1
|
Quesada S, Penault-Llorca F, Matias-Guiu X, Banerjee S, Barberis M, Coleman RL, Colombo N, DeFazio A, McNeish IA, Nogueira-Rodrigues A, Oaknin A, Pignata S, Pujade-Lauraine É, Rouleau É, Ryška A, Van Der Merwe N, Van Gorp T, Vergote I, Weichert W, Wu X, Ray-Coquard I, Pujol P. Homologous recombination deficiency in ovarian cancer: Global expert consensus on testing and a comparison of companion diagnostics. Eur J Cancer 2025; 215:115169. [PMID: 39693891 DOI: 10.1016/j.ejca.2024.115169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Poly (ADP ribose) polymerase inhibitors (PARPis) are a treatment option for patients with advanced high-grade serous or endometrioid ovarian carcinoma (OC). Recent guidelines have clarified how homologous recombination deficiency (HRD) may influence treatment decision-making in this setting. As a result, numerous companion diagnostic assays (CDx) have been developed to identify HRD. However, the optimal HRD testing strategy is an area of debate. Moreover, recently published clinical and translational data may impact how HRD status may be used to identify patients likely to benefit from PARPi use. We aimed to extensively compare available HRD CDx and establish a worldwide expert consensus on HRD testing in primary and recurrent OC. METHODS A group of 99 global experts from 31 different countries was formed. Using a modified Delphi process, the experts aimed to establish consensus statements based on a systematic literature search and CDx information sought from investigators, companies and/or publications. RESULTS Technical information, including analytical and clinical validation, were obtained from 14 of 15 available HRD CDx (7 academic; 7 commercial). Consensus was reached on 36 statements encompassing the following topics: 1) the predictive impact of HRD status on PARPi use in primary and recurrent OC; 2) analytical and clinical validation requirements of HRD CDx; 3) resource-stratified HRD testing; and 4) how future CDx may include additional approaches to help address unmet testing needs. CONCLUSION This manuscript provides detailed information on currently available HRD CDx and up-to-date guidance from global experts on HRD testing in patients with primary and recurrent OC.
Collapse
Affiliation(s)
- Stanislas Quesada
- Department of Medical Oncology, Institut régional du Cancer de Montpellier (ICM), Montpellier, France; Department of Cancer Genetics, University Hospital of Montpellier, Montpellier, France; Groupe d'Investigateurs Nationaux pour l'Etude des cancers de l'ovaire et du sein (GINECO), Paris, France; Société Française de Médecine Prédictive et Personnalisée (SFMPP), Montpellier, France
| | - Frédérique Penault-Llorca
- Société Française de Médecine Prédictive et Personnalisée (SFMPP), Montpellier, France; Department of Biology and Pathology, Centre de Lutte Contre le Cancer Jean Perrin, Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont Auvergne, UMR 1240 INSERM-UCA, Clermont-Ferrand, France; Cours St Paul, Saint Paul, Réunion, France
| | - Xavier Matias-Guiu
- Department of Pathology, Hospital Universitari Arnau de Vilanova, IRBLLEIDA, University of Lleida, Lleida, Spain; Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, University of Barcelona, Barcelona, Spain; European Society of Pathology (ESP), Belgium
| | - Susana Banerjee
- The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, UK
| | - Massimo Barberis
- Division of Experimental Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | | | - Nicoletta Colombo
- Gynecologic Oncology Program, European Institute of Oncology IRCCS, Milan, Italy; Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Anna DeFazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Department of Gynaecological Oncology, Westmead Hospital, Sydney, NSW, Australia; The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW, Australia
| | - Iain A McNeish
- Division of Cancer and Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Angélica Nogueira-Rodrigues
- Federal University MG, Brazilian Group of Gynecologic Oncology (EVA), Latin American Cooperative Oncology Group (LACOG), Oncoclínicas, DOM Oncologia, Brazil
| | - Ana Oaknin
- Medical Oncology Service, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sandro Pignata
- Department of Urology and Gynecology, Istituto Nazionale Tumori di Napoli, IRCCS Fondazione Pascale, Napoli, Italy
| | - Éric Pujade-Lauraine
- Association de Recherche Cancers Gynécologiques - Groupe d'Investigateurs Nationaux pour l'Etude des Cancers de l'ovaire et du Sein (ARCAGY-GINECO), Paris, France
| | - Étienne Rouleau
- Coordinator of Gen&Tiss GFCO, Université Paris-Saclay, Gustave-Roussy Cancer Campus, Inserm U981, Villejuif, France; Cancer Genetics Laboratory, Medical Biology and Pathology Department, Gustave-Roussy Cancer Campus, Villejuif, France
| | - Aleš Ryška
- European Society of Pathology (ESP), Belgium; The Fingerland Department of Pathology, Faculty of Medicine, Charles University and University Hospital, Hradec Kralove, Czech Republic
| | - Nerina Van Der Merwe
- Division of Human Genetics, National Health Laboratory Service, Universitas Hospital, Bloemfontein, South Africa; Division of Human Genetics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Toon Van Gorp
- Division of Gynaecological Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium; Belgium and Luxembourg Gynaecological Oncology Group (BGOG), Leuven, Belgium
| | - Ignace Vergote
- Division of Gynaecological Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium; Belgium and Luxembourg Gynaecological Oncology Group (BGOG), Leuven, Belgium
| | - Wilko Weichert
- Institute of Pathology, School of Medicine and Health, Technical University Munich, Munich, Germany
| | - Xiaohua Wu
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Isabelle Ray-Coquard
- Groupe d'Investigateurs Nationaux pour l'Etude des cancers de l'ovaire et du sein (GINECO), Paris, France; Medical Oncology, Centre Léon Bérard and Université Claude Bernard Lyon, Lyon, France
| | - Pascal Pujol
- Department of Medical Oncology, Institut régional du Cancer de Montpellier (ICM), Montpellier, France; Société Française de Médecine Prédictive et Personnalisée (SFMPP), Montpellier, France; Center for Ecological and Evolutionary Cancer Research (CREEC), Montpellier University, Montpellier, France.
