging in CRISPRi-attenuated mammary tumor models. iScience 2024; 27:110102. [PMID: 39184438 PMCID: PMC11342199 DOI: 10.1016/j.isci.2024.110102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/28/2024] [Accepted: 05/22/2024] [Indexed: 08/27/2024] Open
Abstract
Clinical imaging-assisted oncosurgical navigation requires cancer-specific miniaturized optical imaging probes. We report a near-infrared (NIR) Fab'-based epidermal growth factor receptor (EGFR)-specific probe carrying 3 NIR fluorophores (Fab'-800CW), which retained high-affinity binding to EGFR ectodomain (equilibrium KD E = 1 nM). Fab'-800CW showed a robust 4-times gain of fluorescence intensity (FI) and a 20% lifetime (FLT) increase under the conditions mimicking intracellular degradation. The probe was tested by using triple-negative breast cancer (TNBC) cell lines obtained by applying CRISPR interference (CRISPRi) effect of EGFR-targeting sgRNA and dCas9-KRAB chimera coexpression in MDA-MB-231 cells (WT cells). FI imaging in cell culture proved a 50% EGFR expression attenuation by CRISPRi. FI imaging in animals harboring attenuated or WT TNBC tumors with ex vivo corroboration identified differences between WT and CRISPRi tumors FI at 30 min post injection. Our results suggest the feasibility of EGFR expression imaging using a Fab'-based probe relevant for imaging-guided cancer surgery.
Collapse
Affiliation(s)
- Suresh Gupta
- Department of Radiology, UMASS Chan Medical School, Worcester, MA, USA
| | - Rahul Pal
- Mike Toth Head and Neck Cancer Research Center, Massachusetts Eye and Ear, Boston, MA, USA
- A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Eric J. Schmidt
- Department of Radiology, UMASS Chan Medical School, Worcester, MA, USA
| | - Murali Krishnamoorthy
- Mike Toth Head and Neck Cancer Research Center, Massachusetts Eye and Ear, Boston, MA, USA
- A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Anita Leporati
- Department of Radiology, UMASS Chan Medical School, Worcester, MA, USA
| | - Anand T.N. Kumar
- Mike Toth Head and Neck Cancer Research Center, Massachusetts Eye and Ear, Boston, MA, USA
- A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Alexei Bogdanov
- Department of Radiology, UMASS Chan Medical School, Worcester, MA, USA
- Cancer Center and Chemical Biology Interface Program, UMASS Chan Medical School, Worcester, MA, USA
| |
Collapse
|
2
|
Tappero S, Fallara G, Chierigo F, Micalef A, Ambrosini F, Diaz R, Dorotei A, Pompeo E, Limena A, Bravi CA, Longoni M, Piccinelli ML, Barletta F, Albano L, Mazzone E, Dell'Oglio P. Intraoperative image-guidance during robotic surgery: is there clinical evidence of enhanced patient outcomes? Eur J Nucl Med Mol Imaging 2024; 51:3061-3078. [PMID: 38607386 DOI: 10.1007/s00259-024-06706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND To date, the benefit of image guidance during robot-assisted surgery (IGS) is an object of debate. The current study aims to address the quality of the contemporary body of literature concerning IGS in robotic surgery throughout different surgical specialties. METHODS A systematic review of all English-language articles on IGS, from January 2013 to March 2023, was conducted using PubMed, Cochrane library's Central, EMBASE, MEDLINE, and Scopus databases. Comparative studies that tested performance of IGS vs control were included for the quantitative synthesis, which addressed outcomes analyzed in at least three studies: operative time, length of stay, blood loss, surgical margins, complications, number of nodal retrievals, metastatic nodes, ischemia time, and renal function loss. Bias-corrected ratio of means (ROM) and bias-corrected odds ratio (OR) compared continuous and dichotomous variables, respectively. Subgroup analyses according to guidance type (i.e., 3D virtual reality vs ultrasound vs near-infrared fluoresce) were performed. RESULTS Twenty-nine studies, based on 11 surgical procedures of three specialties (general surgery, gynecology, urology), were included in the quantitative synthesis. IGS was associated with 12% reduction in length of stay (ROM 0.88; p = 0.03) and 13% reduction in blood loss (ROM 0.87; p = 0.03) but did not affect operative time (ROM 1.00; p = 0.9), or complications (OR 0.93; p = 0.4). IGS was associated with an estimated 44% increase in mean number of removed nodes (ROM 1.44; p < 0.001), and a significantly higher rate of metastatic nodal disease (OR 1.82; p < 0.001), as well as a significantly lower rate of positive surgical margins (OR 0.62; p < 0.001). In nephron sparing surgery, IGS significantly decreased renal function loss (ROM 0.37; p = 0.002). CONCLUSIONS Robot-assisted surgery benefits from image guidance, especially in terms of pathologic outcomes, namely higher detection of metastatic nodes and lower surgical margins. Moreover, IGS enhances renal function preservation and lowers surgical blood loss.
Collapse
Affiliation(s)
- Stefano Tappero
- Department of Urology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giuseppe Fallara
- Department of Urology, European Institute of Oncology (IEO), University of Milan, Milan, Italy
| | - Francesco Chierigo
- Department of Urology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Urology, Azienda Ospedaliera Nazionale SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
- Department of Urology, IRCCS Ospedale Policlinico San Martino, University of Genova, Genoa, Italy
- Department of Surgical and Diagnostic Integrated Sciences (DISC), University of Genova, Genoa, Italy
| | - Andrea Micalef
- Department of General Surgery, Luigi Sacco University Hospital, Milan, Italy
- Università Degli Studi Di Milano, Milan, Italy
| | - Francesca Ambrosini
- Department of Urology, IRCCS Ospedale Policlinico San Martino, University of Genova, Genoa, Italy
- Department of Surgical and Diagnostic Integrated Sciences (DISC), University of Genova, Genoa, Italy
| | - Raquel Diaz
- Department of Surgical and Diagnostic Integrated Sciences (DISC), University of Genova, Genoa, Italy
| | - Andrea Dorotei
- Department of Orthopaedics, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Edoardo Pompeo
- Neurosurgery and Gamma Knife Radiosurgery Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alessia Limena
- Infertility Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Carlo Andrea Bravi
- Department of Urology, Northampton General Hospital, Northampton, UK
- Department of Urology, Royal Marsden Foundation Trust, London, UK
| | - Mattia Longoni
- Unit of Urology/Division of Oncology, Gianfranco Soldera Prostate Cancer Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Mattia Luca Piccinelli
- Department of Urology, European Institute of Oncology (IEO), University of Milan, Milan, Italy
| | - Francesco Barletta
- Unit of Urology/Division of Oncology, Gianfranco Soldera Prostate Cancer Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Luigi Albano
- Neurosurgery and Gamma Knife Radiosurgery Unit, IRCCS Ospedale San Raffaele, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Elio Mazzone
- Unit of Urology/Division of Oncology, Gianfranco Soldera Prostate Cancer Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Dell'Oglio
- Department of Urology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy.
- Department of Urology, Netherlands Cancer Institute-Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
3
|
Xu X, Wang X, Cui X, Jia B, Xu B, Sun J. Dispersion Performances of Naphthalimides Doped in Dual Temperature- and pH-Sensitive Poly (N-Isopropylacrylamide-co-acrylic Acid) Shell Assembled with Vinyl-Modified Mesoporous SiO 2 Core for Fluorescence Cell Imaging. Polymers (Basel) 2023; 15:polym15102339. [PMID: 37242914 DOI: 10.3390/polym15102339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/28/2023] Open
Abstract
Developing effective intelligent nanocarriers is highly desirable for fluorescence imaging and therapeutic applications but remains challenging. Using a vinyl-grafted BMMs (bimodal mesoporous SiO2 materials) as a core and PAN ((2-aminoethyl)-6-(dimethylamino)-1H-benzo[de]isoquinoline-1,3(2H)-dione))-dispersed dual pH/thermal-sensitive poly(N-isopropylacrylamide-co-acrylic acid) as a shell, PAN@BMMs with strong fluorescence and good dispersibility were prepared. Their mesoporous features and physicochemical properties were extensively characterized via XRD patterns, N2 adsorption-desorption analysis, SEM/TEM images, TGA profiles, and FT-IR spectra. In particular, their mass fractal dimension (dm) features based on SAXS patterns combined with fluorescence spectra were successfully obtained to evaluate the uniformity of the fluorescence dispersions, showing that the dm values increased from 2.49 to 2.70 with an increase of the AN-additive amount from 0.05 to 1%, along with the red shifting of their fluorescent emission wavelength from 471 to 488 nm. The composite (PAN@BMMs-I-0.1) presented a densification trend and a slight decrease in peak (490 nm) intensity during the shrinking process. Its fluorescent decay profiles confirmed two fluorescence lifetimes of 3.59 and 10.62 ns. The low cytotoxicity obtained via in vitro cell survival assay and the efficient green imaging performed via HeLa cell internalization suggested that the smart PAN@BMM composites are potential carriers for in vivo imaging and therapy.
