1
|
Kato T, Tanaka I, Huang H, Okado S, Imamura Y, Nomata Y, Takenaka H, Watanabe H, Kawasumi Y, Nakanishi K, Kadomatsu Y, Ueno H, Nakamura S, Mizuno T, Chen-Yoshikawa TF. Molecular Mechanisms of Tumor Progression and Novel Therapeutic and Diagnostic Strategies in Mesothelioma. Int J Mol Sci 2025; 26:4299. [PMID: 40362535 PMCID: PMC12072309 DOI: 10.3390/ijms26094299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Mesothelioma is characterized by the inactivation of tumor suppressor genes, with frequent mutations in neurofibromin 2 (NF2), BRCA1-associated protein 1 (BAP1), and cyclin-dependent kinase inhibitor 2A (CDKN2A). These mutations lead to disruptions in the Hippo signaling pathway and histone methylation, thereby promoting tumor growth. NF2 mutations result in Merlin deficiency, leading to uncontrolled cell proliferation, whereas BAP1 mutations impair chromatin remodeling and hinder DNA damage repair. Emerging molecular targets in mesothelioma include mesothelin (MSLN), oxytocin receptor (OXTR), protein arginine methyltransferase (PRMT5), and carbohydrate sulfotransferase 4 (CHST4). MSLN-based therapies, such as antibody-drug conjugates and immunotoxins, have shown efficacy in clinical trials. OXTR, upregulated in mesothelioma, is correlated with poor prognosis and represents a novel therapeutic target. PRMT5 inhibition is being explored in tumors with MTAP deletions, commonly co-occurring with CDKN2A loss. CHST4 expression is associated with improved prognosis, potentially influencing tumor immunity. Immune checkpoint inhibitors targeting PD-1/PD-L1 have shown promise in some cases; however, resistance mechanisms remain a challenge. Advances in multi-omics approaches have improved our understanding of mesothelioma pathogenesis. Future research will aim to identify novel therapeutic targets and personalized treatment strategies, particularly in the context of epigenetic therapy and combination immunotherapy.
Collapse
Affiliation(s)
- Taketo Kato
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Ichidai Tanaka
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan;
| | - Heng Huang
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Shoji Okado
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Yoshito Imamura
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Yuji Nomata
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Hirofumi Takenaka
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Hiroki Watanabe
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Yuta Kawasumi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Keita Nakanishi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Yuka Kadomatsu
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Harushi Ueno
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Shota Nakamura
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Tetsuya Mizuno
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| | - Toyofumi Fengshi Chen-Yoshikawa
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; (T.K.); (H.H.); (S.O.); (Y.I.); (Y.N.); (H.T.); (H.W.); (Y.K.); (K.N.); (Y.K.); (H.U.); (S.N.); (T.M.)
| |
Collapse
|
2
|
Kimura K, Aicher A, Niemeyer E, Areesawangkit P, Tilsed C, Fong KP, Papp TE, Albelda SM, Parhiz H, Predina JD. In Situ Tumor Vaccination Using Lipid Nanoparticles to Deliver Interferon-β mRNA Cargo. Vaccines (Basel) 2025; 13:178. [PMID: 40006725 PMCID: PMC11861666 DOI: 10.3390/vaccines13020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/22/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Background: In situ cancer vaccination is a therapeutic approach that involves stimulating the immune system in order to generate a polyclonal, anti-tumor response against an array of tumor neoantigens. Traditionally, in situ vaccination approaches have utilized adenoviral vectors to deliver immune-stimulating genes directly to the tumor microenvironment. Lipid nanoparticle (LNP)-mediated delivery methods offer several advantages over adenoviral delivery approaches, including increased safety, repeated administration potential, and enhanced tumor microenvironment activation. Methods: To explore in situ vaccination using LNPs, we evaluated LNP-mediated delivery of a reporter gene, mCherry, and an immune-stimulating gene, IFNβ, in several in vitro and in vivo models of lung cancer. Results: In vitro experiments demonstrated successful transfection of murine cancer cell lines with LNPs carrying both mCherry and IFN-β mRNA, resulting in high expression levels and IFNβ production. In vivo studies using LLC.ova flank tumors showed that intratumoral injection of IFNβ-mRNA LNPs led to significant IFNβ production within the tumor microenvironment, with minimal systemic exposure. Therapeutic efficacy was evaluated by injecting established LLC.ova flank tumors with IFNβ-mRNA LNPs bi-weekly for two weeks. Treated tumors showed significant growth inhibition compared to controls. Flow cytometric analysis of tumor-infiltrating leukocytes revealed that tumors injected with IFNβ-mRNA LNPs were associated with an increased CD8:CD4 T-cell ratio among lymphocytes, more CD69-expressing CD8 T-cells, and an increased presence of M1 macrophages. Efficacy and an abscopal effect were confirmed in a squamous cell carcinoma model, MOC1. No toxicity was observed. Conclusions: These findings show that intratumoral LNP delivery of immune-stimulating mRNA transcripts, such as IFNβ, can effectively stimulate local anti-tumor immune responses and warrants further investigation as a potential immunotherapeutic approach for cancer.
Collapse
Affiliation(s)
- Kenji Kimura
- Division of Pulmonary Allergy and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA (K.P.F.)
| | - Aidan Aicher
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emma Niemeyer
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Phurin Areesawangkit
- Division of Pulmonary Allergy and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA (K.P.F.)
| | - Caitlin Tilsed
- Division of Pulmonary Allergy and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA (K.P.F.)
| | - Karen P. Fong
- Division of Pulmonary Allergy and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA (K.P.F.)
| | - Tyler E. Papp
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Steven M. Albelda
- Division of Pulmonary Allergy and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA (K.P.F.)
| | - Hamideh Parhiz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Penn Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jarrod D. Predina
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Sakura K, Kuroyama M, Shintani Y, Funaki S, Atagi S, Kadota Y, Kuribayashi K, Kijima T, Nakano T, Nakajima T, Sasai M, Okumura M, Kaneda Y. Dose-escalation, tolerability, and efficacy of intratumoral and subcutaneous injection of hemagglutinating virus of Japan envelope (HVJ-E) against chemotherapy-resistant malignant pleural mesothelioma: a clinical trial. Cancer Immunol Immunother 2024; 73:243. [PMID: 39358654 PMCID: PMC11447170 DOI: 10.1007/s00262-024-03815-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/17/2024] [Indexed: 10/04/2024]
Abstract
The hemagglutinating virus of Japan envelope (HVJ-E) is an inactivated Sendai virus particle with antitumor effect and inducing antitumor immunity. However, its dosage and efficacy have not been verified. We conducted a phase I clinical study on chemotherapy-resistant malignant pleural mesothelioma (MPM) aiming to determine the recommended dosage for a phase II study through dose-limiting toxicity and evaluate HVJ-E's preliminary efficacy. HVJ-E was administered intratumorally and subcutaneously to the patients with chemotherapy-resistant MPM. While no serious adverse events occurred, known adverse events of HVJ-E were observed. In the preliminary antitumor efficacy using modified response evaluation criteria in solid tumors (RECIST) criteria, three low-dose patients exhibited progressive disease, while all high-dose patients achieved stable disease, yielding disease control rates (DCRs) of 0% and 100%, respectively. Furthermore, the dose-dependent effect of HVJ-E revealed on DCR modified by RECIST and the baseline changes in target lesion size (by CT and SUL-peak; p < 0.05). Comparing targeted lesions receiving intratumoral HVJ-E with non-injected ones, while no clear difference existed at the end of the study, follow-up cases suggested stronger antitumor effects with intratumoral administration. Our findings suggest that HVJ-E could be safely administered to patients with chemotherapy-resistant MPM at both study doses. HVJ-E exhibited some antitumor activity against chemotherapy-resistant MPM, and higher doses tended to have stronger antitumor effects than lower doses. Consequently, a phase II clinical trial with higher HVJ-E doses has been conducted for MPM treatment. Trial registration number: UMIN Clinical Trials Registry (#UMIN000019345).
Collapse
Affiliation(s)
- Kazuma Sakura
- Respiratory Center, Osaka University Hospital, Suita, 5650871, Japan.
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, 5650871, Japan.
| | - Muneyoshi Kuroyama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, 5650871, Japan
| | - Yasushi Shintani
- Respiratory Center, Osaka University Hospital, Suita, 5650871, Japan
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, 5650871, Japan
| | - Soichiro Funaki
- Respiratory Center, Osaka University Hospital, Suita, 5650871, Japan
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, 5650871, Japan
- Department of thoracic surgery, Hyogo Medical University, Nishinomiya, 6638501, Japan
| | - Shinji Atagi
- Department of Thoracic Oncology, National Hospital Organization, Kinki-Chuo Chest Medical Center, Sakai, 5918555, Japan
| | - Yoshihisa Kadota
- Department of Thoracic Surgery, Osaka Habikino Medical Center, Habikino, 5838588, Japan
| | - Kozo Kuribayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Hyogo Medicine University, Nishinomiya, 6638501, Japan
| | - Takashi Kijima
- Division of Respiratory Medicine, Department of Internal Medicine, Hyogo Medicine University, Nishinomiya, 6638501, Japan
| | - Takashi Nakano
- Division of Respiratory Medicine, Otemae Hospital, Osaka, 5400008, Japan
| | | | - Masao Sasai
- Department of Medical Innovation, Osaka University Hospital, Suita, 5650871, Japan
| | - Meinoshin Okumura
- Department of Respiratory Surgery, National Hospital Organization, National Toneyama Hospital, Toyonaka, 5608552, Japan
| | - Yasufumi Kaneda
- Administration Bureau, Osaka University, Suita, 5650871, Japan
| |
Collapse
|
4
|
Zhang M, Xia L, Peng W, Xie G, Li F, Zhang C, Syeda MZ, Hu Y, Lan F, Yan F, Jin Z, Du X, Han Y, Lv B, Wang Y, Li M, Fei X, Zhao Y, Chen K, Chen Y, Li W, Chen Z, Zhou Q, Zhang M, Ying S, Shen H. CCL11/CCR3-dependent eosinophilia alleviates malignant pleural effusions and improves prognosis. NPJ Precis Oncol 2024; 8:138. [PMID: 38951159 PMCID: PMC11217290 DOI: 10.1038/s41698-024-00608-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/09/2024] [Indexed: 07/03/2024] Open
Abstract
Malignant pleural effusion (MPE) is a common occurrence in advanced cancer and is often linked with a poor prognosis. Eosinophils were reported to involve in the development of MPE. However, the role of eosinophils in MPE remains unclear. To investigate this, we conducted studies using both human samples and mouse models. Increased eosinophil counts were observed in patients with MPE, indicating that the higher the number of eosinophils is, the lower the LENT score is. In our animal models, eosinophils were found to migrate to pleural cavity actively upon exposure to tumor cells. Intriguingly, we discovered that a deficiency in eosinophils exacerbated MPE, possibly due to their anti-tumor effects generated by modifying the microenvironment of MPE. Furthermore, our experiments explored the role of the C-C motif chemokine ligand 11 (CCL11) and its receptor C-C motif chemokine receptor 3 (CCR3) in MPE pathology. As a conclusion, our study underscores the protective potential of eosinophils against the development of MPE, and that an increase in eosinophils through adoptive transfer of eosinophils or increasing their numbers improved MPE.
Collapse
Affiliation(s)
- Min Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Lixia Xia
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Wenbei Peng
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guogang Xie
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Fei Li
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Chao Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Madiha Zahra Syeda
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Yue Hu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Fen Lan
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Fugui Yan
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Zhangchu Jin
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xufei Du
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Yinling Han
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Baihui Lv
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Yuejue Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Miao Li
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xia Fei
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Yun Zhao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Kaijun Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Yan Chen
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Wen Li
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Zhihua Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Qiong Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Songmin Ying
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, China.
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Huahao Shen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
- State Key Lab for Respiratory Diseases, National Clinical Research Centre for Respiratory Disease, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
5
|
Blyth KG, Adusumilli PS, Astoul P, Darlison L, Lee YCG, Mansfield AS, Marciniak SJ, Maskell N, Panou V, Peikert T, Rahman NM, Zauderer MG, Sterman D, Fennell DA. Leveraging the pleural space for anticancer therapies in pleural mesothelioma. THE LANCET. RESPIRATORY MEDICINE 2024; 12:476-483. [PMID: 38740045 DOI: 10.1016/s2213-2600(24)00111-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 03/21/2024] [Indexed: 05/16/2024]
Abstract
Most patients with pleural mesothelioma (PM) present with symptomatic pleural effusion. In some patients, PM is only detectable on the pleural surfaces, providing a strong rationale for intrapleural anticancer therapy. In modern prospective studies involving expert radiological staging and specialist multidisciplinary teams, the population incidence of stage I PM (an approximate surrogate of pleura-only PM) is higher than in historical retrospective series. In this Viewpoint, we advocate for the expansion of intrapleural trials to serve these patients, given the paucity of data supporting licensed systemic therapies in this setting and the uncertainties involved in surgical therapy. We begin by reviewing the unique anatomical and physiological features of the PM-bearing pleural space, before critically appraising the evidence for systemic therapies in stage I PM and previous intrapleural PM trials. We conclude with a summary of key challenges and potential solutions, including optimal trial designs, repurposing of indwelling pleural catheters, and new technologies.