| |
Collapse
|
2
|
Feng Z, Zhu C, Zhang X, Huang Z, Ju X, Guo Q, Li X, Wu X, Wen H. Comprehensive evaluation of genomic and functional assays for homologous recombination deficiency with high-grade epithelial ovarian cancer: Platinum sensitivity and prognosis. Int J Gynecol Cancer 2025; 35:100031. [PMID: 39878284 DOI: 10.1016/j.ijgc.2024.100031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Indexed: 01/31/2025] Open
Abstract
OBJECTIVE Homologous recombination deficiency assays, guiding treatment of poly (adenosine diphosphate ribose) polymerase inhibitors, are increasingly applied in clinics. This study aimed to evaluate the predictive performance of homologous recombination deficiency status at genomic and functional perspective on the efficacy of platinum-based chemotherapy in ovarian cancer. METHODS Between 2016 and 2019, 134 patients with high-grade ovarian cancer were retrospectively analyzed. Formalin-fixed paraffin-embedded tissues were subjected to DNA sequencing using the AmoyDx HRD Complete Panel. The genomic scar score and the genomic instability score were calculated based on copy number variation events. Furthermore, the RAD51 and SLFN11 protein levels in tumors were assessed by immunohistochemistry. RESULTS Of all patients, 106 of 134 (79.1%) were homologous recombination deficiency (genomic scar score)-positive, with a higher platinum sensitivity rate than those who were homologous recombination deficiency (genomic scar score)-negative (78.3% vs 57.1%, p = .023). Similarly, 104 of 134 (77.6%) were homologous recombination deficiency (genomic instability score)-positive, with increased platinum sensitivity compared with homologous recombination deficiency (genomic instability score)-negative (77.9% vs 60.0%, p = .049). The overall concordance rate of homologous recombination deficiency status defined by the 2 scores was 98.5%. Genomic scar score and genomic instability score determined homologous recombination deficiency-positive statuses correlated with better progression-free survival (p = .0019, p = .0041) and overall survival (p = .018, p = .031). Patients with nuclear RAD51-loss or SLFN11-positive expression were likely to be homologous recombination deficiency-positive by genomic scar score/genomic instability score (94.1% and 97.6%; 94.1% and 95.2%, respectively). Patients with nuclear RAD51-loss and SLFN11-positive expression had better overall survival than those with RAD51-positive and SLFN11-negative expression. Among homologous recombination deficiency statuses, RAD51 and SLFN11 expressions, homologous recombination deficiency (genomic scar score)-positive was most associated with progression-free survival and platinum sensitivity. Multivariate regression analysis showed that homologous recombination deficiency (genomic scar score)-positive status was a good prognostic factor, implying a higher possibility of platinum sensitivity. CONCLUSION Genomic scar score, given by AmoyDx HRD Complete Panel, was most associated with the efficacy of platinum treatment in patients with high-grade ovarian cancer. Validation is warranted via prospective studies.
Collapse
Affiliation(s)
- Zheng Feng
- Fudan University Shanghai Cancer Center, Department of Gynecologic Oncology, Shanghai, China; Fudan University, Shanghai Medical College, Department of Oncology, Shanghai, China
| | - Changbin Zhu
- Amoy Diagnostics Co, Ltd, Department of Translational Medicine, Xiamen, China
| | - Xiaotian Zhang
- Amoy Diagnostics Co, Ltd, Department of Translational Medicine, Xiamen, China
| | - Zhan Huang
- Amoy Diagnostics Co, Ltd, Department of Translational Medicine, Xiamen, China
| | - Xingzhu Ju
- Fudan University Shanghai Cancer Center, Department of Gynecologic Oncology, Shanghai, China; Fudan University, Shanghai Medical College, Department of Oncology, Shanghai, China
| | - Qinhao Guo
- Fudan University Shanghai Cancer Center, Department of Gynecologic Oncology, Shanghai, China; Fudan University, Shanghai Medical College, Department of Oncology, Shanghai, China
| | - Xing Li
- Amoy Diagnostics Co, Ltd, Department of Translational Medicine, Xiamen, China
| | - Xiaohua Wu
- Fudan University Shanghai Cancer Center, Department of Gynecologic Oncology, Shanghai, China; Fudan University, Shanghai Medical College, Department of Oncology, Shanghai, China
| | - Hao Wen
- Fudan University Shanghai Cancer Center, Department of Gynecologic Oncology, Shanghai, China; Fudan University, Shanghai Medical College, Department of Oncology, Shanghai, China.