Collapse
Affiliation(s)
- Xiaohuan Xu
- Beijing Key Laboratory for Green Catalysis and Separation, Beijing University of Technology, Beijing 100124, China
| | - Xiaoli Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Beijing University of Technology, Beijing 100124, China
| | - Xueqing Cui
- Beijing Key Laboratory for Green Catalysis and Separation, Beijing University of Technology, Beijing 100124, China
| | - Bingying Jia
- Beijing Key Laboratory for Green Catalysis and Separation, Beijing University of Technology, Beijing 100124, China
| | - Bang Xu
- Beijing Key Laboratory for Green Catalysis and Separation, Beijing University of Technology, Beijing 100124, China
| | - Jihong Sun
- Beijing Key Laboratory for Green Catalysis and Separation, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
4
|
Kobzev D, Prasad C, Walunj D, Gotman H, Semenova O, Bazylevich A, Patsenker L, Gellerman G. Synthesis and biological evaluation of theranostic Trastuzumab–SN38 conjugate for Near-IR fluorescence imaging and targeted therapy of HER2+ breast cancer. Eur J Med Chem 2023; 252:115298. [PMID: 36966651 DOI: 10.1016/j.ejmech.2023.115298] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
Here, we report on the design, synthesis, and biological evaluation of a new theranostic antibody drug conjugate (ADC), Cy5-Ab-SS-SN38, that consists of the HER2-specific antibody trastuzumab (Ab) connected to the near infrared (NIR) pentamethine cyanine dye Cy5 and SN38, which is a bioactive metabolite of the anticancer drug irinotecan. SN38 is bound to an antibody through a glutathione-responsive self-immolative disulfide carbamate linker. For the first time, we explored this linker in ADC and found that it to reduce the drug release rate, which is important for safe drug delivery. The developed ADC exhibited specific accumulation and nanomolar anti-breast cancer activity on HER2-positive (HER2+) cell lines but no effect on HER2-. Animals treated with this ADC exhibited good tolerance. In vivo studies have shown that the ADC had good targeting ability for HER2+ tumors with much higher anticancer potency than trastuzumab itself or a mixture of trastuzumab with SN38. Side-by-side HER2+/HER2-xenograft at the 10 mg/kg dose exhibited specific accumulation and reduction of HER2+ tumor but not accumulation or growth inhibition of HER2-counterpart. The self-immolative disulfide linker implemented in this study was proven to be successful, broadening its utilization with other antibodies for targeted anticancer therapy in general. We believe that the theranostic ADCs comprising the glutathione-responsive self-immolative disulfide carbamate linker are applicable for the treatment and fluorescent monitoring of malignancies and anticancer drug delivery.
Collapse
|
5
|
Near-Infrared Fluorescence Imaging of EGFR-Overexpressing Tumors in the Mouse Xenograft Model Using scFv-IRDye800CW and Cetuximab-IRDye800CW. Mol Imaging 2022; 2022:9589820. [PMID: 35517713 PMCID: PMC9042373 DOI: 10.1155/2022/9589820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/21/2022] [Indexed: 12/18/2022] Open
Abstract
EGFR (epidermal growth factor receptor) is overexpressed in a variety of human cancers (including squamous cell carcinoma of head and neck, colon cancer, and some breast cancers) and therefore is regarded as an ideal target for cancer therapy or imaging purposes. In the current study, we produced a scFv-based near-infrared probe (called cet.Hum.scFv-IRDye-800CW) and evaluated its ability in recognizing and imaging of EGFR-overexpressing tumors in a mouse model. Like the molecular probe consisting of its parental antibody (cetuximab, an FDA-approved monoclonal antibody) and IRD800CW, cet.Hum.scFv-IRDye-800CW was able to recognize EGFR-overexpressing tumors in mice. cet.Hum.scFv-IRDye-800CW was found to be superior to the cetuximab-based probe in imaging of mouse tumors. The tumor-to-background ratio and blood clearance rate were higher when cet.Hum.scFv-IRDye-800CW was used as an imaging probe.
Collapse
|
6
|
Organelle-targeted imaging based on fluorogen-activating RNA aptamers in living cells. Anal Chim Acta 2022; 1209:339816. [DOI: 10.1016/j.aca.2022.339816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022]
|
7
|
Fluorescence Molecular Targeting of Colon Cancer to Visualize the Invisible. Cells 2022; 11:cells11020249. [PMID: 35053365 PMCID: PMC8773892 DOI: 10.3390/cells11020249] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/28/2021] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer (CRC) is a common cause of cancer and cancer-related death. Surgery is the only curative modality. Fluorescence-enhanced visualization of CRC with targeted fluorescent probes that can delineate boundaries and target tumor-specific biomarkers can increase rates of curative resection. Approaches to enhancing visualization of the tumor-to-normal tissue interface are active areas of investigation. Nonspecific dyes are the most-used approach, but tumor-specific targeting agents are progressing in clinical trials. The present narrative review describes the principles of fluorescence targeting of CRC for diagnosis and fluorescence-guided surgery with molecular biomarkers for preclinical or clinical evaluation.
Collapse
|
8
|
Declerck NB, Mateusiak L, Hernot S. Design and Validation of Site-Specifically Labeled Single-Domain Antibody-Based Tracers for in Vivo Fluorescence Imaging and Image-Guided Surgery. Methods Mol Biol 2022; 2446:395-407. [PMID: 35157285 DOI: 10.1007/978-1-0716-2075-5_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Near-infrared fluorescence molecular imaging has become an established preclinical technique to investigate molecular processes in vivo and to study novel therapies. Furthermore, fluorescence molecular imaging is gaining significant interest from clinicians as an intra-operative guidance tool. This technique makes use of targeted fluorescent tracers as contrast agents that recognize specific biomarkers expressed at the site of disease. Single-domain antibodies have shown to possess excellent properties for in vivo imaging in comparison to conventional antibodies. In this chapter, we describe a method for site-specific conjugation of a near-infrared fluorophore to single-domain antibodies by exploiting cysteine-maleimide chemistry. As opposed to random conjugation, site-specific conjugation results in a homogenously labeled fluorescent tracer and avoids inference with antigen binding.
Collapse
Affiliation(s)
- Noemi B Declerck
- Laboratory for In Vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lukasz Mateusiak
- Laboratory for In Vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sophie Hernot
- Laboratory for In Vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
9
|
Petrov SA, Zyk NY, Machulkin AE, Beloglazkina EK, Majouga AG. PSMA-targeted low-molecular double conjugates for diagnostics and therapy. Eur J Med Chem 2021; 225:113752. [PMID: 34464875 DOI: 10.1016/j.ejmech.2021.113752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022]
Abstract
This review presents data on dual conjugates of therapeutic and diagnostic action for targeted delivery to prostate cancer cells. The works of the last ten years on this topic were analyzed. The mail attention focuses on low-molecular-weight conjugates directed to the prostate-specific membrane antigen (PSMA); the comparison of high and low molecular weight PSMA-targeted conjugates was made. The considered conjugates were divided in the review into two main classes: diagnostic bimodal conjugates (which are containing two fragments for different types of diagnostics), theranostic conjugates (containing both therapeutic and diagnostic agents); also bimodal high molecular weight therapeutic conjugates containing two therapeutic agents are briefly discussed. The data of in vitro and in vivo studies for PSMA-targeted double conjugates available by the beginning of 2021 have been analyzed.
Collapse
Affiliation(s)
- Stanislav A Petrov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Nikolay Y Zyk
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Alexander G Majouga
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia; Laboratory of Biomedical Nanomaterials, National University of Science and Technology MISiS, Moscow, Russia; Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| |
Collapse
|
10
|
Unique Benefits of Tumor-Specific Nanobodies for Fluorescence Guided Surgery. Biomolecules 2021; 11:biom11020311. [PMID: 33670740 PMCID: PMC7921980 DOI: 10.3390/biom11020311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022] Open
Abstract
Tumor-specific fluorescence labeling is promising for real-time visualization of solid malignancies during surgery. There are a number of technologies to confer tumor-specific fluorescence. Antibodies have traditionally been used due to their versatility in modifications; however, their large size hampers efficient fluorophore delivery. Nanobodies are a novel class of molecules, derived from camelid heavy-chain only antibodies, that have shown promise for tumor-specific fluorescence labeling. Nanobodies are ten times smaller than standard antibodies, while maintaining antigen-binding capacity and have advantageous features, including rapidity of tumor labeling, that are reviewed in the present report. The present report reviews special considerations needed in developing nanobody probes, the status of current literature on the use of nanobody probes in fluorescence guided surgery, and potential challenges to be addressed for clinical translation.
Collapse
|
11
|
Walker E, Turaga SM, Wang X, Gopalakrishnan R, Shukla S, Basilion JP, Lathia JD. Development of near-infrared imaging agents for detection of junction adhesion molecule-A protein. Transl Oncol 2021; 14:101007. [PMID: 33421750 PMCID: PMC7804988 DOI: 10.1016/j.tranon.2020.101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 11/29/2022] Open
Abstract
Anti-junctional adhesion molecule-A (JAM-A) monoclonal antibodies (mAb) conjugated with near infra-red fluorescent dye, IR700 – as a JAM-A mAb/IR700 agent was developed. An in vivo JAM-A mAb/IR700-specific near infra-red imaging of human-derived prostate and breast cancer xenograft is presented. A single injection of the agent is diminished number of mitotic cells in cancerous tissue of mice bearing heterotopic tumors. Since, our agent depicts the specific accumulation within the targeted tumors, this agent may be adapted to solid tumor targeted photoimmunotherapy.
Introduction Prostate and breast cancer are the most prevalent primary malignant human tumors globally. Prostatectomy and breast conservative surgery remain the most common definitive treatment option for the >500,000 men and women newly diagnosed with localized prostate and breast cancer each year only in the US. Morphological examination is the mainstay of diagnosis but margin under-sampling of the excised cancer tissue may lead to local recurrence. In despite of the progress of non-invasive optical imaging, there is still a clinical need for targeted optical imaging probes that could rapidly and globally visualize cancerous tissues. Methods Elevated expression of junctional adhesion molecule-A (JAM-A) on tumor cells and its multiple pro-tumorigenic activity make the JAM-A a candidate for molecular imaging. Near-infrared imaging probe, which employed anti-JAM-A monoclonal antibody (mAb) phthalocyanine dye IR700 conjugates (JAM-A mAb/IR700), was synthesized and used to identify and visualize heterotopic human prostate and breast tumor mouse xenografts in vivo. Results The intravenously injected JAM-A mAb/IR700 conjugates enabled the non-invasive detection of prostate and breast cancerous tissue by fluorescence imaging. A single dose of JAM-A mAb/IR700 reduced number of mitotic cancer cells in vivo, indicating theranostic ability of this imaging agent. The JAM-A mAb/IR700 conjugates allowed us to image a specific receptor expression in prostate and breast tumors without post-image processing. Conclusion This agent demonstrates promise as a method to image the extent of prostate and breast cancer in vivo and could assist with real-time visualization of extracapsular extension of cancerous tissue.