Collapse
Affiliation(s)
- Kevin G Blyth
- School of Cancer Sciences, University of Glasgow, Glasgow, UK; Queen Elizabeth University Hospital, Glasgow, UK; Cancer Research UK Scotland Centre, Glasgow, UK.
| | - Prasad S Adusumilli
- Department of Thoracic Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Cellular Therapeutics Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Philippe Astoul
- Thoracic Oncology Department, Hôpital NORD, Aix-Marseille University, Marseille, France
| | | | - Y C Gary Lee
- University of Western Australia, Perth, WA, Australia; Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | | | - Stefan J Marciniak
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Nick Maskell
- Academic Respiratory Unit, University of Bristol, Bristol, UK; Department of Respiratory Medicine, Southmead Hospital, Bristol, UK
| | - Vasiliki Panou
- Department of Respiratory Medicine, Odense University Hospital, Odense, Denmark; Odense Respiratory Research Unit, University of Southern Denmark, Odense, Denmark; Department of Respiratory Diseases, Aalborg University Hospital, Aalborg, Denmark
| | - Tobias Peikert
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Najib M Rahman
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford, UK; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marjorie G Zauderer
- Cellular Therapeutics Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Sterman
- New York University School of Medicine, New York, NY, USA
| | - Dean A Fennell
- University of Leicester, Leicester, UK; University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
6
|
Fan Y, Chen A, Zhu J, Liu R, Mei Y, Li L, Sha X, Wang X, Ren W, Wang L, Liu B. Engineered lactococcus lactis intrapleural therapy promotes regression of malignant pleural effusion by enhancing antitumor immunity. Cancer Lett 2024; 588:216777. [PMID: 38432582 DOI: 10.1016/j.canlet.2024.216777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/14/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Intrapleural immunotherapies have emerged as a prominent field in treating malignant pleural effusion (MPE). Among these, bacteria-based intrapleural therapy has exerted an anti-MPE effect by immuno-stimulating or cytotoxic properties. We previously engineered a probiotic Lactococcus lactis (FOLactis) expressing a fusion protein of Fms-like tyrosine kinase 3 and co-stimulator OX40 ligands. FOLactis activates tumor antigen-specific immune responses and displays systemic antitumor efficacy via intratumoral delivery. However, no available lesions exist in the pleural cavity of patients with MPE for intratumoral administration. Therefore, we further optimize FOLactis to treat MPE through intrapleural injection. Intrapleural administration of FOLactis (I-Pl FOLactis) not only distinctly suppresses MPE and pleural tumor nodules, but also significantly extends noticeable survival in MPE-bearing murine models. The proportion of CD103+ dendritic cells (DCs) in tumor-draining lymph nodes increases three-fold in FOLactis group, compared to the wild-type bacteria group. The enhanced DCs recruitment promotes the infiltration of effector memory T and CD8+ T cells, as well as the activation of NK cells and the polarization of macrophages to M1. Programmed death 1 blockade antibody combination further enhances the antitumor efficacy of I-Pl FOLactis. In summary, we first develop an innovative intrapleural strategy based on FOLactis, exhibiting remarkable efficacy and favorable biosafety profiles. These findings suggest prospective clinical translation of engineered probiotics for managing MPE through direct administration into the pleural cavity.
Collapse
Affiliation(s)
- Yue Fan
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China; The Comprehensive Cancer Centre, China Pharmaceutical University Nanjing Drum Tower Hospital, 321 Zhongshan Road, Nanjing, 210008, China
| | - Aoxing Chen
- The Clinical Cancer Institute of Nanjing University, Nanjing, China; Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, China
| | - Junmeng Zhu
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Rui Liu
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China; The Comprehensive Cancer Centre, China Pharmaceutical University Nanjing Drum Tower Hospital, 321 Zhongshan Road, Nanjing, 210008, China
| | - Yi Mei
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Lin Li
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, China; Department of Pathology, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Xiaoxuan Sha
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xiaonan Wang
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China; The Comprehensive Cancer Centre, China Pharmaceutical University Nanjing Drum Tower Hospital, 321 Zhongshan Road, Nanjing, 210008, China
| | - Wei Ren
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Lifeng Wang
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China.
| | - Baorui Liu
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China.
| |
Collapse
|
7
|
Gemayel J, Chebly A, Kourie H, Hanna C, Mheidly K, Mhanna M, Karam F, Ghoussaini D, Najjar PE, Khalil C. Genome Engineering as a Therapeutic Approach in Cancer Therapy: A Comprehensive Review. ADVANCED GENETICS (HOBOKEN, N.J.) 2024; 5:2300201. [PMID: 38465225 PMCID: PMC10919288 DOI: 10.1002/ggn2.202300201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 03/12/2024]
Abstract
Cancer is one of the foremost causes of mortality. The human genome remains stable over time. However, human activities and environmental factors have the power to influence the prevalence of certain types of mutations. This goes to the excessive progress of xenobiotics and industrial development that is expanding the territory for cancers to develop. The mechanisms involved in immune responses against cancer are widely studied. Genome editing has changed the genome-based immunotherapy process in the human body and has opened a new era for cancer treatment. In this review, recent cancer immunotherapies and the use of genome engineering technology are largely focused on.
Collapse
Affiliation(s)
- Jack Gemayel
- Faculty of SciencesBalamand UniversityBeirutLebanon
- FMPS Holding BIOTECKNO s.a.l. Research and Quality SolutionsNaccashBeirut60 247Lebanon
| | - Alain Chebly
- Center Jacques Loiselet for Medical Genetics and Genomics (CGGM), Faculty of MedicineSaint Joseph UniversityBeirutLebanon
- Higher Institute of Public HealthSaint Joseph UniversityBeirutLebanon
| | - Hampig Kourie
- Center Jacques Loiselet for Medical Genetics and Genomics (CGGM), Faculty of MedicineSaint Joseph UniversityBeirutLebanon
- Faculty of MedicineSaint Joseph UniversityBeirutLebanon
| | - Colette Hanna
- Faculty of MedicineLebanese American University Medical CenterRizk HospitalBeirutLebanon
| | | | - Melissa Mhanna
- Faculty of MedicineParis Saclay University63 Rue Gabriel PériLe Kremlin‐Bicêtre94270France
| | - Farah Karam
- Faculty of MedicineBalamand UniversityBeirutLebanon
| | | | - Paula El Najjar
- FMPS Holding BIOTECKNO s.a.l. Research and Quality SolutionsNaccashBeirut60 247Lebanon
- Department of Agricultural and Food Engineering, School of EngineeringHoly Spirit University of KaslikJounieh446Lebanon
| | - Charbel Khalil
- Reviva Regenerative Medicine CenterBsalimLebanon
- Bone Marrow Transplant UnitBurjeel Medical CityAbu DhabiUAE
- Lebanese American University School of MedicineBeirutLebanon
| |
Collapse
|
8
|
Febres-Aldana CA, Fanaroff R, Offin M, Zauderer MG, Sauter JL, Yang SR, Ladanyi M. Diffuse Pleural Mesothelioma: Advances in Molecular Pathogenesis, Diagnosis, and Treatment. ANNUAL REVIEW OF PATHOLOGY 2024; 19:11-42. [PMID: 37722697 DOI: 10.1146/annurev-pathol-042420-092719] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Diffuse pleural mesothelioma (DPM) is a highly aggressive malignant neoplasm arising from the mesothelial cells lining the pleural surfaces. While DPM is a well-recognized disease linked to asbestos exposure, recent advances have expanded our understanding of molecular pathogenesis and transformed our clinical practice. This comprehensive review explores the current concepts and emerging trends in DPM, including risk factors, pathobiology, histologic subtyping, and therapeutic management, with an emphasis on a multidisciplinary approach to this complex disease.
Collapse
Affiliation(s)
- Christopher A Febres-Aldana
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| | - Rachel Fanaroff
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| | - Michael Offin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Marjorie G Zauderer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jennifer L Sauter
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| | - Soo-Ryum Yang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| |
Collapse
|
9
|
Bertin B, Zugman M, Schvartsman G. The Current Treatment Landscape of Malignant Pleural Mesothelioma and Future Directions. Cancers (Basel) 2023; 15:5808. [PMID: 38136353 PMCID: PMC10741667 DOI: 10.3390/cancers15245808] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
The incidence of malignant pleural mesothelioma is expected to increase globally. New treatment options for this malignancy are eagerly awaited to improve the survival and quality of life of patients. The present article highlights the results of recent advances in this field, analyzing data from several relevant trials. The heterogeneous tumor microenvironment and biology, together with the low mutational burden, pose a challenge for treating such tumors. So far, no single biomarker has been soundly correlated with targeted therapy development; thus, combination strategies are often required to improve outcomes. Locally applied vaccines, the expansion of genetically engineered immune cell populations such as T cells, the blockage of immune checkpoints that inhibit anti-tumorigenic responses and chemoimmunotherapy are among the most promising options expected to change the mesothelioma treatment landscape.
Collapse
Affiliation(s)
- Beatriz Bertin
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo 05651-901, Brazil;
| | - Miguel Zugman
- Department of Medical Oncology, Hospital Israelita Albert Einstein, São Paulo 05651-901, Brazil;
| | - Gustavo Schvartsman
- Department of Medical Oncology, Hospital Israelita Albert Einstein, São Paulo 05651-901, Brazil;
| |
Collapse
|
10
|
Cedres S, Valdivia A, Iranzo P, Callejo A, Pardo N, Navarro A, Martinez-Marti A, Assaf-Pastrana JD, Felip E, Garrido P. Current State-of-the-Art Therapy for Malignant Pleural Mesothelioma and Future Options Centered on Immunotherapy. Cancers (Basel) 2023; 15:5787. [PMID: 38136333 PMCID: PMC10741743 DOI: 10.3390/cancers15245787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a locally aggressive disease related to asbestos exposure with a median survival for untreated patients of 4-8 months. The combination of chemotherapy based on platinum and antifolate is the standard treatment, and the addition of bevacizumab adds two months to median survival. Recently, in first-line treatment, immunotherapy combining nivolumab with ipilimumab has been shown to be superior to chemotherapy in the CheckMate-743 study in terms of overall survival (18.1 months), leading to its approval by the FDA and EMA. The positive results of this study represent a new standard of treatment for patients with MPM; however, not all patients will benefit from immunotherapy treatment. In an effort to improve the selection of patient candidates for immunotherapy for different tumors, biomarkers that have been associated with a greater possibility of response to treatment have been described. MPM is a type of tumor with low mutational load and neo-antigens, making it a relatively non-immunogenic tumor for T cells and possibly less susceptible to responding to immunotherapy. Different retrospective studies have shown that PD-L1 expression occurs in 20-40% of patients and is associated with a poor prognosis; however, the predictive value of PD-L1 in response to immunotherapy has not been confirmed. The purpose of this work is to review the state of the art of MPM treatment in the year 2023, focusing on the efficacy results of first-line or subsequent immunotherapy studies on patients with MPM and possible chemo-immunotherapy combination strategies. Additionally, potential biomarkers of response to immunotherapy will be reviewed, such as histology, PD-L1, lymphocyte populations, and TMB.
Collapse
Affiliation(s)
- Susana Cedres
- Medical Oncology Department, Vall d´Hebron Institute of Oncology (VHIO), Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain; (A.V.); (P.I.); (A.C.); (N.P.); (A.N.); (A.M.-M.); (J.D.A.-P.); (E.F.)
| | - Augusto Valdivia
- Medical Oncology Department, Vall d´Hebron Institute of Oncology (VHIO), Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain; (A.V.); (P.I.); (A.C.); (N.P.); (A.N.); (A.M.-M.); (J.D.A.-P.); (E.F.)
| | - Patricia Iranzo
- Medical Oncology Department, Vall d´Hebron Institute of Oncology (VHIO), Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain; (A.V.); (P.I.); (A.C.); (N.P.); (A.N.); (A.M.-M.); (J.D.A.-P.); (E.F.)
| | - Ana Callejo
- Medical Oncology Department, Vall d´Hebron Institute of Oncology (VHIO), Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain; (A.V.); (P.I.); (A.C.); (N.P.); (A.N.); (A.M.-M.); (J.D.A.-P.); (E.F.)
| | - Nuria Pardo
- Medical Oncology Department, Vall d´Hebron Institute of Oncology (VHIO), Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain; (A.V.); (P.I.); (A.C.); (N.P.); (A.N.); (A.M.-M.); (J.D.A.-P.); (E.F.)
| | - Alejandro Navarro
- Medical Oncology Department, Vall d´Hebron Institute of Oncology (VHIO), Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain; (A.V.); (P.I.); (A.C.); (N.P.); (A.N.); (A.M.-M.); (J.D.A.-P.); (E.F.)
| | - Alex Martinez-Marti
- Medical Oncology Department, Vall d´Hebron Institute of Oncology (VHIO), Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain; (A.V.); (P.I.); (A.C.); (N.P.); (A.N.); (A.M.-M.); (J.D.A.-P.); (E.F.)
| | - Juan David Assaf-Pastrana
- Medical Oncology Department, Vall d´Hebron Institute of Oncology (VHIO), Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain; (A.V.); (P.I.); (A.C.); (N.P.); (A.N.); (A.M.-M.); (J.D.A.-P.); (E.F.)
| | - Enriqueta Felip
- Medical Oncology Department, Vall d´Hebron Institute of Oncology (VHIO), Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain; (A.V.); (P.I.); (A.C.); (N.P.); (A.N.); (A.M.-M.); (J.D.A.-P.); (E.F.)