| |
Collapse
|
3
|
Drew Y, Zenke FT, Curtin NJ. DNA damage response inhibitors in cancer therapy: lessons from the past, current status and future implications. Nat Rev Drug Discov 2025; 24:19-39. [PMID: 39533099 DOI: 10.1038/s41573-024-01060-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 11/16/2024]
Abstract
The DNA damage response (DDR) is a network of proteins that coordinate DNA repair and cell-cycle checkpoints to prevent damage being transmitted to daughter cells. DDR defects lead to genomic instability, which enables tumour development, but they also create vulnerabilities that can be used for cancer therapy. Historically, this vulnerability has been taken advantage of using DNA-damaging cytotoxic drugs and radiotherapy, which are more toxic to tumour cells than to normal tissues. However, the discovery of the unique sensitivity of tumours defective in the homologous recombination DNA repair pathway to PARP inhibition led to the approval of six PARP inhibitors worldwide and to a focus on making use of DDR defects through the development of other DDR-targeting drugs. Here, we analyse the lessons learnt from PARP inhibitor development and how these may be applied to new targets to maximize success. We explore why, despite so much research, no other DDR inhibitor class has been approved, and only a handful have advanced to later-stage clinical trials. We discuss why more reliable predictive biomarkers are needed, explore study design from past and current trials, and suggest alternative models for monotherapy and combination studies. Targeting multiple DDR pathways simultaneously and potential combinations with anti-angiogenic agents or immune checkpoint inhibitors are also discussed.
Collapse
Affiliation(s)
- Yvette Drew
- BC Cancer Vancouver Centre and Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Frank T Zenke
- Research Unit Oncology, EMD Serono, Billerica, MA, USA
| | - Nicola J Curtin
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
4
|
Launonen IM, Niemiec I, Hincapié-Otero M, Erkan EP, Junquera A, Afenteva D, Falco MM, Liang Z, Salko M, Chamchougia F, Szabo A, Perez-Villatoro F, Li Y, Micoli G, Nagaraj A, Haltia UM, Kahelin E, Oikkonen J, Hynninen J, Virtanen A, Nirmal AJ, Vallius T, Hautaniemi S, Sorger PK, Vähärautio A, Färkkilä A. Chemotherapy induces myeloid-driven spatially confined T cell exhaustion in ovarian cancer. Cancer Cell 2024; 42:2045-2063.e10. [PMID: 39658541 DOI: 10.1016/j.ccell.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/30/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024]
Abstract
Anti-tumor immunity is crucial for high-grade serous ovarian cancer (HGSC) prognosis, yet its adaptation upon standard chemotherapy remains poorly understood. Here, we conduct spatial and molecular characterization of 117 HGSC samples collected before and after chemotherapy. Our single-cell and spatial analyses reveal increasingly versatile immune cell states forming spatiotemporally dynamic microcommunities. We describe Myelonets, networks of interconnected myeloid cells that contribute to CD8+ T cell exhaustion post-chemotherapy and show that M1/M2 polarization at the tumor-stroma interface is associated with CD8+ T cell exhaustion and exclusion, correlating with poor chemoresponse. Single-cell and spatial transcriptomics reveal prominent myeloid-T cell interactions via NECTIN2-TIGIT induced by chemotherapy. Targeting these interactions using a functional patient-derived immuno-oncology platform demonstrates that high NECTIN2-TIGIT signaling in matched tumors predicts responses to immune checkpoint blockade. Our discovery of clinically relevant myeloid-driven spatial T cell exhaustion unlocks immunotherapeutic strategies to unleash CD8+ T cell-mediated anti-tumor immunity in HGSC.
Collapse
Affiliation(s)
- Inga-Maria Launonen
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Iga Niemiec
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | | | | | - Ada Junquera
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Daria Afenteva
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Matias M Falco
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Zhihan Liang
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Matilda Salko
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Foteini Chamchougia
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Angela Szabo
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | | | - Yilin Li
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Giulia Micoli
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Ashwini Nagaraj
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Ulla-Maija Haltia
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland; Department of Obstetrics and Gynecology, Department of Oncology, Clinical Trials Unit, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - Essi Kahelin
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland; Department of Pathology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Jaana Oikkonen
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Johanna Hynninen
- Department of Obstetrics and Gynecology, University of Turku and Turku University Hospital, Turku, Finland
| | - Anni Virtanen
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland; Department of Pathology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Ajit J Nirmal
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Tuulia Vallius
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Boston, MA, USA
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Boston, MA, USA
| | - Anna Vähärautio
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland; Foundation for the Finnish Cancer Institute, Helsinki, Finland.
