1
|
Joseph S, Zhang X, Droby GN, Wu D, Bae-Jump V, Lyons S, Mordant A, Mills A, Herring L, Rushing B, Bowser JL, Vaziri C. MAPK14/p38α shapes the molecular landscape of endometrial cancer and promotes tumorigenic characteristics. Cell Rep 2025; 44:115104. [PMID: 39708320 DOI: 10.1016/j.celrep.2024.115104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/25/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
The molecular underpinnings of high-grade endometrial carcinoma (HGEC) metastatic growth and survival are poorly understood. Here, we show that ascites-derived and primary tumor HGEC cell lines in 3D spheroid culture faithfully recapitulate key features of malignant peritoneal effusion and exhibit fundamentally distinct transcriptomic, proteomic, and metabolomic landscapes compared with conventional 2D monolayers. Using a genetic screening platform, we identify MAPK14 (which encodes the protein kinase p38α) as a specific requirement for HGEC in spheroid culture. MAPK14/p38α has broad roles in programming the phosphoproteome, transcriptome, and metabolome of HGEC spheroids, yet has negligible impact on monolayer cultures. MAPK14 promotes tumorigenicity in vivo and is specifically required to sustain a sub-population of spheroid cells that is enriched in cancer stemness markers. Therefore, spheroid growth of HGEC activates unique biological programs, including p38α signaling, that cannot be captured using 2D culture models and are highly relevant to malignant disease pathology.
Collapse
Affiliation(s)
- Sayali Joseph
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xingyuan Zhang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gaith N Droby
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Victoria Bae-Jump
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Scott Lyons
- Department of Pharmacology, UNC Proteomics Core Facility, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Angie Mordant
- Department of Pharmacology, UNC Proteomics Core Facility, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Allie Mills
- Department of Pharmacology, UNC Proteomics Core Facility, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Laura Herring
- Department of Pharmacology, UNC Proteomics Core Facility, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Blake Rushing
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA; Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica L Bowser
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
2
|
Joseph S, Zhang X, Droby G, Wu D, Bae-Jump V, Lyons S, Mordant A, Mills A, Herring L, Rushing B, Bowser J, Vaziri C. MAPK14 /p38α Shapes the Molecular Landscape of Endometrial Cancer and promotes Tumorigenic Characteristics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600674. [PMID: 38979238 PMCID: PMC11230443 DOI: 10.1101/2024.06.25.600674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The molecular underpinnings of H igh G rade E ndometrial C arcinoma (HGEC) metastatic growth and survival are poorly understood. Here we show that ascites-derived and primary tumor HGEC cell lines in 3D spheroid culture faithfully recapitulate key features of malignant peritoneal effusion and exhibit fundamentally distinct transcriptomic, proteomic and metabolomic landscapes when compared with conventional 2D monolayers. Using genetic screening platform we identify MAPK14 (which encodes the protein kinase p38α) as a specific requirement for HGEC in spheroid culture. MAPK14 /p38α has broad roles in programing the phosphoproteome, transcriptome and metabolome of HGEC spheroids, yet has negligible impact on monolayer cultures. MAPK14 promotes tumorigenicity in vivo and is specifically required to sustain a sub-population of spheroid cells that is enriched in cancer stemness markers. Therefore, spheroid growth of HGEC activates unique biological programs, including p38α signaling, that cannot be captured using 2D culture models and are highly relevant to malignant disease pathology.
Collapse
|
3
|
Villegas-Pineda JC, Ramírez-de-Arellano A, Bueno-Urquiza LJ, Lizarazo-Taborda MDR, Pereira-Suárez AL. Cancer-associated fibroblasts in gynecological malignancies: are they really allies of the enemy? Front Oncol 2023; 13:1106757. [PMID: 37168385 PMCID: PMC10164963 DOI: 10.3389/fonc.2023.1106757] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Molecular and cellular components of the tumor microenvironment are essential for cancer progression. The cellular element comprises cancer cells and heterogeneous populations of non-cancer cells that satisfy tumor needs. Immune, vascular, and mesenchymal cells provide the necessary factors to feed the tumor mass, promote its development, and favor the spread of cancer cells from the primary site to adjacent and distant anatomical sites. Cancer-associated fibroblasts (CAFs) are mesenchymal cells that promote carcinogenesis and progression of various malignant neoplasms. CAFs act through the secretion of metalloproteinases, growth factors, cytokines, mitochondrial DNA, and non-coding RNAs, among other molecules. Over the last few years, the evidence on the leading role of CAFs in gynecological cancers has notably increased, placing them as the cornerstone of neoplastic processes. In this review, the recently reported findings regarding the promoting role that CAFs play in gynecological cancers, their potential use as therapeutic targets, and the new evidence suggesting that they could act as tumor suppressors are analyzed and discussed.