- Thoracic Cancers Translational Genomics Unit, Medical Oncology Department, Vall d´Hebron Institute of Oncology (VHIO), Vall d´Hebron Hospital Universitari, 08035 Barcelona, Spain
| | - Pilar Garrido
- Medical Oncology Department, Ramón y Cajal University Hospital, 28034 Madrid, Spain;
| |
Collapse
|
11
|
Heimberger AB, Tripathi S, Platanias LC. Targeting Cytokines and Their Pathways for the Treatment of Cancer. Cancers (Basel) 2023; 15:5224. [PMID: 37958397 PMCID: PMC10649760 DOI: 10.3390/cancers15215224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
This Special Issue focuses on the evolving role of immune modulatory cytokines, from their initial use as monotherapeutic recombinant proteins to their more contemporaneous use as modifiers for adoptive cellular immunotherapy [...].
Collapse
Affiliation(s)
- Amy B. Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Chicago, IL 60611, USA;
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA;
| | - Shashwat Tripathi
- Department of Neurological Surgery, Feinberg School of Medicine, Chicago, IL 60611, USA;
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA;
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA;
- Division of Hematology Oncology, Department of Medicine, Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
12
|
Wang Y, Shao W. Innate Immune Response to Viral Vectors in Gene Therapy. Viruses 2023; 15:1801. [PMID: 37766208 PMCID: PMC10536768 DOI: 10.3390/v15091801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Viral vectors play a pivotal role in the field of gene therapy, with several related drugs having already gained clinical approval from the EMA and FDA. However, numerous viral gene therapy vectors are currently undergoing pre-clinical research or participating in clinical trials. Despite advancements, the innate response remains a significant barrier impeding the clinical development of viral gene therapy. The innate immune response to viral gene therapy vectors and transgenes is still an important reason hindering its clinical development. Extensive studies have demonstrated that different DNA and RNA sensors can detect adenoviruses, adeno-associated viruses, and lentiviruses, thereby activating various innate immune pathways such as Toll-like receptor (TLR), cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING), and retinoic acid-inducible gene I-mitochondrial antiviral signaling protein (RLR-MAVS). This review focuses on elucidating the mechanisms underlying the innate immune response induced by three widely utilized viral vectors: adenovirus, adeno-associated virus, and lentivirus, as well as the strategies employed to circumvent innate immunity.
Collapse
Affiliation(s)
| | - Wenwei Shao
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China;
| |
Collapse
|
13
|
Assié JB, Jean D. Pleural mesothelioma: a snapshot of emerging drug targets and opportunities for non-surgical therapeutic advancement. Expert Opin Ther Targets 2023; 27:1059-1069. [PMID: 37902459 DOI: 10.1080/14728222.2023.2277224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/26/2023] [Indexed: 10/31/2023]
Abstract
INTRODUCTION Pleural mesothelioma is a rare and aggressive cancer originating in the pleura, with a devastating prognosis and limited treatment options. There have been significant advancements in the management of this disease in recent years. Since 2021, nivolumab and ipilimumab immune checkpoint inhibitors have become the new standard of care for first-line treatment of pleural mesothelioma. AREAS COVERED While a combination of chemotherapy and immune checkpoint inhibitors appears to be the next step, targeted therapies are emerging thanks to our understanding of the oncogenesis of pleural mesothelioma. Moreover, several new strategies are currently being investigated, including viral therapy, antibody-drug conjugates, and even cell therapies with CAR-T cells or dendritic cells. In this review, we will explore the various future opportunities that could potentially transform patients' lives in light of the clinical trials that have been conducted. EXPERT OPINION Future clinical studies aim to rebiopsy patients after disease progression to identify new molecular alterations and to be associated with ancillary studies, guiding subsequent therapy decisions. Predicting and investigating treatment resistance mechanisms will lead to innovative approaches and improved treatment outcomes.
Collapse
Affiliation(s)
- Jean-Baptiste Assié
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Functional Genomics of Solid Tumors Laboratory, Paris, France
- GRC OncoThoParisEst, Service de Pneumologie, Centre Hospitalier IntercommunaI, UPEC, Créteil, France
| | - Didier Jean
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Functional Genomics of Solid Tumors Laboratory, Paris, France
| |
Collapse
|
14
|
Deiana C, Fabbri F, Tavolari S, Palloni A, Brandi G. Improvements in Systemic Therapies for Advanced Malignant Mesothelioma. Int J Mol Sci 2023; 24:10415. [PMID: 37445594 DOI: 10.3390/ijms241310415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive malignancy associated with poor prognosis and a 5-year survival rate of 12%. Many drugs have been tested over the years with conflicting results. The aim of this review is to provide an overview of current therapies in MPM and how to best interpret the data available on these drugs. Furthermore, we focused on promising treatments under investigation, such as immunotherapy with targets different from anti-PD-1/PD-L1 inhibitors, vaccines, target therapies, and metabolism-based strategies.
Collapse
Affiliation(s)
- Chiara Deiana
- Medical Oncology, IRCCS Azienda Ospedaliera, Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Francesca Fabbri
- Medical Oncology, IRCCS Azienda Ospedaliera, Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Simona Tavolari
- Medical Oncology, IRCCS Azienda Ospedaliera, Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Andrea Palloni
- Medical Oncology, IRCCS Azienda Ospedaliera, Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliera, Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| |
Collapse
|
15
|
Agrawal A, Chaddha U, Shojaee S, Maldonado F. Intrapleural Anticancer Therapy for Malignant Pleural Diseases: Facts or Fiction? Semin Respir Crit Care Med 2023. [PMID: 37308112 DOI: 10.1055/s-0043-1769094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Malignant pleural diseases involves both primary pleural malignancies (e.g., mesothelioma) as well as metastatic disease involving the pleura. The management of primary pleural malignancies remains a challenge, given their limited response to conventional treatments such as surgery, systemic chemotherapy, and immunotherapy. In this article, we aimed to review the management of primary pleural malignancy as well as malignant pleural effusion and assess the current state of intrapleural anticancer therapies. We review the role intrapleural chemotherapy, immunotherapy, and immunogene therapy, as well as oncolytic viral, therapy and intrapleural drug device combination. We further discuss that while the pleural space offers a unique opportunity for local therapy as an adjuvant option to systemic therapy and may help decrease some of the systemic side effects, further patient outcome-oriented research is needed to determine the exact role of these treatments within the armamentarium of currently available options.
Collapse
Affiliation(s)
- Abhinav Agrawal
- Division of Pulmonary, Critical Care and Sleep Medicine, Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, New York
| | - Udit Chaddha
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Samira Shojaee
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Fabien Maldonado
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
16
|
The Evolving Role of Immune-Checkpoint Inhibitors in Malignant Pleural Mesothelioma. J Clin Med 2023; 12:jcm12051757. [PMID: 36902544 PMCID: PMC10003250 DOI: 10.3390/jcm12051757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare cancer usually caused by asbestos exposure and associated with a very poor prognosis. After more than a decade without new therapeutic options, immune checkpoint inhibitors (ICIs) demonstrated superiority over standard chemotherapy, with improved overall survival in the first and later-line settings. However, a significant proportion of patients still do not derive benefit from ICIs, highlighting the need for new treatment strategies and predictive biomarkers of response. Combinations with chemo-immunotherapy or ICIs and anti-VEGF are currently being evaluated in clinical trials and might change the standard of care in the near future. Alternatively, some non-ICI immunotherapeutic approaches, such as mesothelin targeted CAR-T cells or denditric-cells vaccines, have shown promising results in early phases of trials and are still in development. Finally, immunotherapy with ICIs is also being evaluated in the peri-operative setting, in the minority of patients presenting with resectable disease. The goal of this review is to discuss the current role of immunotherapy in the management of malignant pleural mesothelioma, as well as promising future therapeutic directions.
Collapse
|
17
|
Thakre PP, Rana S, Benevides ES, Fuller DD. Targeting drug or gene delivery to the phrenic motoneuron pool. J Neurophysiol 2023; 129:144-158. [PMID: 36416447 PMCID: PMC9829468 DOI: 10.1152/jn.00432.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/19/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Phrenic motoneurons (PhrMNs) innervate diaphragm myofibers. Located in the ventral gray matter (lamina IX), PhrMNs form a column extending from approximately the third to sixth cervical spinal segment. Phrenic motor output and diaphragm activation are impaired in many neuromuscular diseases, and targeted delivery of drugs and/or genetic material to PhrMNs may have therapeutic application. Studies of phrenic motor control and/or neuroplasticity mechanisms also typically require targeting of PhrMNs with drugs, viral vectors, or tracers. The location of the phrenic motoneuron pool, however, poses a challenge. Selective PhrMN targeting is possible with molecules that move retrogradely upon uptake into phrenic axons subsequent to diaphragm or phrenic nerve delivery. However, nonspecific approaches that use intrathecal or intravenous delivery have considerably advanced the understanding of PhrMN control. New opportunities for targeted PhrMN gene expression may be possible with intersectional genetic methods. This article provides an overview of methods for targeting the phrenic motoneuron pool for studies of PhrMNs in health and disease.
Collapse
Affiliation(s)
- Prajwal P Thakre
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center, Gainesville, Florida
| | - Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center, Gainesville, Florida
| | - Ethan S Benevides
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center, Gainesville, Florida
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center, Gainesville, Florida
| |
Collapse
|
18
|
Bibby AC, Zahan-Evans N, Keenan E, Comins C, Harvey JE, Day H, Rahman NM, Fallon JE, Gooberman-Hill R, Maskell NA. A trial of intra-pleural bacterial immunotherapy in malignant pleural mesothelioma (TILT) - a randomised feasibility study using the trial within a cohort (TwiC) methodology. Pilot Feasibility Stud 2022; 8:196. [PMID: 36057634 PMCID: PMC9440504 DOI: 10.1186/s40814-022-01156-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/24/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) is an aggressive thoracic malignancy with a poor prognosis. Systemic immunotherapy is an effective frontline treatment for MPM, and there is a scientific rationale supporting the possible efficacy of local, i.e. intra-pleural immune modulators. Trial of intra-pleural bacterial immunotherapy (TILT) investigated the feasibility of performing a randomised trial of intra-pleural bacterial immunotherapy in people with MPM, using the trials within cohorts (TwiC) methodology. METHODS TILT was a multicentre, three-armed, randomised, feasibility TwiC of intra-pleural OK432, BCG, or usual care in people with MPM. Eligible participants were identified from within the ASSESS-meso study, a prospective, longitudinal, observational cohort study, and were randomly selected to be offered a single dose of OK432 or BCG, via an indwelling pleural catheter. The primary outcome was feasibility, evaluated against prespecified recruitment, attrition and data completeness targets. The acceptability of trial processes and interventions was assessed during qualitative interviews with participants and family members at the end of the trial. TILT was registered prospectively on the European Clinical Trials Registry (EudraCT number 2016-004,727-23) and the ISRCTN Register on 04 December 2017. RESULTS Seven participants were randomised from a planned sample size of 12; thus, the 66% recruitment rate target was not met. Two participants withdrew after randomisation, breaching the pre-stated attrition threshold of 10%. It was not possible to maintain blinding of control participants, which negated a fundamental tenet of the TwiC design. The trial processes and methodology were generally acceptable to participants and relatives, despite several recipients of intra-pleural bacterial agents experiencing significant local and systemic inflammatory responses. CONCLUSION It was possible to design a clinical trial of an investigational medicinal product based on the TwiC design and to obtain the necessary regulatory approvals. However, whilst acceptable to participants and relatives, the TwiC design was not a feasible method of investigating intra-pleural bacterial immunotherapy in people with MPM. Future trials investigating this topic should consider the eligibility constraints and recruitment difficulties encountered. TRIAL REGISTRATION TILT was registered prospectively on the European Clinical Trials Registry (EudraCT number 2016-004727-23 ) and the ISRCTN Register ( 10432197 ) on 04 December 2017.
Collapse
Affiliation(s)
- Anna C Bibby
- Academic Respiratory Unit, University of Bristol Medical School, Bristol, UK.
- North Bristol Lung Centre, North Bristol NHS Trust, Bristol, UK.
| | | | - Emma Keenan
- North Bristol Lung Centre, North Bristol NHS Trust, Bristol, UK
| | - Charles Comins
- Bristol Haematology & Oncology Centre, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - John E Harvey
- Academic Respiratory Unit, University of Bristol Medical School, Bristol, UK
| | - Helen Day
- Academic Respiratory Unit, University of Bristol Medical School, Bristol, UK
| | - Najib M Rahman
- Oxford Respiratory Trials Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, UK
| | - Janet E Fallon
- Respiratory Department, Musgrove Park Hospital, Somerset NHS Foundation Trust, Taunton, UK
| | - Rachael Gooberman-Hill
- NIHR Biomedical Research Centre at University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol, Bristol, UK
| | - Nick A Maskell
- Academic Respiratory Unit, University of Bristol Medical School, Bristol, UK
- North Bristol Lung Centre, North Bristol NHS Trust, Bristol, UK
| |
Collapse
|
19
|
Fennell DA, Dulloo S, Harber J. Immunotherapy approaches for malignant pleural mesothelioma. Nat Rev Clin Oncol 2022; 19:573-584. [PMID: 35778611 DOI: 10.1038/s41571-022-00649-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 12/27/2022]
Abstract
Over the past decade, immune-checkpoint inhibitors (ICIs) have revolutionized the treatment of cancer. In mesothelioma, a rare cancer with a dismal prognosis generally caused by exposure to asbestos, treatment with single or dual ICIs results in robust improvements in overall survival over previous standard-of-care therapies, both in the first-line and relapsed disease settings. Predictive biological features that underpin response to ICIs remain poorly understood; however, insights into the immune microenvironment and genomic landscape of mesothelioma as well as into their association with response or acquired resistance to ICIs are emerging. Several studies of rational combinations involving ICIs with either another ICI or a different agent are ongoing, with emerging evidence of synergistic antitumour activity. Non-ICI-based immunotherapies, such as peptide-based vaccines and mesothelin-targeted chimeric antigen receptor T cells, have demonstrated promising efficacy. Moreover, results from pivotal trials of dendritic cell vaccines and viral cytokine delivery, among others, are eagerly awaited. In this Review, we comprehensively summarize the key steps in the development of immunotherapies for mesothelioma, focusing on strategies that have led to randomized clinical evaluation and emerging predictors of response. We then forecast the future treatment opportunities that could arise from ongoing research.