Collapse
Affiliation(s)
- E Walker
- Department of Biomedical Engineering, Case Western Reserve University, Wearn Building, 11100 Euclid Ave., Cleveland, OH 44106-5056, USA; Case Comprehensive Cancer Center, Cleveland, OH 44106, USA.
| | - S M Turaga
- Lerner Research Institute, 9500 Euclid Avenue, NC10, Cleveland, OH 44195, USA; Department of Biological, Geological, and Environmental Sciences, Cleveland State University, 2121 Euclid Ave., Cleveland, OH 44115, USA
| | - X Wang
- Department of Biomedical Engineering, Case Western Reserve University, Wearn Building, 11100 Euclid Ave., Cleveland, OH 44106-5056, USA
| | - R Gopalakrishnan
- Department of Radiology, Case Center for Imaging Research, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106-7207, USA
| | - S Shukla
- Department of Urology at the University of Florida College of Medicine, Faculty Clinic, 653 West 8th Street, FC12, Jacksonville, FL 32209, USA
| | - J P Basilion
- Department of Biomedical Engineering, Case Western Reserve University, Wearn Building, 11100 Euclid Ave., Cleveland, OH 44106-5056, USA; Department of Radiology, Case Center for Imaging Research, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106-7207, USA; Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - J D Lathia
- Lerner Research Institute, 9500 Euclid Avenue, NC10, Cleveland, OH 44195, USA; Department of Biological, Geological, and Environmental Sciences, Cleveland State University, 2121 Euclid Ave., Cleveland, OH 44115, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Avenue, NC10, Cleveland, OH 44195, USA; Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
12
|
Teh J, Tripathi M, Reichel D, Sagong B, Montoya R, Zhang Y, Wagner S, Saouaf R, Chung LWK, Perez JM. Intraoperative assessment and postsurgical treatment of prostate cancer tumors using tumor-targeted nanoprobes. Nanotheranostics 2021; 5:57-72. [PMID: 33391975 PMCID: PMC7738944 DOI: 10.7150/ntno.50095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Successful visualization of prostate cancer (PCa) tumor margins during surgery remains a major challenge. The visualization of these tumors during surgery via near infrared fluorescence (NIRF) imaging would greatly enhance surgical resection, minimizing tumor recurrence and improving outcome. Furthermore, chemotherapy is typically administered to patients after surgery to treat any missed tumor tissue around the surgical area, minimizing metastasis and increasing patient survival. For these reasons, a theranostics fluorescent nanoparticle could be developed to assist in the visualization of PCa tumor margins, while also delivering chemotherapeutic drug after surgery. Methods: Ferumoxytol (FMX) conjugated to the fluorescent dye and PCa targeting agent, heptamethine carbocyanine (HMC), yielded the HMC-FMX nanoprobe that was tested in vitro with various PCa cell lines and in vivo with both subcutaneous and orthotopic PCa mouse models. Visualization of these tumors via NIRF imaging after administration of HMC-FMX was performed. In addition, delivery of chemotherapeutic drug and their effect on tumor growth was also assessed. Results: HMC-FMX internalized into PCa cells, labeling these cells and PCa tumors in mice with near infrared fluorescence, facilitating tumor margin visualization. HMC-FMX was also able to deliver drugs to these tumors, reducing cell migration and slowing down tumor growth. Conclusion: HMC-FMX specifically targeted PCa tumors in mice allowing for the visualization of tumor margins by NIRF imaging. Furthermore, delivery of anticancer drugs by HMC-FMX effectively reduced prostate tumor growth and reduced cell migration in vitro. Thus, HMC-FMX can potentially translate into the clinic as a nanotheranostics agent for the intraoperative visualization of PCa tumor margins, and post-operative treatment of tumors with HMC-FMX loaded with anticancer drugs.
Collapse
Affiliation(s)
- James Teh
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Manisha Tripathi
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Current address: Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Derek Reichel
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Bien Sagong
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ricardo Montoya
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yi Zhang
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shawn Wagner
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Rola Saouaf
- S. Mark Taper Foundation Imaging Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Leland W K Chung
- Department of Medicine, Uro-Oncology Research Program, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - J Manuel Perez
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,S. Mark Taper Foundation Imaging Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
13
|
Li Y, Zhou Y, Yue X, Dai Z. Cyanine Conjugate-Based Biomedical Imaging Probes. Adv Healthc Mater 2020; 9:e2001327. [PMID: 33000915 DOI: 10.1002/adhm.202001327] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/11/2020] [Indexed: 12/12/2022]
Abstract
Cyanine is a class of fluorescent dye with meritorious fluorescence properties and has motivated numerous researchers to explore its imaging capabilities by miscellaneous structural modification and functionalization strategies. The covalent conjugation with other functional molecules represents a distinctive design strategy and has shown immense potential in both basic and clinical research. This review article summarizes recent achievements in cyanine conjugate-based probes for biomedical imaging. Particular attention is paid to the conjugation with targeting warheads and other contrast agents for targeted fluorescence imaging and multimodal imaging, respectively. Additionally, their clinical potential in cancer diagnostics is highlighted and some concurrent impediments for clinical translation are discussed.
Collapse
Affiliation(s)
- Yang Li
- Department of Biomedical Engineering College of Engineering Peking University Beijing 100871 China
| | - Yiming Zhou
- Department of Biomedical Engineering College of Engineering Peking University Beijing 100871 China
| | - Xiuli Yue
- School of Environment Harbin Institute of Technology Harbin 150090 China
| | - Zhifei Dai
- Department of Biomedical Engineering College of Engineering Peking University Beijing 100871 China
| |
Collapse
|
14
|
BAYRAMOĞLU Z, ÜNAL B. Prostat Karsinomunun Moleküler Yolakları. MUSTAFA KEMAL ÜNIVERSITESI TIP DERGISI 2020. [DOI: 10.17944/mkutfd.755075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
15
|
Abstract
Immuno-positron emission tomography (immunoPET) is a paradigm-shifting molecular imaging modality combining the superior targeting specificity of monoclonal antibody (mAb) and the inherent sensitivity of PET technique. A variety of radionuclides and mAbs have been exploited to develop immunoPET probes, which has been driven by the development and optimization of radiochemistry and conjugation strategies. In addition, tumor-targeting vectors with a short circulation time (e.g., Nanobody) or with an enhanced binding affinity (e.g., bispecific antibody) are being used to design novel immunoPET probes. Accordingly, several immunoPET probes, such as 89Zr-Df-pertuzumab and 89Zr-atezolizumab, have been successfully translated for clinical use. By noninvasively and dynamically revealing the expression of heterogeneous tumor antigens, immunoPET imaging is gradually changing the theranostic landscape of several types of malignancies. ImmunoPET is the method of choice for imaging specific tumor markers, immune cells, immune checkpoints, and inflammatory processes. Furthermore, the integration of immunoPET imaging in antibody drug development is of substantial significance because it provides pivotal information regarding antibody targeting abilities and distribution profiles. Herein, we present the latest immunoPET imaging strategies and their preclinical and clinical applications. We also emphasize current conjugation strategies that can be leveraged to develop next-generation immunoPET probes. Lastly, we discuss practical considerations to tune the development and translation of immunoPET imaging strategies.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
| | - Zachary T Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
16
|
Xu J, Zhang S, Zhang W, Xie E, Gu M, Wang Y, Yang L, Zhang B, Zhang J, Gu C, Xu T, Li D, Wang F, Huang P, Pan S. SP70-Targeted Imaging for the Early Detection of Lung Adenocarcinoma. Sci Rep 2020; 10:2509. [PMID: 32054922 PMCID: PMC7018733 DOI: 10.1038/s41598-020-59439-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
NJ001 is a monoclonal antibody that can specifically recognize the SP70 antigen on lung adenocarcinoma cells. The goal of this study was to explore its utility in targeted imaging. Subcutaneous xenograft and orthotopic lung tumor implantation BALB/c mouse models were established. Near-infrared fluorescent CF750-labeled NJ001 was injected into two tumor mouse models. Mice that received orthotopic lung tumor implantation were also injected with NJ001-conjugated nanomagnetic beads intravenously, and then underwent micro-CT scanning. Meanwhile, mice with lung tumor were intravenously injected with normal saline and bare nanomagnetic beads as a control. Fluorescence could be monitored in the mice detected by anti-SP70 fluorescence imaging, which was consistent with tumor burden. Signal intensities detected with SP70-targeted micro-CT scans were greater than those in control mice. More importantly, orthotopic tumor lesions could be found on the fourth week with SP70-targeted imaging, which was 2 weeks earlier than detection in the control. Our results suggest that SP70 is a promising target for molecular imaging, and molecularly targeted imaging with an NJ001-labeled probe could be applied for the early detection of lung adenocarcinoma.
Collapse
Affiliation(s)
- Jian Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Shichang Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Wei Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Erfu Xie
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Min Gu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Yue Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Lu Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Bingfeng Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Jiexin Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Chunrong Gu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Ting Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Daqian Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Fang Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Peijun Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Shiyang Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China.
| |
Collapse
|
17
|
Zhao X, Ning Q, Mo Z, Tang S. A promising cancer diagnosis and treatment strategy: targeted cancer therapy and imaging based on antibody fragment. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3621-3630. [PMID: 31468992 DOI: 10.1080/21691401.2019.1657875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the arrival of the precision medicine and personalized treatment era, targeted therapy that improves efficacy and reduces side effects has become the mainstream approach of cancer treatment. Antibody fragments that further enhance penetration and retain the most critical antigen-specific binding functions are considered the focus of research targeting cancer imaging and therapy. Thanks to the superior penetration and rapid blood clearance of antibody fragments, antibody fragment-based imaging agents enable efficient and sensitive imaging of tumour sites. In tumour-targeted therapy, antibody fragments can directly inhibit tumour proliferation and growth, serve as an ideal carrier for delivery of anti-tumour drugs, or manipulate the immune system to eliminate tumour cells. In this review, the excellent physicochemical properties and the basic structure of antibody fragments are expressly depicted depicted, the progress of antibody fragments in cancer therapy and imaging are thoroughly summarized, and the future development of antibody fragments is predicted.
