1
|
Song Z, Wang Q, Xiong H, Xiao J, Zhou Z, Li T, Sun Q, Qiu L, Tan Y, Liu X, Jiang H, Han S, Wang X. Bionic gene delivery system activates tumor autophagy and immunosuppressive niche to sensitize anti-PD-1 treatment against STK11-mutated lung adenocarcinoma. J Nanobiotechnology 2025; 23:312. [PMID: 40275340 PMCID: PMC12020135 DOI: 10.1186/s12951-025-03404-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/15/2025] [Indexed: 04/26/2025] Open
Abstract
Clinical data have shown that Serine/Threonine Kinase 11 (STK11) mutation may be associated with an immunosuppressive tumor microenvironment (ITEM) and poor prognosis and failure of anti-PD-1 (αPD1) treatment in non-small cell lung cancer (NSCLC). To explore the potential of restoring STK11 protein in immunotherapy, a bionic gene delivery system was prepared by coating the STK11-encoded DNA-cationic polymer complex core with the tumor cell membrane, termed STK11@PPCM. STK11@PPCM could specifically bind with NSCLC cells and achieve precise delivery of STK11-encoded DNA. The released DNA effectively restored the STK11 protein expression, consequently reactivating autophagy and immunogenic cell death (ICD) in cancer cells. The liberated damage-associated molecular patterns (DAMPs) and autophagosome induced dendritic cells (DCs) maturation, which in turn enhanced CD8 + T cell infiltration, M1 macrophage polarization, and proinflammatory factor expression, thereby reversing the ITEM. Moreover, STK11@PPCM was also found to improve the sensitivity of cancer cells to αPD1 by increasing the expression of PD-L1, which was confirmed in STK11-mutated NSCLC cell xenografted mouse models, constructed by CRISPR-Cas9 knockout technology. This work demonstrated for the first time that restoration of functional STK11 can effectively reverse ITME and boost αPD1 efficacy in NSCLC, offering a new therapeutic approach for STK11-mutated lung adenocarcinoma in clinic.
Collapse
Affiliation(s)
- Zhongquan Song
- Department of Pulmonary and Critical Care Medicine, Medical School, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Qikai Wang
- Health Management Center, Weifang People's Hospital, Shandong Second Medical University, Weifang, Shandong, 261000, China
| | - Hongjie Xiong
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Jiang Xiao
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Zihan Zhou
- Department of Pulmonary and Critical Care Medicine, Medical School, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Tianxiang Li
- Department of Pulmonary and Critical Care Medicine, Medical School, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Qian Sun
- Department of Pulmonary and Critical Care Medicine, Medical School, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Liping Qiu
- Department of Pulmonary and Critical Care Medicine, Medical School, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yue Tan
- Department of Pulmonary and Critical Care Medicine, Medical School, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Shuhua Han
- Department of Pulmonary and Critical Care Medicine, Medical School, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China.
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
2
|
Jiang J, Yan Y, Yang C, Cai H. Immunogenic Cell Death and Metabolic Reprogramming in Cancer: Mechanisms, Synergies, and Innovative Therapeutic Strategies. Biomedicines 2025; 13:950. [PMID: 40299564 PMCID: PMC12024911 DOI: 10.3390/biomedicines13040950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 05/01/2025] Open
Abstract
Immunogenic cell death (ICD) is a promising cancer therapy where dying tumor cells release damage-associated molecular patterns (DAMPs) to activate immune responses. Recent research highlights the critical role of metabolic reprogramming in tumor cells, including the Warburg effect, oxidative stress, and lipid metabolism, in modulating ICD and shaping the immune microenvironment. These metabolic changes enhance immune activation, making tumors more susceptible to immune surveillance. This review explores the molecular mechanisms linking ICD and metabolism, including mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, and ferroptosis. It also discusses innovative therapeutic strategies, such as personalized combination therapies, metabolic inhibitors, and targeted delivery systems, to improve ICD efficacy. The future of cancer immunotherapy lies in integrating metabolic reprogramming and immune activation to overcome tumor immune evasion, with multi-omics approaches and microbiome modulation offering new avenues for enhanced treatment outcomes.