Collapse
Affiliation(s)
- Dean A Fennell
- Mesothelioma Research Programme, Centre for Cancer Research, University of Leicester & University of Leicester Hospitals NHS Trust, Leicester, UK.
| | - Sean Dulloo
- Mesothelioma Research Programme, Centre for Cancer Research, University of Leicester & University of Leicester Hospitals NHS Trust, Leicester, UK
| | - James Harber
- Mesothelioma Research Programme, Centre for Cancer Research, University of Leicester & University of Leicester Hospitals NHS Trust, Leicester, UK
- Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
20
|
Dong X, Zhang X, Liu P, Tian Y, Li L, Gong P. Lipolysis-Stimulated Lipoprotein Receptor Impairs Hepatocellular Carcinoma and Inhibits the Oncogenic Activity of YAP1 via PPPY Motif. Front Oncol 2022; 12:896412. [PMID: 35586495 PMCID: PMC9108500 DOI: 10.3389/fonc.2022.896412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 12/16/2022] Open
Abstract
Purpose Lipolysis-stimulated lipoprotein receptor (LSR) is a type I single-pass transmembrane protein which is mainly expressed in the liver. In this study, we investigated if and how LSR is involved in the carcinogenesis of hepatocellular carcinoma (HCC). Experimental Design To evaluate if LSR was abnormally expressed in human HCC tissues, and how its expression was associated with the survival probability of patients, we obtained data from Gene Expression Omnibus and The Cancer Genome Atlas Program. To investigate if and how LSR regulates tumor growth, we knocked down and overexpressed LSR in human HCC cell lines. In addition, to evaluate the interaction between LSR and yes-associated protein1 (YAP1), we mutated LSR at PPPY motif, a binding site of YAP1. Results Totally, 454 patients were enrolled in the present study, and high expression of LSR significantly decreased the probability of death. Knockdown of LSR significantly increased the expansion of HCC cells and significantly promoted tumor growth. In addition, downregulation of LSR increased the nuclear accumulation and transcriptional function of YAP1. Conversely, overexpression of LSR impairs this function of YAP1 and phosphorylates YAP1 at serine 127. Of note, mutation of LSR at the PPPY motif could block the interaction between LSR and YAP1, and restore the transcriptional ability of YAP1. Conclusions The present study suggests that LSR binds to YAP1 via the PPPY motif. Thus, LSR increases the phosphorylation of YAP1 and impairs the growth of HCC. This highlights that targeting LSR might be a promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Xin Dong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen, China
- Carson International Cancer Center & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, China
| | - Xianbin Zhang
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen, China
- Carson International Cancer Center & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, China
- Guangdong Provincial Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Peng Liu
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen, China
- Carson International Cancer Center & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, China
| | - Yu Tian
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen, China
- Carson International Cancer Center & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, China
| | - Li Li
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen, China
- Carson International Cancer Center & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, China
| | - Peng Gong
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen, China
- Carson International Cancer Center & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
21
|
Cantini L, Laniado I, Murthy V, Sterman D, Aerts JGJV. Immunotherapy for mesothelioma: Moving beyond single immune check point inhibition. Lung Cancer 2022; 165:91-101. [PMID: 35114509 DOI: 10.1016/j.lungcan.2022.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 12/29/2022]
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive neoplasm with low survival rates. Platinum-based chemotherapy has represented the cornerstone of treatment for over a decade, prompting the investigation of new therapeutic strategies both in the early stage of the disease and in the advanced setting. The advent of immune check-point inhibitors (ICIs) has recently revamped the enthusiasm for using immunotherapy also in MPM. However, results from first clinical trials using single immune check-point inhibition have been conflicting, and this may be mainly attributed to the lack of specific biomarkers as well as to intra- and inter- patient heterogeneity. The phase III Checkmate743 firstly demonstrated the superiority of an ICI combination (nivolumab plus ipilimumab) over chemotherapy in the first-line treatment of unresectable MPM, leading to FDA approval of this regimen and showing that moving beyond single immune check point inhibition might be a successful strategy to overcome resistance in the majority of MPM patients. In this review, we describe the emerging immunotherapy strategies for the treatment of MPM. We also discuss how refining the approach in pre-clinical studies towards a more holistic perspective (which takes into account not only genetic but also pathophysiological vulnerabilities) and strengthening multi-institutional collaboration in clinical trials is finally helping the clinical development of immunotherapy in MPM.
Collapse
Affiliation(s)
- Luca Cantini
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Clinical Oncology, Università Politecnica Delle Marche, AOU Ospedali Riuniti Ancona, Italy
| | - Isaac Laniado
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University (NYU), School of Medicine/NYU Langone Medical Center, New York, NY, United States
| | - Vivek Murthy
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University (NYU), School of Medicine/NYU Langone Medical Center, New York, NY, United States
| | - Daniel Sterman
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University (NYU), School of Medicine/NYU Langone Medical Center, New York, NY, United States
| | - Joachim G J V Aerts
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| |
Collapse
|
22
|
Ghosn M, Cheema W, Zhu A, Livschitz J, Maybody M, Boas FE, Santos E, Kim D, Beattie JA, Offin M, Rusch VW, Zauderer MG, Adusumilli PS, Solomon SB. Image-guided interventional radiological delivery of chimeric antigen receptor (CAR) T cells for pleural malignancies in a phase I/II clinical trial. Lung Cancer 2022; 165:1-9. [PMID: 35045358 PMCID: PMC9256852 DOI: 10.1016/j.lungcan.2022.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/14/2021] [Accepted: 01/03/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVES We describe techniques and results of image-guided delivery of mesothelin-targeted chimeric antigen receptor (CAR) T cells in patients with pleural malignancies in a phase I/II trial (ClinicalTrials.gov: NCT02414269). MATERIALS AND METHODS Patients without a pleural catheter or who lack effusion for insertion of a catheter (31 of 41) were administered intrapleural CAR T cells by interventional radiologists under image guidance by computed tomography or ultrasound. CAR T cells were administered through a needle in an accessible pleural loculation (intracavitary) or following an induced loculated artificial pneumothorax. In patients where intracavitary infusion was not feasible, CAR T cells were injected via percutaneous approach either surrounding and/or in the pleural nodule/thickening (intratumoral). Pre- and post-procedural clinical, laboratory, and imaging findings were assessed. RESULTS CAR T cells were administered intrapleurally in 31 patients (33 procedures, 2 patients were administered a second dose) with successful delivery of planned dose (10-186 mL); 14/33 (42%) intracavitary and 19/33 (58%) intratumoral. All procedures were completed within 2 h of T-cell thawing. There were no procedure-related adverse events greater than grade 1 (1 in 3 patients had prior ipsilateral pleural fusion procedures). The most common imaging finding was ground glass opacities with interlobular septal thickening and/or consolidation, observed in 12/33 (36%) procedures. There was no difference in the incidence of fever, CRP, IL-6, and peak vector copy number in the peripheral blood between infusion methods. CONCLUSION Image-guided intrapleural delivery of CAR T cells using intracavitary or intratumoral routes is feasible, repeatable and safe across anatomically variable pleural cancers.
Collapse
Affiliation(s)
- Mario Ghosn
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - Waseem Cheema
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - Amy Zhu
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - Jennifer Livschitz
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - Majid Maybody
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - Franz E Boas
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - Ernesto Santos
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - DaeHee Kim
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - Jason A Beattie
- Pulmonary Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - Michael Offin
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - Valerie W Rusch
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - Marjorie G Zauderer
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA; Cellular Therapeutics Center, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA; Cellular Therapeutics Center, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA; Center For Cell Engineering, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA.
| | - Stephen B Solomon
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| |
Collapse
|
23
|
Obacz J, Yung H, Shamseddin M, Linnane E, Liu X, Azad AA, Rassl DM, Fairen-Jimenez D, Rintoul RC, Nikolić MZ, Marciniak SJ. Biological basis for novel mesothelioma therapies. Br J Cancer 2021; 125:1039-1055. [PMID: 34226685 PMCID: PMC8505556 DOI: 10.1038/s41416-021-01462-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/13/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Mesothelioma is an aggressive cancer that is associated with exposure to asbestos. Although asbestos is banned in several countries, including the UK, an epidemic of mesothelioma is predicted to affect middle-income countries during this century owing to their heavy consumption of asbestos. The prognosis for patients with mesothelioma is poor, reflecting a failure of conventional chemotherapy that has ultimately resulted from an inadequate understanding of its biology. However, recent work has revolutionised the study of mesothelioma, identifying genetic and pathophysiological vulnerabilities, including the loss of tumour suppressors, epigenetic dysregulation and susceptibility to nutrient stress. We discuss how this knowledge, combined with advances in immunotherapy, is enabling the development of novel targeted therapies.
Collapse
Affiliation(s)
- Joanna Obacz
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Henry Yung
- UCL Respiratory, Division of Medicine Rayne Institute, University College London, London, UK
| | - Marie Shamseddin
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Saffron Walden, UK
| | - Emily Linnane
- Adsorption & Advanced Materials Laboratory, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Xiewen Liu
- Adsorption & Advanced Materials Laboratory, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Arsalan A Azad
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Doris M Rassl
- Department of Histopathology, Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - David Fairen-Jimenez
- Adsorption & Advanced Materials Laboratory, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Robert C Rintoul
- Department of Oncology, University of Cambridge, Cambridge, UK
- Department of Thoracic Oncology, Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - Marko Z Nikolić
- UCL Respiratory, Division of Medicine Rayne Institute, University College London, London, UK
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
24
|
Nastase A, Mandal A, Lu SK, Anbunathan H, Morris-Rosendahl D, Zhang YZ, Sun XM, Gennatas S, Rintoul RC, Edwards M, Bowman A, Chernova T, Benepal T, Lim E, Taylor AN, Nicholson AG, Popat S, Willis AE, MacFarlane M, Lathrop M, Bowcock AM, Moffatt MF, Cookson WOCM. Integrated genomics point to immune vulnerabilities in pleural mesothelioma. Sci Rep 2021; 11:19138. [PMID: 34580349 PMCID: PMC8476593 DOI: 10.1038/s41598-021-98414-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/02/2021] [Indexed: 12/21/2022] Open
Abstract
Pleural mesothelioma is an aggressive malignancy with limited effective therapies. In order to identify therapeutic targets, we integrated SNP genotyping, sequencing and transcriptomics from tumours and low-passage patient-derived cells. Previously unrecognised deletions of SUFU locus (10q24.32), observed in 21% of 118 tumours, resulted in disordered expression of transcripts from Hedgehog pathways and the T-cell synapse including VISTA. Co-deletion of Interferon Type I genes and CDKN2A was present in half of tumours and was a predictor of poor survival. We also found previously unrecognised deletions in RB1 in 26% of cases and show sub-micromolar responses to downstream PLK1, CHEK1 and Aurora Kinase inhibitors in primary mesothelioma cells. Defects in Hippo pathways that included RASSF7 amplification and NF2 or LATS1/2 mutations were present in 50% of tumours and were accompanied by micromolar responses to the YAP1 inhibitor Verteporfin. Our results suggest new therapeutic avenues in mesothelioma and indicate targets and biomarkers for immunotherapy.