| | - Anniina Färkkilä
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland; Department of Obstetrics and Gynecology, Department of Oncology, Clinical Trials Unit, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland; Institute for Molecular Medicine Finland, Helsinki Institute for Life Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
5
|
Schab A, Compadre A, Drexler R, Loeb M, Rodriguez K, Brill J, Harrington S, Sandoval C, Sanders B, Kuroki L, McCourt C, Hagemann AR, Thaker P, Mutch D, Powell M, Serra V, Hagemann IS, Walts AE, Karlan BY, Orsulic S, Fuh K, Sun L, Verma P, Lomonosova E, Zhao P, Khabele D, Mullen M. Replication stress marker phospho-RPA2 predicts response to platinum and PARP inhibitors in homologous recombination-proficient ovarian cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624682. [PMID: 39651311 PMCID: PMC11623540 DOI: 10.1101/2024.11.21.624682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Background Ovarian cancer treatment includes cytoreductive surgery, platinum-based chemotherapy, and often poly (ADP-ribose) polymerase (PARP) inhibitors. Homologous recombination (HR)-deficiency is a well-established predictor of therapy sensitivity. However, over 50% of HR-proficient tumors also exhibit sensitivity to standard-of-care treatments. Currently, there are no biomarkers to identify which HR-proficient tumors will be sensitive to standard-of-care therapy. Replication stress may serve as a key determinant of response. Methods We evaluated phospho-RPA2-T21 (pRPA2) foci via immunofluorescence as a potential biomarker of replication stress in formalin-fixed, paraffin-embedded tumor samples collected at diagnosis from patients treated with platinum chemotherapy (discovery cohort: n = 31, validation cohort: n = 244) or PARP inhibitors (n = 87). Recurrent tumors (n = 37) were also analyzed. pRPA2 scores were calculated using automated imaging analysis. Samples were defined as pRPA2-High if > 16% of cells had ≥ 2 pRPA2 foci. Results In the discovery cohort, HR-proficient, pRPA2-High tumors demonstrated significantly higher rates of pathologic complete response to platinum chemotherapy than HR-proficient, pRPA2-Low tumors. In the validation cohort, patients with HR-proficient, pRPA2-High tumors had significantly longer survival after platinum treatment than those with HR-proficient, pRPA2-Low tumors. Additionally, the pRPA2 assay effectively predicted survival outcomes in patients treated with PARP inhibitors and in recurrent tumor samples. Conclusion Our study underscores the importance of considering replication stress markers alongside HR status in therapeutic planning. Our work suggest that this assay could be used throughout a patient's treatment course to expand the number of patients receiving effective therapy while reducing unnecessary toxicity.
Collapse
|
6
|
Loeffler CML, El Nahhas OSM, Muti HS, Carrero ZI, Seibel T, van Treeck M, Cifci D, Gustav M, Bretz K, Gaisa NT, Lehmann KV, Leary A, Selenica P, Reis-Filho JS, Ortiz-Bruechle N, Kather JN. Prediction of homologous recombination deficiency from routine histology with attention-based multiple instance learning in nine different tumor types. BMC Biol 2024; 22:225. [PMID: 39379982 PMCID: PMC11462727 DOI: 10.1186/s12915-024-02022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Homologous recombination deficiency (HRD) is recognized as a pan-cancer predictive biomarker that potentially indicates who could benefit from treatment with PARP inhibitors (PARPi). Despite its clinical significance, HRD testing is highly complex. Here, we investigated in a proof-of-concept study whether Deep Learning (DL) can predict HRD status solely based on routine hematoxylin & eosin (H&E) histology images across nine different cancer types. METHODS We developed a deep learning pipeline with attention-weighted multiple instance learning (attMIL) to predict HRD status from histology images. As part of our approach, we calculated a genomic scar HRD score by combining loss of heterozygosity (LOH), telomeric allelic imbalance (TAI), and large-scale state transitions (LST) from whole genome sequencing (WGS) data of n = 5209 patients across two independent cohorts. The model's effectiveness was evaluated using the area under the receiver operating characteristic curve (AUROC), focusing on its accuracy in predicting genomic HRD against a clinically recognized cutoff value. RESULTS Our study demonstrated the predictability of genomic HRD status in endometrial, pancreatic, and lung cancers reaching cross-validated AUROCs of 0.79, 0.58, and 0.66, respectively. These predictions generalized well to an external cohort, with AUROCs of 0.93, 0.81, and 0.73. Moreover, a breast cancer-trained image-based HRD classifier yielded an AUROC of 0.78 in the internal validation cohort and was able to predict HRD in endometrial, prostate, and pancreatic cancer with AUROCs of 0.87, 0.84, and 0.67, indicating that a shared HRD-like phenotype occurs across these tumor entities. CONCLUSIONS This study establishes that HRD can be directly predicted from H&E slides using attMIL, demonstrating its applicability across nine different tumor types.
Collapse
Affiliation(s)
- Chiara Maria Lavinia Loeffler
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Department of Medicine I, Faculty of Medicine Carl Gustav Carus, University Hospitaland, Technische Universität Dresden , Dresden, Germany
| | - Omar S M El Nahhas
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Hannah Sophie Muti
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Department for Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Zunamys I Carrero
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Tobias Seibel
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Marko van Treeck
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Didem Cifci
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Marco Gustav
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Kevin Bretz
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Nadine T Gaisa
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
- Joint Research Center Computational Biomedicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Kjong-Van Lehmann
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
- Joint Research Center Computational Biomedicine, University Hospital RWTH Aachen, Aachen, Germany
- Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Duesseldorf, Germany
- Cancer Research Center Cologne-Essen, University Hospital Cologne, Cologne, Germany
| | - Alexandra Leary
- Gynecological Cancer Unit, Department of Medicine, Institut Gustave Roussy, Villejuif, France
| | - Pier Selenica
- Experimental Pathology, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Experimental Pathology, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadina Ortiz-Bruechle
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
- Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Duesseldorf, Germany
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany.
- Department of Medicine I, Faculty of Medicine Carl Gustav Carus, University Hospitaland, Technische Universität Dresden , Dresden, Germany.
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK.