Collapse
Affiliation(s)
- Xuhong Zhao
- Learning Key Laboratory for Pharmacoproteomics of Hunan Province, Institute of Pharmacy and Pharmacology, University of South China , Hengyang , China.,Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine , Huaihua , China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine , Huaihua , China
| | - Zhongcheng Mo
- Department of Histology and Embryology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China , Hengyang , China
| | - Shengsong Tang
- Learning Key Laboratory for Pharmacoproteomics of Hunan Province, Institute of Pharmacy and Pharmacology, University of South China , Hengyang , China.,Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine , Huaihua , China
| |
Collapse
|
18
|
Gamache RF, Zettlitz KA, Tsai WTK, Collins J, Wu AM, Murphy JM. Tri-functional platform for construction of modular antibody fragments for in vivo 18F-PET or NIRF molecular imaging. Chem Sci 2020; 11:1832-1838. [PMID: 34123276 PMCID: PMC8148382 DOI: 10.1039/c9sc05007h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Positron emission tomography (PET) molecular imaging is a powerful tool for interrogating physiological and biochemical processes to understand the biology of disease and advance therapeutic developments. Near-infrared fluorescence (NIRF) optical imaging has become increasingly popular for intraoperative staging to enable cellular resolution imaging of tumor margins during surgical resection. In addition, engineered antibody fragments have emerged as promising molecular imaging agents given their exquisite target selectivity, rapid systemic clearance and site-selective chemical modification. We report a tri-functional platform for construction of a modular antibody fragment that can rapidly be labeled with radionuclides or fluorophores for PET or NIRF molecular imaging of prostate stem cell antigen (PSCA). To provide a universal approach towards the targeted delivery of PET and optical imaging agents, we have developed a tri-functional platform (TFP) for the facile construction of modular, target-specific tracers.![]()
Collapse
Affiliation(s)
- Raymond F Gamache
- Department of Chemistry and Biochemistry, University of California Los Angeles CA 90095 USA
| | - Kirstin A Zettlitz
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California Los Angeles CA 90095 USA
| | - Wen-Ting K Tsai
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California Los Angeles CA 90095 USA
| | - Jeffrey Collins
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California Los Angeles CA 90095 USA
| | - Anna M Wu
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California Los Angeles CA 90095 USA
| | - Jennifer M Murphy
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California Los Angeles CA 90095 USA
| |
Collapse
|
19
|
Guo H, Kommidi H, Vedvyas Y, McCloskey JE, Zhang W, Chen N, Nurili F, Wu AP, Sayman HB, Akin O, Rodriguez EA, Aras O, Jin MM, Ting R. A Fluorescent, [ 18F]-Positron-Emitting Agent for Imaging Prostate-Specific Membrane Antigen Allows Genetic Reporting in Adoptively Transferred, Genetically Modified Cells. ACS Chem Biol 2019; 14:1449-1459. [PMID: 31120734 DOI: 10.1021/acschembio.9b00160] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Clinical trials involving genome-edited cells are growing in popularity, where CAR-T immunotherapy and CRISPR/Cas9 editing are more recognized strategies. Genetic reporters are needed to localize the molecular events inside these cells in patients. Specifically, a nonimmunogenic genetic reporter is urgently needed as current reporters are immunogenic due to derivation from nonhuman sources. Prostate-specific membrane antigen (PSMA) is potentially nonimmunogenic due to its natural, low-level expression in select tissues (self-MHC display). PSMA overexpression on human prostate adenocarcinoma is also visible with excellent contrast. We exploit these properties in a transduced, two-component, Human-Derived, Genetic, Positron-emitting, and Fluorescent (HD-GPF) reporter system. Mechanistically analogous to the luciferase and luciferin reporter, PSMA is genetically encoded into non-PSMA expressing 8505C cells and tracked with ACUPA-Cy3-BF3, a single, systemically injected small molecule that delivers positron emitting fluoride (18F) and a fluorophore (Cy3) to report on cells expressing PSMA. PSMA-lentivirus transduced tissues become visible by Cy3 fluorescence, [18F]-positron emission tomography (PET), and γ-scintillated biodistribution. HD-GPF fluorescence is visible at subcellular resolution, while a reduced PET background is achieved in vivo, due to rapid ACUPA-Cy3-BF3 renal excretion. Co-transduction with luciferase and GFP show specific advantages over popular genetic reporters in advanced murine models including, a "mosaic" model of solid-tumor intratumoral heterogeneity and a survival model for observing postsurgical recurrence. We report an advanced genetic reporter that tracks genetically modified cells in entire animals and with subcellular resolution with PET and fluorescence, respectively. This reporter system is potentially nonimmunogenic and will therefore be useful in human studies. PSMA is a biomarker of prostate adenocarcinoma and ACUPA-Cy3-BF3 potential in radical prostatectomy is demonstrated.
Collapse
Affiliation(s)
- Hua Guo
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medical College, New York, New York 10065, United States
| | - Harikrishna Kommidi
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medical College, New York, New York 10065, United States
| | - Yogindra Vedvyas
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medical College, New York, New York 10065, United States
| | - Jaclyn E. McCloskey
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medical College, New York, New York 10065, United States
| | - Weiqi Zhang
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medical College, New York, New York 10065, United States
| | - Nandi Chen
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medical College, New York, New York 10065, United States
- Department of Gastrointestinal Surgery, The Second Clinical Medicine College (Shenzhen People’s Hospital) of Jinan University, Shenzhen, Guangdong 518020, China
| | - Fuad Nurili
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Amy P. Wu
- Department of Otolaryngology, Head & Neck Surgery, Northwell Health, Hofstra Northwell School of Medicine, Hempstead, New York 11549, United States
| | - Haluk B. Sayman
- Department of Nuclear Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul 34303, Turkey
| | - Oguz Akin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Erik A. Rodriguez
- Department of Chemistry, The George Washington University, Washington, D.C. 20052, United States
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Moonsoo M. Jin
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medical College, New York, New York 10065, United States
| | - Richard Ting
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medical College, New York, New York 10065, United States
| |
Collapse
|
20
|
Hernot S, van Manen L, Debie P, Mieog JSD, Vahrmeijer AL. Latest developments in molecular tracers for fluorescence image-guided cancer surgery. Lancet Oncol 2019; 20:e354-e367. [DOI: 10.1016/s1470-2045(19)30317-1] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023]
|
21
|
[ 89Zr]A2cDb Immuno-PET of Prostate Cancer in a Human Prostate Stem Cell Antigen Knock-in (hPSCA KI) Syngeneic Model. Mol Imaging Biol 2019; 22:367-376. [PMID: 31209779 DOI: 10.1007/s11307-019-01386-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE A great challenge in the diagnosis and treatment of prostate cancer is distinguishing between indolent or local disease and aggressive or metastatic disease. Antibody-based positron emission tomography (immuno-PET) as a cancer-specific imaging modality could improve diagnosis of primary disease, aid the detection of metastases to regional lymph nodes as well as to distant sites (e.g., bone), and monitor response to therapy. PROCEDURE In search for a more physiologically relevant disease model, a human prostate stem cell antigen knock-in (hPSCA KI) mouse model was generated. The use of a syngeneic prostate cancer cell line transduced to express human PSCA (RM-9-hPSCA) enabled the evaluation of anti-PSCA immuno-PET in immunocompetent mice and in the context of normal tissue expression of PSCA. Two PSCA-specific humanized antibody fragments, A11 minibody and A2 cys-diabody, were radiolabeled with positron emitters iodine-124 and zirconium-89, respectively ([124I]A11 Mb and [89Zr]A2cDb), and used for immuno-PET in wild-type, hPSCA KI and tumor-bearing mice. RESULTS The hPSCA KI mice express PSCA at low levels in the normal prostate, bladder and stomach, reproducing the expression pattern seen in humans. [124I]A11 Mb immuno-PET detected increased levels of PSCA expression in the stomach, and because I-124 is non-residualizing, very little activity was seen in organs of clearance (liver, kidney, spleen). However, due to the longer half-life of the 80 kDa protein, blood activity (and thus urine activity) at 20 h postinjection remains high. The smaller 50 kDa [89Zr]A2cDb cleared faster, resulting in lower blood and background activity, despite the use of a residualizing radiometal. Importantly, [89Zr]A2cDb immuno-PET showed antigen-specific targeting of PSCA-expressing tumors and minimal nonspecific uptake in PSCA-negative controls. CONCLUSION Tracer biodistribution was not significantly impacted by normal tissue expression of PSCA. [89Zr]A2cDb immuno-PET yielded high tumor-to-blood ratio at early time points. Rapid renal clearance of the 50 kDa tracer resulted in an unobstructed view of the pelvic region at 20 h postinjection that would allow the detection of cancer in the prostate.
Collapse
|
22
|
Debie P, Hernot S. Emerging Fluorescent Molecular Tracers to Guide Intra-Operative Surgical Decision-Making. Front Pharmacol 2019; 10:510. [PMID: 31139085 PMCID: PMC6527780 DOI: 10.3389/fphar.2019.00510] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/24/2019] [Indexed: 12/26/2022] Open
Abstract
Fluorescence imaging is an emerging technology that can provide real-time information about the operating field during cancer surgery. Non-specific fluorescent agents, used for the assessment of blood flow and sentinel lymph node detection, have so far dominated this field. However, over the last decade, several clinical studies have demonstrated the great potential of targeted fluorescent tracers to visualize tumor lesions in a more specific way. This has led to an exponential growth in the development of novel molecular fluorescent contrast agents. In this review, the design of fluorescent molecular tracers will be discussed, with particular attention for agents and approaches that are of interest for clinical translation.