Collapse
Affiliation(s)
- Julio César Villegas-Pineda
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Adrián Ramírez-de-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Lesly Jazmín Bueno-Urquiza
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | | | - Ana Laura Pereira-Suárez
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- *Correspondence: Ana Laura Pereira-Suárez,
| |
Collapse
|
4
|
Daubriac J, Pandya UM, Huang KT, Pavlides SC, Gama P, Blank SV, Shukla P, Crawford SE, Gold LI. Hormonal and Growth Regulation of Epithelial and Stromal Cells From the Normal and Malignant Endometrium by Pigment Epithelium-Derived Factor. Endocrinology 2017; 158:2754-2773. [PMID: 28911166 DOI: 10.1210/en.2017-00028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/16/2017] [Indexed: 12/19/2022]
Abstract
We discovered that pigment epithelium-derived factor (PEDF)-null mice have endometrial hyperplasia, the precursor to human type I endometrial cancer (ECA), which is etiologically linked to unopposed estrogen (E2), suggesting that this potent antiangiogenic factor might contribute to dysregulated growth and the development of type I ECA. Treatment of both ECA cell lines and primary ECA cells with recombinant PEDF dose dependently decreased cellular proliferation via an autocrine mechanism by blocking cells in G1 and G2 phases of the cell cycle. Consistent with the known opposing effects of E2 and progesterone (Pg) on endometrial proliferation, Pg increases PEDF protein synthesis and release, whereas E2 has the converse effect. Using PEDF luciferase promoter constructs containing two Pg and one E2 response elements, E2 reduced and Pg increased promoter activity due to distal response elements. Furthermore, E2 decreases and Pg increases PEDF secretion into conditioned media (CM) by both normal endometrial stromal fibroblasts (ESFs) and cancer-associated fibroblasts (CAFs), but only CM from ESFs mediated growth-inhibitory activity of primary endometrial epithelial cells (EECs). In addition, in cocultures with primary EECs, Pg-induced growth inhibition is mediated by ESFs, but not CAFs. This is consistent with reduced levels of Pg receptors on CAFs surrounding human malignant glands in vivo. Taken together, the data suggest that PEDF is a hormone-regulated negative autocrine mediator of endometrial proliferation, and that paracrine growth inhibition by soluble factors, possibly PEDF, released by ESFs in response to Pg, but not CAFs, exemplifies a tumor microenvironment that contributes to the pathogenesis of ECA.
Collapse
Affiliation(s)
- Julien Daubriac
- Department of Medicine, Division of Translational Medicine, New York University School of Medicine Langone Medical Center, New York, New York 10016
| | - Unnati M Pandya
- Department of Medicine, Division of Translational Medicine, New York University School of Medicine Langone Medical Center, New York, New York 10016
| | - Kuang-Tzu Huang
- Department of Medicine, Division of Translational Medicine, New York University School of Medicine Langone Medical Center, New York, New York 10016
| | - Savvas C Pavlides
- Department of Medicine, Division of Translational Medicine, New York University School of Medicine Langone Medical Center, New York, New York 10016
| | - Patricia Gama
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paolo, Sao Paolo 05508 000, Brazil
| | - Stephanie V Blank
- Department of Pathology, New York University School of Medicine Langone Medical Center, New York, New York 10016
- Department of Gynecological Oncology, New York University School of Medicine Langone Medical Center, New York, New York 10016
- Perlmutter Cancer Center, New York University School of Medicine Langone Medical Center, New York, New York 10016
| | - Pratibha Shukla
- Department of Pathology, New York University School of Medicine Langone Medical Center, New York, New York 10016
| | - Susan E Crawford
- NorthShore University Research Institute, Affiliate of Chicago Pritizker School of Medicine, Evanston, Illinois 60201
| | - Leslie I Gold
- Department of Medicine, Division of Translational Medicine, New York University School of Medicine Langone Medical Center, New York, New York 10016
- Department of Pathology, New York University School of Medicine Langone Medical Center, New York, New York 10016
- Perlmutter Cancer Center, New York University School of Medicine Langone Medical Center, New York, New York 10016
| |
Collapse
|
5
|
Lecanda J, Parekh TV, Gama P, Lin K, Liarski V, Uretsky S, Mittal K, Gold LI. Transforming growth factor-beta, estrogen, and progesterone converge on the regulation of p27Kip1 in the normal and malignant endometrium. Cancer Res 2007; 67:1007-18. [PMID: 17283133 DOI: 10.1158/0008-5472.can-06-0235] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hormones and growth factors regulate endometrial cell growth. Disrupted transforming growth factor-beta (TGF-beta) signaling in primary endometrial carcinoma (ECA) cells leads to loss of TGF-beta-mediated growth inhibition, which we show herein results in lack of up-regulation of the cyclin-dependent kinase inhibitor p27(Kip1) (p27) to arrest cells in G(1) phase of the cell cycle. Conversely, in normal primary endometrial epithelial cells (EECs), TGF-beta induces a dose-dependent increase in p27 protein, with a total 3.6-fold maximal increase at 100 pmol/L TGF-beta, which was 2-fold higher in the nuclear fraction; mRNA levels were unaffected. In addition, ECA tissue lysates show a high rate of ubiquitin-mediated degradation of p27 compared with normal secretory-phase endometrial tissue (SE) such that 4% and 89% of recombinant p27 added to the lysates remains after 3 and 20 h, respectively. These results are reflected in vivo as ECA tissue lacks p27 compared with high expression of p27 in SE (P < or = 0.001). Furthermore, we show that estrogen treatment of EECs causes mitogen-activated protein kinase-driven proteasomal degradation of p27 whereas progesterone induces a marked increase in p27 in both normal EECs and ECA cells. Therefore, these data suggest that TGF-beta induces accumulation of p27 for normal growth regulation of EECs. However, in ECA, in addition to enhanced proteasomal degradation of p27, TGF-beta cannot induce p27 levels due to dysregulated TGF-beta signaling, thereby causing 17beta-estradiol-driven p27 degradation to proceed unchecked for cell cycle progression. Thus, p27 may be a central target for growth regulation of normal endometrium and in the pathogenesis of ECA.