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
7
|
Guffanti F, Mengoli I, Damia G. Current HRD assays in ovarian cancer: differences, pitfalls, limitations, and novel approaches. Front Oncol 2024; 14:1405361. [PMID: 39220639 PMCID: PMC11361952 DOI: 10.3389/fonc.2024.1405361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Ovarian carcinoma (OC) still represents an insidious and fatal malignancy, and few significant results have been obtained in the last two decades to improve patient survival. Novel targeted therapies such as poly (ADP-ribose) polymerase inhibitors (PARPi) have been successfully introduced in the clinical management of OC, but not all patients will benefit, and drug resistance almost inevitably occurs. The identification of patients who are likely to respond to PARPi-based therapies relies on homologous recombination deficiency (HRD) tests, as this condition is associated with response to these treatments. This review summarizes the genomic and functional HRD assays currently used in clinical practice and those under evaluation, the clinical implications of HRD testing in OC, and their current pitfalls and limitations. Special emphasis will be placed on the functional HRD assays under development and the use of machine learning and artificial intelligence technologies as novel strategies to overcome the current limitations of HRD tests for a better-personalized treatment to improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Giovanna Damia
- Laboratory of Preclinical Gynaecological Oncology, Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
8
|
Kim YN, Kim K, Joung JG, Kim SW, Kim S, Lee JY, Park E. RAD51 as an immunohistochemistry-based marker of poly(ADP-ribose) polymerase inhibitor resistance in ovarian cancer. Front Oncol 2024; 14:1351778. [PMID: 38725623 PMCID: PMC11079140 DOI: 10.3389/fonc.2024.1351778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
Objective Effective functional biomarkers that can be readily used in clinical practice to predict poly(ADP-ribose) polymerase inhibitor (PARPi) sensitivity are lacking. With the widespread adoption of PARPi maintenance therapy in ovarian cancer, particularly in patients with BRCA mutation or HR deficiencies, accurately identifying de novo or acquired resistance to PARPi has become critical in clinical practice. We investigated RAD51 immunohistochemistry (IHC) as a functional biomarker for predicting PARPi sensitivity in ovarian cancer. Methods Ovarian cancer patients who had received PARPi and had archival tissue samples prior to PARPi exposure ("pre-PARPi") and/or after progression on PARPi ("post-PARPi") were selected. RAD51 IHC expression was semi-quantitatively evaluated using the H-score in geminin (a G2/S phase marker)- and γH2AX (a DNA damage marker)-positive tissues. A RAD51 H-score of 20 was used as the cutoff value. Results In total, 72 samples from 56 patients were analyzed. The median RAD51 H-score was 20 (range: 0-90) overall, 10 (0-190) in pre-PARPi samples (n = 34), and 25 (1-170) in post-PARPi samples (n = 19). Among patients with BRCA mutations, RAD51-low patients had better progression-free survival (PFS) after PARPi treatment than RAD51-high patients (P = 0.029). No difference was found in PFS with respect to the genomic scar score (P = 0.930). Analysis of matched pre- and post-PARPi samples collected from 15 patients indicated an increase in the RAD51 H-score upon progression on PARPi, particularly among pre-PARPi low-RAD51-expressing patients. Conclusion RAD51 is a potential functional IHC biomarker of de novo and acquired PARPi resistance in BRCA-mutated ovarian cancer and can be used to fine-tune ovarian cancer treatment.
Collapse
Affiliation(s)
- Yoo-Na Kim
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyeongmin Kim
- Graduate School of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Pathology, Soonchunhyang University, Seoul, Republic of Korea
| | - Je-Gun Joung
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Republic of Korea
| | - Sang Wun Kim
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sunghoon Kim
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung-Yun Lee
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eunhyang Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
9
|
Torres-Esquius S, Llop-Guevara A, Gutiérrez-Enríquez S, Romey M, Teulé À, Llort G, Herrero A, Sánchez-Henarejos P, Vallmajó A, González-Santiago S, Chirivella I, Cano JM, Graña B, Simonetti S, Díaz de Corcuera I, Ramon y Cajal T, Sanz J, Serrano S, Otero A, Churruca C, Sánchez-Heras AB, Servitja S, Guillén-Ponce C, Brunet J, Denkert C, Serra V, Balmaña J. Prevalence of Homologous Recombination Deficiency Among Patients With Germline RAD51C/D Breast or Ovarian Cancer. JAMA Netw Open 2024; 7:e247811. [PMID: 38648056 PMCID: PMC11036141 DOI: 10.1001/jamanetworkopen.2024.7811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/21/2024] [Indexed: 04/25/2024] Open
Abstract
Importance RAD51C and RAD51D are involved in DNA repair by homologous recombination. Germline pathogenic variants (PVs) in these genes are associated with an increased risk of ovarian and breast cancer. Understanding the homologous recombination deficiency (HRD) status of tumors from patients with germline PVs in RAD51C/D could guide therapeutic decision-making and improve survival. Objective To characterize the clinical and tumor characteristics of germline RAD51C/D PV carriers, including the evaluation of HRD status. Design, Setting, and Participants This retrospective cohort study included 91 index patients plus 90 relatives carrying germline RAD51C/D PV (n = 181) in Spanish hospitals from January 1, 2014, to December 31, 2021. Genomic and functional HRD biomarkers were assessed in untreated breast and ovarian tumor samples (n = 45) from June 2022 to February 2023. Main Outcomes and Measures Clinical and pathologic characteristics were assessed using descriptive statistics. Genomic HRD by genomic instability scores, functional HRD by