Collapse
Affiliation(s)
| | - Sophie Hernot
- Laboratory for in vivo Cellular and Molecular Imaging (ICMI-BEFY/MIMA), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
23
|
Pagoto A, Garello F, Marini GM, Tripepi M, Arena F, Bardini P, Stefania R, Lanzardo S, Valbusa G, Porpiglia F, Manfredi M, Aime S, Terreno E. Novel Gastrin-Releasing Peptide Receptor Targeted Near-Infrared Fluorescence Dye for Image-Guided Surgery of Prostate Cancer. Mol Imaging Biol 2019; 22:85-93. [DOI: 10.1007/s11307-019-01354-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
24
|
Hernandez Vargas S, Kossatz S, Voss J, Ghosh SC, Tran Cao HS, Simien J, Reiner T, Dhingra S, Fisher WE, Azhdarinia A. Specific Targeting of Somatostatin Receptor Subtype-2 for Fluorescence-Guided Surgery. Clin Cancer Res 2019; 25:4332-4342. [PMID: 31015345 DOI: 10.1158/1078-0432.ccr-18-3312] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/11/2019] [Accepted: 04/18/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE Clinically available intraoperative imaging tools to assist surgeons in identifying occult lesions are limited and partially responsible for the high rate of disease recurrence in patients with neuroendocrine tumors (NET). Using the established clinical efficacy of radiolabeled somatostatin analogs as a model, we demonstrate the ability of a fluorescent somatostatin analog to selectively target tumors that overexpress somatostatin receptor subtype-2 (SSTR2) and demonstrate utility for fluorescence-guided surgery (FGS). EXPERIMENTAL DESIGN A multimodality chelator (MMC) was used as a "radioactive linker" to synthesize the fluorescently labeled somatostatin analog, 67/68Ga-MMC(IR800)-TOC. In vivo studies were performed to determine the pharmacokinetic profile, optimal imaging time point, and specificity for SSTR2-expressing tissues. Meso- and microscopic imaging of resected tissues and frozen sections were also performed to further assess specific binding, and binding to human NETs was examined using surgical biospecimens from patients with pancreatic NETs. RESULTS Direct labeling with 67Ga/68Ga provided quantitative biodistribution analysis that was in agreement with fluorescence data. Receptor-mediated uptake was observed in vivo and ex vivo at the macro-, meso-, and microscopic scales. Surgical biospecimens from patients with pancreatic NETs also displayed receptor-specific agent binding, allowing clear delineation of tumor boundaries that matched pathology findings. CONCLUSIONS The radioactive utility of the MMC allowed us to validate the binding properties of a novel FGS agent that could have a broad impact on cancer outcomes by equipping surgeons with real-time intraoperative imaging capabilities.
Collapse
Affiliation(s)
- Servando Hernandez Vargas
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Susanne Kossatz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Julie Voss
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Sukhen C Ghosh
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Hop S Tran Cao
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Jo Simien
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Sadhna Dhingra
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - William E Fisher
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Ali Azhdarinia
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
25
|
Olson MT, Ly QP, Mohs AM. Fluorescence Guidance in Surgical Oncology: Challenges, Opportunities, and Translation. Mol Imaging Biol 2019; 21:200-218. [PMID: 29942988 PMCID: PMC6724738 DOI: 10.1007/s11307-018-1239-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surgical resection continues to function as the primary treatment option for most solid tumors. However, the detection of cancerous tissue remains predominantly subjective and reliant on the expertise of the surgeon. Surgery that is guided by fluorescence imaging has shown clinical relevance as a new approach to detecting the primary tumor, tumor margins, and metastatic lymph nodes. It is a technique to reduce recurrence and increase the possibility of a curative resection. While significant progress has been made in developing this emerging technology as a tool to assist the surgeon, further improvements are still necessary. Refining imaging agents and tumor targeting strategies to be a precise and reliable surgical strategy is essential in order to translate this technology into patient care settings. This review seeks to provide a comprehensive update on the most recent progress of fluorescence-guided surgery and its translation into the clinic. By highlighting the current status and recent developments of fluorescence image-guided surgery in the field of surgical oncology, we aim to offer insight into the challenges and opportunities that require further investigation.
Collapse
Affiliation(s)
- Madeline T Olson
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Quan P Ly
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Aaron M Mohs
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 5-12315 Scott Research Tower, Omaha, NE, 68198, USA.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
26
|
Zettlitz KA, Waldmann CM, Tsai WTK, Tavaré R, Collins J, Murphy JM, Wu AM. A Dual-Modality Linker Enables Site-Specific Conjugation of Antibody Fragments for 18F-Immuno-PET and Fluorescence Imaging. J Nucl Med 2019; 60:1467-1473. [PMID: 30877181 DOI: 10.2967/jnumed.118.223560] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/06/2019] [Indexed: 12/30/2022] Open
Abstract
Antibody-based dual-modality (PET/fluorescence) imaging enables both presurgery antigen-specific immuno-PET for noninvasive whole-body evaluation and intraoperative fluorescence for visualization of superficial tissue layers for image-guided surgery. Methods: We developed a universal dual-modality linker (DML) that facilitates site-specific conjugation to a cysteine residue-bearing antibody fragment, introduction of a commercially available fluorescent dye (via an amine-reactive prosthetic group), and rapid and efficient radiolabeling via click chemistry with 18F-labeled trans-cyclooctene (18F-TCO). To generate a dual-modality antibody fragment-based imaging agent, the DML was labeled with the far-red dye sulfonate cyanine 5 (sCy5), site-specifically conjugated to the C-terminal cysteine of the anti-prostate stem cell antigen (PSCA) cys-diabody A2, and subsequently radiolabeled by click chemistry with 18F-TCO. The new imaging probe was evaluated in a human PSCA-positive prostate cancer xenograft model by sequential immuno-PET and optical imaging. Uptake in target tissues was confirmed by ex vivo biodistribution. Results: We successfully synthesized a DML for conjugation of a fluorescent dye and 18F. The anti-PSCA cys-diabody A2 was site-specifically conjugated with either DML or sCy5 and radiolabeled via click chemistry with 18F-TCO. Immuno-PET imaging confirmed in vivo antigen-specific targeting of prostate cancer xenografts as early as 1 h after injection. Rapid renal clearance of the 50-kDa antibody fragment enables same-day imaging. Optical imaging showed antigen-specific fluorescent signal in PSCA-positive xenografts and high contrast to surrounding tissue and PSCA-negative xenografts. Conclusion: The DML enables site-specific conjugation away from the antigen-binding site of antibody fragments, with a controlled linker-to-protein ratio, and combines signaling moieties for 2 imaging systems into 1 molecule. Dual-modality imaging could provide both noninvasive whole-body imaging with organ-level biodistribution and fluorescence image-guided identification of tumor margins during surgery.
Collapse
Affiliation(s)
- Kirstin A Zettlitz
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Christopher M Waldmann
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Wen-Ting K Tsai
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Richard Tavaré
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jeffrey Collins
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jennifer M Murphy
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Anna M Wu
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
27
|
Kim HK, Javed MR, Chen S, Zettlitz KA, Collins J, Wu AM, Kim CJ“CJ, Michael van Dam R, Keng PY. On-demand radiosynthesis of N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB) on an electrowetting-on-dielectric microfluidic chip for 18F-labeling of protein. RSC Adv 2019; 9:32175-32183. [PMID: 35530758 PMCID: PMC9072849 DOI: 10.1039/c9ra06158d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/17/2019] [Indexed: 12/16/2022] Open
Abstract
An all-electronic, droplet-based batch microfluidic device, operated using the electrowetting on dielectric (EWOD) mechanism was developed for on-demand synthesis of N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB), the most commonly used 18F-prosthetic group for biomolecule labeling. In order to facilitate the development of peptides, and proteins as new diagnostic and therapeutic agents, we have diversified the compact EWOD microfluidic platform to perform the three-step radiosynthesis of [18F]SFB starting from the no carrier added [18F]fluoride ion. In this report, we established an optimal microliter droplet reaction condition to obtain reliable yields and synthesized [18F]SFB with sufficient radioactivity for subsequent conjugation to the anti-PSCA cys-diabody (A2cDb) and for small animal imaging. The three-step, one-pot radiosynthesis of [18F]SFB radiochemistry was adapted to a batch microfluidic platform with a reaction droplet sandwiched between two parallel plates of an EWOD chip, and optimized. Specifically, the ratio of precursor to base, droplet volume, reagent concentration, reaction time, and evaporation time were found be to be critical parameters. [18F]SFB was successfully synthesized on the EWOD chip in 39 ± 7% (n = 4) radiochemical yield in a total synthesis time of ∼120 min ([18F]fluoride activation, [18F]fluorination, hydrolysis, and coupling reaction, HPLC purification, drying and reformulation). The reformulation and stabilization step for [18F]SFB was important to obtain a high protein labeling efficiency of 33.1 ± 12.5% (n = 3). A small-animal immunoPET pilot study demonstrated that the [18F]SFB-PSCA diabody conjugate showed specific uptake in the PSCA-positive human prostate cancer xenograft. The successful development of a compact footprint of the EWOD radiosynthesizer has the potential to empower biologists to produce PET probes of interest themselves in a standard laboratory. An all-electronic, droplet-based batch microfluidic device, operated using the electrowetting on dielectric (EWOD) mechanism was developed for on-demand synthesis of acommonly used 18F-prosthetic group for biomolecule labeling.![]()
Collapse
Affiliation(s)
- Hee-Kwon Kim
- Department of Molecular and Medical Pharmacology
- University of California, Los Angeles
- Los Angeles
- USA
- Crump Institute for Molecular Imaging
| | - Muhammad Rashed Javed
- Department of Molecular and Medical Pharmacology
- University of California, Los Angeles
- Los Angeles
- USA
- Crump Institute for Molecular Imaging
| | - Supin Chen
- Department of Materials Science and Engineering
- National Tsing Hua University
- Hsinchu
- Taiwan
| | - Kirstin A. Zettlitz
- Department of Molecular and Medical Pharmacology
- University of California, Los Angeles
- Los Angeles
- USA
- Crump Institute for Molecular Imaging
| | - Jeffrey Collins
- Department of Molecular and Medical Pharmacology
- University of California, Los Angeles
- Los Angeles
- USA
- Crump Institute for Molecular Imaging
| | - Anna M. Wu
- Department of Molecular and Medical Pharmacology
- University of California, Los Angeles
- Los Angeles
- USA
- Crump Institute for Molecular Imaging
| | - Chang-Jin “C. J.” Kim
- Bioengineering Department
- University of California, Los Angeles
- Los Angeles
- USA
- Mechanical and Aerospace Engineering Department
| | - R. Michael van Dam
- Department of Molecular and Medical Pharmacology
- University of California, Los Angeles
- Los Angeles
- USA
- Crump Institute for Molecular Imaging
| | - Pei Yuin Keng
- Department of Molecular and Medical Pharmacology
- University of California, Los Angeles
- Los Angeles
- USA
- Crump Institute for Molecular Imaging
| |
Collapse
|
28
|
Havlík M, Talianová V, Kaplánek R, Bříza T, Dolenský B, Králová J, Martásek P, Král V. Versatile fluorophores for bioimaging applications: π-expanded naphthalimide derivatives with skeletal and appendage diversity. Chem Commun (Camb) 2019; 55:2696-2699. [DOI: 10.1039/c8cc09638d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four novel fluorescent cores bearing a transformable functional group based on a π-expanded naphthalimide including a fused pyranone or furan ring have been prepared.