Collapse
Affiliation(s)
- Anca Nastase
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW36LY, UK
| | - Amit Mandal
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW36LY, UK
| | - Shir Kiong Lu
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW36LY, UK
| | - Hima Anbunathan
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW36LY, UK
| | - Deborah Morris-Rosendahl
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW36LY, UK
- Clinical Genetics and Genomics, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Yu Zhi Zhang
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW36LY, UK
- Department of Histopathology, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Xiao-Ming Sun
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Spyridon Gennatas
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW36LY, UK
| | - Robert C Rintoul
- Department of Thoracic Oncology, Papworth Hospital, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Matthew Edwards
- Clinical Genetics and Genomics, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Alex Bowman
- Department of Histopathology, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Tatyana Chernova
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Tim Benepal
- Department of Oncology, St George's Healthcare NHS Foundation Trust, London, UK
| | - Eric Lim
- Department of Thoracic Surgery, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Anthony Newman Taylor
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW36LY, UK
| | - Andrew G Nicholson
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW36LY, UK
- Department of Histopathology, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Sanjay Popat
- Department of Medicine, Royal Marsden Hospital, London, UK
- The Institute of Cancer Research, London, UK
| | - Anne E Willis
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Marion MacFarlane
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Mark Lathrop
- Department of Human Genetics, McGill Genome Centre, Montreal, QC, Canada
| | - Anne M Bowcock
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW36LY, UK
| | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW36LY, UK.
| | - William O C M Cookson
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW36LY, UK.
| |
Collapse
|
25
|
Affiliation(s)
- Sam M Janes
- From the Lungs for Living Research Centre, UCL Respiratory, University College London (S.M.J., D.A.), the Department of Thoracic Medicine, University College London Hospital (S.M.J.), London, and the University of Leicester, Leicester (D.A.F.) - all in the United Kingdom
| | - Doraid Alrifai
- From the Lungs for Living Research Centre, UCL Respiratory, University College London (S.M.J., D.A.), the Department of Thoracic Medicine, University College London Hospital (S.M.J.), London, and the University of Leicester, Leicester (D.A.F.) - all in the United Kingdom
| | - Dean A Fennell
- From the Lungs for Living Research Centre, UCL Respiratory, University College London (S.M.J., D.A.), the Department of Thoracic Medicine, University College London Hospital (S.M.J.), London, and the University of Leicester, Leicester (D.A.F.) - all in the United Kingdom
| |
Collapse
|
26
|
Nguyen TTT, Shingyoji M, Hanazono M, Zhong B, Morinaga T, Tada Y, Shimada H, Hiroshima K, Tagawa M. An MDM2 inhibitor achieves synergistic cytotoxic effects with adenoviruses lacking E1B55kDa gene on mesothelioma with the wild-type p53 through augmenting NFI expression. Cell Death Dis 2021; 12:663. [PMID: 34230456 PMCID: PMC8260618 DOI: 10.1038/s41419-021-03934-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022]
Abstract
A majority of mesothelioma specimens were defective of p14 and p16 expression due to deletion of the INK4A/ARF region, and the p53 pathway was consequently inactivated by elevated MDM2 functions which facilitated p53 degradaton. We investigated a role of p53 elevation by MDM2 inhibitors, nutlin-3a and RG7112, in cytotoxicity of replication-competent adenoviruses (Ad) lacking the p53-binding E1B55kDa gene (Ad-delE1B). We found that a growth inhibition by p53-activating Ad-delE1B was irrelevant to p53 expression in the infected cells, but combination of Ad-delE1B and the MDM2 inhibitor produced synergistic inhibitory effects on mesothelioma with the wild-type but not mutated p53 genotype. The combination augmented p53 phosphorylation, activated apoptotic but not autophagic pathway, and enhanced DNA damage signals through ATM-Chk2 phosphorylation. The MDM2 inhibitors facilitated production of the Ad progenies through augmented expression of nuclear factor I (NFI), one of the transcriptional factors involved in Ad replications. Knocking down of p53 with siRNA did not increase the progeny production or the NFI expression. We also demonstrated anti-tumor effects by the combination of Ad-delE1B and the MDM2 inhibitors in an orthotopic animal model. These data collectively indicated that upregulation of wild-type p53 expression contributed to cytotoxicity by E1B55kDa-defective replicative Ad through NFI induction and suggested that replication-competent Ad together with augmented p53 levels was a therapeutic strategy for p53 wild-type mesothelioma.
Collapse
Affiliation(s)
- Thao Thi Thanh Nguyen
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
- Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
- Division of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, 2374 National Highway 1, District 12, Ho Chi Minh, Vietnam
| | - Masato Shingyoji
- Division of Respirology, Chiba Cancer Center, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Michiko Hanazono
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Boya Zhong
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
- Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Takao Morinaga
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku©, Chiba, 260-8670, Japan
- Department of Respiratory Medicine, International University of Health and Welfare Atami Hospital, 13-1 Higasikaigan, Atami, 413-0012, Japan
| | - Hideaki Shimada
- Department of Surgery, Graduate School of Medicine, Toho University, 6-11-1 Oomori-nishi, Oota-ku, 143-8541, Tokyo, Japan
| | - Kenzo Hiroshima
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, 477-96 Ohwadashinden, Yachiyo, 276-8524, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan.
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
- Funabashi Orthopedic Hospital, 1-833 Hazama, Funabashi, 274-0822, Japan.
| |
Collapse
|
27
|
Haley RM, Gottardi R, Langer R, Mitchell MJ. Cyclodextrins in drug delivery: applications in gene and combination therapy. Drug Deliv Transl Res 2021; 10:661-677. [PMID: 32077052 DOI: 10.1007/s13346-020-00724-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gene therapy is a powerful tool against genetic disorders and cancer, targeting the source of the disease rather than just treating the symptoms. While much of the initial success of gene delivery relied on viral vectors, non-viral vectors are emerging as promising gene delivery systems for efficacious treatment with decreased toxicity concerns. However, the delivery of genetic material is still challenging, and there is a need for vectors with enhanced targeting, reduced toxicity, and controlled release. In this article, we highlight current work in gene therapy which utilizes the cyclic oligosaccharide molecule cyclodextrin (CD). With a number of unique abilities, such as hosting small molecule drugs, acting as a linker or modular component, reducing immunogenicity, and disrupting membranes, CD is a valuable constituent in many delivery systems. These carriers also demonstrate great promise in combination therapies, due to the ease of assembling macromolecular structures and wide variety of chemical derivatives, which allow for customizable delivery systems and co-delivery of therapeutics. The use of combination and personalized therapies can result in improved patient health-modular systems, such as those which incorporate CD, are more conducive to these therapy types. Graphical abstract.
Collapse
Affiliation(s)
- Rebecca M Haley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Riccardo Gottardi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,Fondazione Ri.MED, Palermo, Italy
| | - Robert Langer
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
28
|
Davis AP, Kao SC, Clarke SJ, Boyer M, Pavlakis N. Emerging biological therapies for the treatment of malignant pleural mesothelioma. Expert Opin Emerg Drugs 2021; 26:179-192. [PMID: 33945357 DOI: 10.1080/14728214.2021.1924670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Malignant pleural mesothelioma (MPM) has limited treatment options with minimal new therapy approvals for unresectable disease in the past 15 years. However, considerable work has occurred to develop immunotherapies and biomarker driven therapy to improve patient outcomes over this period.Areas covered: This review examines current standard of care systemic therapy in the first- and second line setting. The last 12 months has seen 2 significant trials (Checkmate 743 and CONFIRM) which provide evidence supporting the role of immunotherapy in the management of MPM. Further trials are underway to assess the role of combination chemoimmunotherapy and personalized therapy. Additionally, a large number of clinical trials are ongoing to assess the efficacy of oncoviral, dendritic cell, anti-mesothelin and chimeric antigen receptor T cell therapy in the treatment of MPM.Expert opinion: Recent Phase III trial results have established a role for immunotherapy in the management of MPM. The optimal sequencing and combination of chemotherapy and immunotherapy remains to be determined. Novel therapies for MPM are promising however efficacy remains to be determined and issues remain regarding access to and delivery of these therapies.
Collapse
Affiliation(s)
- Alexander P Davis
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, Australia
| | - Steven C Kao
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, Australia.,Asbestos Disease Research Institute, Rhodes, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Stephen J Clarke
- Sydney Medical School, The University of Sydney, Sydney, Australia.,Department of Medical Oncology, Royal North Shore Hospital, St Leonards, Australia.,Genesis Care, St Leonards, Australia
| | - Michael Boyer
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Nick Pavlakis
- Sydney Medical School, The University of Sydney, Sydney, Australia.,Department of Medical Oncology, Royal North Shore Hospital, St Leonards, Australia.,Genesis Care, St Leonards, Australia
| |
Collapse
|
29
|
Gray SG. Emerging avenues in immunotherapy for the management of malignant pleural mesothelioma. BMC Pulm Med 2021; 21:148. [PMID: 33952230 PMCID: PMC8097826 DOI: 10.1186/s12890-021-01513-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/25/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The role of immunotherapy in cancer is now well-established, and therapeutic options such as checkpoint inhibitors are increasingly being approved in many cancers such as non-small cell lung cancer (NSCLC). Malignant pleural mesothelioma (MPM) is a rare orphan disease associated with prior exposure to asbestos, with a dismal prognosis. Evidence from clinical trials of checkpoint inhibitors in this rare disease, suggest that such therapies may play a role as a treatment option for a proportion of patients with this cancer. MAIN TEXT While the majority of studies currently focus on the established checkpoint inhibitors (CTLA4 and PD1/PDL1), there are many other potential checkpoints that could also be targeted. In this review I provide a synopsis of current clinical trials of immunotherapies in MPM, explore potential candidate new avenues that may become future targets for immunotherapy and discuss aspects of immunotherapy that may affect the clinical outcomes of such therapies in this cancer. CONCLUSIONS The current situation regarding checkpoint inhibitors in the management of MPM whilst encouraging, despite impressive durable responses, immune checkpoint inhibitors do not provide a long-term benefit to the majority of patients with cancer. Additional studies are therefore required to further delineate and improve our understanding of both checkpoint inhibitors and the immune system in MPM. Moreover, many new potential checkpoints have yet to be studied for their therapeutic potential in MPM. All these plus the existing checkpoint inhibitors will require the development of new biomarkers for patient stratification, response and also for predicting or monitoring the emergence of resistance to these agents in MPM patients. Other potential therapeutic avenues such CAR-T therapy or treatments like oncolytic viruses or agents that target the interferon pathway designed to recruit more immune cells to the tumor also hold great promise in this hard to treat cancer.
Collapse
Affiliation(s)
- Steven G Gray
- Thoracic Oncology Research Group, Central Pathology Laboratory, CPL 30, TCDSJ Cancer Institute, St James's Hospital, Dublin, D08 RX0X, Ireland.
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland.
- School of Biology, Technical University of Dublin, Dublin, Ireland.
| |
Collapse
|
30
|
Predina JD, Haas AR, Martinez M, O'Brien S, Moon EK, Woodruff P, Stadanlick J, Corbett C, Frenzel-Sulyok L, Bryski MG, Eruslanov E, Deshpande C, Langer C, Aguilar LK, Guzik BW, Manzanera AG, Aguilar-Cordova E, Singhal S, Albelda SM. Neoadjuvant Gene-Mediated Cytotoxic Immunotherapy for Non-Small-Cell Lung Cancer: Safety and Immunologic Activity. Mol Ther 2021; 29:658-670. [PMID: 33160076 PMCID: PMC7854297 DOI: 10.1016/j.ymthe.2020.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/01/2020] [Accepted: 10/31/2020] [Indexed: 11/28/2022] Open
Abstract
Gene-mediated cytotoxic immunotherapy (GMCI) is an immuno-oncology approach involving local delivery of a replication-deficient adenovirus expressing herpes simplex thymidine kinase (AdV-tk) followed by anti-herpetic prodrug activation that promotes immunogenic tumor cell death, antigen-presenting cell activation, and T cell stimulation. This phase I dose-escalation pilot trial assessed bronchoscopic delivery of AdV-tk in patients with suspected lung cancer who were candidates for surgery. A single intra-tumoral AdV-tk injection in three dose cohorts (maximum 1012 viral particles) was performed during diagnostic staging, followed by a 14-day course of the prodrug valacyclovir, and subsequent surgery 1 week later. Twelve patients participated after appropriate informed consent. Vector-related adverse events were minimal. Immune biomarkers were evaluated in tumor and blood before and after GMCI. Significantly increased infiltration of CD8+ T cells was found in resected tumors. Expression of activation, inhibitory, and proliferation markers, such as human leukocyte antigen (HLA)-DR, CD38, Ki67, PD-1, CD39, and CTLA-4, were significantly increased in both the tumor and peripheral CD8+ T cells. Thus, intratumoral AdV-tk injection into non-small-cell lung cancer (NSCLC) proved safe and feasible, and it effectively induced CD8+ T cell activation. These data provide a foundation for additional clinical trials of GMCI for lung cancer patients with potential benefit if combined with other immune therapies.
Collapse
Affiliation(s)
- Jarrod D Predina
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew R Haas
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marina Martinez
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shaun O'Brien
- Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edmund K Moon
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick Woodruff
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason Stadanlick
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher Corbett
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lydia Frenzel-Sulyok
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mitchell G Bryski
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Evgeniy Eruslanov
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charuhas Deshpande
- Pulmonary and Mediastinal Pathology, Department of Clinical Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Corey Langer
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, MA, USA
| | - Laura K Aguilar
- Advantagene, Inc. d.b.a. Candel Therapeutics, Needham, MA, USA
| | - Brian W Guzik
- Advantagene, Inc. d.b.a. Candel Therapeutics, Needham, MA, USA
| | | | | | - Sunil Singhal
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven M Albelda
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
31
|
Katz SI, Roshkovan L, Berger I, Friedberg JS, Alley EW, Simone CB, Haas AR, Cengel KA, Sterman DH, Albelda SM. Serum soluble mesothelin-related protein (SMRP) and fibulin-3 levels correlate with baseline malignant pleural mesothelioma (MPM) tumor volumes but are not useful as biomarkers of response in an immunotherapy trial. Lung Cancer 2021; 154:5-12. [PMID: 33561782 DOI: 10.1016/j.lungcan.2021.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/26/2020] [Accepted: 01/10/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Soluble mesothelin-related protein (SMRP) and fibulin-3 serum levels may serve as diagnostic and prognostic biomarkers of malignant pleural mesothelioma (MPM). Here, we evaluate these markers for correlation to tumor volume, prognosis and response assessment in a clinical trial of immunogene therapy in combination with chemotherapy. MATERIALS AND METHODS Serial serum levels of SMRP and fibulin-3 were measured in adult patients with biopsy-proven MPM enrolled in two prospective clinical trials. Pre-therapy computed tomography (CT) measurements of tumor burden were calculated and correlated with pre-therapy serum SMRP and fibulin-3 levels in these two trials. Serological data were also correlated with radiological assessment of response using Modified RECIST criteria over the first 6 months of intrapleural delivery of adenovirus-IFN alpha (Ad.IFN-α) combined with chemotherapy. RESULTS A cohort of 58 patients who enrolled in either a photodynamic therapy trial or immunotherapy clinical trial had available imaging and SMRP serological data for analysis of whom 45 patients had serological fibulin-3 data. The cohort mean total tumor volume was 387 cm3 (STD 561 cm3). Serum SMRP was detectable in 57 of 58 patients (mean 3.8 nM, STD 6.0). Serum fibulin-3 was detected in 44 of 45 patients (mean 23 ng/mL, STD 14). At pre-therapy baseline in these two trials, there was a strong correlation between tumor volume and serum SMRP levels (r = 0.61, p < 0.001), and a moderate correlation between tumor volume and serum fibulin-3 levels (r = 0.36, p = 0.014). Twenty-eight patients in the immunotherapy trial had longitudinal serologic and radiographic data. Fold-changes in SMRP and fibulin-3 did not show significant correlations with modified RECIST measurements. CONCLUSIONS Although our data show correlations of SMRP and fibulin-3 with initial tumor volumes as measured by CT scanning, the use of SMRP and fibulin-3 as serological biomarkers in the immunotherapy trial were not useful in following tumor response longitudinally.