RAD51, and gene-specific loss of heterozygosity were analyzed. Associations between HRD status and tumor subtype, age at diagnosis, and gene-specific loss of heterozygosity in RAD51C/D were investigated using logistic regression or the t test. Results A total of 9507 index patients were reviewed, and 91 patients (1.0%) were found to carry a PV in RAD51C/D; 90 family members with a germline PV in RAD51C/D were also included. A total of 157 of carriers (86.7%) were women and 181 (55.8%) had received a diagnosis of cancer, mainly breast cancer or ovarian cancer. The most prevalent PVs were c.1026+5_1026+7del (11 of 56 [19.6%]) and c.709C>T (9 of 56 [16.1%]) in RAD51C and c.694C>T (20 of 35 [57.1%]) in RAD51D. In untreated breast cancer and ovarian cancer, the prevalence of functional and genomic HRD was 55.2% (16 of 29) and 61.1% (11 of 18) for RAD51C, respectively, and 66.7% (6 of 9) and 90.0% (9 of 10) for RAD51D. The concordance between HRD biomarkers was 91%. Tumors with the same PV displayed contrasting HRD status, and age at diagnosis did not correlate with the occurrence of HRD. All breast cancers retaining the wild-type allele were estrogen receptor positive and lacked HRD. Conclusions and Relevance In this cohort study of germline RAD51C/D breast cancer and ovarian cancer, less than 70% of tumors displayed functional HRD, and half of those that did not display HRD were explained by retention of the wild-type allele, which was more frequent among estrogen receptor-positive breast cancers. Understanding which tumors are associated with RAD51C/D and HRD is key to identify patients who can benefit from targeted therapies, such as PARP (poly [adenosine diphosphate-ribose] polymerase) inhibitors.
Collapse
Affiliation(s)
- Sara Torres-Esquius
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Alba Llop-Guevara
- Experimental Therapeutics Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
- Translational Medicine, DNA Damage Response Department, AstraZeneca, Barcelona, Spain
| | | | - Marcel Romey
- Institute of Pathology, Universitätsklinikum Marburg, Marburg, Germany
| | - Àlex Teulé
- Hereditary Cancer Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Gemma Llort
- Department of Medical Oncology, Hospital Universitari Parc Taulí, Sabadell, Spain
| | - Ana Herrero
- Department of Medical Oncology, Hospital Miguel Servet de Zaragoza, Zaragoza, Spain
| | | | - Anna Vallmajó
- Genetic Counseling Unit, Arnau de Vilanova University Hospital, Lleida, Spain
| | | | - Isabel Chirivella
- Cancer Genetic Counseling, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Juana Maria Cano
- Department of Medical Oncology, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - Begoña Graña
- Department of Medical Oncology, Xerencia de Xestión Integrada de A Coruña, Coruña, Spain
| | - Sara Simonetti
- Molecular Oncology Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | | | - Teresa Ramon y Cajal
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Judit Sanz
- Unidad de Cáncer Familiar y Hereditario, Althaia Xarxa Assistencial Universitària de Manresa, Manresa, Spain
| | - Sara Serrano
- Department of Medical Oncology, Institute of Oncology of Southern Catalonia (IOCS), Hospital Universitari Sant Joan de Reus, Reus, Spain
| | - Andrea Otero
- Institute of Oncology and Molecular Medicine of Asturias (IMOMA) S. A., Oviedo, Spain
| | - Cristina Churruca
- Department of Medical Oncology, Hospital Universitario Donostia, San Sebastián, Gipuzkoa, Spain
| | - Ana Beatriz Sánchez-Heras
- Cancer Genetic Counselling Unit, Medical Oncology Department, Hospital General Universitario de Elche, Elche, Spain
| | - Sonia Servitja
- Department of Medical Oncology, Hospital del Mar-CIBERONC, Barcelona, Spain
| | - Carmen Guillén-Ponce
- Department of Medical Oncology, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, Girona, Spain
- Precision Oncology Group (OncoGIR-Pro), Institut d’Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
| | - Carsten Denkert
- Institute of Pathology, Universitätsklinikum Marburg, Marburg, Germany
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Judith Balmaña
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
- Medical Oncology Department, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| |
Collapse
|
10
|
Launonen IM, Erkan EP, Niemiec I, Junquera A, Hincapié-Otero M, Afenteva D, Liang Z, Salko M, Szabo A, Perez-Villatoro F, Falco MM, Li Y, Micoli G, Nagaraj A, Haltia UM, Kahelin E, Oikkonen J, Hynninen J, Virtanen A, Nirmal AJ, Vallius T, Hautaniemi S, Sorger P, Vähärautio A, Färkkilä A. Chemotherapy induces myeloid-driven spatial T-cell exhaustion in ovarian cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585657. [PMID: 38562799 PMCID: PMC10983974 DOI: 10.1101/2024.03.19.585657] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
To uncover the intricate, chemotherapy-induced spatiotemporal remodeling of the tumor microenvironment, we conducted integrative spatial and molecular characterization of 97 high-grade serous ovarian cancer (HGSC) samples collected before and after chemotherapy. Using single-cell and spatial analyses, we identify increasingly versatile immune cell states, which form spatiotemporally dynamic microcommunities at the tumor-stroma interface. We demonstrate that chemotherapy triggers spatial redistribution and exhaustion of CD8+ T cells due to prolonged antigen presentation by macrophages, both within interconnected myeloid networks termed "Myelonets" and at the tumor stroma interface. Single-cell and spatial transcriptomics identifies prominent TIGIT-NECTIN2 ligand-receptor interactions induced by chemotherapy. Using a functional patient-derived immuno-oncology platform, we show that CD8+T-cell activity can be boosted by combining immune checkpoint blockade with chemotherapy. Our discovery of chemotherapy-induced myeloid-driven spatial T-cell exhaustion paves the way for novel immunotherapeutic strategies to unleash CD8+ T-cell-mediated anti-tumor immunity in HGSC.