Collapse
Affiliation(s)
- Martin Havlík
- BIOCEV, First Faculty of Medicine, Charles University
- 252 50 Vestec
- Czech Republic
- Department of Analytical Chemistry, University of Chemistry and Technology
- 166 28 Prague
| | - Veronika Talianová
- BIOCEV, First Faculty of Medicine, Charles University
- 252 50 Vestec
- Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University
- 252 50 Vestec
- Czech Republic
- Department of Analytical Chemistry, University of Chemistry and Technology
- 166 28 Prague
| | - Tomáš Bříza
- BIOCEV, First Faculty of Medicine, Charles University
- 252 50 Vestec
- Czech Republic
- Department of Analytical Chemistry, University of Chemistry and Technology
- 166 28 Prague
| | - Bohumil Dolenský
- Department of Analytical Chemistry, University of Chemistry and Technology
- 166 28 Prague
- Czech Republic
| | - Jarmila Králová
- Institute of Molecular Genetics of the Czech Academy of Sciences
- 142 20 Prague
- Czech Republic
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague
- 121 08 Prague
| | - Pavel Martásek
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague
- 121 08 Prague
- Czech Republic
| | - Vladimír Král
- BIOCEV, First Faculty of Medicine, Charles University
- 252 50 Vestec
- Czech Republic
- Department of Analytical Chemistry, University of Chemistry and Technology
- 166 28 Prague
| |
Collapse
|
29
|
Fu R, Carroll L, Yahioglu G, Aboagye EO, Miller PW. Antibody Fragment and Affibody ImmunoPET Imaging Agents: Radiolabelling Strategies and Applications. ChemMedChem 2018; 13:2466-2478. [PMID: 30246488 PMCID: PMC6587488 DOI: 10.1002/cmdc.201800624] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Indexed: 12/12/2022]
Abstract
Antibodies have long been recognised as potent vectors for carrying diagnostic medical radionuclides, contrast agents and optical probes to diseased tissue for imaging. The area of ImmunoPET combines the use of positron emission tomography (PET) imaging with antibodies to improve the diagnosis, staging and monitoring of diseases. Recent developments in antibody engineering and PET radiochemistry have led to a new wave of experimental ImmunoPET imaging agents that are based on a range of antibody fragments and affibodies. In contrast to full antibodies, engineered affibody proteins and antibody fragments such as minibodies, diabodies, single-chain variable region fragments (scFvs), and nanobodies are much smaller but retain the essential specificities and affinities of full antibodies in addition to more desirable pharmacokinetics for imaging. Herein, recent key developments in the PET radiolabelling strategies of antibody fragments and related affibody molecules are highlighted, along with the main PET imaging applications of overexpressed antigen-associated tumours and immune cells.
Collapse
Affiliation(s)
- Ruisi Fu
- Department of ChemistryImperial College LondonExhibition RoadSouth Kensington, LondonSW7 2AZUK
- Comprehensive Cancer Imaging Centre, Department of Surgery and CancerImperial College London, Hammersmith CampusDu Cane RoadLondonW12 0NNUK
| | - Laurence Carroll
- Comprehensive Cancer Imaging Centre, Department of Surgery and CancerImperial College London, Hammersmith CampusDu Cane RoadLondonW12 0NNUK
| | - Gokhan Yahioglu
- Department of ChemistryImperial College LondonExhibition RoadSouth Kensington, LondonSW7 2AZUK
- Antikor Biopharma Ltd.StevenageSG1 2FXUK
| | - Eric O. Aboagye
- Comprehensive Cancer Imaging Centre, Department of Surgery and CancerImperial College London, Hammersmith CampusDu Cane RoadLondonW12 0NNUK
| | - Philip W. Miller
- Department of ChemistryImperial College LondonExhibition RoadSouth Kensington, LondonSW7 2AZUK
| |
Collapse
|
30
|
Tsai WK, Zettlitz KA, Tavaré R, Kobayashi N, Reiter RE, Wu AM. Dual-Modality ImmunoPET/Fluorescence Imaging of Prostate Cancer with an Anti-PSCA Cys-Minibody. Am J Cancer Res 2018; 8:5903-5914. [PMID: 30613270 PMCID: PMC6299441 DOI: 10.7150/thno.27679] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/04/2018] [Indexed: 01/01/2023] Open
Abstract
Inadequate diagnostic methods for prostate cancer lead to over- and undertreatment, and the inability to intraoperatively visualize positive margins may limit the success of surgical resection. Prostate cancer visualization could be improved by combining the complementary modalities of immuno-positron emission tomography (immunoPET) for preoperative disease detection, and fluorescence imaging-guided surgery (FIGS) for real-time intraoperative tumor margin identification. Here, we report on the evaluation of dual-labeled humanized anti-prostate stem cell antigen (PSCA) cys-minibody (A11 cMb) for immunoPET/fluorescence imaging in subcutaneous and orthotopic prostate cancer models. Methods: A11 cMb was site-specifically conjugated with the near-infrared fluorophore Cy5.5 and radiolabeled with 124I or 89Zr. 124I-A11 cMb-Cy5.5 was used for successive immunoPET/fluorescence imaging of prostate cancer xenografts expressing high or moderate levels of PSCA (22Rv1-PSCA and PC3-PSCA). 89Zr-A11 cMb-Cy5.5 dual-modality imaging was evaluated in an orthotopic model. Ex vivo biodistribution at 24 h was used to confirm the uptake values, and tumors were visualized by post-mortem fluorescence imaging. Results: A11 cMb-Cy5.5 retained low nanomolar affinity for PSCA-positive cells. Conjugation conditions were established (dye-to-protein ratio of 0.7:1) that did not affect the biodistribution, pharmacokinetics, or clearance of A11 cMb. ImmunoPET using dual-labeled 124I-A11 cMb-Cy5.5 showed specific targeting to both 22Rv1-PSCA and PC3-PSCA s.c. xenografts in nude mice. Ex vivo biodistribution confirmed specific uptake to PSCA-expressing tumors with 22Rv1-PSCA:22Rv1 and PC3-PSCA:PC3 ratios of 13:1 and 5.6:1, respectively. Consistent with the immunoPET, fluorescence imaging showed a strong signal from both 22Rv1-PSCA and PC3-PSCA tumors compared with non-PSCA expressing tumors. In an orthotopic model, 89Zr-A11 cMb-Cy5.5 immunoPET was able to detect intraprostatically implanted 22Rv1-PSCA cells. Importantly, fluorescence imaging clearly distinguished the prostate tumor from surrounding seminal vesicles. Conclusion: Dual-labeled A11 cMb specifically visualized PSCA-positive tumor by successive immunoPET/fluorescence, which can potentially be translated for preoperative whole-body prostate cancer detection and intraoperative surgical guidance in patients.
Collapse
|
31
|
Zhang M, Kobayashi N, Zettlitz KA, Kono EA, Yamashiro JM, Tsai WTK, Jiang ZK, Tran CP, Wang C, Guan J, Wu AM, Reiter RE. Near-Infrared Dye-Labeled Anti-Prostate Stem Cell Antigen Minibody Enables Real-Time Fluorescence Imaging and Targeted Surgery in Translational Mouse Models. Clin Cancer Res 2018; 25:188-200. [PMID: 30301826 DOI: 10.1158/1078-0432.ccr-18-1382] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/22/2018] [Accepted: 10/03/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE The inability to intraoperatively distinguish primary tumor, as well as lymphatic spread, increases the probability of positive surgical margins, tumor recurrence, and surgical toxicity. The goal of this study was to develop a tumor-specific optical probe for real-time fluorescence-guided surgery. EXPERIMENTAL DESIGN A humanized antibody fragment against PSCA (A11 minibody, A11 Mb) was conjugated with a near-infrared fluorophore, IRDye800CW. The integrity and binding of the probe to PSCA were confirmed by gel electrophoresis, size-exclusion chromatography, and flow cytometry, respectively. The ability of the probe to detect tumor-infiltrated lymph nodes and metastatic lesions was evaluated in 2 xenograft models, as well as in transgenic mice expressing human PSCA (hPSCA). An invasive intramuscular model was utilized to evaluate the efficacy of the A11 Mb-IRDye800CW-guided surgery. RESULTS A11 Mb was successfully conjugated with IRDye800CW and retained specific binding to PSCA. In vivo imaging showed maximal signal-to-background ratios at 48 hours. The A11 Mb-IRDye800CW specifically detected PSCA-positive primary tumors, tumor-infiltrated lymph nodes, and distant metastases with high contrast. Fluorescence guidance facilitated more complete tumor resection, reduced tumor recurrence, and improved overall survival, compared with conventional white light surgery. The probe successfully identified primary orthotopic tumors and metastatic lesions in hPSCA transgenic mice. CONCLUSIONS Real-time fluorescence image-guided surgery with A11 Mb-IRDye800CW enabled detection of lymph node metastases and positive surgical margins, facilitated more complete tumor removal, and improved survival, compared with white light surgery. These results may be translatable into clinical practice to improve surgical and patient outcomes.