Collapse
Affiliation(s)
| | | | - Chunhui Yang
- Department of Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, China; (J.J.); (Y.Y.)
| | - Hong Cai
- Department of Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, China; (J.J.); (Y.Y.)
| |
Collapse
|
3
|
Mével-Aliset M, Radu AG, Allard J, Blanchet S, Montellier E, Hainaut P, Rossignol R, Torch S, Orsi GA, Thibert C. Transcriptional regulation by LKB1 in lung adenocarcinomas: Exploring oxidative stress, neuroglial and amino acid signatures. Biochem Biophys Res Commun 2025; 755:151571. [PMID: 40043609 DOI: 10.1016/j.bbrc.2025.151571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/19/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025]
Abstract
Lung adenocarcinoma (LUAD) is one of the most prevalent cancer types worldwide and has one of the poorest survival rates. Understanding its developpment is crucial for improving diagnosis, prognosis, and treatment. A key factor in LUAD is the frequent loss-of-function mutations in LKB1/STK11, a kinase that regulates metabolism. These mutations are linked to increased metastasis and worse clinical outcomes. In this study, we analyzed gene expression data from LUAD patients to explore how LKB1 mutations affect cancer behavior. We found that LKB1 mutations in KRAS-driven LUAD lead to widespread gene downregulation. By integrating avalaible protein interaction data, mass spectrometry analysis of LKB1 nuclear partners, and co-immunoprecipitations experiments, we identified BRG1, a chromatin activator and subunit of the BAF complex, as a nuclear partner of LKB1. Further analysis suggested that LKB1 mutations may impair BRG1 activity, disrupting chromatin regulation and gene expression. Notably, LUAD patients with mutated LKB1 showed gene expression patterns indicative of oxidative stress, defective neuronal-glial and neuroinflammation programs, and altered amino acid homeostasis. These changes resemble the roles LKB1 plays in neural crest stem cells, suggesting that LKB1 may reduce tumor aggressiveness in LUAD by maintaining a developmental gene expression program.
Collapse
Affiliation(s)
- Marie Mével-Aliset
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Anca G Radu
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Jordan Allard
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Sandrine Blanchet
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Emilie Montellier
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Pierre Hainaut
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Rodrigue Rossignol
- INSERM U1211, Bordeaux University, 146 rue Léo Saignat, 33076, Bordeaux, France; CELLOMET, Functional Genomics Center (CGFB), 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Sakina Torch
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Guillermo A Orsi
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics of Regeneration and Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Chantal Thibert
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France.
| |
Collapse
|
4
|
Zhong ZT, Wang XY, Pan Y, Zhou K, Chen JH, Gao YQ, Dai B, Zhou ZL, Wang RQ. AMPK: An energy sensor for non-small cell lung cancer progression and treatment. Pharmacol Res 2025; 212:107592. [PMID: 39805353 DOI: 10.1016/j.phrs.2025.107592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Lung cancer (LC) is the leading cause of cancer-related morbidity and mortality in China, with non-small cell lung cancer (NSCLC) accounting for 85 % of the overall lung cancer cases. AMP-activated protein kinase (AMPK) is a key regulator of energy balance and homeostasis, and its dysregulation is a common feature in various malignancies, particularly in NSCLC with mutations in Liver kinase B1 (LKB1). Studies have shown that the AMPK signalling pathway has a dual role in NSCLC progression, both inhibiting and promoting the progression of malignant tumours. Therefore, drugs targeting the AMPK signalling pathway may hold significant promise for therapeutic application in NSCLC. This review aims to examine the manifestations and mechanisms by which AMPK and its associated signalling molecules influence NSCLC progression and treatment. Firstly, we discuss the critical importance of AMPK within the mutational context of NSCLC. Secondly, we summarise the drugs and related substances that modulate the AMPK signalling pathway in NSCLC and evaluate the evidence from preclinical studies on combination AMPK-targeted therapies to address the issue of drug resistance in NSCLC under current clinical treatments. In summary, this paper highlights the critical importance of developing AMPK-targeted drugs to enhance therapeutic efficacy in NSCLC, as well as the potential for applying these drugs in clinical therapy to overcome drug resistance.