Collapse
Affiliation(s)
- Jon Lecanda
- Departments of Pathology and Medicine, NYU Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Albitar L, Laidler LL, Abdallah R, Leslie KK. Regulation of signaling phosphoproteins by epidermal growth factor and Iressa (ZD1839) in human endometrial cancer cells that model type I and II tumors. Mol Cancer Ther 2005; 4:1891-9. [PMID: 16373704 DOI: 10.1158/1535-7163.mct-05-0274] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To understand how type I and II endometrial tumors uniquely respond to tyrosine kinase inhibitor treatments, we evaluated the signaling pathways of epidermal growth factor (EGF) receptor (EGFR) under the effects of EGF and Iressa (ZD1839, gefitinib) using Ishikawa H and Hec50co cells that model type I and II endometrial carcinomas, respectively. The cells were assayed for the expression of EGFR and both cell lines express an average of 100,000 EGFR per cell; however, Ishikawa H cells express higher levels of HER-2/neu compared with Hec50co cells (1.38 x 10(5) compared with 2.04 x 10(4), respectively). Using the Kinetworks multi-immunoblotting approach, which profiles 31 signaling phosphoproteins, the most striking result was that Hec50co cells show a higher number of basal phosphorylated sites compared with Ishikawa H cells. Furthermore, we identified targets of Iressa treatment in both cell lines. Iressa, at a dose of 1 micromol/L, blocked the autophosphorylation of EGFR in Ishikawa H and Hec50co cells with some distinctive effects on downstream effectors. Nevertheless, in both cell lines, EGF stimulated and Iressa blocked the major EGFR target mitogen-activated protein kinases extracellular signal-regulated kinase 1 and 2 equally. The high basal phosphorylation of numerous signaling molecules in Hec50co cells that were not inhibited by Iressa indicates that other growth factor pathways are active in addition to EGFR. We conclude that endometrial cancer cells that model type I and II carcinomas have the capacity to respond to EGFR inhibition as a therapeutic strategy; however, the response of the more aggressive type II tumors may be limited by the constitutive activation of other signaling pathways.
Collapse
Affiliation(s)
- Lina Albitar
- Department of Obstetrics and Gynecology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | |
Collapse
|
7
|
Dai D, Holmes AM, Nguyen T, Davies S, Theele DP, Verschraegen C, Leslie KK. A potential synergistic anticancer effect of paclitaxel and amifostine on endometrial cancer. Cancer Res 2005; 65:9517-24. [PMID: 16230417 DOI: 10.1158/0008-5472.can-05-1613] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although paclitaxel is one of the most effective chemotherapeutic agents, its usefulness is still limited in advanced and recurrent endometrial cancer. Amifostine protection of normal tissues against the side effects of chemotherapeutic agents has been clinically proven in cancer patients; however, its application in endometrial cancer has not been fully evaluated. We have investigated the use of paclitaxel and amifostine in controlling the growth of poorly differentiated endometrial cancer cells, Hec50co, in vitro and in vivo. Our studies show that amifostine had direct anticancer effects on endometrial cancer cells in vitro by arresting the cell cycle at the G1 phase and inducing apoptosis. Amifostine also inhibited s.c. tumor growth in athymic mice. Paclitaxel IC50 value was reduced from 14 to 2 nmol/L with pretreatment of a single dose of 178 micromol/L of amifostine for 72 hours. Amifostine also synergized with paclitaxel in the arrest of the cell cycle at the G2-M phase and in the induction of apoptosis. This two-drug regimen inhibited s.c. tumor growth as well as improved mouse survival significantly more than paclitaxel alone. Amifostine also significantly improved paclitaxel-induced cytotoxic effects on peripheral blood profiles. Our studies show that amifostine has direct anticancer effects on endometrial cancer. Our data have also shown a potential anticancer synergy between amifostine and paclitaxel in vitro and in vivo, whereas amifostine maintained a protective role in peripheral blood profiles. The dual specificity of amifostine action should be further investigated.
Collapse
Affiliation(s)
- Donghai Dai
- Reproductive Molecular Biology Laboratory, Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology.
| | | | | | | | | | | | | |
Collapse
|