Collapse
Affiliation(s)
- Mo Zhang
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Department of Urology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Naoko Kobayashi
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Kirstin A Zettlitz
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California
| | - Evelyn A Kono
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Joyce M Yamashiro
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Wen-Ting K Tsai
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California
| | - Ziyue K Jiang
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Chau P Tran
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Chung Wang
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Johnny Guan
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Anna M Wu
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California
| | - Robert E Reiter
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.
| |
Collapse
|
32
|
Tumor uptake of pegylated diabodies: Balancing systemic clearance and vascular transport. J Control Release 2018; 279:126-135. [DOI: 10.1016/j.jconrel.2018.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 01/06/2023]
|
33
|
Kommidi H, Guo H, Nurili F, Vedvyas Y, Jin MM, McClure TD, Ehdaie B, Sayman HB, Akin O, Aras O, Ting R. 18F-Positron Emitting/Trimethine Cyanine-Fluorescent Contrast for Image-Guided Prostate Cancer Management. J Med Chem 2018; 61:4256-4262. [PMID: 29676909 DOI: 10.1021/acs.jmedchem.8b00240] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[18/19F]-4, an anionic GCPII/PSMA inhibitor for image-guided intervention in prostate cancer, is described. [19F]-4 is radiolabeled with a radiochemical yield that is ≥27% and a molar activity of 190 ± 50 mCi/μmol in a <1 h, one-step, aqueous isotopic exchange reaction. [19F]-4 allows PSMA expression to be imaged by fluorescence (FL) and [18F]-PET. PC3-PIP (PSMA-positive, EC50 = 6.74 ± 1.33 nM) cancers are specifically delineated in mice that bear 3 million (18 mg) PC3-PIP and PC3 (control, PSMA-negative) cells. Colocalization of [18/19F]-4 PET, fluorescence, scintillated biodistribution, and PSMA expression are observed.
Collapse
Affiliation(s)
- Harikrishna Kommidi
- Department of Radiology, Molecular Imaging Innovations Institute , Weill Cornell Medicine , New York , New York 10065 , United States
| | - Hua Guo
- Department of Radiology, Molecular Imaging Innovations Institute , Weill Cornell Medicine , New York , New York 10065 , United States
| | - Fuad Nurili
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Yogindra Vedvyas
- Department of Radiology, Molecular Imaging Innovations Institute , Weill Cornell Medicine , New York , New York 10065 , United States
| | - Moonsoo M Jin
- Department of Radiology, Molecular Imaging Innovations Institute , Weill Cornell Medicine , New York , New York 10065 , United States
| | - Timothy D McClure
- Department of Urology , Weill Cornell Medicine , New York , New York 10065 , United States
| | - Behfar Ehdaie
- Urology Service, Department of Surgery , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Haluk B Sayman
- Department of Nuclear Medicine, Cerrahpasa Medical Faculty , Istanbul University , Fatih, Istanbul 34303 , Turkey
| | - Oguz Akin
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Omer Aras
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Richard Ting
- Department of Radiology, Molecular Imaging Innovations Institute , Weill Cornell Medicine , New York , New York 10065 , United States
| |
Collapse
|
34
|
Zettlitz KA, Tsai WTK, Knowles SM, Kobayashi N, Donahue TR, Reiter RE, Wu AM. Dual-Modality Immuno-PET and Near-Infrared Fluorescence Imaging of Pancreatic Cancer Using an Anti-Prostate Stem Cell Antigen Cys-Diabody. J Nucl Med 2018; 59:1398-1405. [PMID: 29602820 DOI: 10.2967/jnumed.117.207332] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/12/2018] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer has a high mortality rate due to late diagnosis and the tendency to invade surrounding tissues and metastasize at an early stage. A molecular imaging agent that enables both presurgery antigen-specific PET (immuno-PET) and intraoperative near-infrared fluorescence (NIRF) guidance might benefit diagnosis of pancreatic cancer, staging, and surgical resection, which remains the only curative treatment. Methods: We developed a dual-labeled probe based on A2 cys-diabody (A2cDb) targeting the cell-surface prostate stem cell antigen (PSCA), which is expressed in most pancreatic cancers. Maleimide-IRDye800CW was site-specifically conjugated to the C-terminal cys-tag (A2cDb-800) without impairing integrity or affinity (half-maximal binding, 4.3 nM). Direct radioiodination with 124I (124I-A2cDb-800) yielded a specific activity of 159 ± 48 MBq/mg with a radiochemical purity exceeding 99% and 65% ± 4.5% immunoreactivity (n = 3). In vivo specificity for PSCA-expressing tumor cells and biodistribution of the dual-modality tracer were evaluated in a prostate cancer xenograft model and compared with single-labeled 124I-A2cDb. Patient-derived pancreatic ductal adenocarcinoma xenografts (PDX-PDACs) were grown subcutaneously in NSG mice and screened for PSCA expression by immuno-PET. Small-animal PET/CT scans of PDX-PDAC-bearing mice were obtained using the dual-modality 124I-A2cDb-800 followed by postmortem NIRF imaging with the skin removed. Tumors and organs were analyzed ex vivo to compare the relative fluorescent signals without obstruction by other organs. Results: Specific uptake in PSCA-positive tumors and low nonspecific background activity resulted in high-contrast immuno-PET images. Concurrent with the PET studies, fluorescent signal was observed in the PSCA-positive tumors of mice injected with the dual-tracer 124I-A2cDb-800, with low background uptake or autofluorescence in the surrounding tissue. Ex vivo biodistribution confirmed comparable tumor uptake of both 124I-A2cDb-800 and 124I-A2cDb. Conclusion: Dual-modality imaging using the anti-PSCA cys-diabody resulted in high-contrast immuno-PET/NIRF images of PDX-PDACs, suggesting that this imaging agent might offer both noninvasive whole-body imaging to localize PSCA-positive pancreatic cancer and fluorescence image-guided identification of tumor margins during surgery.
Collapse
Affiliation(s)
- Kirstin A Zettlitz
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, California .,Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California.,David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Wen-Ting K Tsai
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, California.,Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California.,David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Scott M Knowles
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, California.,Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California.,David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Naoko Kobayashi
- David Geffen School of Medicine, UCLA, Los Angeles, California.,Department of Urology, UCLA, Los Angeles, California; and
| | - Timothy R Donahue
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California.,David Geffen School of Medicine, UCLA, Los Angeles, California.,Division of General Surgery, Department of Surgery, UCLA, Los Angeles, California
| | - Robert E Reiter
- David Geffen School of Medicine, UCLA, Los Angeles, California.,Department of Urology, UCLA, Los Angeles, California; and
| | - Anna M Wu
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, California.,Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California.,David Geffen School of Medicine, UCLA, Los Angeles, California
| |
Collapse
|
35
|
Tringale KR, Pang J, Nguyen QT. Image-guided surgery in cancer: A strategy to reduce incidence of positive surgical margins. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2018; 10:e1412. [PMID: 29474004 DOI: 10.1002/wsbm.1412] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/13/2017] [Accepted: 11/03/2017] [Indexed: 12/16/2022]
Abstract
Primary treatment for many solid cancers includes surgical excision or radiation therapy, with or without the use of adjuvant therapy. This can include the addition of radiation and chemotherapy after primary surgical therapy, or the addition of chemotherapy and salvage surgery to primary radiation therapy. Both primary therapies, surgery and radiation, require precise anatomic localization of tumor. If tumor is not targeted adequately with initial treatment, disease recurrence may ensue, and if targeting is too broad, unnecessary morbidity may occur to nearby structures or remaining normal tissue. Fluorescence imaging using intraoperative contrast agents is a rapidly growing field for improving visualization in cancer surgery to facilitate resection in order to obtain negative margins. There are multiple strategies for tumor visualization based on antibodies against surface markers or ligands for receptors preferentially expressed in cancer. In this article, we review the incidence and clinical implications of positive surgical margins for some of the most common solid tumors. Within this context, we present the ongoing clinical and preclinical studies focused on the use of intraoperative contrast agents to improve surgical margins. This article is categorized under: Laboratory Methods and Technologies > Imaging.
Collapse
Affiliation(s)
- Kathryn R Tringale
- Division of Otolaryngology, Head and Neck Surgery, University of California, San Diego, La Jolla, California
| | - John Pang
- Division of Otolaryngology, Head and Neck Surgery, University of California, San Diego, La Jolla, California
| | - Quyen T Nguyen
- Division of Otolaryngology, Head and Neck Surgery, University of California, San Diego, La Jolla, California.,Department of Pharmacology, University of California, San Diego, La Jolla, California.,Moores Cancer Center, University of California, San Diego, La Jolla, California
| |
Collapse
|
36
|
Liu G, Lv H, An Y, Wei X, Yi X, Yi H. Tracking of transplanted human umbilical cord-derived mesenchymal stem cells labeled with fluorescent probe in a mouse model of acute lung injury. Int J Mol Med 2018. [PMID: 29532861 PMCID: PMC5846645 DOI: 10.3892/ijmm.2018.3491] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was topreliminarily visualize the distribution of humanumbilical cord-derived-mesenchymal stem cells (hUC-MSCs) in treating acute lung injury (ALI) using a targeted fluorescent technique. Anovel fluorescent molecule probe was first synthesized via the specific binding of antigen and antibody in vitro to label the hUC-MSCs. Two groups of mice, comprising a normal saline (NS)+MSC group and lipopolysaccharide (LPS)+MSC group, were subjected to optical imaging. At 4 h following ALI mouse model construction, the labeled hUC-MSCs were transplanted into the mice in the NS+MSC group and LPS+MSC group by tail vein injection. The mice were sacrificed 30 min, 1 day, 3 days and 7 days following injection of the labeled hUC-MSCs, and the lungs, heart, spleen, kidneys and liver were removed. The excised lungs, heart, spleen, kidneys and liver were then detected on asmall animal fluorescent imager. The fluorescent results showed that the signal intensity in the lungs of the LPS+MSC group was significantly higher, compared with that of the NS+MSC group at 30 min (3.53±0.06×10−4, vs. 1.95±0.05×10−4 scaled counts/sec), 1 day (36.20±0.77×10−4, vs. 23.45±0.43×10−4 scaled counts/sec), 3 days (11.83±0.26×10−4, vs. 5.39±0.10×10−4 scaled counts/sec), and 7 days (3.14±0.04×10−4, vs. 0.00±0.00×10−4 scaled counts/sec; all P<0.05). The fluorescence intensity in the liver of the LPS+MSC group, vs. NS+MSC group was measured at 30 min (0.00±0.00×10−4, vs. 0.00±0.00×10−4 scaled counts/sec); 1 day (5.53±0.08×10−4, vs. 5.44±0.16×10−4 scaled counts/sec); 3 days (0.00±0.00×10−4, vs. 8.67±0.05×10−4 scaled counts/sec); 7 days (0.00±0.00×10−4, vs. 0.00±0.00×10−4 scaled counts/sec). The signal intensity of the heart, spleen and kidneys was minimal. In conclusion, the novel targeted fluorescence molecular probe was suitable for tracking the distribution processes of hUC-MSCs in treating ALI.
