1
|
Gao Y, Zheng K, Tan H, Kang M, Lu B, Chen L, Xu J, Lu C, Chai R, Xu C, Kang Y. Single-cell RNA sequencing reveals the intra-tumoral heterogeneity and immune microenvironment of small cell carcinoma of the ovary, hypercalcemic type. J Ovarian Res 2025; 18:76. [PMID: 40205496 PMCID: PMC11983804 DOI: 10.1186/s13048-025-01649-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 03/15/2025] [Indexed: 04/11/2025] Open
Abstract
PURPOSE Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is a rare and lethal cancer lacking effective treatment. Its genomic mutations and tumor microenvironment need further exploration. METHODS We performed whole-exome sequencing or gene panel test to explore the SMARCA4 mutation spectrum in SCCOHT (15 samples). Single-cell RNA sequencing was conducted on one primary lesion with matched normal ovarian tissue and one recurrent lesion to investigate the intra-tumoral heterogeneity and immune microenvironment. Multiplex immunofluorescence staining validated T cell infiltration and PD-1 expression. RESULTS 13/15 (86.7%) patients harbored SMARCA4 mutations. The loss of heterozygosity (LOH) occurred in 10/15 (66.7%) patients. Cancer cells and immune cells were observed in SCCOHT tumors. Cancer cells were further divided into seven subtypes and one from recurrent lesion exhibited the highest stemness accompanied by high expression of genes related to cell mitosis (AURKB, CHEK2, CCNB1, WEE1), DNA repair (BRCA1, RAD51) and epigenetic (EZH2, DNMT1). Immune cells mainly included macrophages and T cells. Lipid-associated tumor-associated macrophages (TAMs) was mainly in primary lesion while inflammatory cytokine-enriched TAMs in recurrent lesion. CD4+/ CD8+ T cell infiltration was observed in SCCOHT tumor and a certain proportion of T cells expressed PD-1. CONCLUSIONS SCCOHT exhibits universal SMARCA4 LOH and significant intra-tumoral heterogeneity, suggesting potential therapeutic targets, including CHEK2, CCNB1, and WEE1. Exhausted T cells and distinct TAM subsets infiltrate tumors. Targeting macrophage polarization or cytokine signaling may also be promising. These findings provide insights for developing novel therapies to improve outcomes in SCCOHT. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Yi Gao
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Kewei Zheng
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Haowen Tan
- SynerGene, Ganzhou, Jiangxi, 342604, China
| | - Mingyi Kang
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Bingjian Lu
- Department of Surgical Pathology, School of Medicine, Women's Hospital, Zhejiang University, Hangzhou, Zhejiang, 310006, China
| | - Ling Chen
- Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300052, China
| | - Jing Xu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Chong Lu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Ranran Chai
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Congjian Xu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China.
| | - Yu Kang
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
2
|
Kim SY, de Weert TAE, Vermeulen M, Ringnalda F, Kester L, Zsiros J, Eising S, Molenaar JJ, Sanders K, van de Wetering M, Clevers H. Organoid drug profiling identifies methotrexate as a therapy for SCCOHT, a rare pediatric cancer. SCIENCE ADVANCES 2025; 11:eadq1724. [PMID: 40009666 PMCID: PMC11864178 DOI: 10.1126/sciadv.adq1724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/23/2025] [Indexed: 02/28/2025]
Abstract
Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is a rare and lethal tumor in adolescent and young adult patients. Now, there is no standard-of-care treatment for these patients. Reliable models that represent this disease and can be used for translational research are scarce. To model SCCOHTs, we have established eight patient-derived tumoroid lines from tumor lesions of three patients with SCCOHT. The tumoroids recapitulate genomic and transcriptomic characteristics of the corresponding patient tumors and capture intrapatient tumor heterogeneity. Organoid drug profiling using a library of 153 clinical compounds identified methotrexate as an effective and selective drug against SCCOHTs with a clinically relevant IC50 of 35 nanomolars. RNA sequencing demonstrated that methotrexate induced TP53 pathway activation and apoptosis. These data underscore that organoid technology can support the design of therapeutic strategies for rare cancers.
Collapse
Affiliation(s)
- Seok-Young Kim
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Tamar A. E. de Weert
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Marijn Vermeulen
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Femke Ringnalda
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Lennart Kester
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Jozsef Zsiros
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Selma Eising
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Jan J. Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Department of Pharmaceutical Sciences, University Utrecht, Utrecht, Netherlands
| | - Karin Sanders
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Marc van de Wetering
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
3
|
Lang JD, Selleck W, Striker S, Hipschman NA, Kofman R, Karnezis AN, Kommoss FK, Kommoss F, Wendt JR, Facista SJ, Hendricks WP, Orlando KA, Pirrotte P, Raupach EA, Zismann VL, Wang Y, Huntsman DG, Weissman BE, Trent JM. Super-enhancers and efficacy of triptolide in small cell carcinoma of the ovary hypercalcemic type. iScience 2025; 28:111770. [PMID: 39906560 PMCID: PMC11791298 DOI: 10.1016/j.isci.2025.111770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/26/2024] [Accepted: 01/06/2025] [Indexed: 02/06/2025] Open
Abstract
Small cell carcinoma of the ovary-hypercalcemic type (SCCOHT) is a rare ovarian cancer affecting young females and is driven by the loss of both SWI/SNF ATPases SMARCA4 and SMARCA2. As loss of SWI/SNF alters enhancers, we hypothesized that super-enhancers, which regulate oncogene expression in cancer, are disparately impacted by SWI/SNF loss. We discovered differences between SWI/SNF occupancy at enhancers vs. super-enhancers. SCCOHT super-enhancer target genes were enriched in developmental processes, most notably nervous system development. This may further support neuronal cell-of-origin previously proposed. We found high sensitivity of SCCOHT cell lines to triptolide. Triptolide inhibits expression of many super-enhancer-associated genes, including oncogenes. SALL4 expression is decreased by triptolide and is highly expressed in SCCOHT tumors. In patient-derived xenograft models, triptolide and prodrug minnelide effectively inhibit tumor growth. These results reveal unique features of super-enhancers in SCCOHT, which may be one mechanism through which triptolide has high activity in these tumors.
Collapse
Affiliation(s)
- Jessica D. Lang
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
- Department of Pathology and Laboratory Medicine, UW Carbone Cancer Center, and Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - William Selleck
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Shawn Striker
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Nicolle A. Hipschman
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Rochelle Kofman
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Anthony N. Karnezis
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Felix K.F. Kommoss
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Friedrich Kommoss
- Institute of Pathology, Medizin Campus Bodensee, 88048 Friedrichshafen, Germany
| | - Jae Rim Wendt
- Department of Pathology and Laboratory Medicine, UW Carbone Cancer Center, and Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Salvatore J. Facista
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - William P.D. Hendricks
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Krystal A. Orlando
- Department of Pathology and Laboratory Medicine, and the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Patrick Pirrotte
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Elizabeth A. Raupach
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Victoria L. Zismann
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Yemin Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
- Canada and Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 0B4, Canada
| | - David G. Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
- Canada and Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 0B4, Canada
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Bernard E. Weissman
- Department of Pathology and Laboratory Medicine, and the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jeffrey M. Trent
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| |
Collapse
|
4
|
Fang R, Wang X, Wu R, Pan R, Tian M, Zhang R, Wei X, Wang X, Ye S, Li F, Xia Q, Cheng Y, Rao Q. SMARCA4/BRG1 deficiency induces a targetable dependence on oxidative phosphorylation in clear cell renal cell carcinoma. Carcinogenesis 2025; 46:bgaf002. [PMID: 39851260 DOI: 10.1093/carcin/bgaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 01/03/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
The tumor suppressor gene SMARCA4, a critical component of the SWI/SNF chromatin remodeling complex, is frequently inactivated in various cancers, including clear cell renal cell carcinoma (ccRCC). Despite its significance, the role of SMARCA4 in ccRCC development and its potential therapeutic vulnerabilities have not been fully explored. Our research found that SMARCA4 deficiency was associated with poor prognosis and was observed in a subset of high-grade ccRCCs. Through functional assays, we determined that the suppression of SMARCA4 led to an increase in RCC cell proliferation. Further gene expression analysis unveiled that SMARCA4-deficient cells exhibit an upregulation of the oxidative phosphorylation (OXPHOS) pathway. Delving deeper, we combined RNA sequencing (RNA-Seq) and Assay for transposase-accessible chromatin with sequencing (ATAC-Seq) data to uncover that SMARCA4 plays a crucial role in modulating chromatin accessibility and the expression of genes essential for the respiratory electron transport chain. A significant finding from our study is that RCC cells and xenograft tumors lacking SMARCA4 demonstrated an increased sensitivity to the inhibition of the OXPHOS pathway by the novel small molecule IACS-010759. This sensitivity is attributed to the heightened energy demands and susceptibility to energy stress observed in SMARCA4-deficient cells, driven by their amplified biosynthetic requirements. The efficacy of IACS-010759 stems from its ability to induce energy deprivation, pinpointing OXPHOS inhibition as a promising therapeutic approach for targeting SMARCA4-mutant tumors. This strategy offers a novel avenue to address a currently unmet therapeutic need, highlighting the potential of OXPHOS inhibition in the treatment of cancers harboring SMARCA4 mutations.
Collapse
Affiliation(s)
- Ru Fang
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, 305 Zhongshan East Road, Nanjing, 210002, China
| | - Xiaotong Wang
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, 305 Zhongshan East Road, Nanjing, 210002, China
| | - Ruina Wu
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Rui Pan
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, 305 Zhongshan East Road, Nanjing, 210002, China
| | - Miaomiao Tian
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, 305 Zhongshan East Road, Nanjing, 210002, China
| | - Rusong Zhang
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, 305 Zhongshan East Road, Nanjing, 210002, China
| | - Xue Wei
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, 305 Zhongshan East Road, Nanjing, 210002, China
| | - Xuan Wang
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, 305 Zhongshan East Road, Nanjing, 210002, China
| | - Shengbing Ye
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, 305 Zhongshan East Road, Nanjing, 210002, China
| | - Feng Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, China
| | - Qiuyuan Xia
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, 305 Zhongshan East Road, Nanjing, 210002, China
| | - Yang Cheng
- Center for Health Management, Jiangsu Province Geriatric Hospital, 2 Yi-He Road, Nanjing, 210024, China
| | - Qiu Rao
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, 305 Zhongshan East Road, Nanjing, 210002, China
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| |
Collapse
|
5
|
Zheng K, Gao Y, Xu J, Kang M, Chai R, Jin G, Kang Y. mTOR Inhibitor Everolimus Modulates Tumor Growth in Small-Cell Carcinoma of the Ovary, Hypercalcemic Type and Augments the Drug Sensitivity of Cancer Cells to Cisplatin. Biomedicines 2024; 13:1. [PMID: 39857585 PMCID: PMC11759183 DOI: 10.3390/biomedicines13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025] Open
Abstract
Background: Small-cell carcinoma of the ovary, hypercalcemic type (SCCOHT), is a rare and aggressive cancer with a poor prognosis and limited treatment options. Current chemotherapy regimens are predominantly platinum-based; however, the development of platinum resistance during treatment significantly worsens patient outcomes. Everolimus, an mTOR inhibitor, has been widely used in combination cancer therapies and has successfully enhanced the efficacy of platinum-based treatments. Method: In this study, we investigated the combined effects of everolimus and cisplatin on SCCOHT through both in vitro and in vivo experiments, complemented by RNA sequencing (RNA-seq) analyses to further elucidate the therapeutic impact. Result: Our findings revealed that everolimus significantly inhibits the proliferation of SCCOHT cells, induces cell cycle arrest, and accelerates apoptosis. When combined with cisplatin, everolimus notably enhances the therapeutic efficacy without increasing the toxicity typically associated with platinum-based drugs. RNA-seq analysis uncovered alterations in the expression of apoptosis-related genes, suggesting that the underlying mechanism involves autophagy regulation. Conclusions: Despite the current challenges in treating SCCOHT and the suboptimal efficacy of platinum-based therapies, the addition of everolimus significantly suppresses tumor growth. This indicates that everolimus enhances cisplatin efficacy by disrupting survival-promoting signaling cascades and inducing cell cycle arrest. Furthermore, it points to potential biomarkers for predicting therapeutic response.
Collapse
Affiliation(s)
- Kewei Zheng
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; (K.Z.); (Y.G.); (J.X.); (M.K.); (R.C.); (G.J.)
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Yi Gao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; (K.Z.); (Y.G.); (J.X.); (M.K.); (R.C.); (G.J.)