Collapse
Affiliation(s)
- Zhi-Ting Zhong
- Department of Pharmacy, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China; College of Pharmacy, Jinan University, Guangzhou, China
| | - Xu-Yan Wang
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Ying Pan
- Department of Oncology, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Ke Zhou
- Department of Pharmacy, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Jing-Hui Chen
- Department of Pharmacy, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Yu-Qi Gao
- Department of Pharmacy, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Bo Dai
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan City, Guangdong Province 528200, China.
| | - Zhi-Ling Zhou
- Department of Pharmacy, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China.
| | - Rui-Qi Wang
- Department of Pharmacy, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China.
| |
Collapse
|
5
|
Ross FA, Hawley SA, Russell FM, Goodman N, Hardie DG. Frequent loss-of-function mutations in the AMPK-α2 catalytic subunit suggest a tumour suppressor role in human skin cancers. Biochem J 2023; 480:1951-1968. [PMID: 37962491 PMCID: PMC10754287 DOI: 10.1042/bcj20230380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status activated by increases in AMP or ADP relative to ATP. Once activated, it phosphorylates targets that promote ATP-generating catabolic pathways or inhibit ATP-consuming anabolic pathways, helping to restore cellular energy balance. Analysis of human cancer genome studies reveals that the PRKAA2 gene (encoding the α2 isoform of the catalytic subunit) is often subject to mis-sense mutations in cancer, particularly in melanoma and non-melanoma skin cancers, where up to 70 mis-sense mutations have been documented, often accompanied by loss of the tumour suppressor NF1. Recently it has been reported that knockout of PRKAA2 in NF1-deficient melanoma cells promoted anchorage-independent growth in vitro, as well as growth as xenografts in immunodeficient mice in vivo, suggesting that AMPK-α2 can act as a tumour suppressor in that context. However, very few of the mis-sense mutations in PRKAA2 that occur in human skin cancer and melanoma have been tested to see whether they cause loss-of-function. We have addressed this by making most of the reported mutations and testing their activity when expressed in AMPK knockout cells. Of 55 different mis-sense mutations (representing 75 cases), 9 (12%) appeared to cause a total loss of activity, 18 (24%) a partial loss, 11 (15%) an increase in phenformin-stimulated kinase activity, while just 37 (49%) had no clear effect on kinase activity. This supports the idea that AMPK-α2 acts as a tumour suppressor in the context of human skin cancer.
Collapse
Affiliation(s)
- Fiona A. Ross
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, U.K
| | - Simon A. Hawley
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, U.K
| | - Fiona M. Russell
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, U.K
| | - Nicola Goodman
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, U.K
| | - D. Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, U.K
| |
Collapse
|
6
|
Stachura P, Liu W, Xu HC, Wlodarczyk A, Stencel O, Pandey P, Vogt M, Bhatia S, Picard D, Remke M, Lang KS, Häussinger D, Homey B, Lang PA, Borkhardt A, Pandyra AA. Unleashing T cell anti-tumor immunity: new potential for 5-Nonloxytryptamine as an agent mediating MHC-I upregulation in tumors. Mol Cancer 2023; 22:136. [PMID: 37582744 PMCID: PMC10426104 DOI: 10.1186/s12943-023-01833-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 07/27/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND New therapies are urgently needed in melanoma, particularly in late-stage patients not responsive to immunotherapies and kinase inhibitors. To uncover novel potentiators of T cell anti-tumor immunity, we carried out an ex vivo pharmacological screen and identified 5-Nonyloxytryptamine (5-NL), a serotonin agonist, as increasing the ability of T cells to target tumor cells. METHODS The pharmacological screen utilized lymphocytic choriomeningitis virus (LCMV)-primed splenic T cells and melanoma B16.F10 cells expressing the LCMV gp33 CTL epitope. In vivo tumor growth in C57BL/6 J and NSG mice, in vivo antibody depletion, flow cytometry, immunoblot, CRISPR/Cas9 knockout, histological and RNA-Seq analyses were used to decipher 5-NL's immunomodulatory effects in vitro and in vivo. RESULTS 5-NL delayed tumor growth in vivo and the phenotype was dependent on the hosts' immune system, specifically CD8+ T cells. 5-NL's pro-immune effects were not directly consequential to T cells. Rather, 5-NL upregulated antigen presenting machinery in melanoma and other tumor cells in vitro and in vivo without increasing PD-L1 expression. Mechanistic studies indicated that 5-NL's induced MHC-I expression was inhibited by pharmacologically preventing cAMP Response Element-Binding Protein (CREB) phosphorylation. Importantly, 5-NL combined with anti-PD1 therapy showed significant improvement when compared to single anti-PD-1 treatment. CONCLUSIONS This study demonstrates novel therapeutic opportunities for augmenting immune responses in poorly immunogenic tumors.