Collapse
Affiliation(s)
- Genglong Liu
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Haijin Lv
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yuling An
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Xuxia Wei
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Xiaomeng Yi
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Huimin Yi
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
37
|
Kessler C, Pardo A, Tur MK, Gattenlöhner S, Fischer R, Kolberg K, Barth S. Novel PSCA targeting scFv-fusion proteins for diagnosis and immunotherapy of prostate cancer. J Cancer Res Clin Oncol 2017; 143:2025-2038. [PMID: 28667390 DOI: 10.1007/s00432-017-2472-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/28/2017] [Indexed: 12/22/2022]
Abstract
PURPOSE Despite great progress in the diagnosis and treatment of localized prostate cancer (PCa), there remains a need for new diagnostic markers that can accurately distinguish indolent and aggressive variants. One promising approach is the antibody-based targeting of prostate stem cell antigen (PSCA), which is frequently overexpressed in PCa. Here, we show the construction of a molecular imaging probe comprising a humanized scFv fragment recognizing PSCA genetically fused to an engineered version of the human DNA repair enzyme O6-alkylguanine-DNA alkyltransferase (AGT), the SNAP-tag, enabling specific covalent coupling to various fluorophores for diagnosis of PCa. Furthermore, the recombinant immunotoxin (IT) PSCA(scFv)-ETA' comprising the PSCA(scFv) and a truncated version of Pseudomonas exotoxin A (PE, ETA') was generated. METHODS We analyzed the specific binding and internalization behavior of the molecular imaging probe PSCA(scFv)-SNAP in vitro by flow cytometry and live cell imaging, compared to the corresponding IT PSCA(scFv)-ETA'. The cytotoxic activity of PSCA(scFv)-ETA' was tested using cell viability assays. Specific binding was confirmed on formalin-fixed paraffin-embedded tissue specimen of early and advanced PCa. RESULTS Alexa Fluor® 647 labeling of PSCA(scFv)-SNAP confirmed selective binding to PSCA, leading to rapid internalization into the target cells. The recombinant IT PSCA(scFv)-ETA' showed selective binding leading to internalization and efficient elimination of target cells. CONCLUSIONS Our data demonstrate, for the first time, the specific binding, internalization, and cytotoxicity of a scFv-based fusion protein targeting PSCA. Immunohistochemical staining confirmed the specific ex vivo binding to primary PCa material.
Collapse
Affiliation(s)
- Claudia Kessler
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany
- Institute of Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany
| | - Alessa Pardo
- Institute of Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany
| | - Mehmet K Tur
- Institute for Pathology, Justus-Liebig University, Giessen, Germany
| | | | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany
- Institute of Molecular Biotechnology (Biology VII), RWTH Aachen University, Aachen, Germany
| | - Katharina Kolberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany
- Institute of Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany
| | - Stefan Barth
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Anzio Road, Observatory, 7925, South Africa.
| |
Collapse
|
38
|
Xia L, Zeh R, Mizelle J, Newton A, Predina J, Nie S, Singhal S, Guzzo TJ. Near-infrared Intraoperative Molecular Imaging Can Identify Metastatic Lymph Nodes in Prostate Cancer. Urology 2017; 106:133-138. [PMID: 28438626 PMCID: PMC11090243 DOI: 10.1016/j.urology.2017.04.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 02/09/2017] [Accepted: 04/12/2017] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To propose a novel method to perform indocyanine green (ICG) based near-infrared (NIR) fluorescence imaging during pelvic lymph node dissection (PLND) for prostate cancer patients with lymph node metastasis (LNM). MATERIALS AND METHODS A prostate cancer cell line PC3 was used to establish xenograft model in NOD/SCID mice. After tumor growth, the mice were injected with ICG through the tail vein. Xenografts and surrounding tissues were imaged with NIR camera 24 hours after intravenous ICG, and tumor-to-background ratios were calculated. We then performed a pilot human study to evaluate the role of NIR imaging in robotic PLND after systemic ICG in 4 patients with prostate cancer and preoperative lymphadenopathy. RESULTS ICG localized to PC3 xenografts in the mice and all xenografts were highly fluorescent compared with surrounding tissues, with a median tumor-to-background ratio of 2.85 (interquartile range = 2.64-3.90). In the human study, intraoperative in vivo NIR imaging identified 3 of the 4 preoperative lymphadenopathies as fluorescence-positive, and back table ex vivo NIR imaging identified all 4 lymphadenopathies as fluorescence-positive. All the lymphadenopathies were found to be LNMs by pathologic examination. Two of the four cases had additional LNMs, all of which were fluorescence-positive with intraoperative in vivo NIR imaging. CONCLUSION Intravenously administered ICG accumulates in prostate cancers in both a murine model and human patients. NIR fluorescence based on intravenous ICG may serve as a useful tool to facilitate the identification of positive nodes during PLND in patients with higher risk of LNMs.
Collapse
Affiliation(s)
- Leilei Xia
- Division of Urology, Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Center for Precision Surgery, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Ryan Zeh
- Center for Precision Surgery, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Jack Mizelle
- Center for Precision Surgery, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Division of Thoracic Surgery and Thoracic Surgery Research Laboratory, Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Andrew Newton
- Center for Precision Surgery, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Division of Thoracic Surgery and Thoracic Surgery Research Laboratory, Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Jarrod Predina
- Center for Precision Surgery, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Division of Thoracic Surgery and Thoracic Surgery Research Laboratory, Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Shuming Nie
- Department of Biomedical Engineering, Emory University, Atlanta, GA
| | - Sunil Singhal
- Center for Precision Surgery, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Division of Thoracic Surgery and Thoracic Surgery Research Laboratory, Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Thomas J Guzzo
- Division of Urology, Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Center for Precision Surgery, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.
| |
Collapse
|
39
|
Lai Z, Tan J, Wan R, Tan J, Zhang Z, Hu Z, Li J, Yang W, Wang Y, Jiang Y, He J, Yang N, Lu X, Zhao Y. An 'activatable' aptamer-based fluorescence probe for the detection of HepG2 cells. Oncol Rep 2017; 37:2688-2694. [PMID: 28339076 PMCID: PMC5428880 DOI: 10.3892/or.2017.5527] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/01/2017] [Indexed: 01/06/2023] Open
Abstract
It is significant to develop a probe with sensitivity and specificity for the detection of cancer cells. The present study aimed to develop an ‘activatable’ aptamer-based fluorescence probe (AAFP) to detect cancer cells and frozen cancer tissue. This AAFP consisted of two fragments: aptamer TLS11a that targets HepG2 cells, and two short extending complementary DNA sequences with a 5′- and 3′-terminus that make the aptamer in hairpin structure a capable quencher to fluorophore. The ability of the AAFP to bind specifically to cancer cells was assessed using flow cytometry, fluorescence spectroscopy and fluorescence microscopy. Its ability to bind to frozen cancer tissue was assessed using fluorescence microscopy. As a result, in the absence of cancer cells, AAFP showed minimal fluorescence, reflecting auto-quenching. In the presence of cancer cells, however, AAFP showed a strong fluorescent signal. Therefore, this AAFP may be a promising tool for sensitive and specific detection of cancer.
Collapse
Affiliation(s)
- Zongqiang Lai
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Juntao Tan
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ruirong Wan
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jie Tan
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhenghua Zhang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zixi Hu
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jieping Li
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wei Yang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yiwei Wang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yafeng Jiang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jian He
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Nuo Yang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaoling Lu
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yongxiang Zhao
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
40
|
Vlachostergios PJ, Galletti G, Palmer J, Lam L, Karir BS, Tagawa ST. Antibody therapeutics for treating prostate cancer: where are we now and what comes next? Expert Opin Biol Ther 2017; 17:135-149. [PMID: 27817214 DOI: 10.1080/14712598.2017.1258398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Progress in the understanding of molecular events of carcinogenesis and cancer evolution as well as the identification of tumor antigens has led to the development of different targeted therapeutic approaches, including the use of monoclonal antibodies (mAbs). Prostate cancer (PC) is highly amenable to mAb targeting given the existence of prostate-specific targets and the natural history and localization of metastatic disease. Areas covered: Several aspects of the PC phenotype, including growth factors, angiogenesis mediators, bone microenvironment signals, and immune evasion pathways, have become areas of ongoing investigation in terms of mAb targeting. These are reviewed. The greatest success so far has been the development of mAbs against prostate-specific tumor antigen (PSMA), which opened an opportunity to improve diagnostic accuracy and simultaneously target metastatic disease. Expert opinion: As mAb use in PC continues to evolve, more accurate imaging of the extent of disease and more effective mAb therapies (naked or conjugated with drugs, toxins or radioactive molecules) are emerging. In addition, the combination of mAbs with other treatment modalities is expected to further improve responses and overall survival. Identification of validated biomarkers is necessary for better recognition of patient subgroups who will derive the greatest benefit from mAb therapy.
Collapse
Affiliation(s)
| | - Giuseppe Galletti
- a Division of Hematology and Medical Oncology , Weill Cornell Medicine , New York , NY , USA
- b Meyer Cancer Center , Weill Cornell Medicine , New York , NY , USA
| | - Jessica Palmer
- a Division of Hematology and Medical Oncology , Weill Cornell Medicine , New York , NY , USA
| | - Linda Lam
- a Division of Hematology and Medical Oncology , Weill Cornell Medicine , New York , NY , USA
| | - Beerinder S Karir
- a Division of Hematology and Medical Oncology , Weill Cornell Medicine , New York , NY , USA
| | - Scott T Tagawa
- a Division of Hematology and Medical Oncology , Weill Cornell Medicine , New York , NY , USA
- b Meyer Cancer Center , Weill Cornell Medicine , New York , NY , USA
- c Department of Urology , Weill Cornell Medicine , New York , NY , USA
| |
Collapse
|
41
|
van Leeuwen FW, van der Poel HG. Surgical Guidance in Prostate Cancer: “From Molecule to Man” Translations. Clin Cancer Res 2015; 22:1304-6. [DOI: 10.1158/1078-0432.ccr-15-2575] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/16/2015] [Indexed: 11/16/2022]
|