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Jing Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; (K.Z.); (Y.G.); (J.X.); (M.K.); (R.C.); (G.J.)
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Mingyi Kang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; (K.Z.); (Y.G.); (J.X.); (M.K.); (R.C.); (G.J.)
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Ranran Chai
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; (K.Z.); (Y.G.); (J.X.); (M.K.); (R.C.); (G.J.)
| | - Guanqin Jin
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; (K.Z.); (Y.G.); (J.X.); (M.K.); (R.C.); (G.J.)
| | - Yu Kang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; (K.Z.); (Y.G.); (J.X.); (M.K.); (R.C.); (G.J.)
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| |
Collapse
|
6
|
Ma Y, Field NR, Xie T, Briscas S, Kokinogoulis EG, Skipper TS, Alghalayini A, Sarker FA, Tran N, Bowden NA, Dickson KA, Marsh DJ. Aberrant SWI/SNF Complex Members Are Predominant in Rare Ovarian Malignancies-Therapeutic Vulnerabilities in Treatment-Resistant Subtypes. Cancers (Basel) 2024; 16:3068. [PMID: 39272926 PMCID: PMC11393890 DOI: 10.3390/cancers16173068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
SWI/SNF (SWItch/Sucrose Non-Fermentable) is the most frequently mutated chromatin-remodelling complex in human malignancy, with over 20% of tumours having a mutation in a SWI/SNF complex member. Mutations in specific SWI/SNF complex members are characteristic of rare chemoresistant ovarian cancer histopathological subtypes. Somatic mutations in ARID1A, encoding one of the mutually exclusive DNA-binding subunits of SWI/SNF, occur in 42-67% of ovarian clear cell carcinomas (OCCC). The concomitant somatic or germline mutation and epigenetic silencing of the mutually exclusive ATPase subunits SMARCA4 and SMARCA2, respectively, occurs in Small cell carcinoma of the ovary, hypercalcaemic type (SCCOHT), with SMARCA4 mutation reported in 69-100% of SCCOHT cases and SMARCA2 silencing seen 86-100% of the time. Somatic ARID1A mutations also occur in endometrioid ovarian cancer (EnOC), as well as in the chronic benign condition endometriosis, possibly as precursors to the development of the endometriosis-associated cancers OCCC and EnOC. Mutation of the ARID1A paralogue ARID1B can also occur in both OCCC and SCCOHT. Mutations in other SWI/SNF complex members, including SMARCA2, SMARCB1 and SMARCC1, occur rarely in either OCCC or SCCOHT. Abrogated SWI/SNF raises opportunities for pharmacological inhibition, including the use of DNA damage repair inhibitors, kinase and epigenetic inhibitors, as well as immune checkpoint blockade.
Collapse
Affiliation(s)
- Yue Ma
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Natisha R Field
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Tao Xie
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sarina Briscas
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Emily G Kokinogoulis
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Tali S Skipper
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Amani Alghalayini
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Farhana A Sarker
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Nham Tran
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Nikola A Bowden
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, Newcastle, NSW 2289, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2289, Australia
| | - Kristie-Ann Dickson
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Deborah J Marsh
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
7
|
Malone HA, Roberts CWM. Chromatin remodellers as therapeutic targets. Nat Rev Drug Discov 2024; 23:661-681. [PMID: 39014081 PMCID: PMC11534152 DOI: 10.1038/s41573-024-00978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 07/18/2024]
Abstract
Large-scale cancer genome sequencing studies have revealed that chromatin regulators are frequently mutated in cancer. In particular, more than 20% of cancers harbour mutations in genes that encode subunits of SWI/SNF (BAF) chromatin remodelling complexes. Additional links of SWI/SNF complexes to disease have emerged with the findings that some oncogenes drive transformation by co-opting SWI/SNF function and that germline mutations in select SWI/SNF subunits are the basis of several neurodevelopmental disorders. Other chromatin remodellers, including members of the ISWI, CHD and INO80/SWR complexes, have also been linked to cancer and developmental disorders. Consequently, therapeutic manipulation of SWI/SNF and other remodelling complexes has become of great interest, and drugs that target SWI/SNF subunits have entered clinical trials. Genome-wide perturbation screens in cancer cell lines with SWI/SNF mutations have identified additional synthetic lethal targets and led to further compounds in clinical trials, including one that has progressed to FDA approval. Here, we review the progress in understanding the structure and function of SWI/SNF and other chromatin remodelling complexes, mechanisms by which SWI/SNF mutations cause cancer and neurological diseases, vulnerabilities that arise because of these mutations and efforts to target SWI/SNF complexes and synthetic lethal targets for therapeutic benefit.
Collapse
Affiliation(s)
- Hayden A Malone
- Division of Molecular Oncology, Department of Oncology, and Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles W M Roberts
- Division of Molecular Oncology, Department of Oncology, and Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
8
|
Zheng K, Gao Y, Xu C, Kang Y. Clinical characteristics and status of treatment of small-cell carcinoma of the ovary, hypercalcemic type in the Chinese population: a meta-analysis. J Gynecol Oncol 2024; 35:e96. [PMID: 38710530 PMCID: PMC11262901 DOI: 10.3802/jgo.2024.35.e96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/29/2024] [Accepted: 03/31/2024] [Indexed: 05/08/2024] Open
Abstract
OBJECTIVE This study aimed to comprehensively analyze the clinical characteristics and treatment status of Chinese small cell carcinoma of the ovary hypercalcemic type (SCCOHT) patients, providing insights into this unique population and comparing findings with international literature. METHODS Through a meta-analysis, we collected data from published case reports and records from the Obstetrics & Gynecology Hospital of Fudan University. Demographic information, clinical presentations, tumor attributes, treatment modalities, and survival outcomes were extracted and examined alongside relevant global studies. RESULTS The analysis encompassed 80 Chinese SCCOHT patients, of which 62 from 33 previously reported literatures, and the other 18 were from Obstetrics & Gynecology Hospital of Fudan University. In 62 cases with stage information, A total of 25 tumors were International Federation of Gynecology and Obstetrics stage I, 3 were stage II, 19 were stage III, and 15 were stage IV. Most patients received surgery and chemotherapy, but regimens were varied. Median follow-up was 10 months (range=4-120). Elevated carbohydrate antigen 125 and serum calcium levels were consistent findings. Recurrence rates were notable, especially among stage I patients. Platinum-based chemotherapy, paclitaxel and carboplatin (n=11, 13.4%), constituted common treatment regimens. CONCLUSION This study observed demographic and clinical similarities with international datasets. And the findings emphasize the urgency for innovative therapeutic approaches to improve outcomes in SCCOHT patients. Continued research efforts are essential to enhance the knowledge surrounding this rare malignancy and to optimize its clinical management.
Collapse
Affiliation(s)
- Kewei Zheng
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yi Gao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Congjian Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Yu Kang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.
| |
Collapse
|
9
|
Blomquist MR, Eghlimi R, Beniwal A, Grief D, Nascari DG, Inge L, Sereduk CP, Tuncali S, Roos A, Inforzato H, Sharma R, Pirrotte P, Mehta S, Ensign SPF, Loftus JC, Tran NL. EGFRvIII Confers Sensitivity to Saracatinib in a STAT5-Dependent Manner in Glioblastoma. Int J Mol Sci 2024; 25:6279. [PMID: 38892466 PMCID: PMC11172708 DOI: 10.3390/ijms25116279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults, with few effective treatments. EGFR alterations, including expression of the truncated variant EGFRvIII, are among the most frequent genomic changes in these tumors. EGFRvIII is known to preferentially signal through STAT5 for oncogenic activation in GBM, yet targeting EGFRvIII has yielded limited clinical success to date. In this study, we employed patient-derived xenograft (PDX) models expressing EGFRvIII to determine the key points of therapeutic vulnerability within the EGFRvIII-STAT5 signaling axis in GBM. Our findings reveal that exogenous expression of paralogs STAT5A and STAT5B augments cell proliferation and that inhibition of STAT5 phosphorylation in vivo improves overall survival in combination with temozolomide (TMZ). STAT5 phosphorylation is independent of JAK1 and JAK2 signaling, instead requiring Src family kinase (SFK) activity. Saracatinib, an SFK inhibitor, attenuates phosphorylation of STAT5 and preferentially sensitizes EGFRvIII+ GBM cells to undergo apoptotic cell death relative to wild-type EGFR. Constitutively active STAT5A or STAT5B mitigates saracatinib sensitivity in EGFRvIII+ cells. In vivo, saracatinib treatment decreased survival in mice bearing EGFR WT tumors compared to the control, yet in EGFRvIII+ tumors, treatment with saracatinib in combination with TMZ preferentially improves survival.
Collapse
Affiliation(s)
- Mylan R. Blomquist
- Mayo Clinic Alix School of Medicine, Mayo Clinic Arizona, Phoenix, AZ 85054, USA; (M.R.B.); (D.G.N.)
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA (S.T.); (A.R.); (H.I.)
| | - Ryan Eghlimi
- Mayo Clinic Alix School of Medicine, Mayo Clinic Arizona, Phoenix, AZ 85054, USA; (M.R.B.); (D.G.N.)
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA (S.T.); (A.R.); (H.I.)
| | - Angad Beniwal
- Mayo Clinic Alix School of Medicine, Mayo Clinic Arizona, Phoenix, AZ 85054, USA; (M.R.B.); (D.G.N.)
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA (S.T.); (A.R.); (H.I.)
| | - Dustin Grief
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA (S.T.); (A.R.); (H.I.)
| | - David G. Nascari
- Mayo Clinic Alix School of Medicine, Mayo Clinic Arizona, Phoenix, AZ 85054, USA; (M.R.B.); (D.G.N.)
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA (S.T.); (A.R.); (H.I.)
| | - Landon Inge
- Ventana Medical Systems, Roche Diagnostics, Tucson, AZ 85755, USA
| | - Christopher P. Sereduk
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA (S.T.); (A.R.); (H.I.)
| | - Serdar Tuncali
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA (S.T.); (A.R.); (H.I.)
| | - Alison Roos
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA (S.T.); (A.R.); (H.I.)
| | - Hannah Inforzato
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA (S.T.); (A.R.); (H.I.)
| | - Ritin Sharma
- Collaborative Center for Translational Mass Spectrometry, The Translational Genomics Research Institute, Phoenix, AZ 85004, USA; (R.S.)
| | - Patrick Pirrotte
- Collaborative Center for Translational Mass Spectrometry, The Translational Genomics Research Institute, Phoenix, AZ 85004, USA; (R.S.)
| | - Shwetal Mehta
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Shannon P. Fortin Ensign
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA (S.T.); (A.R.); (H.I.)
- Department of Hematology and Oncology, Mayo Clinic Arizona, Phoenix, AZ 85054, USA
| | - Joseph C. Loftus
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA (S.T.); (A.R.); (H.I.)
| | - Nhan L. Tran
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA (S.T.); (A.R.); (H.I.)
- Department of Neurological Surgery, Mayo Clinic Arizona, Phoenix, AZ 85013, USA
| |
Collapse
|
10
|
Saraei P, Heshmati A, Hosseini S. Small-cell neuroendocrine carcinoma of the female genital tract: A comprehensive overview. J Neuroendocrinol 2024; 36:e13394. [PMID: 38626758 DOI: 10.1111/jne.13394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/15/2024] [Accepted: 04/03/2024] [Indexed: 04/18/2024]
Abstract
Small-cell neuroendocrine carcinomas (SCNECs) of the female genital tract are rare and aggressive tumors that are characterized by a high rate of recurrence and poor prognosis. They can arise from various sites within the female genital tract, including the cervix, endometrium, ovary, fallopian tube, vagina, and vulva. They are composed of cells with neuroendocrine features, such as the ability to produce and secrete hormones and peptides, and a high mitotic rate. Immunohistochemical staining for neuroendocrine markers, such as chromogranin A, synaptophysin, and CD56, can aid in the diagnosis of these tumors. This article provides an overview of the epidemiology, etiology, and risk factors associated with these tumors, as well as their clinical presentation, cellular characteristics, diagnosis, and finally the current treatment options for SCNECs, including surgery, chemotherapy, and radiation therapy, alone or in combination.