Collapse
Affiliation(s)
- Paweł Stachura
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Wei Liu
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Haifeng C Xu
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Agnès Wlodarczyk
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Olivia Stencel
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Piyush Pandey
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Melina Vogt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Daniel Picard
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Partner Site Essen/Düsseldorf, German Consortium for Translational Cancer Research (DKTK), Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich-Heine University, Moorenstrasse 5, Düsseldorf, 40225, Germany
| | - Marc Remke
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Partner Site Essen/Düsseldorf, German Consortium for Translational Cancer Research (DKTK), Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich-Heine University, Moorenstrasse 5, Düsseldorf, 40225, Germany
| | - Karl S Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, Düsseldorf, 40225, Germany
| | - Bernhard Homey
- Department of Dermatology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, Düsseldorf, 40225, Germany
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Aleksandra A Pandyra
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany.
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany.
| |
Collapse
|
7
|
Sari G, Rock KL. Tumor immune evasion through loss of MHC class-I antigen presentation. Curr Opin Immunol 2023; 83:102329. [PMID: 37130455 PMCID: PMC10524158 DOI: 10.1016/j.coi.2023.102329] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 05/04/2023]
Abstract
CD8 T cells recognize cancers when they detect antigenic peptides presented on a tumor's surface MHC-I molecules. Since MHC-I antigen presentation is not essential for cell growth or survival, many cancers inactivate this pathway, and thereby escape control by CD8 T cells. Such immune evasion allows cancers to progress and also become resistant to CD8 T- cell-based immunotherapies, such as checkpoint blockade. Here, we review recent findings about the various different mechanisms that cancers use to impair antigen presentation, the consequence of such changes, and, in some cases, the potential to reverse these defects.
Collapse
Affiliation(s)
- Gulce Sari
- University of Massachusetts Medical School, Department of Pathology, Worcester, MA, USA
| | - Kenneth L Rock
- University of Massachusetts Medical School, Department of Pathology, Worcester, MA, USA.
| |
Collapse
|
8
|
Zhang Q, Feng J, Liu K, Yang X, Huang Y, Tang B. STK11 mutation impacts CD1E expression to regulate the differentiation of macrophages in lung adenocarcinoma. Immun Inflamm Dis 2023; 11:e958. [PMID: 37506141 PMCID: PMC10373563 DOI: 10.1002/iid3.958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The deficiency of serine/threonine protein kinase 11 (STK11), one of the most common tumor suppressor genes in non-small-cell lung cancer, is a crucial player in tumor immune microenvironment regulation. This study attempted to unveil how mutated STK11 impact the differentiation of macrophages in lung adenocarcinoma (LUAD). METHODS STK11 and CD1E expression levels in different cell models were assessed by quantitative reverse transcription polymerase chain reaction. Western blot was utilized to detect the protein expression levels of STK11, CD1E, apoptosis markers, and AMPK signaling pathway markers after transfection treatment. Cell viability and macrophage differentiation were detected by CCK-8 and flow cytometry. Immunohistochemistry and immunofluorescence were employed to detect the expression of related genes and macrophage markers, respectively. RESULTS This study found that STK11 mutations promoted the proliferation of LUAD cells and inhibited the differentiation of M1 macrophages, apoptosis, and the AMPK signaling pathway. Mutated STK11 led to CD1E downregulation, which curbed the differentiation of M1 macrophages and hence promoted LUAD progression. It was further validated by the in vivo experimental results that STK11 mutation significantly decreased the immune infiltration of M1 macrophages and promoted LUAD progression. CONCLUSION It was revealed that STK11 mutation affected CD1E expression to regulate macrophage differentiation in LUAD and then promote tumor progression. In this way, CD1E could be a potential biological target for the therapeutic interventions of STK11-mutant LUAD patients. These findings also threw new light on a new therapeutic strategy for STK11-mutant tumor patients that assisted the macrophage polarization pathway.