Collapse
Affiliation(s)
- Sharyn I Katz
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.
| | - Leonid Roshkovan
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Ian Berger
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Joseph S Friedberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Evan W Alley
- Department of Hematology and Medical Oncology, Cleveland Clinic Florida, Weston, FL, United States
| | | | - Andrew R Haas
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Keith A Cengel
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Daniel H Sterman
- Division of Pulmonary, Critical Care and Sleep Medicine, NYU Grossman School of Medicine, New York, NY, United States
| | - Steven M Albelda
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
32
|
Lan T, Chen L, Wei X. Inflammatory Cytokines in Cancer: Comprehensive Understanding and Clinical Progress in Gene Therapy. Cells 2021; 10:E100. [PMID: 33429846 PMCID: PMC7827947 DOI: 10.3390/cells10010100] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
The relationship between chronic inflammation and neoplastic diseases is not fully understood. The inflammatory microenvironment of a tumor is an intricate network that consists of numerous types of cells, cytokines, enzymes and signaling pathways. Recent evidence shows that the crucial components of cancer-related inflammation are involved in a coordinated system to influence the development of cancer, which may shed light on the development of potential anticancer therapies. Since the last century, considerable effort has been devoted to developing gene therapies for life-threatening diseases. When it comes to modulating the inflammatory microenvironment for cancer therapy, inflammatory cytokines are the most efficient targets. In this manuscript, we provide a comprehensive review of the relationship between inflammation and cancer development, especially focusing on inflammatory cytokines. We also summarize the clinical trials for gene therapy targeting inflammatory cytokines for cancer treatment. Future perspectives concerned with new gene-editing technology and novel gene delivery systems are finally provided.
Collapse
Affiliation(s)
- Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China; (T.L.); (L.C.)
- State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Li Chen
- Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China; (T.L.); (L.C.)
- State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China; (T.L.); (L.C.)
- State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| |
Collapse
|
33
|
Malignant Pleural Effusion: Diagnosis and Management. Can Respir J 2020; 2020:2950751. [PMID: 33273991 PMCID: PMC7695997 DOI: 10.1155/2020/2950751] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/05/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Symptomatic malignant pleural effusion is a common clinical problem. This condition is associated with very high mortality, with life expectancy ranging from 3 to 12 months. Studies are contributing evidence on an increasing number of therapeutic options (therapeutic thoracentesis, thoracoscopic pleurodesis or thoracic drainage, indwelling pleural catheter, surgery, or a combination of these therapies). Despite the availability of therapies, the management of malignant pleural effusion is challenging and is mainly focused on the relief of symptoms. The therapy to be administered needs to be designed on a case-by-case basis considering patient's preferences, life expectancy, tumour type, presence of a trapped lung, resources available, and experience of the treating team. At present, the management of malignant pleural effusion has evolved towards less invasive approaches based on ambulatory care. This approach spares the patient the discomfort caused by more invasive interventions and reduces the economic burden of the disease. A review was performed of the diagnosis and the different approaches to the management of malignant pleural effusion, with special emphasis on their indications, usefulness, cost-effectiveness, and complications. Further research is needed to shed light on the current matters of controversy and help establish a standardized, more effective management of this clinical problem.
Collapse
|
34
|
Expanding the Spectrum of Adenoviral Vectors for Cancer Therapy. Cancers (Basel) 2020; 12:cancers12051139. [PMID: 32370135 PMCID: PMC7281331 DOI: 10.3390/cancers12051139] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Adenoviral vectors (AdVs) have attracted much attention in the fields of vaccine development and treatment for diseases such as genetic disorders and cancer. In this review, we discuss the utility of AdVs in cancer therapies. In recent years, AdVs were modified as oncolytic AdVs (OAs) that possess the characteristics of cancer cell-specific replication and killing. Different carriers such as diverse cells and extracellular vesicles are being explored for delivering OAs into cancer sites after systemic administration. In addition, there are also various strategies to improve cancer-specific replication of OAs, mainly through modifying the early region 1 (E1) of the virus genome. It has been documented that oncolytic viruses (OVs) function through stimulating the immune system, resulting in the inhibition of cancer progression and, in combination with classical immune modulators, the anti-cancer effect of OAs can be even further enforced. To enhance the cancer treatment efficacy, OAs are also combined with other standard treatments, including surgery, chemotherapy and radiotherapy. Adenovirus type 5 (Ad5) has mainly been explored to develop vectors for cancer treatment with different modulations. Only a limited number of the more than 100 identified AdV types were converted into OAs and, therefore, the construction of an adenovirus library for the screening of potential novel OA candidates is essential. Here, we provide a state-of-the-art overview of currently performed and completed clinic trials with OAs and an adenovirus library, providing novel possibilities for developing innovative adenoviral vectors for cancer treatment.
Collapse
|
35
|
van Elsas MJ, van Hall T, van der Burg SH. Future Challenges in Cancer Resistance to Immunotherapy. Cancers (Basel) 2020; 12:E935. [PMID: 32290124 PMCID: PMC7226490 DOI: 10.3390/cancers12040935] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/20/2022] Open
Abstract
Cancer immunotherapies, including checkpoint inhibitors, adoptive T cell transfer and therapeutic cancer vaccines, have shown promising response rates in clinical trials. Unfortunately, there is an increasing number of patients in which initially regressing tumors start to regrow due to an immunotherapy-driven acquired resistance. Studies on the underlying mechanisms reveal that these can be similar to well-known tumor intrinsic and extrinsic primary resistance factors that precluded the majority of patients from responding to immunotherapy in the first place. Here, we discuss primary and secondary immune resistance and point at strategies to identify potential new mechanisms of immune evasion. Ultimately, this may lead to improved immunotherapy strategies with improved clinical outcomes.
Collapse
Affiliation(s)
| | | | - Sjoerd H. van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2300RC Leiden, The Netherlands; (M.J.v.E.); (T.v.H.)
| |
Collapse
|
36
|
Cantini L, Hassan R, Sterman DH, Aerts JGJV. Emerging Treatments for Malignant Pleural Mesothelioma: Where Are We Heading? Front Oncol 2020; 10:343. [PMID: 32226777 PMCID: PMC7080957 DOI: 10.3389/fonc.2020.00343] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/27/2020] [Indexed: 12/21/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an uncommon but aggressive and treatment resistant neoplasm with low survival rates. In the last years we assisted to an exponential growth in the appreciation of mesothelioma pathobiology, leading several new treatments to be investigated both in the early stage of the disease and in the advanced setting. In particular, expectations are now high that immunotherapy will have a leading role in the next years. However, caution is required as results from phase II studies in MPM were often not replicated in larger, randomized, phase III trials. In this review, we describe the most promising emerging therapies for the treatment of MPM, discussing the biological rationale underlying their development as well as the issues surrounding clinical trial design and proper selection of patients for every treatment.
Collapse
Affiliation(s)
- Luca Cantini
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
- Erasmus Cancer Institute, Erasmus MC, Rotterdam, Netherlands
- Clinical Oncology, Università Politecnica delle Marche, AOU Ospedali Riuniti Ancona, Ancona, Italy
| | - Raffit Hassan
- Thoracic and GI Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Daniel H. Sterman
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University (NYU) School of Medicine/NYU Langone Medical Center, New York, NY, United States
| | - Joachim G. J. V. Aerts
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
- Erasmus Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
37
|
Hocking A, Tommasi S, Sordillo P, Klebe S. The Safety and Exploration of the Pharmacokinetics of Intrapleural Liposomal Curcumin. Int J Nanomedicine 2020; 15:943-952. [PMID: 32103948 PMCID: PMC7023862 DOI: 10.2147/ijn.s237536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/17/2020] [Indexed: 12/16/2022] Open
Abstract
Background Malignant pleural effusion (MPE) is the accumulation of fluid in the pleural cavity as a result of malignancies affecting the lung, pleura and mediastinal lymph nodes. Curcumin, a compound found in turmeric, has anti-cancer properties that could not only treat MPE accumulation but also reduce cancer burden. To our knowledge, direct administration of curcumin into the pleural cavity has never been reported, neither in animals nor in humans. Purpose To explore the compartmental distribution, targeted pharmacokinetics and the safety profile of liposomal curcumin following intrapleural and intravenous administration. Methods Liposomal curcumin (16 mg/kg) was administered into Fischer 344 rats by either intrapleural injection or intravenous infusion. The concentration of curcumin in plasma and tissues (lung, liver and diaphragm) were measured using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Blood and tissues were examined for pathological changes. Results No pleural or lung pathologies were observed following intrapleural liposomal curcumin administration. Total curcumin concentration peaked 1.5 hrs after the administration of intrapleural liposomal curcumin and red blood cell morphology appeared normal. A red blood cells abnormality (echinocytosis) was observed immediately and at 1.5 hrs after intravenous infusion of liposomal curcumin. Conclusion These results indicate that liposomal curcumin is safe when administered directly into the pleural cavity and may represent a viable alternative to intravenous infusion in patients with pleural-based tumors.
Collapse
Affiliation(s)
- Ashleigh Hocking
- Department of Anatomical Pathology, Flinders University, Adelaide, SA, Australia
| | - Sara Tommasi
- Department of Clinical Pharmacology, Flinders University, Adelaide, SA, Australia
| | | | - Sonja Klebe
- Department of Anatomical Pathology, Flinders University, Adelaide, SA, Australia.,Department of Surgical Pathology, SA Health, Flinders Medical Centre, Bedford Park, SA, Australia
| |
Collapse
|
38
|
Gray SG, Mutti L. Immunotherapy for mesothelioma: a critical review of current clinical trials and future perspectives. Transl Lung Cancer Res 2020; 9:S100-S119. [PMID: 32206576 PMCID: PMC7082257 DOI: 10.21037/tlcr.2019.11.23] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/14/2019] [Indexed: 12/25/2022]
Abstract
At the clinical level the role of immunotherapy in cancer is currently at a pivotal point. Therapies such as checkpoint inhibitors are being approved at many levels in cancers such as non-small cell lung cancer (NSCLC). Mesothelioma is a rare orphan disease associated with prior exposure to asbestos, with a dismal prognosis. Various clinical trials for checkpoint inhibitors have been conducted in this rare disease, and suggest that such therapies may play a role as a treatment option for a proportion of patients with this cancer. Most recently approved as a salvage therapy in mesothelioma was granted in Japan, regulatory approval for their use in the clinic elsewhere lags. In this article we review the current pertinent clinical trials of immunotherapies in malignant mesothelioma, discuss the current issues that may affect the clinical outcomes of such therapies and further evaluate potential candidate new avenues that may become future targets for immunotherapy in this cancer.
Collapse
Affiliation(s)
- Steven G. Gray
- Thoracic Oncology Research Group, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James’s Hospital, Dublin, Ireland
| | - Luciano Mutti
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
39
|
Nicolini F, Bocchini M, Bronte G, Delmonte A, Guidoboni M, Crinò L, Mazza M. Malignant Pleural Mesothelioma: State-of-the-Art on Current Therapies and Promises for the Future. Front Oncol 2020; 9:1519. [PMID: 32039010 PMCID: PMC6992646 DOI: 10.3389/fonc.2019.01519] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare, aggressive cancer of the pleural surface associated with asbestos exposure. The median survival of MPM patients is a mere 8-14 months, and there are few biomarkers and no cure available. It is hoped that, eventually, the incidence of MPM will drop and remain low and constant, given that most nations have banned the use of asbestos, but in the meantime, the incidence in Europe is still growing. The exact molecular mechanisms that explain the carcinogenicity of asbestos are not known. Standard therapeutic strategies for MPM include surgery, often coupled with chemotherapy and/or radiotherapy, in a small percentage of eligible patients and chemotherapy in tumors considered unresectable with or without adjuvant radiotherapy. In recent years, several new therapeutic avenues are being explored. These include angiogenesis inhibitors, synthetic lethal treatment, miRNA replacement, oncoviral therapies, and the fast-growing field of immunotherapy alone or in combination with chemotherapy. Of particular promise are the multiple options offered by immunotherapy: immune checkpoint inhibitors, tumor vaccines, and therapies taking advantage of tumor-specific antigens, such as specific therapeutic antibodies or advanced cell-based therapies exemplified by the CAR-T cells. This review comprehensively presents both old and new therapeutic options in MPM, focusing on the results of the numerous recent and on-going clinical trials in the field, including the latest data presented at international meetings (AACR, ASCO, and ESMO) this year, and concludes that more work has to be done in the framework of tailored therapies to identify reliable targets and novel biomarkers to impact MPM management.