Collapse
MESH Headings
- Humans
- Female
- Carcinoma, Neuroendocrine/diagnosis
- Carcinoma, Neuroendocrine/therapy
- Carcinoma, Neuroendocrine/pathology
- Carcinoma, Small Cell/therapy
- Carcinoma, Small Cell/diagnosis
- Carcinoma, Small Cell/epidemiology
- Carcinoma, Small Cell/pathology
- Genital Neoplasms, Female/therapy
- Genital Neoplasms, Female/diagnosis
- Genital Neoplasms, Female/pathology
- Genital Neoplasms, Female/epidemiology
- Risk Factors
Collapse
Affiliation(s)
- Pouya Saraei
- Department of Medical Physics, Medicine School, Ahvaz Jondishapur University of Medical Sciences, Ahvaz, Iran
| | - Abbas Heshmati
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sare Hosseini
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Gao Y, Zang L, Ye Y, Ma F, Kang M, Zheng K, Kang Y, Wang H, Xu C. Immunotherapy combined with targeted therapy in advanced small cell carcinoma of the ovary of hypercalcemic type: A case of overall survival lasting for over 5 years. Eur J Obstet Gynecol Reprod Biol 2024; 297:270-274. [PMID: 38604920 DOI: 10.1016/j.ejogrb.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/08/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is a rare but highly aggressive ovarian malignant neoplasm lacking a unified clinical management process. Most patients are diagnosed at an advanced stage and have an extremely poor prognosis with an overall probability of survival less than 10 %. Here, we describe the case of a patient with advanced SCCOHT achieved a survival of over 5 years after receiving multiple cycles of immunotherapy combined with anti-angiogenic therapy or CDK4/6 inhibitors. At the same time, we also summarized the case reports and clinical trials of immunotherapy in SCCOHT.
Collapse
Affiliation(s)
- Yi Gao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Li Zang
- The Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Urology, Tianjin 300211, China
| | - Yingfei Ye
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Fenghua Ma
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Mingyi Kang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Kewei Zheng
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Yu Kang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China.
| | - Haitao Wang
- The Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Urology, Tianjin 300211, China.
| | - Congjian Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China.
| |
Collapse
|
12
|
Gao Y, Zheng K, Kang M, Xu J, Ning Y, Hu W, Li K, Kang Y, Xu C. Establishment and characterization of a novel cell line (SCCOHT-CH-1) and PDX models derived from Chinese patients of small cell ovarian carcinoma of the hypercalcemic type. Hum Cell 2023; 36:2214-2227. [PMID: 37535222 PMCID: PMC10587334 DOI: 10.1007/s13577-023-00966-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
Small cell carcinoma of the ovary hypercalcemic type (SCCOHT) is a rare and aggressive malignancy that poses a significant clinical challenge due to its grim prognosis. Unfortunately, only three SCCOHT cell lines are currently available for scientific research. In this study, we have successfully established a novel SCCOHT cell line from a recurrent lesion of a SCCOHT patient, named SCCOHT-CH-1. We comprehensively characterized the novel cell line by employing techniques such as morphological observation, CCK-8 assay, Transwell assay, clone formation assay, short tandem repeat sequence (STR) analysis, karyotype analysis, immunohistochemical staining, western blot assay, and xenograft tumor formation assay. SCCOHT-CH-1 cells were small circular and had a unique STR profile. The population-doubling time of SCCOHT-CH-1 was 33.02 h. The cell line showed potential migratory and invasive ability. Compared with another SCCOHT cell line COV434, SCCOHT-CH-1 exhibited higher expression of AKT, VIM, and CCND1. At the same time, SCCOHT-CH-1 has the ability of tumorigenesis in vivo. We also successfully constructed three patient-derived xenograft (PDX) models of SCCOHT, which were pathologically diagnosed to be consistent with the primary tumor, accompanied by loss of SAMRCA4 protein expression. The establishment of SCCOHT-CH-1 cell line and PDX models from Chinese people represent a pivotal step toward unraveling the molecular mechanism of SCCOHT and fostering the development of targeted interventions to tackle this challenging malignancy.
Collapse
Affiliation(s)
- Yi Gao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Kewei Zheng
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Mingyi Kang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Jing Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Yan Ning
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Weiguo Hu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Ke Li
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yu Kang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| | - Congjian Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China.
| |
Collapse
|
13
|
Zhu X, Fu Z, Chen SY, Ong D, Aceto G, Ho R, Steinberger J, Monast A, Pilon V, Li E, Ta M, Ching K, Adams BN, Negri GL, Choiniere L, Fu L, Pavlakis K, Pirrotte P, Avizonis DZ, Trent J, Weissman BE, Klein Geltink RI, Morin GB, Park M, Huntsman DG, Foulkes WD, Wang Y, Huang S. Alanine supplementation exploits glutamine dependency induced by SMARCA4/2-loss. Nat Commun 2023; 14:2894. [PMID: 37210563 PMCID: PMC10199906 DOI: 10.1038/s41467-023-38594-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/09/2023] [Indexed: 05/22/2023] Open
Abstract
SMARCA4 (BRG1) and SMARCA2 (BRM) are the two paralogous ATPases of the SWI/SNF chromatin remodeling complexes frequently inactivated in cancers. Cells deficient in either ATPase have been shown to depend on the remaining counterpart for survival. Contrary to this paralog synthetic lethality, concomitant loss of SMARCA4/2 occurs in a subset of cancers associated with very poor outcomes. Here, we uncover that SMARCA4/2-loss represses expression of the glucose transporter GLUT1, causing reduced glucose uptake and glycolysis accompanied with increased dependency on oxidative phosphorylation (OXPHOS); adapting to this, these SMARCA4/2-deficient cells rely on elevated SLC38A2, an amino acid transporter, to increase glutamine import for fueling OXPHOS. Consequently, SMARCA4/2-deficient cells and tumors are highly sensitive to inhibitors targeting OXPHOS or glutamine metabolism. Furthermore, supplementation of alanine, also imported by SLC38A2, restricts glutamine uptake through competition and selectively induces death in SMARCA4/2-deficient cancer cells. At a clinically relevant dose, alanine supplementation synergizes with OXPHOS inhibition or conventional chemotherapy eliciting marked antitumor activity in patient-derived xenografts. Our findings reveal multiple druggable vulnerabilities of SMARCA4/2-loss exploiting a GLUT1/SLC38A2-mediated metabolic shift. Particularly, unlike dietary deprivation approaches, alanine supplementation can be readily applied to current regimens for better treatment of these aggressive cancers.
Collapse
Affiliation(s)
- Xianbing Zhu
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Zheng Fu
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Shary Y Chen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Dionzie Ong
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Giulio Aceto
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Rebecca Ho
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Jutta Steinberger
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Anie Monast
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Virginie Pilon
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Eunice Li
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Monica Ta
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kyle Ching
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Bianca N Adams
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Gian L Negri
- Canada's Michael Smith Genome Science Centre, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Luc Choiniere
- Rosalind & Morris Goodman Cancer Institute, Metabolomics Innovation Resource, McGill University, Montreal, QC, Canada
| | - Lili Fu
- Department of Pathology, McGill University Health Centre, Montreal, QC, Canada
| | - Kitty Pavlakis
- Department of Pathology, IASO women's hospital, Athens, Greece
| | - Patrick Pirrotte
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Daina Z Avizonis
- Rosalind & Morris Goodman Cancer Institute, Metabolomics Innovation Resource, McGill University, Montreal, QC, Canada
| | - Jeffrey Trent
- Translational Genomics Research Institute, Division of Integrated Cancer Genomics, Phoenix, AZ, USA
| | - Bernard E Weissman
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Ramon I Klein Geltink
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Gregg B Morin
- Canada's Michael Smith Genome Science Centre, British Columbia Cancer Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Morag Park
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada
| | - William D Foulkes
- Departments of Human Genetics, Medicine and Oncology McGill University, Montreal, QC, Canada
- Division of Medical Genetics, Department of Specialized Medicine and Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
- Division of Medical Genetics, Department of Specialized Medicine and Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Yemin Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
- Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada.
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, QC, Canada.
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
14
|
Han F, Cao D, Zhu X, Shen L, Wu J, Chen Y, Xu Y, Xu L, Cheng X, Zhang Y. Construction and validation of a prognostic model for hepatocellular carcinoma: Inflammatory ferroptosis and mitochondrial metabolism indicate a poor prognosis. Front Oncol 2023; 12:972434. [PMID: 36686830 PMCID: PMC9850107 DOI: 10.3389/fonc.2022.972434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Background An increasing number of innovations have been discovered for treating hepatocellular carcinoma (HCC or commonly called HCC) therapy, Ferroptosis and mitochondrial metabolism are essential mechanisms of cell death. These pathways may act as functional molecular biomarkers that could have important clinical significance for determining individual differences and the prognosis of HCC. The aim of this study was to construct a stable and reliable comprehensive model of genetic features and clinical factors associated with HCC prognosis. Methods In this study, we used RNA-sequencing (fragments per kilobase of exon model per million reads mapped value) data from the Cancer Genome Atlas (TCGA) database to establish a prognostic model. We enrolled 104 patients for further validation. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes enrichment analyses (KEGG) analysis were used for the functional study of differentially expressed genes. Pan-cancer analysis was performed to evaluate the function of the Differentially Expressed Genes (DEGs). Thirteen genes were identified by univariate and least absolute contraction and selection operation (LASSO) Cox regression analysis. The prognostic model was visualized using a nomogram. Results We found that eight genes, namely EZH2, GRPEL2, PIGU, PPM1G, SF3B4, TUBG1, TXNRD1 and NDRG1, were hub genes for HCC and differentially expressed in most types of cancer. EZH2, GRPEL2 and NDRG1 may indicate a poor prognosis of HCC as verified by tissue samples. Furthermore, a gene set variation analysis algorithm was created to analyze the relationship between these eight genes and oxidative phosphorylation, mitophagy, and FeS-containing proteins, and it showed that ferroptosis might affect inflammatory-related pathways in HCC. Conclusion EZH2, GRPEL2, NDRG1, and the clinical factor of tumor size, were included in a nomogram for visualizing a prognostic model of HCC. This nomogram based on a functional study and verification by clinical samples, shows a reliable performance of patients with HCC.
Collapse
Affiliation(s)
- Fang Han
- Hepatobiliary and Pancreatic Surgery Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Dan Cao
- Hepatobiliary and Pancreatic Surgery Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China,College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Xin Zhu
- Hepatobiliary and Pancreatic Surgery Department, Shaoxing Peoples’s Hospital, Shaoxing, Zhejiang, China
| | - Lianqiang Shen
- Department of General Surgery, The First People’s Hospital of Linping District, Hangzhou, Hangzhou, Zhejiang, China
| | - Jia Wu
- Hepatobiliary and Pancreatic Surgery Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yizhen Chen
- Hepatobiliary and Pancreatic Surgery Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China,Clincal Dept. Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Youyao Xu
- Hepatobiliary and Pancreatic Surgery Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China,Clincal Dept. Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Linwei Xu
- Hepatobiliary and Pancreatic Surgery Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xiangdong Cheng
- Hepatobiliary and Pancreatic Surgery Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yuhua Zhang
- Hepatobiliary and Pancreatic Surgery Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China,Clincal Dept. Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China,*Correspondence: Yuhua Zhang,
| |
Collapse
|
15
|
Zhang FL, Li DQ. Targeting Chromatin-Remodeling Factors in Cancer Cells: Promising Molecules in Cancer Therapy. Int J Mol Sci 2022; 23:12815. [PMID: 36361605 PMCID: PMC9655648 DOI: 10.3390/ijms232112815] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 03/28/2024] Open
Abstract
ATP-dependent chromatin-remodeling complexes can reorganize and remodel chromatin and thereby act as important regulator in various cellular processes. Based on considerable studies over the past two decades, it has been confirmed that the abnormal function of chromatin remodeling plays a pivotal role in genome reprogramming for oncogenesis in cancer development and/or resistance to cancer therapy. Recently, exciting progress has been made in the identification of genetic alteration in the genes encoding the chromatin-remodeling complexes associated with tumorigenesis, as well as in our understanding of chromatin-remodeling mechanisms in cancer biology. Here, we present preclinical evidence explaining the signaling mechanisms involving the chromatin-remodeling misregulation-induced cancer cellular processes, including DNA damage signaling, metastasis, angiogenesis, immune signaling, etc. However, even though the cumulative evidence in this field provides promising emerging molecules for therapeutic explorations in cancer, more research is needed to assess the clinical roles of these genetic cancer targets.