Collapse
Affiliation(s)
- Qingfeng Zhang
- Department of Cardio-Thoracic Surgery, Zigong Fourth People's Hospital, Zigong, China
| | - Juan Feng
- Department of Operating Room, Zigong Fourth People's Hospital, Zigong, China
| | - Kui Liu
- Department of Cardio-Thoracic Surgery, Zigong Fourth People's Hospital, Zigong, China
| | - Xiaoyan Yang
- Department of Cardio-Thoracic Surgery, Zigong Fourth People's Hospital, Zigong, China
| | - Yun Huang
- Department of Cardio-Thoracic Surgery, Zigong Fourth People's Hospital, Zigong, China
| | - Bo Tang
- Department of Cardio-Thoracic Surgery, Zigong Fourth People's Hospital, Zigong, China
| |
Collapse
|
9
|
Yuan P, Teng D, de Groot E, Li M, Trousil S, Shen CH, Roszik J, Davies MA, Gopal YV, Zheng B. Loss of AMPKα2 promotes melanoma tumor growth and brain metastasis. iScience 2023; 26:106791. [PMID: 37213225 PMCID: PMC10197146 DOI: 10.1016/j.isci.2023.106791] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/02/2023] [Accepted: 04/26/2023] [Indexed: 05/23/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is a critical cellular energy sensor at the interface of metabolism and cancer. However, the role of AMPK in carcinogenesis remains unclear. Here, through analysis of the TCGA melanoma dataset, we found that PRKAA2 gene that encodes the α2 subunit of AMPK is mutated in ∼9% of cutaneous melanomas, and these mutations tend to co-occur with NF1 mutations. Knockout of AMPKα2 promoted anchorage-independent growth of NF1-mutant melanoma cells, whereas ectopic expression of AMPKα2 inhibited their growth in soft agar assays. Moreover, loss of AMPKα2 accelerated tumor growth of NF1-mutant melanoma and enhanced their brain metastasis in immune-deficient mice. Our findings support that AMPKα2 serves as a tumor suppressor in NF1-mutant melanoma and suggest that AMPK could be a therapeutic target for treating melanoma brain metastasis.
Collapse
Affiliation(s)
- Ping Yuan
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Da Teng
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Evelyn de Groot
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Man Li
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Sebastian Trousil
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Che-Hung Shen
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Jason Roszik
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael A. Davies
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Y.N. Vashisht Gopal
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bin Zheng
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
10
|
Ma SX, Li L, Cai H, Guo TK, Zhang LS. Therapeutic challenge for immunotherapy targeting cold colorectal cancer: A narrative review. World J Clin Oncol 2023; 14:81-88. [PMID: 36908678 PMCID: PMC9993140 DOI: 10.5306/wjco.v14.i2.81] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/13/2022] [Accepted: 02/07/2023] [Indexed: 02/21/2023] Open
Abstract
Cold colorectal tumors are not likely to trigger a robust immune response and tend to suppress the immune response. There may be three reasons. First, the complex tumor microenvironment of cold colorectal cancer (CRC) leads to tolerance and clearance of immunotherapy. Second, the modification and concealment of tumor-specific targets in cold CRC cause immune escape and immune response interruption. Finally, the difference in number and function of immune cell subsets in patients with cold CRC makes them respond poorly to immunotherapy. Therefore, we can only overcome the challenges in immunotherapy of cold CRC through in-depth research and understanding the changes and mechanisms in the above three aspects of cold CRC.