Collapse
Affiliation(s)
- Inga-Maria Launonen
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | | | - Iga Niemiec
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Ada Junquera
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | | | - Daria Afenteva
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Zhihan Liang
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Matilda Salko
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Angela Szabo
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | | | - Matias M Falco
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Yilin Li
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Giulia Micoli
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Ashwini Nagaraj
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Ulla-Maija Haltia
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, Department of Oncology, Clinical trials unit, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - Essi Kahelin
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
- Department of Pathology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital
| | - Jaana Oikkonen
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Johanna Hynninen
- Department of Obstetrics and Gynecology, University of Turku and Turku University Hospital, Turku, Finland
| | - Anni Virtanen
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
- Department of Pathology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital
| | - Ajit J Nirmal
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, USA
| | - Tuulia Vallius
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, USA
- Ludwig Center at Harvard
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Peter Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, USA
| | - Anna Vähärautio
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
- Foundation for the Finnish Cancer Institute, Finland
| | - Anniina Färkkilä
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, Department of Oncology, Clinical trials unit, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute for Life Sciences, University of Helsinki, Finland
| |
Collapse
|
11
|
Korsholm LM, Kjeldsen M, Perino L, Mariani L, Nyvang GB, Kristensen E, Bagger FO, Mirza MR, Rossing M. Combining Homologous Recombination-Deficient Testing and Functional RAD51 Analysis Enhances the Prediction of Poly(ADP-Ribose) Polymerase Inhibitor Sensitivity. JCO Precis Oncol 2024; 8:e2300483. [PMID: 38427930 PMCID: PMC10919475 DOI: 10.1200/po.23.00483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/03/2023] [Accepted: 12/21/2023] [Indexed: 03/03/2024] Open
Abstract
PURPOSE To meet the urgent need for accessible homologous recombination-deficient (HRD) test options, we validated a laboratory-developed test (LDT) and a functional RAD51 assay to assess patients with ovarian cancer and predict the clinical benefit of poly(ADP-ribose) polymerase inhibitor therapy. METHODS Optimization of the LDT cutoff and validation on the basis of samples from 91 patients enrolled in the ENGOT-ov24/NSGO-AVANOVA1&2 trial (ClinicalTrials.gov identifier: NCT02354131), previously subjected to commercial CDx HRD testing (CDx). RAD51 foci analysis was performed and tumors with ≥five foci/nucleus were classified as RAD51-positive (homologous recombination-proficient). RESULTS The optimal LDT cutoff is 54. Comparing CDx genome instability score and LDT HRD scores show a Spearman's correlation of rho = 0.764 (P < .0001). Cross-tabulation analysis shows that the sensitivity of the LDT HRD score is 86% and of the LDT HRD status is 91.8% (Fisher's exact test P < .001). Survival analysis on progression-free survival (PFS) of LDT-assessed patients show a Cox regression P < .05. RAD51 assays show a correlation between low RAD51 foci detection (<20% RAD51+ cells) and significantly prolonged PFS (P < .001). CONCLUSION The robust concordance between the open standard LDT and the CDx, especially the correlation with PFS, warrants future validation and implementation of the open standard LDT for HRD testing in diagnostic settings.
Collapse
Affiliation(s)
- Lea M. Korsholm
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Maj Kjeldsen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lorenzo Perino
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Luca Mariani
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Elisabeth Kristensen
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Frederik O. Bagger
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mansoor Raza Mirza
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Maria Rossing
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Ratnaparkhi R, Javellana M, Jewell A, Spoozak L. Evaluation of Homologous Recombination Deficiency in Ovarian Cancer. Curr Treat Options Oncol 2024; 25:237-260. [PMID: 38300479 DOI: 10.1007/s11864-024-01176-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 02/02/2024]
Abstract
OPINION STATEMENT Homologous recombination deficiency (HRD) is an important biomarker guiding selection of ovarian cancer patients who will derive the most benefit from poly(ADP-ribose) polymerase inhibitors (PARPi). HRD prevents cells from repairing double-stranded DNA damage with high fidelity, PARPis limit single-stranded repair, and together these deficits induce synthetic lethality. Germline or somatic BRCA mutations represent the narrowest definition of HRD, but do not reflect all patients who will have a durable PARPi response. HRD can also be defined by its downstream consequences, which are measured by different metrics depending on the test used. Ideally, all patients will undergo genetic counseling and germline testing shortly after diagnosis and have somatic testing sent once an adequate tumor sample is available. Should barriers to one test be higher, pursuing germline testing with reflex to somatic testing for BRCA wildtype patients or somatic testing first strategies are both evidence-based. Ultimately both tests offer complementary information, germline testing should be pursued for any patient with a history of ovarian cancer, and somatic testing is valuable at recurrence if not performed in the upfront setting. There is a paucity of data to suggest superiority of one germline or somatic assay; therefore, selection should optimize turnaround time, cost to patients, preferred result format, and logistical burden. Each clinic should implement a standard testing strategy for all ovarian cancer patients that ensures HRD status is known at the time of upfront chemotherapy completion to facilitate comprehensive counseling about anticipated maintenance PARPi benefit.