Collapse
Affiliation(s)
- Fang-Lin Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Da-Qiang Li
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
16
|
Navitski A, Al-Rawi DH, Makker V, Weigelt B, Zamarin D, Liu Y, Arnold AG, Chui MH, Mandelker DL, Walsh M, DeLair DF, Cadoo KA, O'Cearbhaill RE. Germline SMARCA4 Deletion as a Driver of Uterine Cancer: An Atypical Presentation. JCO Precis Oncol 2022; 6:e2200349. [PMID: 36265117 PMCID: PMC9616641 DOI: 10.1200/po.22.00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/03/2022] [Accepted: 08/26/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Anastasia Navitski
- Department of Obstetrics and Gynecology, Augusta University, Augusta, GA
| | - Duaa H. Al-Rawi
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vicky Makker
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Dmitriy Zamarin
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Ying Liu
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Angela G. Arnold
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - M. Herman Chui
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Diana L. Mandelker
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael Walsh
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Karen A. Cadoo
- St James's Hospital, Trinity College Dublin, Trinity St James's Cancer Institute, Dublin, Ireland
| | - Roisin E. O'Cearbhaill
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| |
Collapse
|
17
|
Li G, Jiang Y. Case Report: A Durable Response to Camrelizumab and Apatinib Combination Therapy in a Heavily Treated Small Cell Carcinoma of the Ovary, Hypercalcemic Type. Front Oncol 2022; 12:916790. [PMID: 35903699 PMCID: PMC9315103 DOI: 10.3389/fonc.2022.916790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/20/2022] [Indexed: 12/31/2022] Open
Abstract
Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is a rare and highly aggressive malignancy with a poor prognosis. Most patients experience recurrence even after surgery and chemotherapy, and there are no standard treatment options for recurrent disease. Here, we report the case of a 36-year-old woman with SCCOHT who underwent primary cytoreductive surgery without adjuvant chemotherapy and remained disease-free for 9 months. She then developed retroperitoneal lymph node metastasis and was treated with two cycles of bleomycin/etoposide/cisplatin chemotherapy. However, the disease progressed and the patient received four cycles of liposomal doxorubicin/ifosfamide chemotherapy, followed by local radiation to the enlarged retroperitoneal lymph nodes. She achieved partial remission for 13 months, after which the disease progressed again. Tumor tissues and blood samples were sent for next-generation sequencing. The results indicated a somatic SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 4 (SMARCA4) mutation, microsatellite stability, and a tumor mutation burden of 1.0 muts/Mb without any germline mutations. An anti-PD-1 antibody, camrelizumab, and an antiangiogenic agent, apatinib, were administered, and the patient achieved partial remission for 28 months. Our study provides the first clinical evidence that the combination therapy of camrelizumab and apatinib could be an effective treatment for recurrent SCCOHT.
Collapse
|
18
|
Bejar FG, Oaknin A, Williamson C, Mayadev J, Peters PN, Secord AA, Wield AM, Coffman LG. Novel Therapies in Gynecologic Cancer. Am Soc Clin Oncol Educ Book 2022; 42:1-17. [PMID: 35594502 DOI: 10.1200/edbk_351294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During the past decade, considerable strides have been made in the understanding and treatment of gynecologic cancers. The advent of PARP inhibitors, antiangiogenic therapies, immunotherapy combinations, and targeted agents have altered the standard of care in ovarian, endometrial, and cervical cancers. However, continued advancement in the treatment of gynecologic cancers is critical. Fortunately, exciting work defining new therapeutic targets and novel treatment strategies is on the horizon. Here, we discuss emerging treatments for gynecologic cancers, including endometrial, cervical, ovarian, and rare gynecologic cancers. We highlight research that has deepened our understanding of the unique biology and molecular underpinnings of these cancers and is being translated into powerful new treatment approaches. We particularly highlight the advent of immunotherapy in endometrial cancer; radiosensitizers in cervical, vaginal, and vulvar cancers; targeted therapies in ovarian cancer; and molecularly driven approaches to treat rare gynecologic cancers. Continued basic, translational, and clinical research holds the promise to change the landscape of gynecologic cancer and improve the lives of all women impacted by these diseases.
Collapse
Affiliation(s)
- Francisco Grau Bejar
- Gynaecologic Cancer Programme, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ana Oaknin
- Gynaecologic Cancer Programme, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Casey Williamson
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA
| | - Jyoti Mayadev
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA
| | - Pamela N Peters
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke Cancer Institute, Duke University Medical Center, Durham, NC
| | - Angeles Alvarez Secord
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke Cancer Institute, Duke University Medical Center, Durham, NC
| | - Alyssa M Wield
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Hospital, Pittsburgh, PA
| | - Lan G Coffman
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Hospital, Pittsburgh, PA.,Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh, PA
| |
Collapse
|
19
|
Popescu VB, Kanhaiya K, Năstac DI, Czeizler E, Petre I. Network controllability solutions for computational drug repurposing using genetic algorithms. Sci Rep 2022; 12:1437. [PMID: 35082323 PMCID: PMC8791995 DOI: 10.1038/s41598-022-05335-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/29/2021] [Indexed: 12/22/2022] Open
Abstract
Control theory has seen recently impactful applications in network science, especially in connections with applications in network medicine. A key topic of research is that of finding minimal external interventions that offer control over the dynamics of a given network, a problem known as network controllability. We propose in this article a new solution for this problem based on genetic algorithms. We tailor our solution for applications in computational drug repurposing, seeking to maximize its use of FDA-approved drug targets in a given disease-specific protein-protein interaction network. We demonstrate our algorithm on several cancer networks and on several random networks with their edges distributed according to the Erdős-Rényi, the Scale-Free, and the Small World properties. Overall, we show that our new algorithm is more efficient in identifying relevant drug targets in a disease network, advancing the computational solutions needed for new therapeutic and drug repurposing approaches.
Collapse
Affiliation(s)
| | | | - Dumitru Iulian Năstac
- POLITEHNICA University of Bucharest, Faculty of Electronics, Telecommunications and Information Technology, 061071, Bucharest, Romania
| | - Eugen Czeizler
- Computer Science, Åbo Akademi University, 20500, Turku, Finland
- National Institute for Research and Development in Biological Sciences, 060031, Bucharest, Romania
| | - Ion Petre
- Department of Mathematics and Statistics, University of Turku, 20014, Turku, Finland.
- National Institute for Research and Development in Biological Sciences, 060031, Bucharest, Romania.
| |
Collapse
|
20
|
Singla D, Sangha MK. Multi-omic Approaches to Improve Cancer Diagnosis, Prognosis, and Therapeutics. STUDIES IN COMPUTATIONAL INTELLIGENCE 2022:411-433. [DOI: 10.1007/978-981-16-9221-5_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Sirák I, Laco J, Vošmiková H, Mell LK, Herrera FG, Šenkeříková M, Vošmik M. SMARCA4-Deficient Carcinoma of Uterine Cervix Resembling SCCOHT-Case Report. Pathol Oncol Res 2021; 27:1610003. [PMID: 34970085 PMCID: PMC8712336 DOI: 10.3389/pore.2021.1610003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022]
Abstract
Small cell carcinoma of hypercalcemic type (SCCOHT) is a rare gynaecological neoplasm, originating mostly in the ovaries. Cervical origin of this very aggressive malignancy with unknown histogenesis is an extremely rare condition, without published management recommendations. Alterations in SMARCA4 gene are supposed to play the major role in SCCOHT oncogenesis and their identification is crucial for the diagnosis. Adequate genetic counselling of the patients and their families seems to be of great importance. Optimal management and treatment approaches are not known yet but may extremely influence the prognosis of young female patients that suffer from this very resistant disease. Nowadays, a translational research seems to be the key for the further diagnostic and treatment strategies of SCCOHT. The purpose of the case report is to provide practical information and useful recommendations on the diagnosis, management, and treatment of SMARCA4-deficient carcinoma of the uterine cervix resembling SCCOHT.
Collapse
Affiliation(s)
- Igor Sirák
- Department of Oncology and Radiotherapy, Faculty of Medicine and University Hospital, Charles University, Hradec Kralove, Czechia
| | - Jan Laco
- The Fingerland Department of Pathology, Faculty of Medicine and University Hospital, Charles University, Hradec Kralove, Czechia
| | - Hana Vošmiková
- The Fingerland Department of Pathology, Faculty of Medicine and University Hospital, Charles University, Hradec Kralove, Czechia
| | - Loren K. Mell
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Fernanda G. Herrera
- Ludwig Institute for Cancer Research, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Mária Šenkeříková
- Department of Medical Genetics, Faculty of Medicine and University Hospital, Charles University, Hradec Kralove, Czechia
| | - Milan Vošmik
- Department of Oncology and Radiotherapy, Faculty of Medicine and University Hospital, Charles University, Hradec Kralove, Czechia
| |
Collapse
|
22
|
Mardinian K, Adashek JJ, Botta GP, Kato S, Kurzrock R. SMARCA4: Implications of an Altered Chromatin-Remodeling Gene for Cancer Development and Therapy. Mol Cancer Ther 2021; 20:2341-2351. [PMID: 34642211 PMCID: PMC8643328 DOI: 10.1158/1535-7163.mct-21-0433] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/20/2021] [Accepted: 10/07/2021] [Indexed: 01/04/2023]
Abstract
The SWI/SNF chromatin remodeling complex, via nucleosome topology modulation, regulates transcription. The SMARCA4 (BRG1) subunit codes for the ATPase energy engine of the SWI/SNF complex. SMARCA4 is a tumor suppressor that is aberrant in ∼5% to 7% of human malignancies. Class I SMARCA4 alterations (truncating mutations, fusions, and homozygous deletion) lead to loss of function whereas class II alterations (missense mutations) have a dominant negative/gain-of-function effect and/or loss-of function. SMARCA4 alterations typify the ultra-rare small cell carcinomas of the ovary hypercalcemic type (SCCOHT) and SMARCA4-deficient thoracic and uterine sarcomas; they are also found in a subset of more common tumors, for example, lung, colon, bladder, and breast carcinomas. Germline variants in the SMARCA4 gene lead to various hereditary conditions: rhabdoid tumor predisposition syndrome-2 (RTPS2), characterized by loss-of-function alterations and aggressive rhabdoid tumors presenting in infants and young children; and Coffin-Siris syndrome, characterized by dominant negative/gain-of function alterations and developmental delays, microcephaly, unique facies, and hypoplastic nails of the fifth fingers or toes. A minority of rhabdoid tumors have a germline SMARCA4 variant as do >40% of women with SCCOHT. Importantly, immune checkpoint blockade has shown remarkable, albeit anecdotal, responses in SCCOHT. In addition, there is ongoing research into BET, EZH2, HDAC, CDK4/6, and FGFR inhibitors, as well as agents that might induce synthetic lethality via DNA damage repair impairment (ATR inhibitors and platinum chemotherapy), or via the exploitation of mitochondrial oxidative phosphorylation inhibitors or AURKA inhibitors, in SMARCA4-aberrant cancers.
Collapse
Affiliation(s)
- Kristina Mardinian
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, California
| | - Jacob J Adashek
- Department of Internal Medicine, University of South Florida, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Gregory P Botta
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, California
| | - Shumei Kato
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, California
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, California. .,WIN Consortium, Paris, France
| |
Collapse
|
23
|
Davidson K, Grevitt P, Contreras-Gerenas MF, Bridge KS, Hermida M, Shah KM, Mardakheh FK, Stubbs M, Burke R, Casado P, Cutillas PR, Martin SA, Sharp TV. Targeted therapy for LIMD1-deficient non-small cell lung cancer subtypes. Cell Death Dis 2021; 12:1075. [PMID: 34764236 PMCID: PMC8586256 DOI: 10.1038/s41419-021-04355-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022]
Abstract
An early event in lung oncogenesis is loss of the tumour suppressor gene LIMD1 (LIM domains containing 1); this encodes a scaffold protein, which suppresses tumorigenesis via a number of different mechanisms. Approximately 45% of non-small cell lung cancers (NSCLC) are deficient in LIMD1, yet this subtype of NSCLC has been overlooked in preclinical and clinical investigations. Defining therapeutic targets in these LIMD1 loss-of-function patients is difficult due to a lack of 'druggable' targets, thus alternative approaches are required. To this end, we performed the first drug repurposing screen to identify compounds that confer synthetic lethality with LIMD1 loss in NSCLC cells. PF-477736 was shown to selectively target LIMD1-deficient cells in vitro through inhibition of multiple kinases, inducing cell death via apoptosis. Furthermore, PF-477736 was effective in treating LIMD1-/- tumours in subcutaneous xenograft models, with no significant effect in LIMD1+/+ cells. We have identified a novel drug tool with significant preclinical characterisation that serves as an excellent candidate to explore and define LIMD1-deficient cancers as a new therapeutic subgroup of critical unmet need.