Collapse
Affiliation(s)
- Fabio Nicolini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Martine Bocchini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giuseppe Bronte
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Angelo Delmonte
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Massimo Guidoboni
- Immunotherapy and Cell Therapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Lucio Crinò
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Massimiliano Mazza
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
40
|
Mutti L, Peikert T, Robinson BWS, Scherpereel A, Tsao AS, de Perrot M, Woodard GA, Jablons DM, Wiens J, Hirsch FR, Yang H, Carbone M, Thomas A, Hassan R. Scientific Advances and New Frontiers in Mesothelioma Therapeutics. J Thorac Oncol 2019; 13:1269-1283. [PMID: 29966799 DOI: 10.1016/j.jtho.2018.06.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/07/2018] [Accepted: 06/17/2018] [Indexed: 12/20/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive cancer that arises from the mesothelial surface of the pleural and peritoneal cavities, the pericardium, and rarely, the tunica vaginalis. The incidence of MPM is expected to increase worldwide in the next two decades. However, even with the use of multimodality treatment, MPM remains challenging to treat, with a 5-year survival rate of less than 5%. The International Association for the Study of Lung Cancer has gathered experts in different areas of mesothelioma research and management to summarize the most significant scientific advances and new frontiers related to mesothelioma therapeutics.
Collapse
Affiliation(s)
- Luciano Mutti
- School of Environment and Life Sciences, College of Science and Technology, Cockcroft Building, University of Salford, Salford, United Kingdom
| | - Tobias Peikert
- Department of Pulmonary Medicine, Mayo Clinic, Rochester, Minnesota
| | - Bruce W S Robinson
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia; Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Arnaud Scherpereel
- Pulmonary and Thoracic Oncology, CHU de Lille, Univ Lille, Lille, France; French National Network of Clinical Expert Centres for Malignant Pleural Mesothelioma Management
| | - Anne S Tsao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Marc de Perrot
- Division of Thoracic Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Gavitt A Woodard
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - David M Jablons
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Jacinta Wiens
- International Association for the Study of Lung Cancer, Aurora, Colorado
| | - Fred R Hirsch
- International Association for the Study of Lung Cancer, Aurora, Colorado; Division of Medical Oncology, University of Colorado Cancer Center, Aurora, Colorado
| | - Haining Yang
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Michele Carbone
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Anish Thomas
- Development Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Raffit Hassan
- Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
41
|
Klampatsa A, O'Brien SM, Thompson JC, Rao AS, Stadanlick JE, Martinez MC, Liousia M, Cantu E, Cengel K, Moon EK, Singhal S, Eruslanov EB, Albelda SM. Phenotypic and functional analysis of malignant mesothelioma tumor-infiltrating lymphocytes. Oncoimmunology 2019; 8:e1638211. [PMID: 31428531 DOI: 10.1080/2162402x.2019.1638211] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/27/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Given the growing interest and promising preliminary results of immunotherapy in malignant pleural mesothelioma (MPM), it has become important to more fully understand the immune landscape in this tumor. This may be especially relevant in deciding who might benefit most from checkpoint blockade or agonist antibody therapy. Since the phenotype of tumor infiltrating lymphocytes (TILs) in MPM has not been fully described and their function has not been carefully assessed, we collected fresh tumor and blood from 22 patients undergoing surgical resection and analysed single cell suspensions by flow cytometry. The functionality of TILs was assessed by measurement of cytokine expression (IFN-γ) following overnight stimulation ex vivo. Results showed low numbers of CD8+ TILs whose function was either moderately or severely suppressed. The degree of TIL hypofunction did not correlate with the presence of co-existing macrophages or neutrophils, nor with expression of the inhibitory receptors PD-1, CD39 and CTLA-4. Hypofunction was associated with higher numbers of CD4 regulatory T cells (Tregs) and with expression of the inhibitory receptor TIGIT. On the other hand, presence of tissue-resident memory (Trm) cells and expression of TIM-3 on CD8+ cells were positively associated with cytokine production. However, Trm function was partially suppressed when the transcription factor Eomesodermin (Eomes) was co-expressed. Understanding the function of TILs in malignant mesothelioma may have clinical implications for immunotherapy, especially in choosing the best immunotherapy targets. Our data suggests that Treg cell blocking agents or TIGIT inhibitor antibodies might be especially valuable in these patients.
Collapse
Affiliation(s)
- Astero Klampatsa
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Shaun M O'Brien
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey C Thompson
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Abhishek S Rao
- Division of Thoracic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jason E Stadanlick
- Division of Thoracic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Marina C Martinez
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Maria Liousia
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Edward Cantu
- Division of Cardiovascular Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Keith Cengel
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Edmund K Moon
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sunil Singhal
- Division of Thoracic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Evgeniy B Eruslanov
- Division of Thoracic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Steven M Albelda
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW This review article describes current diagnostic and treatment modalities for malignant pleural mesothelioma (MPM). RECENT FINDINGS Few randomized trials in MPM have demonstrated improved survival with current therapies. A randomized trial of first-line chemotherapy with and without bevacizumab in unresectable MPM is the only randomized trial of a new treatment regimen to demonstrate a survival benefit since cisplatin with pemetrexed became the standard of care for unresectable MPM in 2003. Unfortunately, in unresectable MPM, first-line chemotherapy alone or in combination with bevacizumab has demonstrated only limited improvements in overall survival. Recently, in nonrandomized observational studies, multimodality treatments with chemotherapy, surgery, radiation, and novel therapies have been associated with prolonged survival in select patients. Currently, there are no FDA approved second-line therapies, and clinical trial enrollment is recommended for second-line treatment. SUMMARY MPM remains difficult to treat and has an overall poor prognosis despite current multimodality treatment. Thoracoscopy with multiple pleural biopsies can provide adequate tissue specimens for diagnostic testing to distinguish histologic MPM subtypes and perform molecular profiling, which influence prognosis and treatment options. In early clinical trials, immunotherapies and therapies directed against cancer-associated antigens and oncogenic alterations are emerging as promising future treatments.
Collapse
|
43
|
Murthy V, Katzman D, Sterman DH. Intrapleural immunotherapy: An update on emerging treatment strategies for pleural malignancy. CLINICAL RESPIRATORY JOURNAL 2019; 13:272-279. [PMID: 30810270 DOI: 10.1111/crj.13010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/16/2018] [Accepted: 07/30/2018] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Malignant pleural mesothelioma and malignant pleural effusions are a major therapeutic challenge, and are associated with impairment in quality of life and increased mortality. Advances in systemic therapies of malignant pleural mesothelioma have demonstrated limited clinical benefit and there is ongoing interest in intrapleural immunotherapies which have been demonstrated to be well tolerated overall with variable clinical responses. We have reviewed the literature to provide a comprehensive summary of novel intrapleural immunotherapeutic paradigms, including oncolytic virus therapy, gene-mediated cytotoxic immunotherapy, direct cytokine-mediated immunotherapies, innate immunomodulators and adoptive transfer of intrapleural chimeric antigen receptor T-cell therapy. DATA SOURCES A review of PubMed for original manuscripts and conference reports published between 1998 and 2018 pertaining to intrapleural immunotherapy, as well as examination of reference lists from reviewed manuscripts. STUDY SELECTION Human clinical trials on intrapleural immunotherapies in subjects with malignant pleural mesothelioma or malignant pleural effusion were included in this review, including some relevant preclinical studies and anticipated ongoing trials reported on Clinicaltrials.gov. RESULTS Twenty-six clinical trials were identified, in addition to three trials currently in progress. CONCLUSION Intrapleural immunotherapies for pleural malignancy have demonstrated promise with regard to generating durable tumor-specific immune responses with possible clinical benefits which merit further investigation as part of multimodal chemotherapeutic and immunotherapeutic regimens.
Collapse
Affiliation(s)
- Vivek Murthy
- NYU Pulmonary Oncology Research Team (NYU PORT), Division of Pulmonary, Critical Care, and Sleep Medicine, NYU School of Medicine, NYU Langone Health, New York, New York
| | - Daniel Katzman
- NYU Pulmonary Oncology Research Team (NYU PORT), Division of Pulmonary, Critical Care, and Sleep Medicine, NYU School of Medicine, NYU Langone Health, New York, New York
| | - Daniel H Sterman
- NYU Pulmonary Oncology Research Team (NYU PORT), Division of Pulmonary, Critical Care, and Sleep Medicine, NYU School of Medicine, NYU Langone Health, New York, New York
| |
Collapse
|
44
|
Scherpereel A, Wallyn F, Albelda SM, Munck C. Novel therapies for malignant pleural mesothelioma. Lancet Oncol 2019; 19:e161-e172. [PMID: 29508763 DOI: 10.1016/s1470-2045(18)30100-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/03/2017] [Accepted: 10/12/2017] [Indexed: 12/11/2022]
Abstract
Malignant pleural mesothelioma is a rare cancer that is typically associated with exposure to asbestos. Patients with malignant pleural mesothelioma have poor outcomes with suboptimal therapeutic options and currently no treatment is curative. The standard frontline treatment, cisplatin plus pemetrexed chemotherapy, has only short and insufficient efficacy, and no validated treatment beyond first-line therapy is available. New therapeutic strategies are therefore needed. The addition of bevacizumab (an anti-VEGF antibody) combined with cisplatin plus pemetrexed has shown some promise. However, immunotherapy, especially immune checkpoint inhibitors, has generated a lot of excitement because of data suggesting the potential value of immune checkpoint inhibitors for patients who have failed chemotherapy. In this Review, we describe immune checkpoint inhibitors, other immunotherapies, targeted therapies, or combinations of novel drugs being investigated in malignant pleural mesothelioma, as well as the issues surrounding the selection of the best candidates for these treatments.
Collapse
Affiliation(s)
- Arnaud Scherpereel
- Pulmonary and Thoracic Oncology Department, University of Lille, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, Lille, France; French National Network of Clinical Expert Centers for Malignant Pleural Mesothelioma Management (MESOCLIN), Lille, France.
| | - Frederic Wallyn
- Pulmonary and Thoracic Oncology Department, University of Lille, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, Lille, France
| | - Steven M Albelda
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Camille Munck
- Pulmonary and Thoracic Oncology Department, University of Lille, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
45
|
Barsky AR, Cengel KA, Katz SI, Sterman DH, Simone CB. First-ever Abscopal Effect after Palliative Radiotherapy and Immuno-gene Therapy for Malignant Pleural Mesothelioma. Cureus 2019; 11:e4102. [PMID: 31057996 PMCID: PMC6476617 DOI: 10.7759/cureus.4102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a highly aggressive disease, with few, if any, curative interventions. While there is growing interest in using immunotherapy and immuno-gene therapy to treat MPM, very limited data currently exist for combining these modalities with radiotherapy. Preclinical data suggest that radiotherapy may be combined with immunotherapy to produce disease regression, with abscopal effects in mice with MPM. We report the first-ever case of abscopal effect in a patient with MPM, following radiotherapy and immuno-gene therapy. The patient was a 67-year-old male with prior asbestos exposure who presented with progressive dyspnea and thoracic pain. He underwent partial right pleurectomy, pleural biopsy, and talc pleurodesis, with pathology revealing epithelioid MPM. A subsequent chest computed tomography (CT) scan and fluoro-deoxyglucose positron-emission tomography (FDG-PET) CT scan showed extensive, right-sided, fluoro-deoxyglucose (FDG) avid mass-like pleural thickening encasing the right lung, with likely mediastinal extension, nodal metastases, and vascular compression. He enrolled in a clinical trial in which he received intrapleural interferon-alpha gene therapy but needed to discontinue therapy due to supraventricular tachycardia and superior vena cava syndrome induced from tumor burden. He was emergently treated with palliative radiotherapy to 30 Gy in 10 fractions. He was then started on pemetrexed and cisplatin chemotherapy. His subsequent chest CT scan two months after radiotherapy completion showed a dramatic treatment response within, as well as outside of, the irradiated field. After completion of radiotherapy, he did experience radiation esophagitis requiring nasogastric tube placement. Herein, we highlight the feasibility and efficacy of combining immuno-gene therapy with palliative radiotherapy to produce a substantial treatment response and an abscopal effect in a patient with unresectable MPM.