Collapse
Affiliation(s)
- Rubina Ratnaparkhi
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Melissa Javellana
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrea Jewell
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lori Spoozak
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
13
|
Koskela H, Li Y, Joutsiniemi T, Muranen T, Isoviita VM, Huhtinen K, Micoli G, Lavikka K, Marchi G, Hietanen S, Virtanen A, Hautaniemi S, Oikkonen J, Hynninen J. HRD related signature 3 predicts clinical outcome in advanced tubo-ovarian high-grade serous carcinoma. Gynecol Oncol 2024; 180:91-98. [PMID: 38061276 DOI: 10.1016/j.ygyno.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/14/2023] [Accepted: 11/25/2023] [Indexed: 02/18/2024]
Abstract
OBJECTIVES We evaluated usability of single base substitution signature 3 (Sig3) as a biomarker for homologous recombination deficiency (HRD) in tubo-ovarian high-grade serous carcinoma (HGSC). MATERIALS AND METHODS This prospective observational trial includes 165 patients with advanced HGSC. Fresh tissue samples (n = 456) from multiple intra-abdominal areas at diagnosis and after neoadjuvant chemotherapy (NACT) were collected for whole-genome sequencing. Sig3 was assessed by fitting samples independently with COSMIC v3.2 reference signatures. An HR scar assay was applied for comparison. Progression-free survival (PFS) and overall survival (OS) were studied using Kaplan-Meier and Cox regression analysis. RESULTS Sig3 has a bimodal distribution, eliminating the need for an arbitrary cutoff typical in HR scar tests. Sig3 could be assessed from samples with low (10%) cancer cell proportion and was consistent between multiple samples and stable during NACT. At diagnosis, 74 (45%) patients were HRD (Sig3+), while 91 (55%) were HR proficient (HRP, Sig3-). Sig3+ patients had longer PFS and OS than Sig3- patients (22 vs. 13 months and 51 vs. 34 months respectively, both p < 0.001). Sig3 successfully distinguished the poor prognostic HRP group among BRCAwt patients (PFS 19 months for Sig3+ and 13 months for Sig3- patients, p < 0.001). However, Sig3 at diagnosis did not predict chemoresponse anymore in the first relapse. The patient-level concordance between Sig3 and HR scar assay was 87%, and patients with HRD according to both tests had the longest median PFS. CONCLUSIONS Sig3 is a prognostic marker in advanced HGSC and useful tool in patient stratification for HRD.
Collapse
Affiliation(s)
- Heidi Koskela
- Department of Obstetrics and Gynecology, University of Turku and Turku University Hospital, Turku, Finland
| | - Yilin Li
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Titta Joutsiniemi
- Department of Obstetrics and Gynecology, University of Turku and Turku University Hospital, Turku, Finland
| | - Taru Muranen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Veli-Matti Isoviita
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kaisa Huhtinen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Giulia Micoli
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kari Lavikka
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Giovanni Marchi
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sakari Hietanen
- Department of Obstetrics and Gynecology, University of Turku and Turku University Hospital, Turku, Finland
| | - Anni Virtanen
- Department of Pathology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jaana Oikkonen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Hynninen
- Department of Obstetrics and Gynecology, University of Turku and Turku University Hospital, Turku, Finland.
| |
Collapse
|
14
|
Garg V, Oza AM. Treatment of Ovarian Cancer Beyond PARP Inhibition: Current and Future Options. Drugs 2023; 83:1365-1385. [PMID: 37737434 PMCID: PMC10581945 DOI: 10.1007/s40265-023-01934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2023] [Indexed: 09/23/2023]
Abstract
Ovarian cancer is the leading cause of gynecological cancer death. Improved understanding of the biologic pathways and introduction of poly (ADP-ribose) polymerase inhibitors (PARPi) during the last decade have changed the treatment landscape. This has improved outcomes, but unfortunately half the women with ovarian cancer still succumb to the disease within 5 years of diagnosis. Pathways of resistance to PARPi and chemotherapy have been studied extensively, but there is an unmet need to overcome treatment failure and improve outcome. Major mechanisms of PARPi resistance include restoration of homologous recombination repair activity, alteration of PARP function, stabilization of the replication fork, drug efflux, and activation of alternate pathways. These resistant mechanisms can be targeted to sensitize the resistant ovarian cancer cells either by rechallenging with PARPi, overcoming resistance mechanism or bypassing resistance pathways. Augmenting the PARPi activity by combining it with other targets in the DNA damage response pathway, antiangiogenic agents and immune checkpoint inhibitors can potentially overcome the resistance mechanisms. Methods to bypass resistance include targeting non-cross-resistant pathways acting independent of homologous recombination repair (HRR), modulating tumour microenvironment, and enhancing drug delivery systems such as antibody drug conjugates. In this review, we will discuss the first-line management of ovarian cancer, resistance mechanisms and potential strategies to overcome these.
Collapse
Affiliation(s)
- Vikas Garg
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Amit M Oza
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
- , 610 University Avenue, Toronto, ON, M5G 2M9, Canada.
| |
Collapse
|