Collapse
Affiliation(s)
- Kathryn Davidson
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M6 BQ, UK
| | - Paul Grevitt
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M6 BQ, UK
| | - Maria F Contreras-Gerenas
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M6 BQ, UK
| | - Katherine S Bridge
- York Biomedical Research Institute, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Miguel Hermida
- Department of Bioengineering, Imperial College, London, UK
| | - Kunal M Shah
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M6 BQ, UK
| | - Faraz K Mardakheh
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M6 BQ, UK
| | - Mark Stubbs
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
| | - Rosemary Burke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
| | - Pedro Casado
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M6 BQ, UK
| | - Pedro R Cutillas
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M6 BQ, UK
| | - Sarah A Martin
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M6 BQ, UK.
| | - Tyson V Sharp
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M6 BQ, UK.
| |
Collapse
|
24
|
Epigenetic remodelling upon FGFR inhibition. Nat Cell Biol 2021; 23:1115-1116. [PMID: 34737444 DOI: 10.1038/s41556-021-00782-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Johann PD. Invited Review: Dysregulation of chromatin remodellers in paediatric brain tumours - SMARCB1 and beyond. Neuropathol Appl Neurobiol 2021; 46:57-72. [PMID: 32307752 DOI: 10.1111/nan.12616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/21/2020] [Indexed: 12/13/2022]
Abstract
Mutations in chromatin remodelling genes occur in approximately 25% of all human tumours (Kadoch et al. Nat Genet 45: 592-601, 2013). The spectrum of alterations is broad and comprises single nucleotide variants, insertion/deletions and more complex structural variations. The single most often affected remodelling complex is the SWI/SNF complex (SWItch/sucrose non-fermentable). In the field of paediatric neuro-oncology, the spectrum of affected genes implicated in epigenetic remodelling is narrower with SMARCB1 and SMARCA4 being the most frequent. The low mutation frequencies in many of the SWI/SNF mutant entities underline the fact that perturbed chromatin remodelling is the most salient factor in tumourigenesis and could thus be a potential therapeutic opportunity. Here, I review the genetic basis of aberrant chromatin remodelling in paediatric brain tumours and discuss their impact on the epigenome in the respective entities, mainly medulloblastomas and rhabdoid tumours.
Collapse
Affiliation(s)
- P D Johann
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Research Consortium (DKTK), Heidelberg, Germany.,Department of Paediatric Haematology and Oncology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
26
|
Howitt BE, Folpe AL. Update on SWI/SNF-related gynecologic mesenchymal neoplasms: SMARCA4-deficient uterine sarcoma and SMARCB1-deficient vulvar neoplasms. Genes Chromosomes Cancer 2020; 60:190-209. [PMID: 33252159 DOI: 10.1002/gcc.22922] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 01/22/2023] Open
Abstract
Our knowledge regarding the role of genes encoding the chromatin remodeling switch/sucrose non-fermenting (SWI/SNF) complex in the initiation and progression of gynecologic malignancies continues to evolve. This review focuses on gynecologic tumors in which the sole or primary genetic alteration is in SMARCA4 or SMARCB1, two members of the SWI/SNF chromatin remodeling complex. In this review, we present a brief overview of the classical example of such tumors, ovarian small cell carcinoma of hypercalcemic type, and then a detailed review and update of SMARCB1-deficient and SMARCA4-deficient tumors of the uterus and vulva.
Collapse
Affiliation(s)
- Brooke E Howitt
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Andrew L Folpe
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
27
|
Abstract
BACKGROUND Though accounts for 2.5% of all cancers in female, the death rate of ovarian cancer is high, which is the fifth leading cause of cancer death (5% of all cancer death) in female. The 5-year survival rate of ovarian cancer is less than 50%. The oncogenic molecular signaling of ovarian cancer are complicated and remain unclear, and there is a lack of effective targeted therapies for ovarian cancer treatment. METHODS In this study, we propose to investigate activated signaling pathways of individual ovarian cancer patients and sub-groups; and identify potential targets and drugs that are able to disrupt the activated signaling pathways. Specifically, we first identify the up-regulated genes of individual cancer patients using Markov chain Monte Carlo (MCMC), and then identify the potential activated transcription factors. After dividing ovarian cancer patients into several sub-groups sharing common transcription factors using K-modes method, we uncover the up-stream signaling pathways of activated transcription factors in each sub-group. Finally, we mapped all FDA approved drugs targeting on the upstream signaling. RESULTS The 427 ovarian cancer samples were divided into 3 sub-groups (with 100, 172, 155 samples respectively) based on the activated TFs (with 14, 25, 26 activated TFs respectively). Multiple up-stream signaling pathways, e.g., MYC, WNT, PDGFRA (RTK), PI3K, AKT TP53, and MTOR, are uncovered to activate the discovered TFs. In addition, 66 FDA approved drugs were identified targeting on the uncovered core signaling pathways. Forty-four drugs had been reported in ovarian cancer related reports. The signaling diversity and heterogeneity can be potential therapeutic targets for drug combination discovery. CONCLUSIONS The proposed integrative network analysis could uncover potential core signaling pathways, targets and drugs for ovarian cancer treatment.
Collapse
Affiliation(s)
- Tianyu Zhang
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Dalian University of Technology, Dalian, 116024, China
| | - Liwei Zhang
- Dalian University of Technology, Dalian, 116024, China
| | - Fuhai Li
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63130, USA.
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
28
|
Jiang W, Xie S, Liu Y, Zou S, Zhu X. The Application of Patient-Derived Xenograft Models in Gynecologic Cancers. J Cancer 2020; 11:5478-5489. [PMID: 32742495 PMCID: PMC7391187 DOI: 10.7150/jca.46145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, due to the limitations of cell line models and animal models in the preclinical research with insufficient reflecting the physiological situation of humans, patient-derived xenograft (PDX) models of many cancers have been widely developed because of their better representation of the tumor heterogeneity and tumor microenvironment with retention of the cellular complexity, cytogenetics, and stromal architecture. PDX models now have been identified as a powerful tool for determining cancer characteristics, developing new treatment, and predicting drug efficacy. An increase in attempts to generate PDX models in gynecologic cancers has emerged in recent years to understand tumorigenesis. Hence, this review summarized the generation of PDX models and engraftment success of PDX models in gynecologic cancers. Furthermore, we illustrated the similarity between PDX model and original tumor, and described preclinical utilization of PDX models in gynecologic cancers. It would help supply better personalized therapy for gynecologic cancer patients.
Collapse
Affiliation(s)
| | | | | | | | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| |
Collapse
|
29
|
Soldi R, Ghosh Halder T, Weston A, Thode T, Drenner K, Lewis R, Kaadige MR, Srivastava S, Daniel Ampanattu S, Rodriguez del Villar R, Lang J, Vankayalapati H, Weissman B, Trent JM, Hendricks WPD, Sharma S. The novel reversible LSD1 inhibitor SP-2577 promotes anti-tumor immunity in SWItch/Sucrose-NonFermentable (SWI/SNF) complex mutated ovarian cancer. PLoS One 2020; 15:e0235705. [PMID: 32649682 PMCID: PMC7351179 DOI: 10.1371/journal.pone.0235705] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/20/2020] [Indexed: 01/01/2023] Open
Abstract
Mutations of the SWI/SNF chromatin remodeling complex occur in 20% of all human cancers, including ovarian cancer. Approximately half of ovarian clear cell carcinomas (OCCC) carry mutations in the SWI/SNF subunit ARID1A, while small cell carcinoma of the ovary hypercalcemic type (SCCOHT) presents with inactivating mutations of the SWI/SNF ATPase SMARCA4 alongside epigenetic silencing of the ATPase SMARCA2. Loss of these ATPases disrupts SWI/SNF chromatin remodeling activity and may also interfere with the function of other histone-modifying enzymes that associate with or are dependent on SWI/SNF activity. One such enzyme is lysine-specific histone demethylase 1 (LSD1/KDM1A), which regulates the chromatin landscape and gene expression by demethylating proteins such as histone H3. Cross-cancer analysis of the TCGA database shows that LSD1 is highly expressed in SWI/SNF-mutated tumors. SCCOHT and OCCC cell lines have shown sensitivity to the reversible LSD1 inhibitor SP-2577 (Seclidemstat), suggesting that SWI/SNF-deficient ovarian cancers are dependent on LSD1 activity. Moreover, it has been shown that inhibition of LSD1 stimulates interferon (IFN)-dependent anti-tumor immunity through induction of endogenous retroviral elements and may thereby overcome resistance to checkpoint blockade. In this study, we investigated the ability of SP-2577 to promote anti-tumor immunity and T-cell infiltration in SCCOHT and OCCC cell lines. We found that SP-2577 stimulated IFN-dependent anti-tumor immunity in SCCOHT and promoted the expression of PD-L1 in both SCCOHT and OCCC. Together, these findings suggest that the combination therapy of SP-2577 with checkpoint inhibitors may induce or augment immunogenic responses of SWI/SNF-mutated ovarian cancers and warrants further investigation.
Collapse
Affiliation(s)
- Raffaella Soldi
- Applied Cancer Research and Drug Discovery Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | - Tithi Ghosh Halder
- Applied Cancer Research and Drug Discovery Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | - Alexis Weston
- Applied Cancer Research and Drug Discovery Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | - Trason Thode
- Applied Cancer Research and Drug Discovery Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | - Kevin Drenner
- Applied Cancer Research and Drug Discovery Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | - Rhonda Lewis
- Applied Cancer Research and Drug Discovery Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | - Mohan R. Kaadige
- Applied Cancer Research and Drug Discovery Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | - Shreyesi Srivastava
- HonorHealth Clinical Research Institute, Scottsdale, Arizona, United States of America
| | - Sherin Daniel Ampanattu
- Applied Cancer Research and Drug Discovery Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | - Ryan Rodriguez del Villar
- Applied Cancer Research and Drug Discovery Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | - Jessica Lang
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | | | - Bernard Weissman
- Department of Pathology and Laboratory Medicine, Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jeffrey M. Trent
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | - William P. D. Hendricks
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | - Sunil Sharma
- Applied Cancer Research and Drug Discovery Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
- * E-mail:
| |
Collapse
|
30
|
Lee EK, Esselen KM, Kolin DL, Lee LJ, Matulonis UA, Konstantinopoulos PA. Combined CDK4/6 and PD-1 Inhibition in Refractory SMARCA4-Deficient Small-Cell Carcinoma of the Ovary, Hypercalcemic Type. JCO Precis Oncol 2020; 4:736-742. [PMID: 32704608 PMCID: PMC7377332 DOI: 10.1200/po.20.00063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2020] [Indexed: 01/05/2023] Open
Affiliation(s)
- Elizabeth K Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Katharine M Esselen
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA
| | - David L Kolin
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Boston, MA
| | - Larissa J Lee
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Hospital Cancer Center, Boston, MA
| | - Ursula A Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | |
Collapse
|
31
|
Auguste A, Blanc-Durand F, Deloger M, Le Formal A, Bareja R, Wilkes DC, Richon C, Brunn B, Caron O, Devouassoux-Shisheboran M, Gouy S, Morice P, Bentivegna E, Sboner A, Elemento O, Rubin MA, Pautier P, Genestie C, Cyrta J, Leary A. Small Cell Carcinoma of the Ovary, Hypercalcemic Type (SCCOHT) beyond SMARCA4 Mutations: A Comprehensive Genomic Analysis. Cells 2020; 9:cells9061496. [PMID: 32575483 PMCID: PMC7349095 DOI: 10.3390/cells9061496] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/01/2020] [Accepted: 06/11/2020] [Indexed: 12/30/2022] Open
Abstract
Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is an aggressive malignancy that occurs in young women, is characterized by recurrent loss-of-function mutations in the SMARCA4 gene, and for which effective treatments options are lacking. The aim of this study was to broaden the knowledge on this rare malignancy by reporting a comprehensive molecular analysis of an independent cohort of SCCOHT cases. We conducted Whole Exome Sequencing in six SCCOHT, and RNA-sequencing and array comparative genomic hybridization in eight SCCOHT. Additional immunohistochemical, Sanger sequencing and functional data are also provided. SCCOHTs showed remarkable genomic stability, with diploid profiles and low mutation load (mean, 5.43 mutations/Mb), including in the three chemotherapy-exposed tumors. All but one SCCOHT cases exhibited 19p13.2-3 copy-neutral LOH. SMARCA4 deleterious mutations were recurrent and accompanied by loss of expression of the SMARCA2 paralog. Variants in a few other genes located in 19p13.2-3 (e.g., PLK5) were detected. Putative therapeutic targets, including MAGEA4, AURKB and CLDN6, were found to be overexpressed in SCCOHT by RNA-seq as compared to benign ovarian tissue. Lastly, we provide additional evidence for sensitivity of SCCOHT to HDAC, DNMT and EZH2 inhibitors. Despite their aggressive clinical course, SCCOHT show remarkable inter-tumor homogeneity and display genomic stability, low mutation burden and few somatic copy number alterations. These findings and preliminary functional data support further exploration of epigenetic therapies in this lethal disease.