Collapse
Affiliation(s)
- Shi-Xun Ma
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 73000, Gansu Province, China
| | - Li Li
- Scientific Research Division, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Hui Cai
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 73000, Gansu Province, China
| | - Tian-Kang Guo
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 73000, Gansu Province, China
| | - Lei-Sheng Zhang
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 73000, Gansu Province, China
- Key Laboratory of Radiation Technology and Biophysics, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui Province, China
| |
Collapse
|
11
|
Zhou S, Yang H. Immunotherapy resistance in non-small-cell lung cancer: From mechanism to clinical strategies. Front Immunol 2023; 14:1129465. [PMID: 37090727 PMCID: PMC10115980 DOI: 10.3389/fimmu.2023.1129465] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
The high primary resistance incidence and unavoidable secondary resistance are the major clinical obstacle to lasting long-term benefits in Non-small-cell lung cancer (NSCLC) patients treated with immunotherapy. The mechanisms of immunotherapy resistance in NSCLC are complex, mainly involving tumor cells and tumor microenvironment (TME) infiltrating immune cells, including TAMs, B cells, NK cells, and T cells. The selection of clinical strategies for NSCLC progression after immunotherapy resistance should depend on the progressive mode. The progression pattern of NSCLC patients after immunotherapy resistance can be divided into oligo-progression and systemic/multiple progression, which should be considered for further treatment selection. In the future, it needs to explore how to optimize the combined therapy and explore strategies to reprogram infiltrating immune cells under various genetic backgrounds of tumor cells and timely reshape TME during antitumor treatments.
Collapse
Affiliation(s)
- Suna Zhou
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
- Department of Radiation Oncology, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi’an, Shaanxi, China
| | - Haihua Yang
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
- *Correspondence: Haihua Yang,
| |
Collapse
|
12
|
Keerthana CK, Rayginia TP, Shifana SC, Anto NP, Kalimuthu K, Isakov N, Anto RJ. The role of AMPK in cancer metabolism and its impact on the immunomodulation of the tumor microenvironment. Front Immunol 2023; 14:1114582. [PMID: 36875093 PMCID: PMC9975160 DOI: 10.3389/fimmu.2023.1114582] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a key metabolic sensor that is pivotal for the maintenance of cellular energy homeostasis. AMPK contributes to diverse metabolic and physiological effects besides its fundamental role in glucose and lipid metabolism. Aberrancy in AMPK signaling is one of the determining factors which lead to the development of chronic diseases such as obesity, inflammation, diabetes, and cancer. The activation of AMPK and its downstream signaling cascades orchestrate dynamic changes in the tumor cellular bioenergetics. It is well documented that AMPK possesses a suppressor role in the context of tumor development and progression by modulating the inflammatory and metabolic pathways. In addition, AMPK plays a central role in potentiating the phenotypic and functional reprogramming of various classes of immune cells which reside in the tumor microenvironment (TME). Furthermore, AMPK-mediated inflammatory responses facilitate the recruitment of certain types of immune cells to the TME, which impedes the development, progression, and metastasis of cancer. Thus, AMPK appears to play an important role in the regulation of anti-tumor immune response by regulating the metabolic plasticity of various immune cells. AMPK effectuates the metabolic modulation of anti-tumor immunity via nutrient regulation in the TME and by virtue of its molecular crosstalk with major immune checkpoints. Several studies including that from our lab emphasize on the role of AMPK in regulating the anticancer effects of several phytochemicals, which are potential anticancer drug candidates. The scope of this review encompasses the significance of the AMPK signaling in cancer metabolism and its influence on the key drivers of immune responses within the TME, with a special emphasis on the potential use of phytochemicals to target AMPK and combat cancer by modulating the tumor metabolism.