Collapse
Affiliation(s)
- Andrew R Barsky
- Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Keith A Cengel
- Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Sharyn I Katz
- Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Daniel H Sterman
- Internal Medicine, New York University School of Medicine, New York, USA
| | - Charles B Simone
- Radiation Oncology, University of Maryland School of Medicine, Baltimore, USA
| |
Collapse
|
46
|
Cova E, Pandolfi L, Colombo M, Frangipane V, Inghilleri S, Morosini M, Mrakic-Sposta S, Moretti S, Monti M, Pignochino Y, Benvenuti S, Prosperi D, Stella G, Morbini P, Meloni F. Pemetrexed-loaded nanoparticles targeted to malignant pleural mesothelioma cells: an in vitro study. Int J Nanomedicine 2019; 14:773-785. [PMID: 30774332 PMCID: PMC6361319 DOI: 10.2147/ijn.s186344] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Malignant pleural mesothelioma (MPM) is an aggressive tumor characterized by poor prognosis. Its incidence is steadily increasing due to widespread asbestos exposure. There is still no effective therapy for MPM. Pemetrexed (Pe) is one of the few chemotherapeutic agents approved for advanced-stage disease, although the objective response to the drug is limited. The use of gold nanoparticles (GNPs) as a drug delivery system promises several advantages, including specific targeting of malignant cells, with increased intracellular drug accumulation and reduced systemic toxicity, and, in the case of MPM, direct treatment administration into the pleural space. This study aims at exploring CD146 as a potential MPM cell-specific target for engineered Pe-loaded GNPs and to assess their effectiveness in inhibiting MPM cell line growth. METHODS MPM cell lines and primary cultures obtained by pleural effusions from MPM patients were assayed for CD146 expression by flow cytometry. Internalization by MPM cell lines of fluorescent dye-marked GNPs decorated with a monoclonal anti CD146 coated GNPs (GNP-HC) was proven by confocal microscopy. The effects of anti CD146 coated GNPs loaded with Pe (GNP-HCPe) on MPM cell lines were evaluated by cell cycle (flow cytometry), viability (MTT test), clonogenic capacity (soft agar assay), ROS production (electric paramagnetic resonance), motility (wound healing assay), and apoptosis (flow cytometry). RESULTS GNP-HC were selectively uptaken by MPM cells within 1 hour. MPM cell lines were blocked in the S cell cycle phase in the presence of GNP-HCPe. Both cell viability and motility were significantly affected by nanoparticle treatment compared to Pe. Apoptotic rate and ROS production were significantly higher in the presence of nanoparticles. Clonogenic capacity was completely inhibited following nanoparticle internalization. CONCLUSION GNP-HCPe treatment displays in vitro antineoplastic action and is more effective than Pe alone in inhibiting MPM cell line malignant phenotype. The innovative use of specifically targeted GNPs opens the perspective of local intrapleural administration to avoid normal cell toxicity and enhance chemotherapy efficacy.
Collapse
Affiliation(s)
- Emanuela Cova
- Clinic of Lung Diseases, IRCCS Foundation Policlinico San Matteo, Pavia, Italy,
| | - Laura Pandolfi
- Clinic of Lung Diseases, IRCCS Foundation Policlinico San Matteo, Pavia, Italy,
| | - Miriam Colombo
- Deparment of Biotechnology and Bioscience, University of Milano - Bicocca, Milan, Italy,
| | - Vanessa Frangipane
- Clinic of Lung Diseases, IRCCS Foundation Policlinico San Matteo, Pavia, Italy,
| | - Simona Inghilleri
- Clinic of Lung Diseases, IRCCS Foundation Policlinico San Matteo, Pavia, Italy,
| | - Monica Morosini
- Clinic of Lung Diseases, IRCCS Foundation Policlinico San Matteo, Pavia, Italy,
| | - Simona Mrakic-Sposta
- National Council of Research, Institute of Bioimaging and Molecular Physiology, Segrate, Milan, Italy
| | - Sarah Moretti
- National Council of Research, Institute of Bioimaging and Molecular Physiology, Segrate, Milan, Italy
| | - Manuela Monti
- Laboratory of Biotechnology, Research Center of Rigenerative Medicine, IRCCS Foundation Policlinico San Matteo, Pavia, Italy
| | - Ymera Pignochino
- Experimental Clinical Molecular Oncology, IRCCS Candiolo Cancer Institute-FPO, Candiolo, Turin, Italy
| | - Silvia Benvenuti
- Experimental Clinical Molecular Oncology, IRCCS Candiolo Cancer Institute-FPO, Candiolo, Turin, Italy
| | - Davide Prosperi
- Deparment of Biotechnology and Bioscience, University of Milano - Bicocca, Milan, Italy,
- Laboratory of Nanomedicine, Clinical Institute of Maugeri, S.p.A., Pavia, Italy
| | - Giulia Stella
- Clinic of Lung Diseases, IRCCS Foundation Policlinico San Matteo, Pavia, Italy,
| | - Patrizia Morbini
- Department of Molecular Medicine, Pathology Unit, IRCCS Foundation Policlinico San Matteo, Pavia, Italy
| | - Federica Meloni
- Department of Internal Medicine, Pneumology Unit, University of Pavia, Pavia, Italy
| |
Collapse
|
47
|
Ye L, Ma S, Robinson BW, Creaney J. Immunotherapy strategies for mesothelioma - the role of tumor specific neoantigens in a new era of precision medicine. Expert Rev Respir Med 2018; 13:181-192. [PMID: 30596292 DOI: 10.1080/17476348.2019.1563488] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Immunotherapy has long been considered a potential therapy for malignant mesothelioma and is currently being pursued as such. Some of the early phase clinical trials involving immunomodulators have demonstrated encouraging results and numerous clinical trials are underway to further investigate this treatment approach in various treatment settings and larger patient cohorts. Areas covered: This review summarizes the current and emerging clinical evidence for checkpoint blockade and other immunotherapeutic strategies in mesothelioma. The mesothelioma tumor immune microenvironment and mutational landscape are also discussed, including their impact on treatment strategies. We also provide an evaluation of the current evidence for neoantigen targeted personalized immunotherapy. Expert opinion: Immune checkpoint inhibitors work by unleashing the host immune response against probable neoantigens. Despite impressive activity in a small subset of patients and the potential for prolonged responses, most patients experience treatment failure. Neoantigen vaccines provide a potential complementary therapeutic strategy by increasing the immunogenic antigen load, which can lead to an increased tumor specific immune response. Further research is needed explore this treatment option in mesothelioma and technological advances are required to translate this concept into clinical practice.
Collapse
Affiliation(s)
- Linda Ye
- a Department of Medical Oncology , Sir Charles Gairdner Hospital , Nedlands , Australia
| | - Shaokang Ma
- b National Centre for Asbestos Related Disease , University of Western Australia , Nedlands , Australia
| | - Bruce W Robinson
- b National Centre for Asbestos Related Disease , University of Western Australia , Nedlands , Australia.,c Department of Respiratory Medicine , Sir Charles Gairdner Hospital , Nedlands , Australia
| | - Jenette Creaney
- b National Centre for Asbestos Related Disease , University of Western Australia , Nedlands , Australia.,c Department of Respiratory Medicine , Sir Charles Gairdner Hospital , Nedlands , Australia.,d Institute of Respiratory Health , University of Western Australia , Nedlands , Australia
| |
Collapse
|
48
|
Liang Y, Tang H, Guo J, Qiu X, Yang Z, Ren Z, Sun Z, Bian Y, Xu L, Xu H, Shen J, Han Y, Dong H, Peng H, Fu YX. Targeting IFNα to tumor by anti-PD-L1 creates feedforward antitumor responses to overcome checkpoint blockade resistance. Nat Commun 2018; 9:4586. [PMID: 30389912 PMCID: PMC6214895 DOI: 10.1038/s41467-018-06890-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 09/20/2018] [Indexed: 12/14/2022] Open
Abstract
Many patients remain unresponsive to intensive PD-1/PD-L1 blockade therapy despite the presence of tumor-infiltrating lymphocytes. We propose that impaired innate sensing might limit the complete activation of tumor-specific T cells after PD-1/PD-L1 blockade. Local delivery of type I interferons (IFNs) restores antigen presentation, but upregulates PD-L1, dampening subsequent T-cell activation. Therefore, we armed anti-PD-L1 antibody with IFNα (IFNα-anti-PD-L1) to create feedforward responses. Here, we find that a synergistic effect is achieved to overcome both type I IFN and checkpoint blockade therapy resistance with the least side effects in advanced tumors. Intriguingly, PD-L1 expressed in either tumor cells or tumor-associated host cells is sufficient for fusion protein targeting. IFNα-anti-PD-L1 activates IFNAR signaling in host cells, but not in tumor cells to initiate T-cell reactivation. Our data suggest that a next-generation PD-L1 antibody armed with IFNα improves tumor targeting and antigen presentation, while countering innate or T-cell-driven PD-L1 upregulation within tumor. Despite the presence of tumor-infiltrating lymphocytes, many patients do not respond to PD-L1/PD-1 blockade therapy. Here they show that PD-L1 antibody armed with interferon-α (IFNα) improves tumor targeting and antigen presentation while countering innate or T-cell-drive PD-L1 upregulation, and overcomes resistance to checkpoint blockade therapy.
Collapse
Affiliation(s)
- Yong Liang
- Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Haidong Tang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China. .,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA.
| | - Jingya Guo
- Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangyan Qiu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Zecheng Yang
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenhua Ren
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Zhichen Sun
- Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yingjie Bian
- Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lily Xu
- Department of Biology, Wellesley College, Wellesley, MA, 02481, USA
| | - Hairong Xu
- Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiao Shen
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanfei Han
- Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haidong Dong
- Departments of Urology and Immunology, College of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Hua Peng
- Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA.
| |
Collapse
|
49
|
Kato T, Jin CS, Lee D, Ujiie H, Fujino K, Hu HP, Wada H, Wu L, Chen J, Weersink RA, kanno H, Hatanaka Y, Hatanaka KC, Kaga K, Matsui Y, Matsuno Y, De Perrot M, Wilson BC, Zheng G, Yasufuku K. Preclinical investigation of folate receptor-targeted nanoparticles for photodynamic therapy of malignant pleural mesothelioma. Int J Oncol 2018; 53:2034-2046. [PMID: 30226590 PMCID: PMC6192720 DOI: 10.3892/ijo.2018.4555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/01/2018] [Indexed: 11/07/2022] Open
Abstract
Photodynamic therapy (PDT) following lung-sparing extended pleurectomy for malignant pleural mesothelioma (MPM) has been investigated as a potential means to kill residual microscopic cells. High expression levels of folate receptor 1 (FOLR1) have been reported in MPM; therefore, targeting FOLR1 has been considered a novel potential strategy. The present study developed FOLR1‑targeting porphyrin-lipid nanoparticles (folate-porphysomes, FP) for the treatment of PDT. Furthermore, inhibition of activated epidermal growth factor (EGFR)-associated survival pathways enhance PDT efficacy. In the present study, these approaches were combined; FP-based PDT was used together with an EGFR-tyrosine kinase inhibitor (EGFR-TKI). The frequency of FOLR1 and EGFR expression in MPM was analyzed using tissue microarrays. Confocal microscopy and a cell viability assay were performed to confirm the specificity of FOLR1‑targeting cellular uptake and photocytotoxicity in vitro. In vivo fluorescence activation and therapeutic efficacy were subsequently examined. The effects of EGFR-TKI were also assessed in vitro. The in vivo combined antitumor effect of EGFR-TKI and FP-PDT was then evaluated. The results revealed that FOLR1 and EGFR were expressed in 79 and 89% of MPM samples, respectively. In addition, intracellular uptake of FP corresponded well with FOLR1 expression. When MPM cells were incubated with FP and then irradiated at 671 nm, there was significant in vitro cell death, which was inhibited in the presence of free folic acid, thus suggesting the specificity of FPs. FOLR1 targeting resulted in disassembly of the porphysomes and subsequent fluorescence activation in intrathoracic disseminated MPM tumors, as demonstrated by ex vivo tissue imaging. FP-PDT resulted in significant cellular damage and apoptosis in vivo. Furthermore, the combination of pretreatment with EGFR-TKI and FP-PDT induced a marked improvement of treatment responses. In conclusion, FP-based PDT induced selective destruction of MPM cells based on FOLR1 targeting, and pretreatment with EGFR-TKI further enhanced the therapeutic response.
Collapse
Affiliation(s)
- Tatsuya Kato
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Cheng s. Jin
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9
- Guided Therapeutics, TECHNA Institute, University Health Network, Toronto, ON M5G 1L5
| | - Daiyoon Lee
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Hideki Ujiie
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Kosuke Fujino
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Hsin-Pei Hu
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Hironobu Wada
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Licun Wu
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Juan Chen
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7
| | - Rober a. Weersink
- Guided Therapeutics, TECHNA Institute, University Health Network, Toronto, ON M5G 1L5
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Hiromi kanno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Hokkaido 060-8648, Japan
| | - Yutaka Hatanaka
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Hokkaido 060-8648, Japan
| | - Kanako c. Hatanaka
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Hokkaido 060-8648, Japan
| | - Kichizo Kaga
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Yoshiro Matsui
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Yoshihiro Matsuno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Hokkaido 060-8648, Japan
| | - Marc De Perrot
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Brian c. Wilson
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Gang Zheng
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9
- Guided Therapeutics, TECHNA Institute, University Health Network, Toronto, ON M5G 1L5
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
- DLVR Therapeutics Inc. and University Health Network, Toronto, ON M5G 0A3, Canada
| | - Kazuhiro Yasufuku
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
50
|
Süveg K, Putora PM, Berghmans T, Glatzer M, Kovac V, Cihoric N. Current efforts in research of pleural mesothelioma—An analysis of the ClinicalTrials.gov registry. Lung Cancer 2018; 124:12-18. [DOI: 10.1016/j.lungcan.2018.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 07/04/2018] [Indexed: 10/28/2022]
|