Collapse
Affiliation(s)
- Aurélie Auguste
- Medical Oncologist, Gynecology Unit, Lead Translational Research Team, INSERM U981, Gustave Roussy, 94805 Villejuif, France; (A.A.); (A.L.F.)
| | - Félix Blanc-Durand
- Gynecological Unit, Department of Medicine, Gustave Roussy, 94805 Villejuif, France; (F.B.-D.); (B.B.); (S.G.); (P.M.); (E.B.); (P.P.)
| | - Marc Deloger
- Bioinformatics Core Facility, Gustave Roussy Cancer Center, UMS CNRS 3655/INSERM 23 AMMICA, 94805 Villejuif, France;
| | - Audrey Le Formal
- Medical Oncologist, Gynecology Unit, Lead Translational Research Team, INSERM U981, Gustave Roussy, 94805 Villejuif, France; (A.A.); (A.L.F.)
| | - Rohan Bareja
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10001, USA; (R.B.); (D.C.W.); (A.S.); (O.E.); (J.C.)
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10001, USA
| | - David C. Wilkes
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10001, USA; (R.B.); (D.C.W.); (A.S.); (O.E.); (J.C.)
| | - Catherine Richon
- Genomic Platform Gustave Roussy Cancer Institute, 94805 Villejuif, France; (C.R.); (O.C.)
| | - Béatrice Brunn
- Gynecological Unit, Department of Medicine, Gustave Roussy, 94805 Villejuif, France; (F.B.-D.); (B.B.); (S.G.); (P.M.); (E.B.); (P.P.)
| | - Olivier Caron
- Genomic Platform Gustave Roussy Cancer Institute, 94805 Villejuif, France; (C.R.); (O.C.)
| | | | - Sébastien Gouy
- Gynecological Unit, Department of Medicine, Gustave Roussy, 94805 Villejuif, France; (F.B.-D.); (B.B.); (S.G.); (P.M.); (E.B.); (P.P.)
| | - Philippe Morice
- Gynecological Unit, Department of Medicine, Gustave Roussy, 94805 Villejuif, France; (F.B.-D.); (B.B.); (S.G.); (P.M.); (E.B.); (P.P.)
| | - Enrica Bentivegna
- Gynecological Unit, Department of Medicine, Gustave Roussy, 94805 Villejuif, France; (F.B.-D.); (B.B.); (S.G.); (P.M.); (E.B.); (P.P.)
| | - Andrea Sboner
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10001, USA; (R.B.); (D.C.W.); (A.S.); (O.E.); (J.C.)
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10001, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10001, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10001, USA; (R.B.); (D.C.W.); (A.S.); (O.E.); (J.C.)
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10001, USA
| | - Mark A. Rubin
- Department for BioMedical Research, University of Bern, 3001 Bern, Switzerland;
| | - Patricia Pautier
- Gynecological Unit, Department of Medicine, Gustave Roussy, 94805 Villejuif, France; (F.B.-D.); (B.B.); (S.G.); (P.M.); (E.B.); (P.P.)
| | | | - Joanna Cyrta
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10001, USA; (R.B.); (D.C.W.); (A.S.); (O.E.); (J.C.)
- Department for BioMedical Research, University of Bern, 3001 Bern, Switzerland;
- Department of Pathology, Institut Curie, Universite Paris Sciences et Lettres, 6 rue d’Ulm, 75005 Paris, France
| | - Alexandra Leary
- Medical Oncologist, Gynecology Unit, Lead Translational Research Team, INSERM U981, Gustave Roussy, 94805 Villejuif, France; (A.A.); (A.L.F.)
- Gynecological Unit, Department of Medicine, Gustave Roussy, 94805 Villejuif, France; (F.B.-D.); (B.B.); (S.G.); (P.M.); (E.B.); (P.P.)
- Correspondence: ; Tel.: +33-1-42-11-45-71; Fax: +33-1-42-11-52-14
| |
Collapse
|
32
|
Wang Y, Hoang L, Ji JX, Huntsman DG. SWI/SNF Complex Mutations in Gynecologic Cancers: Molecular Mechanisms and Models. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 15:467-492. [PMID: 31977292 DOI: 10.1146/annurev-pathmechdis-012418-012917] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The SWI/SNF (mating type SWItch/Sucrose NonFermentable) chromatin remodeling complexes interact with histones and transcription factors to modulate chromatin structure and control gene expression. These evolutionarily conserved multisubunit protein complexes are involved in regulating many biological functions, such as differentiation and cell proliferation. Genomic studies have revealed frequent mutations of genes encoding multiple subunits of the SWI/SNF complexes in a wide spectrum of cancer types, including gynecologic cancers. These SWI/SNF mutations occur at different stages of tumor development and are restricted to unique histologic types of gynecologic cancers. Thus, SWI/SNF mutations have to function in the appropriate tissue and cell context to promote gynecologic cancer initiation and progression. In this review, we summarize the current knowledge of SWI/SNF mutations in the development of gynecologic cancers to provide insights into both molecular pathogenesis and possible treatment implications for these diseases.
Collapse
Affiliation(s)
- Yemin Wang
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada; , , .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada; .,Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia V6Z 2K8, Canada
| | - Lien Hoang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada;
| | - Jennifer X Ji
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada; , , .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada;
| | - David G Huntsman
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada; , , .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada; .,Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia V6Z 2K8, Canada
| |
Collapse
|
33
|
Singh AP, Umbarkar P, Tousif S, Lal H. Cardiotoxicity of the BCR-ABL1 tyrosine kinase inhibitors: Emphasis on ponatinib. Int J Cardiol 2020; 316:214-221. [PMID: 32470534 DOI: 10.1016/j.ijcard.2020.05.077] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 12/26/2022]
Abstract
The advent of tyrosine kinase inhibitors (TKIs) targeted therapy revolutionized the treatment of chronic myeloid leukemia (CML) patients. However, cardiotoxicity associated with these targeted therapies puts the cancer survivors at higher risk. Ponatinib is a third-generation TKI for the treatment of CML patients having gatekeeper mutation T315I, which is resistant to the first and second generation of TKIs, namely, imatinib, nilotinib, dasatinib, and bosutinib. Multiple unbiased screening from our lab and others have identified ponatinib as most cardiotoxic FDA approved TKI among the entire FDA approved TKI family (total 50+). Indeed, ponatinib is the only treatment option for CML patients with T315I mutation. This review focusses on the cardiovascular risks and mechanism/s associated with CML TKIs with a particular focus on ponatinib cardiotoxicity. We have summarized our recent findings with transgenic zebrafish line harboring BNP luciferase activity to demonstrate the cardiotoxic potential of ponatinib. Additionally, we will review the recent discoveries reported by our and other laboratories that ponatinib primarily exerts its cardiotoxicity via an off-target effect on cardiomyocyte prosurvival signaling pathways, AKT and ERK. Finally, we will shed light on future directions for minimizing the adverse sequelae associated with CML-TKIs.
Collapse
Affiliation(s)
- Anand Prakash Singh
- Division of Cardiovascular Disease, UAB
- The University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA.
| | - Prachi Umbarkar
- Division of Cardiovascular Disease, UAB
- The University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA
| | - Sultan Tousif
- Division of Cardiovascular Disease, UAB
- The University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA
| | - Hind Lal
- Division of Cardiovascular Disease, UAB
- The University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA.
| |
Collapse
|
34
|
Ji JX, Cochrane DR, Tessier-Cloutier B, Chen SY, Ho G, Pathak KV, Alcazar IN, Farnell D, Leung S, Cheng A, Chow C, Colborne S, Negri GL, Kommoss F, Karnezis A, Morin GB, McAlpine JN, Gilks CB, Weissman BE, Trent JM, Hoang L, Pirrotte P, Wang Y, Huntsman DG. Arginine Depletion Therapy with ADI-PEG20 Limits Tumor Growth in Argininosuccinate Synthase-Deficient Ovarian Cancer, Including Small-Cell Carcinoma of the Ovary, Hypercalcemic Type. Clin Cancer Res 2020; 26:4402-4413. [PMID: 32409304 DOI: 10.1158/1078-0432.ccr-19-1905] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 01/02/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Many rare ovarian cancer subtypes, such as small-cell carcinoma of the ovary, hypercalcemic type (SCCOHT), have poor prognosis due to their aggressive nature and resistance to standard platinum- and taxane-based chemotherapy. The development of effective therapeutics has been hindered by the rarity of such tumors. We sought to identify targetable vulnerabilities in rare ovarian cancer subtypes. EXPERIMENTAL DESIGN We compared the global proteomic landscape of six cases each of endometrioid ovarian cancer (ENOC), clear cell ovarian cancer (CCOC), and SCCOHT to the most common subtype, high-grade serous ovarian cancer (HGSC), to identify potential therapeutic targets. IHC of tissue microarrays was used as validation of arginosuccinate synthase (ASS1) deficiency. The efficacy of arginine-depriving therapeutic ADI-PEG20 was assessed in vitro using cell lines and patient-derived xenograft mouse models representing SCCOHT. RESULTS Global proteomic analysis identified low ASS1 expression in ENOC, CCOC, and SCCOHT compared with HGSC. Low ASS1 levels were validated through IHC in large patient cohorts. The lowest levels of ASS1 were observed in SCCOHT, where ASS1 was absent in 12 of 31 cases, and expressed in less than 5% of the tumor cells in 9 of 31 cases. ASS1-deficient ovarian cancer cells were sensitive to ADI-PEG20 treatment regardless of subtype in vitro. Furthermore, in two cell line mouse xenograft models and one patient-derived mouse xenograft model of SCCOHT, once-a-week treatment with ADI-PEG20 (30 mg/kg and 15 mg/kg) inhibited tumor growth in vivo. CONCLUSIONS Preclinical in vitro and in vivo studies identified ADI-PEG20 as a potential therapy for patients with rare ovarian cancers, including SCCOHT.
Collapse
Affiliation(s)
- Jennifer X Ji
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Dawn R Cochrane
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, Canada
| | - Basile Tessier-Cloutier
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Shary Yutin Chen
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, Canada
| | - Germain Ho
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, Canada
| | - Khyatiben V Pathak
- Collaborative Center for Translational Mass Spectrometry, The Translational Genomics Research Institute, Phoenix, Arizona
| | - Isabel N Alcazar
- Collaborative Center for Translational Mass Spectrometry, The Translational Genomics Research Institute, Phoenix, Arizona
| | - David Farnell
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Samuel Leung
- Genetic Pathology Evaluation Center, Vancouver, Canada
| | - Angela Cheng
- Genetic Pathology Evaluation Center, Vancouver, Canada
| | | | - Shane Colborne
- Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, Canada
| | - Gian Luca Negri
- Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, Canada
| | - Friedrich Kommoss
- Institute of Pathology, Medizin Campus Bodensee, Friedrichshafen, Germany
| | - Anthony Karnezis
- Department of Pathology and Laboratory Medicine, University of California, Davis, California
| | - Gregg B Morin
- Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Jessica N McAlpine
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
| | - C Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Bernard E Weissman
- Department of Pathology and Laboratory Medicine, UNC-Chapel Hill, Chapel Hill, North Carolina
| | - Jeffrey M Trent
- Integrated Cancer Genomics, The Translational Genomics Research Institute, Phoenix, Arizona
| | - Lynn Hoang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Patrick Pirrotte
- Collaborative Center for Translational Mass Spectrometry, The Translational Genomics Research Institute, Phoenix, Arizona
| | - Yemin Wang
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, Canada
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada. .,Department of Molecular Oncology, BC Cancer Agency, Vancouver, Canada.,Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
35
|
Kerr K, McAneney H, Smyth LJ, Bailie C, McKee S, McKnight AJ. A scoping review and proposed workflow for multi-omic rare disease research. Orphanet J Rare Dis 2020; 15:107. [PMID: 32345347 PMCID: PMC7189570 DOI: 10.1186/s13023-020-01376-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Patients with rare diseases face unique challenges in obtaining a diagnosis, appropriate medical care and access to support services. Whole genome and exome sequencing have increased identification of causal variants compared to single gene testing alone, with diagnostic rates of approximately 50% for inherited diseases, however integrated multi-omic analysis may further increase diagnostic yield. Additionally, multi-omic analysis can aid the explanation of genotypic and phenotypic heterogeneity, which may not be evident from single omic analyses. MAIN BODY This scoping review took a systematic approach to comprehensively search the electronic databases MEDLINE, EMBASE, PubMed, Web of Science, Scopus, Google Scholar, and the grey literature databases OpenGrey / GreyLit for journal articles pertaining to multi-omics and rare disease, written in English and published prior to the 30th December 2018. Additionally, The Cancer Genome Atlas publications were searched for relevant studies and forward citation searching / screening of reference lists was performed to identify further eligible articles. Following title, abstract and full text screening, 66 articles were found to be eligible for inclusion in this review. Of these 42 (64%) were studies of multi-omics and rare cancer, two (3%) were studies of multi-omics and a pre-cancerous condition, and 22 (33.3%) were studies of non-cancerous rare diseases. The average age of participants (where known) across studies was 39.4 years. There has been a significant increase in the number of multi-omic studies in recent years, with 66.7% of included studies conducted since 2016 and 33% since 2018. Fourteen combinations of multi-omic analyses for rare disease research were returned spanning genomics, epigenomics, transcriptomics, proteomics, phenomics and metabolomics. CONCLUSIONS This scoping review emphasises the value of multi-omic analysis for rare disease research in several ways compared to single omic analysis, ranging from the provision of a diagnosis, identification of prognostic biomarkers, distinct molecular subtypes (particularly for rare cancers), and identification of novel therapeutic targets. Moving forward there is a critical need for collaboration of multi-omic rare disease studies to increase the potential to generate robust outcomes and development of standardised biorepository collection and reporting structures for multi-omic studies.