Collapse
Affiliation(s)
- Chenicheri Kizhakkeveettil Keerthana
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Tennyson Prakash Rayginia
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
| | | | - Nikhil Ponnoor Anto
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Kalishwaralal Kalimuthu
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
13
|
Yang L, Zhang Q, Xiong Y, Dang Z, Xiao H, Chen Q, Dai X, Zhang L, Zhu J, Wang D, Li M. A subset of VEGFR-TKIs activates AMPK in LKB1-mutant lung cancer. Cancer Sci 2022; 114:1651-1662. [PMID: 36459496 PMCID: PMC10067398 DOI: 10.1111/cas.15677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
The mutation of tumor suppressor gene liver kinase B1 (LKB1) has a prevalence of about 20% in non-small cell lung cancer (NSCLC). LKB1-mutant lung cancer is characterized by enhanced aggressiveness and immune escape and is associated with poor prognosis. Therefore, it is urgent to develop effective therapeutic methods for LKB1-mutant NSCLC. Recently, apatinib, a VEGFR-TKI, was found to significantly improve the outcome of LKB1-mutant NSCLC, but the mechanism is not completely clear. In this study, AMP-activated protein kinase (AMPK), the crucial downstream kinase of LKB1 was excavated as the potential target of apatinib. Biochemical experiments verified that apatinib is a direct AMPK activator. Moreover, clinically available VEGFR-TKIs were found to regulate AMPK differently: Apatinib and anlotinib can directly activate AMPK, while axitinib and sunitinib can directly inhibit AMPK. Activation of AMPK by apatinib leads to the phosphorylation of acetyl-CoA carboxylase (ACC) and inhibition of de novo fatty acid synthesis (FAsyn), which is upregulated in LKB1-null cancers. Moreover, the killing effect of apatinib was obviously enhanced under delipidated condition, and the combination of exogenous FA restriction with apatinib treatment can be a promising method for treating LKB1-mutant NSCLC. This study discovered AMPK as an important off-target of apatinib and elucidated different effects of this cluster of VEGFR-TKIs on AMPK. This finding can be the basis for the accurate and combined application of these drugs in clinic and highlights that the subset of VEGFR-TKIs including apatinib and anlotinib are potentially valuable in the treatment of LKB1-mutant NSCLC.
Collapse
Affiliation(s)
- Lujie Yang
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Qin Zhang
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Yanli Xiong
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhaoqian Dang
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - He Xiao
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Qian Chen
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoyan Dai
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Lei Zhang
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Jianwu Zhu
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Dong Wang
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Mengxia Li
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
14
|
Zhang M, Shi M, Yu Y, Sang J, Wang H, Shi J, Duan P, Ge R. The Immune Subtypes and Landscape of Advanced-Stage Ovarian Cancer. Vaccines (Basel) 2022; 10:vaccines10091451. [PMID: 36146529 PMCID: PMC9501495 DOI: 10.3390/vaccines10091451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 12/01/2022] Open
Abstract
Immunotherapy has played a significant role in the treatment of a variety of hematological and solid tumors, but its application in ovarian cancer (OC) remains unclear. This study aimed to identify immune subtypes of OC and delineate an immune landscape for selecting suitable patients for immunotherapy, thereby providing potent therapeutic targets for immunotherapy drug development. Three immune subtypes (IS1–IS3) with distinctive molecular, cellular, and clinical characteristics were identified from the TCGA and GSE32062 cohorts. Compared to IS1, IS3 has a better prognosis and exhibits an immunological “hot”. IS3, in contrast, exhibits an immunological “cold” and has a worse prognosis in OC patients. Moreover, gene mutations, immune modulators, CA125, CA199, and HE4 expression, along with sensitivity either to immunotherapy or chemotherapy, were significantly different among the three immune subtypes. The OC immune landscape was highly heterogeneous between individual patients. Poor prognosis was correlated with low expression of the hub genes CD2, CD3D, and CD3E, which could act not only as biomarkers for predicting prognosis, but also as potential immunotherapy targets. Our study elucidates the immunotyping and molecular characteristics of the immune microenvironment in OC, which could provide an effective immunotherapy stratification method for optimally selecting patients, and also has clinical significance for the development of new immunotherapy as well as rational combination strategies for the treatment of OC patients.
Collapse
Affiliation(s)
- Minjie Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Mengna Shi
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yang Yu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jianmin Sang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Hong Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jianhong Shi
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ping Duan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Renshan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Correspondence:
| |
Collapse
|