Collapse
Affiliation(s)
- Katie Kerr
- Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland
| | - Helen McAneney
- Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland
| | - Laura J Smyth
- Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland
| | - Caitlin Bailie
- Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland
| | - Shane McKee
- Regional Genetics Centre, Belfast City Hospital, Level A, Tower Block, Lisburn Road, Belfast, BT9 7AB, Northern Ireland
| | - Amy Jayne McKnight
- Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland.
- Regional Genetics Centre, Belfast City Hospital, Level A, Tower Block, Lisburn Road, Belfast, BT9 7AB, Northern Ireland.
| |
Collapse
|
36
|
The SWI/SNF complex in cancer - biology, biomarkers and therapy. Nat Rev Clin Oncol 2020; 17:435-448. [PMID: 32303701 DOI: 10.1038/s41571-020-0357-3] [Citation(s) in RCA: 406] [Impact Index Per Article: 81.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2020] [Indexed: 12/11/2022]
Abstract
Cancer genome-sequencing studies have revealed a remarkably high prevalence of mutations in genes encoding subunits of the SWI/SNF chromatin-remodelling complexes, with nearly 25% of all cancers harbouring aberrations in one or more of these genes. A role for such aberrations in tumorigenesis is evidenced by cancer predisposition in both carriers of germline loss-of-function mutations and genetically engineered mouse models with inactivation of any of several SWI/SNF subunits. Whereas many of the most frequently mutated oncogenes and tumour-suppressor genes have been studied for several decades, the cancer-promoting role of mutations in SWI/SNF genes has been recognized only more recently, and thus comparatively less is known about these alterations. Consequently, increasing research interest is being focused on understanding the prognostic and, in particular, the potential therapeutic implications of mutations in genes encoding SWI/SNF subunits. Herein, we review the burgeoning data on the mechanisms by which mutations affecting SWI/SNF complexes promote cancer and describe promising emerging opportunities for targeted therapy, including immunotherapy with immune-checkpoint inhibitors, presented by these mutations. We also highlight ongoing clinical trials open specifically to patients with cancers harbouring mutations in certain SWI/SNF genes.
Collapse
|
37
|
Tischkowitz M, Huang S, Banerjee S, Hague J, Hendricks WPD, Huntsman DG, Lang JD, Orlando KA, Oza AM, Pautier P, Ray-Coquard I, Trent JM, Witcher M, Witkowski L, McCluggage WG, Levine DA, Foulkes WD, Weissman BE. Small-Cell Carcinoma of the Ovary, Hypercalcemic Type-Genetics, New Treatment Targets, and Current Management Guidelines. Clin Cancer Res 2020; 26:3908-3917. [PMID: 32156746 DOI: 10.1158/1078-0432.ccr-19-3797] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/04/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022]
Abstract
Small-cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is a rare and highly aggressive ovarian malignancy. In almost all cases, it is associated with somatic and often germline pathogenic variants in SMARCA4, which encodes for the SMARCA4 protein (BRG1), a subunit of the SWI/SNF chromatin remodeling complex. Approximately 20% of human cancers possess pathogenic variants in at least one SWI/SNF subunit. Because of their role in regulating many important cellular processes including transcriptional control, DNA repair, differentiation, cell division, and DNA replication, SWI/SNF complexes with mutant subunits are thought to contribute to cancer initiation and progression. Fewer than 500 cases of SCCOHT have been reported in the literature and approximately 60% are associated with hypercalcemia. SCCOHT primarily affects females under 40 years of age who usually present with symptoms related to a pelvic mass. SCCOHT is an aggressive cancer, with long-term survival rates of 30% in early-stage cases. Although various treatment approaches have been proposed, there is no consensus on surveillance and therapeutic strategy. An international group of multidisciplinary clinicians and researchers recently formed the International SCCOHT Consortium to evaluate current knowledge and propose consensus surveillance and therapeutic recommendations, with the aim of improving outcomes. Here, we present an overview of the genetics of this cancer, provide updates on new treatment targets, and propose management guidelines for this challenging cancer.
Collapse
Affiliation(s)
- Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom. .,East Anglian Medical Genetics Unit, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Susana Banerjee
- The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, United Kingdom
| | - Jennifer Hague
- East Anglian Medical Genetics Unit, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| | - William P D Hendricks
- Translational Genomics Research Institute, Division of Integrated Cancer Genomics, Phoenix, Arizona
| | | | - Jessica D Lang
- Translational Genomics Research Institute, Division of Integrated Cancer Genomics, Phoenix, Arizona
| | - Krystal A Orlando
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Amit M Oza
- Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | | | - Isabelle Ray-Coquard
- Centre Anti cancereux Léon Bérard, & University Claude Bernard Lyon, GINECO Group, Lyon, France
| | - Jeffrey M Trent
- Translational Genomics Research Institute, Division of Integrated Cancer Genomics, Phoenix, Arizona
| | - Michael Witcher
- The Lady Davis Institute of the Jewish General Hospital, Department of Oncology, McGill University, Montreal, Canada
| | - Leora Witkowski
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - W Glenn McCluggage
- Department of Pathology, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Douglas A Levine
- Gynecologic Oncology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - William D Foulkes
- The Lady Davis Institute of the Jewish General Hospital, Department of Oncology, McGill University, Montreal, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Department of Medical Genetics, Jewish General Hospital, McGill University, Montreal, Quebec, Canada.,Department of Medical Genetics and Cancer Research Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Bernard E Weissman
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina. .,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
38
|
Connor YD, Miao D, Lin DI, Hayne C, Howitt BE, Dalrymple JL, DeLeonardis KR, Hacker MR, Esselen KM, Shea M. Germline mutations of SMARCA4 in small cell carcinoma of the ovary, hypercalcemic type and in SMARCA4-deficient undifferentiated uterine sarcoma: Clinical features of a single family and comparison of large cohorts. Gynecol Oncol 2020; 157:106-114. [PMID: 31954538 DOI: 10.1016/j.ygyno.2019.10.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) and SMARCA4-deficient undifferentiated uterine sarcoma (SMARCA4-DUS) are rare and aggressive tumors, primarily affecting pre- and perimenopausal women. Inactivating SMARCA4 mutations are thought to be the driving molecular events in the majority of these tumors. Here, we report the clinical course of a family with germline SMARCA4 mutation and compare large cohorts of these rare tumor types. METHODS We extracted clinico-pathological medical record data for the family with germline SMARCA4 mutation. Clinico-genomic data from SCCOHT and SMARCA4-DUS cohorts were retrospectively extracted from the archives of a large CLIA-certified reference molecular laboratory. RESULTS We identified a single family with an inherited germline SMARCA4 mutation, in which two different family members developed either SCCOHT or SMARCA4-DUS, both of whom died within one year of diagnosis, despite aggressive surgical, chemotherapy and immunotherapy treatment. Retrospective comparative analysis of large SCCOHT (n = 48) and SMARCA4-DUS (n = 17) cohorts revealed that SCCOHT patients were younger (median age: 28.5 vs. 49.0) and more likely to have germline SMARCA4 alterations (37.5% vs. 11.8%) than SMARCA4-DUS patients. CONCLUSIONS Growing understanding of the role SMARCA4 plays in the pathogenesis of these rare cancers may inform recommended genetic testing and counseling in families with these tumor types.
Collapse
Affiliation(s)
- Yamicia D Connor
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Diana Miao
- Department of Gynecology and Obstetrics, Johns Hopkins Medicine, Baltimore, MD, USA
| | | | - Cynthia Hayne
- Harvard Medical School, Boston, MA, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Brooke E Howitt
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - John L Dalrymple
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Kimberly R DeLeonardis
- Department of Internal Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Michele R Hacker
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Katharine M Esselen
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Meghan Shea
- Department of Internal Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Pyrido[2,3- d]pyrimidin-7(8 H)-ones: Synthesis and Biomedical Applications. Molecules 2019; 24:molecules24224161. [PMID: 31744155 PMCID: PMC6891647 DOI: 10.3390/molecules24224161] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022] Open
Abstract
Pyrido[2,3-d]pyrimidines (1) are a type of privileged heterocyclic scaffolds capable of providing ligands for several receptors in the body. Among such structures, our group and others have been particularly interested in pyrido[2,3-d]pyrimidine-7(8H)-ones (2) due to the similitude with nitrogen bases present in DNA and RNA. Currently there are more than 20,000 structures 2 described which correspond to around 2900 references (half of them being patents). Furthermore, the number of references containing compounds of general structure 2 have increased almost exponentially in the last 10 years. The present review covers the synthetic methods used for the synthesis of pyrido[2,3-d]pyrimidine-7(8H)-ones (2), both starting from a preformed pyrimidine ring or a pyridine ring, and the biomedical applications of such compounds.
Collapse
|
40
|
Chabanon RM, Morel D, Postel-Vinay S. Exploiting epigenetic vulnerabilities in solid tumors: Novel therapeutic opportunities in the treatment of SWI/SNF-defective cancers. Semin Cancer Biol 2019; 61:180-198. [PMID: 31568814 DOI: 10.1016/j.semcancer.2019.09.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022]
Abstract
Mammalian switch/sucrose non-fermentable (mSWI/SNF) family complexes are pivotal elements of the chromatin remodeling machinery, which contribute to the regulation of several major cellular functions. Large-scale exome-wide sequencing studies have identified mutations in genes encoding mSWI/SNF subunits in 20% of all human cancers, establishing mSWI/SNF deficiency as a recurrent oncogenic alteration. Accumulating evidence now supports that several mSWI/SNF defects represent targetable vulnerabilities in cancer; notably, recent research advances have unveiled unexpected synthetic lethal opportunities that foster the development of novel biomarker-driven and mechanism-based therapeutic approaches for the treatment of mSWI/SNF-deficient tumors. Here, we review the latest breakthroughs and discoveries that inform our understanding of the mSWI/SNF complexes biology in carcinogenesis, and discuss the most promising therapeutic strategies to target mSWI/SNF defects in human solid malignancies.
Collapse
Affiliation(s)
- Roman M Chabanon
- Université Paris Saclay, Université Paris-Sud, Faculté de médicine, Le Kremlin Bicêtre, France; ATIP-Avenir Group, Inserm Unit U981, Gustave Roussy, Villejuif, France; The Breast Cancer Now Toby Robins Breast Cancer Research Centre, France; CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
| | - Daphné Morel
- Université Paris Saclay, Université Paris-Sud, Faculté de médicine, Le Kremlin Bicêtre, France; ATIP-Avenir Group, Inserm Unit U981, Gustave Roussy, Villejuif, France
| | - Sophie Postel-Vinay
- Université Paris Saclay, Université Paris-Sud, Faculté de médicine, Le Kremlin Bicêtre, France; ATIP-Avenir Group, Inserm Unit U981, Gustave Roussy, Villejuif, France; DITEP (Département d'Innovations Thérapeutiques et Essais Précoces), Gustave Roussy, Villejuif, France.
| |
Collapse
|
41
|
Gershenson DM, Okamoto A, Ray-Coquard I. Management of Rare Ovarian Cancer Histologies. J Clin Oncol 2019; 37:2406-2415. [DOI: 10.1200/jco.18.02419] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
| | - Aikou Okamoto
- The Jikei University School of Medicine, Tokyo, Japan
| | - Isabelle Ray-Coquard
- Centre Leon Bèrard, Université Claude Bernard Lyon, Groupe d’Investigateurs Nationaux pour l’Étude des Cancers de l’Ovaire (GINECO), Lyon, France
| |
Collapse
|
42
|
|
43
|
Li R, Zhou T, Chen S, Li N, Cai Z, Ling Y, Feng Z. Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT): a challenge for clinicopathological diagnosis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2166-2172. [PMID: 31934039 PMCID: PMC6949608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/25/2019] [Indexed: 06/10/2023]
Abstract
Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is an extremely aggressive ovarian tumor, with a poor prognosis and high mortality for young women. This paper aims to inform clinical physicians of new clinical improvements and further understanding of SCCOHT. Two cases diagnosed with SCCOHT from our medical database were reconfirmed and immunohistochemically stained with vimentin, CK, EMA, S-100, ER, PR, and SMARCA4. Diffuse small, round cells with scant cytoplasms, small nucleoli, hyperchromatic nuclei, and active nuclear divisions were detected in the microscopy. The immunohistochemical markers indicated minor positive but notably were SMARCA4 negative, which led to the final diagnosis. SCCOHT is a rare and lethal ovarian tumor in young women. The loss of SMARCA4 or the presence of SMARCA2 is a specific marker for the disease. Susceptibility to CDK4/6 inhibitors associated with downregulation of SMARCA4 targeted cyclin D1 may be a probable therapeutical mechanism for the disease.
Collapse
Affiliation(s)
- Ran Li
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical CollegeBengbu, Anhui, P. R. China
| | - Ting Zhou
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical CollegeBengbu, Anhui, P. R. China
| | - Shaohua Chen
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical CollegeBengbu, Anhui, P. R. China
| | - Nan Li
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical CollegeBengbu, Anhui, P. R. China
| | - Zhaogen Cai
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical CollegeBengbu, Anhui, P. R. China
| | - Yunzhi Ling
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical CollegeBengbu, Anhui, P. R. China
| | - Zhenzhong Feng
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical CollegeBengbu, Anhui, P. R. China
| |
Collapse
|
44
|
Orlando KA, Nguyen V, Raab JR, Walhart T, Weissman BE. Remodeling the cancer epigenome: mutations in the SWI/SNF complex offer new therapeutic opportunities. Expert Rev Anticancer Ther 2019; 19:375-391. [PMID: 30986130 DOI: 10.1080/14737140.2019.1605905] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Cancer genome sequencing studies have discovered mutations in members of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodeling complex in nearly 25% of human cancers. The SWI/SNF complex, first discovered in S. cerevisiae, shows strong conservation from yeast to Drosophila to mammals, contains approximately 10-12 subunits and regulates nucleosome positioning through the energy generated by its ATPase subunits. The unexpected finding of frequent mutations in the complex has fueled studies to identify the mechanisms that drive tumor development and the accompanying therapeutic vulnerabilities. Areas covered: In the review, we focus upon the potential roles different SWI/SNF subunit mutations play in human oncogenesis, their common and unique mechanisms of transformation and the potential for translating these mechanisms into targeted therapies for SWI/SNF-mutant tumors. Expert opinion: We currently have limited insights into how mutations in different SWI/SNF subunits drive the development of human tumors. Because the SWI/SNF complex participates in a broad range of normal cellular functions, defining specific oncogenic pathways has proved difficult. In addition, therapeutic options for SWI/SNF-mutant cancers have mainly evolved from high-throughput screens of cell lines with mutations in different subunits. Future studies should follow a more coherent plan to pinpoint common vulnerabilities among these tumors.
Collapse
Affiliation(s)
- Krystal A Orlando
- a Department of Pathology and Laboratory Medicine , University of North Carolina , Chapel Hill , NC , USA
| | - Vinh Nguyen
- b Curriculum in Toxicology and Environmental Medicine , University of North Carolina , Chapel Hill , NC , USA
| | - Jesse R Raab
- c Department of Genetics , University of North Carolina , Chapel Hill , NC , USA
| | - Tara Walhart
- d Lineberger Comprehensive Cancer Center , University of North Carolina , Chapel Hill , NC , USA
| | - Bernard E Weissman
- a Department of Pathology and Laboratory Medicine , University of North Carolina , Chapel Hill , NC , USA.,b Curriculum in Toxicology and Environmental Medicine , University of North Carolina , Chapel Hill , NC , USA.,d Lineberger Comprehensive Cancer Center , University of North Carolina , Chapel Hill , NC , USA
| |
Collapse
|
45
|
Abstract
Traditionally, the management of epithelial ovarian cancer has been approached using a one-size-fits-all mentality. This strategy does not acknowledge the differences in epidemiology and clinical behavior of many of the histologic and molecular subgroups of ovarian cancer, specifically the rare histologies. While cytoreductive surgery followed by adjuvant platinum and taxane-based chemotherapy is the mainstay of primary treatment of epithelial ovarian cancer as a group, further investigation of novel therapeutics is critical for improving outcomes of these rare histologies. This article focuses on the management of non-high grade serous histologies of ovarian cancer.
Collapse
|
46
|
Targeting Mitochondria for Treatment of Chemoresistant Ovarian Cancer. Int J Mol Sci 2019; 20:ijms20010229. [PMID: 30626133 PMCID: PMC6337358 DOI: 10.3390/ijms20010229] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 01/06/2023] Open
Abstract
Ovarian cancer is the leading cause of death from gynecologic malignancy in the Western world. This is due, in part, to the fact that despite standard treatment of surgery and platinum/paclitaxel most patients recur with ultimately chemoresistant disease. Ovarian cancer is a unique form of solid tumor that develops, metastasizes and recurs in the same space, the abdominal cavity, which becomes a unique microenvironment characterized by ascites, hypoxia and low glucose levels. It is under these conditions that cancer cells adapt and switch to mitochondrial respiration, which becomes crucial to their survival, and therefore an ideal metabolic target for chemoresistant ovarian cancer. Importantly, independent of microenvironmental factors, mitochondria spatial redistribution has been associated to both tumor metastasis and chemoresistance in ovarian cancer while specific sets of genetic mutations have been shown to cause aberrant dependence on mitochondrial pathways in the most aggressive ovarian cancer subtypes. In this review we summarize on targeting mitochondria for treatment of chemoresistant ovarian cancer and current state of understanding of the role of mitochondria respiration in ovarian cancer. We feel this is an important and timely topic given that ovarian cancer remains the deadliest of the gynecological diseases, and that the mitochondrial pathway has recently emerged as critical in sustaining solid tumor progression.
Collapse
|
47
|
Lu B, Shi H. An In-Depth Look at Small Cell Carcinoma of the Ovary, Hypercalcemic Type (SCCOHT): Clinical Implications from Recent Molecular Findings. J Cancer 2019; 10:223-237. [PMID: 30662543 PMCID: PMC6329856 DOI: 10.7150/jca.26978] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/21/2018] [Indexed: 12/27/2022] Open
Abstract
Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is a highly aggressive cancer in young women. The histogenesis remains unclear although a potential origin of germ cells has been suggested recently. The high throughput next generation sequencing techniques have facilitated the identification of inactivating SMARCA4 mutations as the driver of SCCOHT. These findings may greatly impact on the prevention, diagnosis, molecular classification and treatment of SCCOHTs. The SMARCA4 mutations, typically associated with dual loss of BRG1 and BRM expression, are highly sensitive and specific for the diagnosis of SCCOHT. Germline mutations of SMARCA4 support familial SCCOHT with a critical requirement of genetic counseling and possible prophylactic surgery for carriers. SCCOHT, malignant atypical teratoid/rhabdoid tumors, thoracic sarcomas and some undifferentiated carcinomas harbor rhabdoid morphology and mutations in the SMARC genes, generating an emerging molecular classification of SMARC-mutated tumors. A multi-modality treatment approach consisting of surgery and high dose multi-agent chemotherapy in atypical teratoid/rhabdoid tumors may have potential benefits for SCCOHT patients. Preliminary studies have implicated that the inhibitors targeting EZH2 and the receptor tyrosine kinase, and anti-PD-L1 immunotherapy might be potentially effective for SCCOHT patients. These recent advances on molecular genetics, diagnosis and treatment of SCCOHT address the necessity of multiple institutional collaboration work among oncologist, pathologist, genomic scientist, geneticist, molecular biologist, and pharmacologist.
Collapse
Affiliation(s)
- Bingjian Lu
- Department of Surgical Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Haiyan Shi
- Department of Surgical Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| |
Collapse
|
48
|
Abstract
Genomic information is increasingly being incorporated into clinical cancer care. Large-scale sequencing efforts have deepened our understanding of the genomic landscape of cancer and contributed to the expanding catalog of alterations being leveraged to aid in cancer diagnosis, prognosis, and treatment. Genomic profiling can provide clinically relevant information regarding somatic point mutations, copy number alterations, translocations, and gene fusions. Genomic features, such as mutational burden, can also be measured by more comprehensive sequencing strategies and have shown value in informing potential treatment options. Ongoing clinical trials are evaluating the use of molecularly targeted agents in genomically defined subsets of cancers within and across tumor histologies. Continued advancements in clinical genomics promise to further expand the application of genomics-enabled medicine to a broader spectrum of oncology patients.
Collapse
Affiliation(s)
- Alison Roos
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Sara A Byron
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA.
| |
Collapse
|
49
|
Recent Studies on Ponatinib in Cancers Other Than Chronic Myeloid Leukemia. Cancers (Basel) 2018; 10:cancers10110430. [PMID: 30423915 PMCID: PMC6267038 DOI: 10.3390/cancers10110430] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/24/2018] [Accepted: 11/07/2018] [Indexed: 02/08/2023] Open
Abstract
Ponatinib is a third line drug for the treatment of chronic myeloid leukemia patients, especially those that develop the gatekeeper mutation T315I, which is resistant to the first and the second line drugs imatinib, nilotinib, dasatinib and bosutinib. The compound was first identified as a pan Bcr-Abl and Src kinase inhibitor. Further studies have indicated that it is a multitargeted inhibitor that is active on FGFRs, RET, AKT, ERK1/2, KIT, MEKK2 and other kinases. For this reason, the compound has been evaluated on several cancers in which these kinases play important roles, including thyroid, breast, ovary and lung cancer, neuroblastoma, rhabdoid tumours and in myeloproliferative disorders. Ponatinib is also being tested in clinical trials to evaluate its activity in FLT3-ITD acute myelogenous leukemia, head and neck cancers, certain type of lung cancer, gastrointestinal stromal tumours and other malignancies. In this review we report the most recent preclinical and clinical studies on ponatinib in cancers other than CML, with the aim of giving a complete overview of this interesting compound.
Collapse
|
50
|
Fukumoto T, Magno E, Zhang R. SWI/SNF Complexes in Ovarian Cancer: Mechanistic Insights and Therapeutic Implications. Mol Cancer Res 2018; 16:1819-1825. [PMID: 30037854 DOI: 10.1158/1541-7786.mcr-18-0368] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/05/2018] [Accepted: 07/06/2018] [Indexed: 12/24/2022]
Abstract
Ovarian cancer remains the most lethal gynecologic malignancy in the developed world. Despite the unprecedented progress in understanding the genetics of ovarian cancer, cures remain elusive due to a lack of insight into the mechanisms that can be targeted to develop new therapies. SWI/SNF chromatin remodeling complexes are genetically altered in approximately 20% of all human cancers. SWI/SNF alterations vary in different histologic subtypes of ovarian cancer, with ARID1A mutation occurring in approximately 50% of ovarian clear cell carcinomas. Given the complexity and prevalence of SWI/SNF alterations, ovarian cancer represents a paradigm for investigating the molecular basis and exploring therapeutic strategies for SWI/SNF alterations. This review discusses the recent progress in understanding SWI/SNF alterations in ovarian cancer and specifically focuses on: (i) ARID1A mutation in endometriosis-associated clear cell and endometrioid histologic subtypes of ovarian cancer; (ii) SMARCA4 mutation in small cell carcinoma of the ovary, hypercalcemic type; and (iii) amplification/upregulation of CARM1, a regulator of BAF155, in high-grade serous ovarian cancer. Understanding the molecular underpinning of SWI/SNF alterations in different histologic subtypes of ovarian cancer will provide mechanistic insight into how these alterations contribute to ovarian cancer. Finally, the review discusses how these newly gained insights can be leveraged to develop urgently needed therapeutic strategies in a personalized manner.
Collapse
Affiliation(s)
- Takeshi Fukumoto
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Elizabeth Magno
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Rugang Zhang
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania.
| |
Collapse
|